1 /*
2 ******************************************************************************
3 *   Copyright (C) 1997-2014, International Business Machines
4 *   Corporation and others.  All Rights Reserved.
5 ******************************************************************************
6 *   Date        Name        Description
7 *   03/22/00    aliu        Adapted from original C++ ICU Hashtable.
8 *   07/06/01    aliu        Modified to support int32_t keys on
9 *                           platforms with sizeof(void*) < 32.
10 ******************************************************************************
11 */
12 
13 #include "uhash.h"
14 #include "unicode/ustring.h"
15 #include "cstring.h"
16 #include "cmemory.h"
17 #include "uassert.h"
18 #include "ustr_imp.h"
19 
20 /* This hashtable is implemented as a double hash.  All elements are
21  * stored in a single array with no secondary storage for collision
22  * resolution (no linked list, etc.).  When there is a hash collision
23  * (when two unequal keys have the same hashcode) we resolve this by
24  * using a secondary hash.  The secondary hash is an increment
25  * computed as a hash function (a different one) of the primary
26  * hashcode.  This increment is added to the initial hash value to
27  * obtain further slots assigned to the same hash code.  For this to
28  * work, the length of the array and the increment must be relatively
29  * prime.  The easiest way to achieve this is to have the length of
30  * the array be prime, and the increment be any value from
31  * 1..length-1.
32  *
33  * Hashcodes are 32-bit integers.  We make sure all hashcodes are
34  * non-negative by masking off the top bit.  This has two effects: (1)
35  * modulo arithmetic is simplified.  If we allowed negative hashcodes,
36  * then when we computed hashcode % length, we could get a negative
37  * result, which we would then have to adjust back into range.  It's
38  * simpler to just make hashcodes non-negative. (2) It makes it easy
39  * to check for empty vs. occupied slots in the table.  We just mark
40  * empty or deleted slots with a negative hashcode.
41  *
42  * The central function is _uhash_find().  This function looks for a
43  * slot matching the given key and hashcode.  If one is found, it
44  * returns a pointer to that slot.  If the table is full, and no match
45  * is found, it returns NULL -- in theory.  This would make the code
46  * more complicated, since all callers of _uhash_find() would then
47  * have to check for a NULL result.  To keep this from happening, we
48  * don't allow the table to fill.  When there is only one
49  * empty/deleted slot left, uhash_put() will refuse to increase the
50  * count, and fail.  This simplifies the code.  In practice, one will
51  * seldom encounter this using default UHashtables.  However, if a
52  * hashtable is set to a U_FIXED resize policy, or if memory is
53  * exhausted, then the table may fill.
54  *
55  * High and low water ratios control rehashing.  They establish levels
56  * of fullness (from 0 to 1) outside of which the data array is
57  * reallocated and repopulated.  Setting the low water ratio to zero
58  * means the table will never shrink.  Setting the high water ratio to
59  * one means the table will never grow.  The ratios should be
60  * coordinated with the ratio between successive elements of the
61  * PRIMES table, so that when the primeIndex is incremented or
62  * decremented during rehashing, it brings the ratio of count / length
63  * back into the desired range (between low and high water ratios).
64  */
65 
66 /********************************************************************
67  * PRIVATE Constants, Macros
68  ********************************************************************/
69 
70 /* This is a list of non-consecutive primes chosen such that
71  * PRIMES[i+1] ~ 2*PRIMES[i].  (Currently, the ratio ranges from 1.81
72  * to 2.18; the inverse ratio ranges from 0.459 to 0.552.)  If this
73  * ratio is changed, the low and high water ratios should also be
74  * adjusted to suit.
75  *
76  * These prime numbers were also chosen so that they are the largest
77  * prime number while being less than a power of two.
78  */
79 static const int32_t PRIMES[] = {
80     13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
81     65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
82     16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
83     1073741789, 2147483647 /*, 4294967291 */
84 };
85 
86 #define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0]))
87 #define DEFAULT_PRIME_INDEX 3
88 
89 /* These ratios are tuned to the PRIMES array such that a resize
90  * places the table back into the zone of non-resizing.  That is,
91  * after a call to _uhash_rehash(), a subsequent call to
92  * _uhash_rehash() should do nothing (should not churn).  This is only
93  * a potential problem with U_GROW_AND_SHRINK.
