1 /*
2  * IMC compatible decoder
3  * Copyright (c) 2002-2004 Maxim Poliakovski
4  * Copyright (c) 2006 Benjamin Larsson
5  * Copyright (c) 2006 Konstantin Shishkov
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  *  @file imc.c IMC - Intel Music Coder
26  *  A mdct based codec using a 256 points large transform
27  *  divied into 32 bands with some mix of scale factors.
28  *  Only mono is supported.
29  *
30  */
31 
32 
33 #include <math.h>
34 #include <stddef.h>
35 #include <stdio.h>
36 
37 #define ALT_BITSTREAM_READER
38 #include "avcodec.h"
39 #include "bitstream.h"
40 #include "dsputil.h"
41 
42 #include "imcdata.h"
43 
44 #define IMC_BLOCK_SIZE 64
45 #define IMC_FRAME_ID 0x21
46 #define BANDS 32
47 #define COEFFS 256
48 
49 typedef struct {
50     float old_floor[BANDS];
51     float flcoeffs1[BANDS];
52     float flcoeffs2[BANDS];
53     float flcoeffs3[BANDS];
54     float flcoeffs4[BANDS];
55     float flcoeffs5[BANDS];
56     float flcoeffs6[BANDS];
57     float CWdecoded[COEFFS];
58 
59     /** MDCT tables */
60     //@{
61     float mdct_sine_window[COEFFS];
62     float post_cos[COEFFS];
63     float post_sin[COEFFS];
64     float pre_coef1[COEFFS];
65     float pre_coef2[COEFFS];
66     float last_fft_im[COEFFS];
67     //@}
68 
69     int bandWidthT[BANDS];     ///< codewords per band
70     int bitsBandT[BANDS];      ///< how many bits per codeword in band
71     int CWlengthT[COEFFS];     ///< how many bits in each codeword
72     int levlCoeffBuf[BANDS];
73     int bandFlagsBuf[BANDS];   ///< flags for each band
74     int sumLenArr[BANDS];      ///< bits for all coeffs in band
75     int skipFlagRaw[BANDS];    ///< skip flags are stored in raw form or not
76     int skipFlagBits[BANDS];   ///< bits used to code skip flags
77     int skipFlagCount[BANDS];  ///< skipped coeffients per band
78     int skipFlags[COEFFS];     ///< skip coefficient decoding or not
79     int codewords[COEFFS];     ///< raw codewords read from bitstream
80     float sqrt_tab[30];
81     GetBitContext gb;
82     VLC huffman_vlc[4][4];
83     int decoder_reset;
84     float one_div_log2;
85 
86     DSPContext dsp;
87     FFTContext fft;
88     DECLARE_ALIGNED_16(FFTComplex, samples[COEFFS/2]);
89     DECLARE_ALIGNED_16(float, out_samples[COEFFS]);
90 } IMCContext;
91 
92 
imc_decode_init(AVCodecContext * avctx)93 static av_cold int imc_decode_init(AVCodecContext * avctx)
94 {
95     int i, j;
96     IMCContext *q = avctx->priv_data;
97     double r1, r2;
98 
99     q->decoder_reset = 1;
100 
101     for(i = 0; i < BANDS; i++)
102         q->old_floor[i] = 1.0;
103 
104     /* Build mdct window, a simple sine window normalized with sqrt(2) */
105     for(i = 0; i < COEFFS; i++)
106         q->mdct_sine_window[i] = sin((i + 0.5) / 512.0 * M_PI) * sqrt(2.0);
107     for(i = 0; i < COEFFS/2; i++){
108         q->post_cos[i] = cos(i / 256.0 * M_PI);
109         q->post_sin[i] = sin(i / 256.0 * M_PI);
110 
111         r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
112         r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
113 
114         if (i & 0x1)
115         {
116             q->pre_coef1[i] =  (r1 + r2) * sqrt(2.0);
117             q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
118         }
119         else
120         {
121             q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
122             q->pre_coef2[i] =  (r1 - r2) * sqrt(2.0);
123         }
124 
125         q->last_fft_im[i] = 0;
126     }
127 
128     /* Generate a square root table */
129 
130     for(i = 0; i < 30; i++) {
131         q->sqrt_tab[i] = sqrt(i);
132     }
133 
134     /* initialize the VLC tables */
135     for(i = 0; i < 4 ; i++) {
136         for(j = 0; j < 4; j++) {
137             init_vlc (&q->huffman_vlc[i][j], 9, imc_huffman_sizes[i],
138                      imc_huffman_lens[i][j], 1, 1,
139                      imc_huffman_bits[i][j], 2, 2, 1);