94  */
95 static const float RESIZE_POLICY_RATIO_TABLE[6] = {
96     /* low, high water ratio */
97     0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
98     0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
99     0.0F, 1.0F  /* U_FIXED: Never change size */
100 };
101 
102 /*
103   Invariants for hashcode values:
104 
105   * DELETED < 0
106   * EMPTY < 0
107   * Real hashes >= 0
108 
109   Hashcodes may not start out this way, but internally they are
110   adjusted so that they are always positive.  We assume 32-bit
111   hashcodes; adjust these constants for other hashcode sizes.
112 */
113 #define HASH_DELETED    ((int32_t) 0x80000000)
114 #define HASH_EMPTY      ((int32_t) HASH_DELETED + 1)
115 
116 #define IS_EMPTY_OR_DELETED(x) ((x) < 0)
117 
118 /* This macro expects a UHashTok.pointer as its keypointer and
119    valuepointer parameters */
120 #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
121             if (hash->keyDeleter != NULL && keypointer != NULL) { \
122                 (*hash->keyDeleter)(keypointer); \
123             } \
124             if (hash->valueDeleter != NULL && valuepointer != NULL) { \
125                 (*hash->valueDeleter)(valuepointer); \
126             }
127 
128 /*
129  * Constants for hinting whether a key or value is an integer
130  * or a pointer.  If a hint bit is zero, then the associated
131  * token is assumed to be an integer.
132  */
133 #define HINT_KEY_POINTER   (1)
134 #define HINT_VALUE_POINTER (2)
135 
136 /********************************************************************
137  * PRIVATE Implementation
138  ********************************************************************/
139 
140 static UHashTok
_uhash_setElement(UHashtable * hash,UHashElement * e,int32_t hashcode,UHashTok key,UHashTok value,int8_t hint)141 _uhash_setElement(UHashtable *hash, UHashElement* e,
142                   int32_t hashcode,
143                   UHashTok key, UHashTok value, int8_t hint) {
144 
145     UHashTok oldValue = e->value;
146     if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
147         e->key.pointer != key.pointer) { /* Avoid double deletion */
148         (*hash->keyDeleter)(e->key.pointer);
149     }
150     if (hash->valueDeleter != NULL) {
151         if (oldValue.pointer != NULL &&
152             oldValue.pointer != value.pointer) { /* Avoid double deletion */
153             (*hash->valueDeleter)(oldValue.pointer);
154         }
155         oldValue.pointer = NULL;
156     }
157     /* Compilers should copy the UHashTok union correctly, but even if
158      * they do, memory heap tools (e.g. BoundsChecker) can get
159      * confused when a pointer is cloaked in a union and then copied.
160      * TO ALLEVIATE THIS, we use hints (based on what API the user is
161      * calling) to copy pointers when we know the user thinks
162      * something is a pointer. */
163     if (hint & HINT_KEY_POINTER) {
164         e->key.pointer = key.pointer;
165     } else {
166         e->key = key;
167     }
168     if (hint & HINT_VALUE_POINTER) {
169         e->value.pointer = value.pointer;
170     } else {
171         e->value = value;
172     }
173     e->hashcode = hashcode;
174     return oldValue;
175 }
176 
177 /**
178  * Assumes that the given element is not empty or deleted.
179  */
180 static UHashTok
_uhash_internalRemoveElement(UHashtable * hash,UHashElement * e)181 _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
182     UHashTok empty;
183     U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
184     --hash->count;
185     empty.pointer = NULL; empty.integer = 0;
186     return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
187 }
188 
189 static void
_uhash_internalSetResizePolicy(UHashtable * hash,enum UHashResizePolicy policy)190 _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
191     U_ASSERT(hash != NULL);
192     U_ASSERT(((int32_t)policy) >= 0);
193     U_ASSERT(((int32_t)policy) < 3);
194     hash->lowWaterRatio  = RESIZE_POLICY_RATIO_TABLE[policy * 2];
195     hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
196 }
197 
198 /**
199  * Allocate internal data array of a size determined by the given
200  * prime index.  If the index is out of range it is pinned into range.
201  * If the allocation fails the status is set to
202  * U_MEMORY_ALLOCATION_ERROR and all array storage is freed.  In
203  * either case the previous array pointer is overwritten.