140         }
141     }
142     q->one_div_log2 = 1/log(2);
143 
144     ff_fft_init(&q->fft, 7, 1);
145     dsputil_init(&q->dsp, avctx);
146     return 0;
147 }
148 
imc_calculate_coeffs(IMCContext * q,float * flcoeffs1,float * flcoeffs2,int * bandWidthT,float * flcoeffs3,float * flcoeffs5)149 static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeffs2, int* bandWidthT,
150                                 float* flcoeffs3, float* flcoeffs5)
151 {
152     float   workT1[BANDS];
153     float   workT2[BANDS];
154     float   workT3[BANDS];
155     float   snr_limit = 1.e-30;
156     float   accum = 0.0;
157     int i, cnt2;
158 
159     for(i = 0; i < BANDS; i++) {
160         flcoeffs5[i] = workT2[i] = 0.0;
161         if (bandWidthT[i]){
162             workT1[i] = flcoeffs1[i] * flcoeffs1[i];
163             flcoeffs3[i] = 2.0 * flcoeffs2[i];
164         } else {
165             workT1[i] = 0.0;
166             flcoeffs3[i] = -30000.0;
167         }
168         workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
169         if (workT3[i] <= snr_limit)
170             workT3[i] = 0.0;
171     }
172 
173     for(i = 0; i < BANDS; i++) {
174         for(cnt2 = i; cnt2 < cyclTab[i]; cnt2++)
175             flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
176         workT2[cnt2-1] = workT2[cnt2-1] + workT3[i];
177     }
178 
179     for(i = 1; i < BANDS; i++) {
180         accum = (workT2[i-1] + accum) * imc_weights1[i-1];
181         flcoeffs5[i] += accum;
182     }
183 
184     for(i = 0; i < BANDS; i++)
185         workT2[i] = 0.0;
186 
187     for(i = 0; i < BANDS; i++) {
188         for(cnt2 = i-1; cnt2 > cyclTab2[i]; cnt2--)
189             flcoeffs5[cnt2] += workT3[i];
190         workT2[cnt2+1] += workT3[i];
191     }
192 
193     accum = 0.0;
194 
195     for(i = BANDS-2; i >= 0; i--) {
196         accum = (workT2[i+1] + accum) * imc_weights2[i];
197         flcoeffs5[i] += accum;
198         //there is missing code here, but it seems to never be triggered
199     }
200 }
201 
202 
imc_read_level_coeffs(IMCContext * q,int stream_format_code,int * levlCoeffs)203 static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* levlCoeffs)
204 {
205     int i;
206     VLC *hufftab[4];
207     int start = 0;
208     const uint8_t *cb_sel;
209     int s;
210 
211     s = stream_format_code >> 1;
212     hufftab[0] = &q->huffman_vlc[s][0];
213     hufftab[1] = &q->huffman_vlc[s][1];
214     hufftab[2] = &q->huffman_vlc[s][2];
215     hufftab[3] = &q->huffman_vlc[s][3];
216     cb_sel = imc_cb_select[s];
217 
218     if(stream_format_code & 4)
219         start = 1;
220     if(start)
221         levlCoeffs[0] = get_bits(&q->gb, 7);
222     for(i = start; i < BANDS; i++){
223         levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, hufftab[cb_sel[i]]->bits, 2);
224         if(levlCoeffs[i] == 17)
225             levlCoeffs[i] += get_bits(&q->gb, 4);
226     }
227 }
228 
imc_decode_level_coefficients(IMCContext * q,int * levlCoeffBuf,float * flcoeffs1,float * flcoeffs2)229 static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, float* flcoeffs1,
230                                          float* flcoeffs2)
231 {
232     int i, level;
233     float tmp, tmp2;
234     //maybe some frequency division thingy
235 
236     flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
237     flcoeffs2[0] = log(flcoeffs1[0])/log(2);
238     tmp = flcoeffs1[0];
239     tmp2 = flcoeffs2[0];
240 
241     for(i = 1; i < BANDS; i++) {
242         level = levlCoeffBuf[i];
243         if (level == 16) {
244             flcoeffs1[i] = 1.0;
245             flcoeffs2[i] = 0.0;
246         } else {
247             if (level < 17)
248                 level -=7;
249             else if (level <= 24)
250                 level -=32;
251             else
252                 level -=16;
253 
254             tmp  *= imc_exp_tab[15 + level];