204  *
205  * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
206  */
207 static void
_uhash_allocate(UHashtable * hash,int32_t primeIndex,UErrorCode * status)208 _uhash_allocate(UHashtable *hash,
209                 int32_t primeIndex,
210                 UErrorCode *status) {
211 
212     UHashElement *p, *limit;
213     UHashTok emptytok;
214 
215     if (U_FAILURE(*status)) return;
216 
217     U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
218 
219     hash->primeIndex = primeIndex;
220     hash->length = PRIMES[primeIndex];
221 
222     p = hash->elements = (UHashElement*)
223         uprv_malloc(sizeof(UHashElement) * hash->length);
224 
225     if (hash->elements == NULL) {
226         *status = U_MEMORY_ALLOCATION_ERROR;
227         return;
228     }
229 
230     emptytok.pointer = NULL; /* Only one of these two is needed */
231     emptytok.integer = 0;    /* but we don't know which one. */
232 
233     limit = p + hash->length;
234     while (p < limit) {
235         p->key = emptytok;
236         p->value = emptytok;
237         p->hashcode = HASH_EMPTY;
238         ++p;
239     }
240 
241     hash->count = 0;
242     hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
243     hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
244 }
245 
246 static UHashtable*
_uhash_init(UHashtable * result,UHashFunction * keyHash,UKeyComparator * keyComp,UValueComparator * valueComp,int32_t primeIndex,UErrorCode * status)247 _uhash_init(UHashtable *result,
248               UHashFunction *keyHash,
249               UKeyComparator *keyComp,
250               UValueComparator *valueComp,
251               int32_t primeIndex,
252               UErrorCode *status)
253 {
254     if (U_FAILURE(*status)) return NULL;
255     U_ASSERT(keyHash != NULL);
256     U_ASSERT(keyComp != NULL);
257 
258     result->keyHasher       = keyHash;
259     result->keyComparator   = keyComp;
260     result->valueComparator = valueComp;
261     result->keyDeleter      = NULL;
262     result->valueDeleter    = NULL;
263     result->allocated       = FALSE;
264     _uhash_internalSetResizePolicy(result, U_GROW);
265 
266     _uhash_allocate(result, primeIndex, status);
267 
268     if (U_FAILURE(*status)) {
269         return NULL;
270     }
271 
272     return result;
273 }
274 
275 static UHashtable*
_uhash_create(UHashFunction * keyHash,UKeyComparator * keyComp,UValueComparator * valueComp,int32_t primeIndex,UErrorCode * status)276 _uhash_create(UHashFunction *keyHash,
277               UKeyComparator *keyComp,
278               UValueComparator *valueComp,
279               int32_t primeIndex,
280               UErrorCode *status) {
281     UHashtable *result;
282 
283     if (U_FAILURE(*status)) return NULL;
284 
285     result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
286     if (result == NULL) {
287         *status = U_MEMORY_ALLOCATION_ERROR;
288         return NULL;
289     }
290 
291     _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
292     result->allocated       = TRUE;
293 
294     if (U_FAILURE(*status)) {
295         uprv_free(result);
296         return NULL;
297     }
298 
299     return result;
300 }
301 
302 /**
303  * Look for a key in the table, or if no such key exists, the first
304  * empty slot matching the given hashcode.  Keys are compared using
305  * the keyComparator function.
306  *
307  * First find the start position, which is the hashcode modulo
308  * the length.  Test it to see if it is:
309  *
310  * a. identical:  First check the hash values for a quick check,
311  *    then compare keys for equality using keyComparator.
312  * b. deleted
313  * c. empty
314  *
315  * Stop if it is identical or empty, otherwise continue by adding a
316  * "jump" value (moduloing by the length again to keep it within
317  * range) and retesting.  For efficiency, there need enough empty
318  * values so that the searchs stop within a reasonable amount of time.
319  * This can be changed by changing the high/low water marks.
320  *
321  * In theory, this function can return NULL, if it is full (no empty
322  * or deleted slots) and if no matching key is found.  In practice, we
323  * prevent this elsewhere (in uhash_put) by making sure the last slot
324  * in the table is never filled.
325  *
326  * The size of the table should be prime for this algorithm to work;
327  * otherwise we are not guaranteed that the jump value (the secondary
328  * hash) is relatively prime to the table length.
329  */
330 static UHashElement*
_uhash_find(const UHashtable * hash,UHashTok key,int32_t hashcode)331 _uhash_find(const UHashtable *hash, UHashTok key,
332             int32_t hashcode) {
333 
334     int32_t firstDeleted = -1;  /* assume invalid index */
335     int32_t theIndex, startIndex;
336     int32_t jump = 0; /* lazy evaluate */
337     int32_t tableHash;
338     UHashElement *elements = hash->elements;
339 
340     hashcode &= 0x7FFFFFFF; /* must be positive */
341     startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
342 
343     do {
344         tableHash = elements[theIndex].hashcode;
345         if (tableHash == hashcode) {          /* quick check */
346             if ((*hash->keyComparator)(key, elements[theIndex].key)) {
347                 return &(elements[theIndex]);
348             }
349         } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
350             /* We have hit a slot which contains a key-value pair,
351              * but for which the hash code does not match.  Keep
352              * looking.
353              */
354         } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
355             break;
356         } else if (firstDeleted < 0) { /* remember first deleted */
357             firstDeleted = theIndex;
358         }
359         if (jump == 0) { /* lazy compute jump */
360             /* The jump value must be relatively prime to the table
361              * length.  As long as the length is prime, then any value
362              * 1..length-1 will be relatively prime to it.
363              */
364             jump = (hashcode % (hash->length - 1)) + 1;
365         }
366         theIndex = (theIndex + jump) % hash->length;
367     } while (theIndex != startIndex);
368 
369     if (firstDeleted >= 0) {
370         theIndex = firstDeleted; /* reset if had deleted slot */
371     } else if (tableHash != HASH_EMPTY) {
372         /* We get to this point if the hashtable is full (no empty or
373          * deleted slots), and we've failed to find a match.  THIS
374          * WILL NEVER HAPPEN as long as uhash_put() makes sure that
375          * count is always < length.
376          */
377         U_ASSERT(FALSE);
378         return NULL; /* Never happens if uhash_put() behaves */
379     }
380     return &(elements[theIndex]);
381 }
382 
383 /**
384  * Attempt to grow or shrink the data arrays in order to make the
385  * count fit between the high and low water marks.  hash_put() and
386  * hash_remove() call this method when the count exceeds the high or
387  * low water marks.  This method may do nothing, if memory allocation
388  * fails, or if the count is already in range, or if the length is
389  * already at the low or high limit.  In any case, upon return the
390  * arrays will be valid.
391  */
392 static void
_uhash_rehash(UHashtable * hash,UErrorCode * status)393 _uhash_rehash(UHashtable *hash, UErrorCode *status) {
394 
395     UHashElement *old = hash->elements;
396     int32_t oldLength = hash->length;
397     int32_t newPrimeIndex = hash->primeIndex;
398     int32_t i;
399 
400     if (hash->count > hash->highWaterMark) {
401         if (++newPrimeIndex >= PRIMES_LENGTH) {
402             return;
403         }
404     } else if (hash->count < hash->lowWaterMark) {
405         if (--newPrimeIndex < 0) {
406             return;
407         }
408     } else {
409         return;
410     }
411 
412     _uhash_allocate(hash, newPrimeIndex, status);
413 
414     if (U_FAILURE(*status)) {
415         hash->elements = old;
416         hash->length = oldLength;
417         return;
418     }
419 
420     for (i = oldLength - 1; i >= 0; --i) {
421         if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
422             UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
423             U_ASSERT(e != NULL);
424             U_ASSERT(e->hashcode == HASH_EMPTY);
425             e->key = old[i].key;
426             e->value = old[i].value;
427             e->hashcode = old[i].hashcode;
428             ++hash->count;
429         }
430     }
431 
432     uprv_free(old);
433 }
434 
435 static UHashTok
_uhash_remove(UHashtable * hash,UHashTok key)436 _uhash_remove(UHashtable *hash,
437               UHashTok key) {
438     /* First find the position of the key in the table.  If the object
439      * has not been removed already, remove it.  If the user wanted
440      * keys deleted, then delete it also.  We have to put a special
441      * hashcode in that position that means that something has been
442      * deleted, since when we do a find, we have to continue PAST any
443      * deleted values.
444      */
445     UHashTok result;
446     UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
447     U_ASSERT(e != NULL);
448     result.pointer = NULL;
449     result.integer = 0;
450     if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
451         result = _uhash_internalRemoveElement(hash, e);
452         if (hash->count < hash->lowWaterMark) {
453             UErrorCode status = U_ZERO_ERROR;
454             _uhash_rehash(hash, &status);
455         }
456     }
457     return result;
458 }
459 
460 static UHashTok
_uhash_put(UHashtable * hash,UHashTok key,UHashTok value,int8_t hint,UErrorCode * status)461 _uhash_put(UHashtable *hash,
462            UHashTok key,
463            UHashTok value,
464            int8_t hint,
465            UErrorCode *status) {
466 
467     /* Put finds the position in the table for the new value.  If the
468      * key is already in the table, it is deleted, if there is a
469      * non-NULL keyDeleter.  Then the key, the hash and the value are
470      * all put at the position in their respective arrays.