255             tmp2 += 0.83048 * level;  // 0.83048 = log2(10) * 0.25
256             flcoeffs1[i] = tmp;
257             flcoeffs2[i] = tmp2;
258         }
259     }
260 }
261 
262 
imc_decode_level_coefficients2(IMCContext * q,int * levlCoeffBuf,float * old_floor,float * flcoeffs1,float * flcoeffs2)263 static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, float* old_floor, float* flcoeffs1,
264                                           float* flcoeffs2) {
265     int i;
266         //FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
267         //      and flcoeffs2 old scale factors
268         //      might be incomplete due to a missing table that is in the binary code
269     for(i = 0; i < BANDS; i++) {
270         flcoeffs1[i] = 0;
271         if(levlCoeffBuf[i] < 16) {
272             flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
273             flcoeffs2[i] = (levlCoeffBuf[i]-7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
274         } else {
275             flcoeffs1[i] = old_floor[i];
276         }
277     }
278 }
279 
280 /**
281  * Perform bit allocation depending on bits available
282  */
bit_allocation(IMCContext * q,int stream_format_code,int freebits,int flag)283 static int bit_allocation (IMCContext* q, int stream_format_code, int freebits, int flag) {
284     int i, j;
285     const float limit = -1.e20;
286     float highest = 0.0;
287     int indx;
288     int t1 = 0;
289     int t2 = 1;
290     float summa = 0.0;
291     int iacc = 0;
292     int summer = 0;
293     int rres, cwlen;
294     float lowest = 1.e10;
295     int low_indx = 0;
296     float workT[32];
297     int flg;
298     int found_indx = 0;
299 
300     for(i = 0; i < BANDS; i++)
301         highest = FFMAX(highest, q->flcoeffs1[i]);
302 
303     for(i = 0; i < BANDS-1; i++) {
304         q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i])/log(2);
305     }
306     q->flcoeffs4[BANDS - 1] = limit;
307 
308     highest = highest * 0.25;
309 
310     for(i = 0; i < BANDS; i++) {
311         indx = -1;
312         if ((band_tab[i+1] - band_tab[i]) == q->bandWidthT[i])
313             indx = 0;
314 
315         if ((band_tab[i+1] - band_tab[i]) > q->bandWidthT[i])
316             indx = 1;
317 
318         if (((band_tab[i+1] - band_tab[i])/2) >= q->bandWidthT[i])
319             indx = 2;
320 
321         if (indx == -1)
322             return -1;
323 
324         q->flcoeffs4[i] = q->flcoeffs4[i] + xTab[(indx*2 + (q->flcoeffs1[i] < highest)) * 2 + flag];
325     }
326 
327     if (stream_format_code & 0x2) {
328         q->flcoeffs4[0] = limit;
329         q->flcoeffs4[1] = limit;
330         q->flcoeffs4[2] = limit;
331         q->flcoeffs4[3] = limit;
332     }
333 
334     for(i = (stream_format_code & 0x2)?4:0; i < BANDS-1; i++) {
335         iacc += q->bandWidthT[i];
336         summa += q->bandWidthT[i] * q->flcoeffs4[i];
337     }
338     q->bandWidthT[BANDS-1] = 0;
339     summa = (summa * 0.5 - freebits) / iacc;
340 
341 
342     for(i = 0; i < BANDS/2; i++) {
343         rres = summer - freebits;
344         if((rres >= -8) && (rres <= 8)) break;
345 
346         summer = 0;
347         iacc = 0;
348 
349         for(j = (stream_format_code & 0x2)?4:0; j < BANDS; j++) {
350             cwlen = av_clip((int)((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
351 
352             q->bitsBandT[j] = cwlen;
353             summer += q->bandWidthT[j] * cwlen;
354 
355             if (cwlen > 0)
356                 iacc += q->bandWidthT[j];
357         }
358 
359         flg = t2;
360         t2 = 1;
361         if (freebits < summer)
362             t2 = -1;
363         if (i == 0)
364             flg = t2;
365         if(flg != t2)
366             t1++;
367 
368         summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
369     }
370 
371     for(i = (stream_format_code & 0x2)?4:0; i < BANDS; i++) {