471      */
472     int32_t hashcode;
473     UHashElement* e;
474     UHashTok emptytok;
475 
476     if (U_FAILURE(*status)) {
477         goto err;
478     }
479     U_ASSERT(hash != NULL);
480     /* Cannot always check pointer here or iSeries sees NULL every time. */
481     if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
482         /* Disallow storage of NULL values, since NULL is returned by
483          * get() to indicate an absent key.  Storing NULL == removing.
484          */
485         return _uhash_remove(hash, key);
486     }
487     if (hash->count > hash->highWaterMark) {
488         _uhash_rehash(hash, status);
489         if (U_FAILURE(*status)) {
490             goto err;
491         }
492     }
493 
494     hashcode = (*hash->keyHasher)(key);
495     e = _uhash_find(hash, key, hashcode);
496     U_ASSERT(e != NULL);
497 
498     if (IS_EMPTY_OR_DELETED(e->hashcode)) {
499         /* Important: We must never actually fill the table up.  If we
500          * do so, then _uhash_find() will return NULL, and we'll have
501          * to check for NULL after every call to _uhash_find().  To
502          * avoid this we make sure there is always at least one empty
503          * or deleted slot in the table.  This only is a problem if we
504          * are out of memory and rehash isn't working.
505          */
506         ++hash->count;
507         if (hash->count == hash->length) {
508             /* Don't allow count to reach length */
509             --hash->count;
510             *status = U_MEMORY_ALLOCATION_ERROR;
511             goto err;
512         }
513     }
514 
515     /* We must in all cases handle storage properly.  If there was an
516      * old key, then it must be deleted (if the deleter != NULL).
517      * Make hashcodes stored in table positive.
518      */
519     return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
520 
521  err:
522     /* If the deleters are non-NULL, this method adopts its key and/or
523      * value arguments, and we must be sure to delete the key and/or
524      * value in all cases, even upon failure.
525      */
526     HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
527     emptytok.pointer = NULL; emptytok.integer = 0;
528     return emptytok;
529 }
530 
531 
532 /********************************************************************
533  * PUBLIC API
534  ********************************************************************/
535 
536 U_CAPI UHashtable* U_EXPORT2
uhash_open(UHashFunction * keyHash,UKeyComparator * keyComp,UValueComparator * valueComp,UErrorCode * status)537 uhash_open(UHashFunction *keyHash,
538            UKeyComparator *keyComp,
539            UValueComparator *valueComp,
540            UErrorCode *status) {
541 
542     return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
543 }
544 
545 U_CAPI UHashtable* U_EXPORT2
uhash_openSize(UHashFunction * keyHash,UKeyComparator * keyComp,UValueComparator * valueComp,int32_t size,UErrorCode * status)546 uhash_openSize(UHashFunction *keyHash,
547                UKeyComparator *keyComp,
548                UValueComparator *valueComp,
549                int32_t size,
550                UErrorCode *status) {
551 
552     /* Find the smallest index i for which PRIMES[i] >= size. */
553     int32_t i = 0;
554     while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
555         ++i;
556     }
557 
558     return _uhash_create(keyHash, keyComp, valueComp, i, status);
559 }
560 
561 U_CAPI UHashtable* U_EXPORT2
uhash_init(UHashtable * fillinResult,UHashFunction * keyHash,UKeyComparator * keyComp,UValueComparator * valueComp,UErrorCode * status)562 uhash_init(UHashtable *fillinResult,
563            UHashFunction *keyHash,
564            UKeyComparator *keyComp,
565            UValueComparator *valueComp,
566            UErrorCode *status) {
567 
568     return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
569 }
570 
571 U_CAPI void U_EXPORT2
uhash_close(UHashtable * hash)572 uhash_close(UHashtable *hash) {
573     if (hash == NULL) {
574         return;
575     }
576     if (hash->elements != NULL) {
577         if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
578             int32_t pos=UHASH_FIRST;
579             UHashElement *e;
580             while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
581                 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
582             }
583         }
584         uprv_free(hash->elements);
585         hash->elements = NULL;
586     }
587     if (hash->allocated) {
588         uprv_free(hash);
589     }
590 }
591 
592 U_CAPI UHashFunction *U_EXPORT2
uhash_setKeyHasher(UHashtable * hash,UHashFunction * fn)593 uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
594     UHashFunction *result = hash->keyHasher;
595     hash->keyHasher = fn;
596     return result;
597 }
598 
599 U_CAPI UKeyComparator *U_EXPORT2
uhash_setKeyComparator(UHashtable * hash,UKeyComparator * fn)600 uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
601     UKeyComparator *result = hash->keyComparator;
602     hash->keyComparator = fn;
603     return result;
604 }
605 U_CAPI UValueComparator *U_EXPORT2
uhash_setValueComparator(UHashtable * hash,UValueComparator * fn)606 uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
607     UValueComparator *result = hash->valueComparator;
608     hash->valueComparator = fn;
609     return result;
610 }
611 
612 U_CAPI UObjectDeleter *U_EXPORT2
uhash_setKeyDeleter(UHashtable * hash,UObjectDeleter * fn)613 uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
614     UObjectDeleter *result = hash->keyDeleter;
615     hash->keyDeleter = fn;
616     return result;
617 }
618 
619 U_CAPI UObjectDeleter *U_EXPORT2
uhash_setValueDeleter(UHashtable * hash,UObjectDeleter * fn)620 uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
621     UObjectDeleter *result = hash->valueDeleter;
622     hash->valueDeleter = fn;
623     return result;
624 }
625 
626 U_CAPI void U_EXPORT2
uhash_setResizePolicy(UHashtable * hash,enum UHashResizePolicy policy)627 uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
628     UErrorCode status = U_ZERO_ERROR;
629     _uhash_internalSetResizePolicy(hash, policy);
630     hash->lowWaterMark  = (int32_t)(hash->length * hash->lowWaterRatio);
631     hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
632     _uhash_rehash(hash, &status);
633 }
634 
635 U_CAPI int32_t U_EXPORT2
uhash_count(const UHashtable * hash)636 uhash_count(const UHashtable *hash) {
637     return hash->count;
638 }
639 
640 U_CAPI void* U_EXPORT2
uhash_get(const UHashtable * hash,const void * key)641 uhash_get(const UHashtable *hash,
642           const void* key) {
643     UHashTok keyholder;
644     keyholder.pointer = (void*) key;
645     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
646 }
647 
648 U_CAPI void* U_EXPORT2
uhash_iget(const UHashtable * hash,int32_t key)649 uhash_iget(const UHashtable *hash,
650            int32_t key) {
651     UHashTok keyholder;
652     keyholder.integer = key;
653     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
654 }
655 
656 U_CAPI int32_t U_EXPORT2
uhash_geti(const UHashtable * hash,const void * key)657 uhash_geti(const UHashtable *hash,
658            const void* key) {
659     UHashTok keyholder;
660     keyholder.pointer = (void*) key;
661     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
662 }
663 
664 U_CAPI int32_t U_EXPORT2
uhash_igeti(const UHashtable * hash,int32_t key)665 uhash_igeti(const UHashtable *hash,
666            int32_t key) {
667     UHashTok keyholder;
668     keyholder.integer = key;
669     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
670 }
671 
672 U_CAPI void* U_EXPORT2
uhash_put(UHashtable * hash,void * key,void * value,UErrorCode * status)673 uhash_put(UHashtable *hash,
674           void* key,
675           void* value,
676           UErrorCode *status) {
677     UHashTok keyholder, valueholder;
678     keyholder.pointer = key;
679     valueholder.pointer = value;
680     return _uhash_put(hash, keyholder, valueholder,
681                       HINT_KEY_POINTER | HINT_VALUE_POINTER,
682                       status).pointer;
683 }
684 
685 U_CAPI void* U_EXPORT2
uhash_iput(UHashtable * hash,int32_t key,void * value,UErrorCode * status)686 uhash_iput(UHashtable *hash,
687            int32_t key,
688            void* value,
689            UErrorCode *status) {
690     UHashTok keyholder, valueholder;
691     keyholder.integer = key;
692     valueholder.pointer = value;
693     return _uhash_put(hash, keyholder, valueholder,
694                       HINT_VALUE_POINTER,
695                       status).pointer;
696 }
697 
698 U_CAPI int32_t U_EXPORT2