372         for(j = band_tab[i]; j < band_tab[i+1]; j++)
373             q->CWlengthT[j] = q->bitsBandT[i];
374     }
375 
376     if (freebits > summer) {
377         for(i = 0; i < BANDS; i++) {
378             workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
379         }
380 
381         highest = 0.0;
382 
383         do{
384             if (highest <= -1.e20)
385                 break;
386 
387             found_indx = 0;
388             highest = -1.e20;
389 
390             for(i = 0; i < BANDS; i++) {
391                 if (workT[i] > highest) {
392                     highest = workT[i];
393                     found_indx = i;
394                 }
395             }
396 
397             if (highest > -1.e20) {
398                 workT[found_indx] -= 2.0;
399                 if (++(q->bitsBandT[found_indx]) == 6)
400                     workT[found_indx] = -1.e20;
401 
402                 for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (freebits > summer); j++){
403                     q->CWlengthT[j]++;
404                     summer++;
405                 }
406             }
407         }while (freebits > summer);
408     }
409     if (freebits < summer) {
410         for(i = 0; i < BANDS; i++) {
411             workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) : 1.e20;
412         }
413         if (stream_format_code & 0x2) {
414             workT[0] = 1.e20;
415             workT[1] = 1.e20;
416             workT[2] = 1.e20;
417             workT[3] = 1.e20;
418         }
419         while (freebits < summer){
420             lowest = 1.e10;
421             low_indx = 0;
422             for(i = 0; i < BANDS; i++) {
423                 if (workT[i] < lowest) {
424                     lowest = workT[i];
425                     low_indx = i;
426                 }
427             }
428             //if(lowest >= 1.e10) break;
429             workT[low_indx] = lowest + 2.0;
430 
431             if (!(--q->bitsBandT[low_indx]))
432                 workT[low_indx] = 1.e20;
433 
434             for(j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++){
435                 if(q->CWlengthT[j] > 0){
436                     q->CWlengthT[j]--;
437                     summer--;
438                 }
439             }
440         }
441     }
442     return 0;
443 }
444 
imc_get_skip_coeff(IMCContext * q)445 static void imc_get_skip_coeff(IMCContext* q) {
446     int i, j;
447 
448     memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits));
449     memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount));
450     for(i = 0; i < BANDS; i++) {
451         if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
452             continue;
453 
454         if (!q->skipFlagRaw[i]) {
455             q->skipFlagBits[i] = band_tab[i+1] - band_tab[i];
456 
457             for(j = band_tab[i]; j < band_tab[i+1]; j++) {
458                 if ((q->skipFlags[j] = get_bits1(&q->gb)))
459                     q->skipFlagCount[i]++;
460             }
461         } else {
462             for(j = band_tab[i]; j < (band_tab[i+1]-1); j += 2) {
463                 if(!get_bits1(&q->gb)){//0
464                     q->skipFlagBits[i]++;
465                     q->skipFlags[j]=1;
466                     q->skipFlags[j+1]=1;
467                     q->skipFlagCount[i] += 2;
468                 }else{
469                     if(get_bits1(&q->gb)){//11
470                         q->skipFlagBits[i] +=2;
471                         q->skipFlags[j]=0;
472                         q->skipFlags[j+1]=1;
473                         q->skipFlagCount[i]++;
474                     }else{
475                         q->skipFlagBits[i] +=3;
476                         q->skipFlags[j+1]=0;
477                         if(!get_bits1(&q->gb)){//100
478                             q->skipFlags[j]=1;
479                             q->skipFlagCount[i]++;
480                         }else{//101