uhash_puti(UHashtable * hash,void * key,int32_t value,UErrorCode * status)699 uhash_puti(UHashtable *hash,
700            void* key,
701            int32_t value,
702            UErrorCode *status) {
703     UHashTok keyholder, valueholder;
704     keyholder.pointer = key;
705     valueholder.integer = value;
706     return _uhash_put(hash, keyholder, valueholder,
707                       HINT_KEY_POINTER,
708                       status).integer;
709 }
710 
711 
712 U_CAPI int32_t U_EXPORT2
uhash_iputi(UHashtable * hash,int32_t key,int32_t value,UErrorCode * status)713 uhash_iputi(UHashtable *hash,
714            int32_t key,
715            int32_t value,
716            UErrorCode *status) {
717     UHashTok keyholder, valueholder;
718     keyholder.integer = key;
719     valueholder.integer = value;
720     return _uhash_put(hash, keyholder, valueholder,
721                       0, /* neither is a ptr */
722                       status).integer;
723 }
724 
725 U_CAPI void* U_EXPORT2
uhash_remove(UHashtable * hash,const void * key)726 uhash_remove(UHashtable *hash,
727              const void* key) {
728     UHashTok keyholder;
729     keyholder.pointer = (void*) key;
730     return _uhash_remove(hash, keyholder).pointer;
731 }
732 
733 U_CAPI void* U_EXPORT2
uhash_iremove(UHashtable * hash,int32_t key)734 uhash_iremove(UHashtable *hash,
735               int32_t key) {
736     UHashTok keyholder;
737     keyholder.integer = key;
738     return _uhash_remove(hash, keyholder).pointer;
739 }
740 
741 U_CAPI int32_t U_EXPORT2
uhash_removei(UHashtable * hash,const void * key)742 uhash_removei(UHashtable *hash,
743               const void* key) {
744     UHashTok keyholder;
745     keyholder.pointer = (void*) key;
746     return _uhash_remove(hash, keyholder).integer;
747 }
748 
749 U_CAPI int32_t U_EXPORT2
uhash_iremovei(UHashtable * hash,int32_t key)750 uhash_iremovei(UHashtable *hash,
751                int32_t key) {
752     UHashTok keyholder;
753     keyholder.integer = key;
754     return _uhash_remove(hash, keyholder).integer;
755 }
756 
757 U_CAPI void U_EXPORT2
uhash_removeAll(UHashtable * hash)758 uhash_removeAll(UHashtable *hash) {
759     int32_t pos = UHASH_FIRST;
760     const UHashElement *e;
761     U_ASSERT(hash != NULL);
762     if (hash->count != 0) {
763         while ((e = uhash_nextElement(hash, &pos)) != NULL) {
764             uhash_removeElement(hash, e);
765         }
766     }
767     U_ASSERT(hash->count == 0);
768 }
769 
770 U_CAPI const UHashElement* U_EXPORT2
uhash_find(const UHashtable * hash,const void * key)771 uhash_find(const UHashtable *hash, const void* key) {
772     UHashTok keyholder;
773     const UHashElement *e;
774     keyholder.pointer = (void*) key;
775     e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
776     return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
777 }
778 
779 U_CAPI const UHashElement* U_EXPORT2
uhash_nextElement(const UHashtable * hash,int32_t * pos)780 uhash_nextElement(const UHashtable *hash, int32_t *pos) {
781     /* Walk through the array until we find an element that is not
782      * EMPTY and not DELETED.
783      */
784     int32_t i;
785     U_ASSERT(hash != NULL);
786     for (i = *pos + 1; i < hash->length; ++i) {
787         if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
788             *pos = i;
789             return &(hash->elements[i]);
790         }
791     }
792 
793     /* No more elements */
794     return NULL;
795 }
796 
797 U_CAPI void* U_EXPORT2
uhash_removeElement(UHashtable * hash,const UHashElement * e)798 uhash_removeElement(UHashtable *hash, const UHashElement* e) {
799     U_ASSERT(hash != NULL);
800     U_ASSERT(e != NULL);
801     if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
802         UHashElement *nce = (UHashElement *)e;
803         return _uhash_internalRemoveElement(hash, nce).pointer;
804     }
805     return NULL;
806 }
807 
808 /********************************************************************
809  * UHashTok convenience
810  ********************************************************************/
811 
812 /**
813  * Return a UHashTok for an integer.
814  */
815 /*U_CAPI UHashTok U_EXPORT2
816 uhash_toki(int32_t i) {
817     UHashTok tok;
818     tok.integer = i;
819     return tok;
820 }*/
821 
822 /**
823  * Return a UHashTok for a pointer.
824  */
825 /*U_CAPI UHashTok U_EXPORT2
826 uhash_tokp(void* p) {
827     UHashTok tok;
828     tok.pointer = p;
829     return tok;
830 }*/
831 
832 /********************************************************************
833  * PUBLIC Key Hash Functions
834  ********************************************************************/
835 
836 U_CAPI int32_t U_EXPORT2
uhash_hashUChars(const UHashTok key)837 uhash_hashUChars(const UHashTok key) {
838     const UChar *s = (const UChar *)key.pointer;
839     return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s));
840 }
841 
842 U_CAPI int32_t U_EXPORT2
uhash_hashChars(const UHashTok key)843 uhash_hashChars(const UHashTok key) {
844     const char *s = (const char *)key.pointer;
845     return s == NULL ? 0 : ustr_hashCharsN(s, uprv_strlen(s));
846 }
847 
848 U_CAPI int32_t U_EXPORT2
uhash_hashIChars(const UHashTok key)849 uhash_hashIChars(const UHashTok key) {
850     const char *s = (const char *)key.pointer;
851     return s == NULL ? 0 : ustr_hashICharsN(s, uprv_strlen(s));
852 }
853 
854 U_CAPI UBool U_EXPORT2
uhash_equals(const UHashtable * hash1,const UHashtable * hash2)855 uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
856     int32_t count1, count2, pos, i;
857 
858     if(hash1==hash2){
859         return TRUE;
860     }
861 
862     /*
863      * Make sure that we are comparing 2 valid hashes of the same type
864      * with valid comparison functions.
865      * Without valid comparison functions, a binary comparison
866      * of the hash values will yield random results on machines
867      * with 64-bit pointers and 32-bit integer hashes.
868      * A valueComparator is normally optional.
869      */
870     if (hash1==NULL || hash2==NULL ||
871         hash1->keyComparator != hash2->keyComparator ||
872         hash1->valueComparator != hash2->valueComparator ||
873         hash1->valueComparator == NULL)
874     {
875         /*
876         Normally we would return an error here about incompatible hash tables,
877         but we return FALSE instead.
878         */
879         return FALSE;
880     }
881 
882     count1 = uhash_count(hash1);
883     count2 = uhash_count(hash2);
884     if(count1!=count2){
885         return FALSE;
886     }
887 
888     pos=UHASH_FIRST;
889     for(i=0; i<count1; i++){
890         const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
891         const UHashTok key1 = elem1->key;
892         const UHashTok val1 = elem1->value;
893         /* here the keys are not compared, instead the key form hash1 is used to fetch
894          * value from hash2. If the hashes are equal then then both hashes should
895          * contain equal values for the same key!
896          */
897         const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
898         const UHashTok val2 = elem2->value;
899         if(hash1->valueComparator(val1, val2)==FALSE){
900             return FALSE;
901         }
902     }
903     return TRUE;
904 }
905 
906 /********************************************************************
907  * PUBLIC Comparator Functions
908  ********************************************************************/
909 
910 U_CAPI UBool U_EXPORT2
uhash_compareUChars(const UHashTok key1,const UHashTok key2)911 uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
912     const UChar *p1 = (const UChar*) key1.pointer;
913     const UChar *p2 = (const UChar*) key2.pointer;
914     if (p1 == p2) {
915         return TRUE;
916     }
917     if (p1 == NULL || p2 == NULL) {
918         return FALSE;
919     }
920     while (*p1 != 0 && *p1 == *p2) {
921         ++p1;
922         ++p2;
923     }
924     return (UBool)(*p1 == *p2);
925 }
926 
927 U_CAPI UBool U_EXPORT2
uhash_compareChars(const UHashTok key1,const UHashTok key2)928 uhash_compareChars(const UHashTok key1, const UHashTok key2) {
929     const char *p1 = (const char*) key1.pointer;
930     const char *p2 = (const char*) key2.pointer;
931     if (p1 == p2) {
932         return TRUE;
933     }
934     if (p1 == NULL || p2 == NULL) {
935         return FALSE;
936     }
937     while (*p1 != 0 && *p1 == *p2) {
938         ++p1;
939         ++p2;
940     }
941     return (UBool)(*p1 == *p2);
942 }
943 
944 U_CAPI UBool U_EXPORT2
uhash_compareIChars(const UHashTok key1,const UHashTok key2)945 uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
946     const char *p1 = (const char*) key1.pointer;
947     const char *p2 = (const char*) key2.pointer;
948     if (p1 == p2) {
949         return TRUE;
950     }
951     if (p1 == NULL || p2 == NULL) {
952         return FALSE;
953     }
954     while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
955         ++p1;
956         ++p2;
957     }
958     return (UBool)(*p1 == *p2);
959 }
960 
961 /********************************************************************
962  * PUBLIC int32_t Support Functions
963  ********************************************************************/
964 
965 U_CAPI int32_t U_EXPORT2
uhash_hashLong(const UHashTok key)966 uhash_hashLong(const UHashTok key) {
967     return key.integer;
968 }
969 
970 U_CAPI UBool U_EXPORT2
uhash_compareLong(const UHashTok key1,const UHashTok key2)971 uhash_compareLong(const UHashTok key1, const UHashTok key2) {
972     return (UBool)(key1.integer == key2.integer);
973 }
974