481                             q->skipFlags[j]=0;
482                         }
483                     }
484                 }
485             }
486 
487             if (j < band_tab[i+1]) {
488                 q->skipFlagBits[i]++;
489                 if ((q->skipFlags[j] = get_bits1(&q->gb)))
490                     q->skipFlagCount[i]++;
491             }
492         }
493     }
494 }
495 
496 /**
497  * Increase highest' band coefficient sizes as some bits won't be used
498  */
imc_adjust_bit_allocation(IMCContext * q,int summer)499 static void imc_adjust_bit_allocation (IMCContext* q, int summer) {
500     float workT[32];
501     int corrected = 0;
502     int i, j;
503     float highest = 0;
504     int found_indx=0;
505 
506     for(i = 0; i < BANDS; i++) {
507         workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
508     }
509 
510     while (corrected < summer) {
511         if(highest <= -1.e20)
512             break;
513 
514         highest = -1.e20;
515 
516         for(i = 0; i < BANDS; i++) {
517             if (workT[i] > highest) {
518                 highest = workT[i];
519                 found_indx = i;
520             }
521         }
522 
523         if (highest > -1.e20) {
524             workT[found_indx] -= 2.0;
525             if (++(q->bitsBandT[found_indx]) == 6)
526                 workT[found_indx] = -1.e20;
527 
528             for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
529                 if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) {
530                     q->CWlengthT[j]++;
531                     corrected++;
532                 }
533             }
534         }
535     }
536 }
537 
imc_imdct256(IMCContext * q)538 static void imc_imdct256(IMCContext *q) {
539     int i;
540     float re, im;
541 
542     /* prerotation */
543     for(i=0; i < COEFFS/2; i++){
544         q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS-1-i*2]) -
545                            (q->pre_coef2[i] * q->CWdecoded[i*2]);
546         q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS-1-i*2]) -
547                            (q->pre_coef1[i] * q->CWdecoded[i*2]);
548     }
549 
550     /* FFT */
551     ff_fft_permute(&q->fft, q->samples);
552     ff_fft_calc (&q->fft, q->samples);
553 
554     /* postrotation, window and reorder */
555     for(i = 0; i < COEFFS/2; i++){
556         re = (q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
557         im = (-q->samples[i].im * q->post_cos[i]) - (q->samples[i].re * q->post_sin[i]);
558         q->out_samples[i*2] = (q->mdct_sine_window[COEFFS-1-i*2] * q->last_fft_im[i]) + (q->mdct_sine_window[i*2] * re);
559         q->out_samples[COEFFS-1-i*2] = (q->mdct_sine_window[i*2] * q->last_fft_im[i]) - (q->mdct_sine_window[COEFFS-1-i*2] * re);
560         q->last_fft_im[i] = im;
561     }
562 }
563 
inverse_quant_coeff(IMCContext * q,int stream_format_code)564 static int inverse_quant_coeff (IMCContext* q, int stream_format_code) {
565     int i, j;
566     int middle_value, cw_len, max_size;
567     const float* quantizer;
568 
569     for(i = 0; i < BANDS; i++) {
570         for(j = band_tab[i]; j < band_tab[i+1]; j++) {
571             q->CWdecoded[j] = 0;
572             cw_len = q->CWlengthT[j];
573 
574             if (cw_len <= 0 || q->skipFlags[j])
575                 continue;
576 
577             max_size = 1 << cw_len;
578             middle_value = max_size >> 1;
579 
580             if (q->codewords[j] >= max_size || q->codewords[j] < 0)
581                 return -1;
582 
583             if (cw_len >= 4){
584                 quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
585                 if (q->codewords[j] >= middle_value)
586                     q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
587                 else
588                     q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i];
589             }else{
590                 quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)];
591                 if (q->codewords[j] >= middle_value)
592                     q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
593                 else
594                     q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
595             }
596         }
597     }
598     return 0;
599 }
600 
601 
imc_get_coeffs(IMCContext * q)602 static int imc_get_coeffs (IMCContext* q) {
603     int i, j, cw_len, cw;
604 
605     for(i = 0; i < BANDS; i++) {
606         if(!q->sumLenArr[i]) continue;
607         if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
608             for(j = band_tab[i]; j < band_tab[i+1]; j++) {
609                 cw_len = q->CWlengthT[j];
610                 cw = 0;
611 
612                 if (get_bits_count(&q->gb) + cw_len > 512){
613 //av_log(NULL,0,"Band %i coeff %i cw_len %i\n",i,j,cw_len);
614                     return -1;
615                 }
616 
617                 if(cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
618                     cw = get_bits(&q->gb, cw_len);
619 
620                 q->codewords[j] = cw;
621             }
622         }
623     }
624     return 0;
625 }
626 
imc_decode_frame(AVCodecContext * avctx,void * data,int * data_size,const uint8_t * buf,int buf_size)627 static int imc_decode_frame(AVCodecContext * avctx,
628                             void *data, int *data_size,
629                             const uint8_t * buf, int buf_size)
630 {
631 
632     IMCContext *q = avctx->priv_data;
633 
634     int stream_format_code;
635     int imc_hdr, i, j;
636     int flag;
637     int bits, summer;
638     int counter, bitscount;
639     uint16_t buf16[IMC_BLOCK_SIZE / 2];
640 
641     if (buf_size < IMC_BLOCK_SIZE) {
642         av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
643         return -1;
644     }
645     for(i = 0; i < IMC_BLOCK_SIZE / 2; i++)
646         buf16[i] = bswap_16(((const uint16_t*)buf)[i]);
647 
648     init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
649 
650     /* Check the frame header */
651     imc_hdr = get_bits(&q->gb, 9);
652     if (imc_hdr != IMC_FRAME_ID) {
653         av_log(avctx, AV_LOG_ERROR, "imc frame header check failed!\n");
654         av_log(avctx, AV_LOG_ERROR, "got %x instead of 0x21.\n", imc_hdr);
655         return -1;
656     }
657     stream_format_code = get_bits(&q->gb, 3);
658 
659     if(stream_format_code & 1){
660         av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code);
661         return -1;
662     }
663 
664 //    av_log(avctx, AV_LOG_DEBUG, "stream_format_code = %d\n", stream_format_code);
665 
666     if (stream_format_code & 0x04)
667         q->decoder_reset = 1;
668 
669     if(q->decoder_reset) {
670         memset(q->out_samples, 0, sizeof(q->out_samples));
671         for(i = 0; i < BANDS; i++)q->old_floor[i] = 1.0;
672         for(i = 0; i < COEFFS; i++)q->CWdecoded[i] = 0;
673         q->decoder_reset = 0;
674     }
675 
676     flag = get_bits1(&q->gb);
677     imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf);
678 
679     if (stream_format_code & 0x4)
680         imc_decode_level_coefficients(q, q->levlCoeffBuf, q->flcoeffs1, q->flcoeffs2);
681     else
682         imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, q->flcoeffs1, q->flcoeffs2);
683 
684     memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float));
685 
686     counter = 0;
687     for (i=0 ; i<BANDS ; i++) {
688         if (q->levlCoeffBuf[i] == 16) {
689             q->bandWidthT[i] = 0;
690             counter++;
691         } else
692             q->bandWidthT[i] = band_tab[i+1] - band_tab[i];
693     }
694     memset(q->bandFlagsBuf, 0, BANDS * sizeof(int));
695     for(i = 0; i < BANDS-1; i++) {
696         if (q->bandWidthT[i])
697             q->bandFlagsBuf[i] = get_bits1(&q->gb);
698     }
699 
700     imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5);
701 
702     bitscount = 0;
703     /* first 4 bands will be assigned 5 bits per coefficient */
704     if (stream_format_code & 0x2) {
705         bitscount += 15;
706 
707         q->bitsBandT[0] = 5;
708         q->CWlengthT[0] = 5;
709         q->CWlengthT[1] = 5;
710         q->CWlengthT[2] = 5;
711         for(i = 1; i < 4; i++){
712             bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5;
713             q->bitsBandT[i] = bits;
714             for(j = band_tab[i]; j < band_tab[i+1]; j++) {
715                 q->CWlengthT[j] = bits;
716                 bitscount += bits;
717             }
718         }
719     }
720 
721     if(bit_allocation (q, stream_format_code, 512 - bitscount - get_bits_count(&q->gb), flag) < 0) {
722         av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
723         q->decoder_reset = 1;
724         return -1;
725     }
726 
727     for(i = 0; i < BANDS; i++) {
728         q->sumLenArr[i] = 0;
729         q->skipFlagRaw[i] = 0;
730         for(j = band_tab[i]; j < band_tab[i+1]; j++)
731             q->sumLenArr[i] += q->CWlengthT[j];
732         if (q->bandFlagsBuf[i])
733             if( (((band_tab[i+1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0))
734                 q->skipFlagRaw[i] = 1;
735     }
736 
737     imc_get_skip_coeff(q);
738 
739     for(i = 0; i < BANDS; i++) {
740         q->flcoeffs6[i] = q->flcoeffs1[i];
741         /* band has flag set and at least one coded coefficient */
742         if (q->bandFlagsBuf[i] && (band_tab[i+1] - band_tab[i]) != q->skipFlagCount[i]){
743                 q->flcoeffs6[i] *= q->sqrt_tab[band_tab[i+1] - band_tab[i]] /
744                                    q->sqrt_tab[(band_tab[i+1] - band_tab[i] - q->skipFlagCount[i])];
745         }
746     }
747 
748     /* calculate bits left, bits needed and adjust bit allocation */
749     bits = summer = 0;
750 
751     for(i = 0; i < BANDS; i++) {
752         if (q->bandFlagsBuf[i]) {
753             for(j = band_tab[i]; j < band_tab[i+1]; j++) {
754                 if(q->skipFlags[j]) {
755                     summer += q->CWlengthT[j];
756                     q->CWlengthT[j] = 0;
757                 }
758             }
759             bits += q->skipFlagBits[i];
760             summer -= q->skipFlagBits[i];
761         }
762     }
763     imc_adjust_bit_allocation(q, summer);
764 
765     for(i = 0; i < BANDS; i++) {
766         q->sumLenArr[i] = 0;
767 
768         for(j = band_tab[i]; j < band_tab[i+1]; j++)
769             if (!q->skipFlags[j])
770                 q->sumLenArr[i] += q->CWlengthT[j];
771     }
772 
773     memset(q->codewords, 0, sizeof(q->codewords));
774 
775     if(imc_get_coeffs(q) < 0) {
776         av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
777         q->decoder_reset = 1;
778         return 0;
779     }
780 
781     if(inverse_quant_coeff(q, stream_format_code) < 0) {
782         av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
783         q->decoder_reset = 1;
784         return 0;
785     }
786 
787     memset(q->skipFlags, 0, sizeof(q->skipFlags));
788 
789     imc_imdct256(q);
790 
791     q->dsp.float_to_int16(data, q->out_samples, COEFFS);
792 
793     *data_size = COEFFS * sizeof(int16_t);
794 
795     return IMC_BLOCK_SIZE;
796 }
797 
798 
imc_decode_close(AVCodecContext * avctx)799 static av_cold int imc_decode_close(AVCodecContext * avctx)
800 {
801     IMCContext *q = avctx->priv_data;
802 
803     ff_fft_end(&q->fft);
804     return 0;
805 }
806 
807 
808 AVCodec imc_decoder = {
809     .name = "imc",
810     .type = CODEC_TYPE_AUDIO,
811     .id = CODEC_ID_IMC,
812     .priv_data_size = sizeof(IMCContext),
813     .init = imc_decode_init,
814     .close = imc_decode_close,
815     .decode = imc_decode_frame,
816     .long_name = "IMC (Intel Music Codec)",
817 };
818