1#! /usr/bin/env perl
2# Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9# ====================================================================
10# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
11# project. The module is, however, dual licensed under OpenSSL and
12# CRYPTOGAMS licenses depending on where you obtain it. For further
13# details see http://www.openssl.org/~appro/cryptogams/.
14#
15# Permission to use under GPLv2 terms is granted.
16# ====================================================================
17#
18# SHA256/512 for ARMv8.
19#
20# Performance in cycles per processed byte and improvement coefficient
21# over code generated with "default" compiler:
22#
23#		SHA256-hw	SHA256(*)	SHA512
24# Apple A7	1.97		10.5 (+33%)	6.73 (-1%(**))
25# Cortex-A53	2.38		15.5 (+115%)	10.0 (+150%(***))
26# Cortex-A57	2.31		11.6 (+86%)	7.51 (+260%(***))
27# Denver	2.01		10.5 (+26%)	6.70 (+8%)
28# X-Gene			20.0 (+100%)	12.8 (+300%(***))
29# Mongoose	2.36		13.0 (+50%)	8.36 (+33%)
30# Kryo		1.92		17.4 (+30%)	11.2 (+8%)
31# ThunderX2	2.54		13.2 (+40%)	8.40 (+18%)
32#
33# (*)	Software SHA256 results are of lesser relevance, presented
34#	mostly for informational purposes.
35# (**)	The result is a trade-off: it's possible to improve it by
36#	10% (or by 1 cycle per round), but at the cost of 20% loss
37#	on Cortex-A53 (or by 4 cycles per round).
38# (***)	Super-impressive coefficients over gcc-generated code are
39#	indication of some compiler "pathology", most notably code
40#	generated with -mgeneral-regs-only is significantly faster
41#	and the gap is only 40-90%.
42#
43# October 2016.
44#
45# Originally it was reckoned that it makes no sense to implement NEON
46# version of SHA256 for 64-bit processors. This is because performance
47# improvement on most wide-spread Cortex-A5x processors was observed
48# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
49# observed that 32-bit NEON SHA256 performs significantly better than
50# 64-bit scalar version on *some* of the more recent processors. As
51# result 64-bit NEON version of SHA256 was added to provide best
52# all-round performance. For example it executes ~30% faster on X-Gene
53# and Mongoose. [For reference, NEON version of SHA512 is bound to
54# deliver much less improvement, likely *negative* on Cortex-A5x.
55# Which is why NEON support is limited to SHA256.]
56
57# $output is the last argument if it looks like a file (it has an extension)
58# $flavour is the first argument if it doesn't look like a file
59$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
60$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
61
62if ($flavour && $flavour ne "void") {
63    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
64    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
65    ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
66    die "can't locate arm-xlate.pl";
67
68    open OUT,"| \"$^X\" $xlate $flavour \"$output\""
69        or die "can't call $xlate: $!";
70    *STDOUT=*OUT;
71} else {
72    $output and open STDOUT,">$output";
73}
74
75if ($output =~ /512/) {
76	$BITS=512;
77	$SZ=8;
78	@Sigma0=(28,34,39);
79	@Sigma1=(14,18,41);
80	@sigma0=(1,  8, 7);
81	@sigma1=(19,61, 6);
82	$rounds=80;
83	$reg_t="x";
84} else {
85	$BITS=256;
86	$SZ=4;
87	@Sigma0=( 2,13,22);
88	@Sigma1=( 6,11,25);
89	@sigma0=( 7,18, 3);
90	@sigma1=(17,19,10);
91	$rounds=64;
92	$reg_t="w";
93}
94
95$func="sha${BITS}_block_data_order";
96
97($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
98
99@X=map("$reg_t$_",(3..15,0..2));
100@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
101($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
102
103sub BODY_00_xx {
104my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
105my $j=($i+1)&15;
106my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
107   $T0=@X[$i+3] if ($i<11);
108
109$code.=<<___	if ($i<16);
110#ifndef	__AARCH64EB__
111	rev	@X[$i],@X[$i]			// $i
112#endif
113___
114$code.=<<___	if ($i<13 && ($i&1));
115	ldp	@X[$i+1],@X[$i+2],[$inp],#2*$SZ
116___
117$code.=<<___	if ($i==13);
118	ldp	@X[14],@X[15],[$inp]
119___
120$code.=<<___	if ($i>=14);
121	ldr	@X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
122___
123$code.=<<___	if ($i>0 && $i<16);
124	add	$a,$a,$t1			// h+=Sigma0(a)
125___
126$code.=<<___	if ($i>=11);
127	str	@X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
128___
129# While ARMv8 specifies merged rotate-n-logical operation such as
130# 'eor x,y,z,ror#n', it was found to negatively affect performance
131# on Apple A7. The reason seems to be that it requires even 'y' to
132# be available earlier. This means that such merged instruction is
133# not necessarily best choice on critical path... On the other hand
134# Cortex-A5x handles merged instructions much better than disjoint
135# rotate and logical... See (**) footnote above.
136$code.=<<___	if ($i<15);
137	ror	$t0,$e,#$Sigma1[0]
138	add	$h,$h,$t2			// h+=K[i]
139	eor	$T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
140	and	$t1,$f,$e
141	bic	$t2,$g,$e
142	add	$h,$h,@X[$i&15]			// h+=X[i]
143	orr	$t1,$t1,$t2			// Ch(e,f,g)
144	eor	$t2,$a,$b			// a^b, b^c in next round
145	eor	$t0,$t0,$T0,ror#$Sigma1[1]	// Sigma1(e)
146	ror	$T0,$a,#$Sigma0[0]
147	add	$h,$h,$t1			// h+=Ch(e,f,g)
148	eor	$t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
149	add	$h,$h,$t0			// h+=Sigma1(e)
150	and	$t3,$t3,$t2			// (b^c)&=(a^b)
151	add	$d,$d,$h			// d+=h
152	eor	$t3,$t3,$b			// Maj(a,b,c)
153	eor	$t1,$T0,$t1,ror#$Sigma0[1]	// Sigma0(a)
154	add	$h,$h,$t3			// h+=Maj(a,b,c)
155	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
156	//add	$h,$h,$t1			// h+=Sigma0(a)
157___
158$code.=<<___	if ($i>=15);
159	ror	$t0,$e,#$Sigma1[0]
160	add	$h,$h,$t2			// h+=K[i]
161	ror	$T1,@X[($j+1)&15],#$sigma0[0]
162	and	$t1,$f,$e
163	ror	$T2,@X[($j+14)&15],#$sigma1[0]
164	bic	$t2,$g,$e
165	ror	$T0,$a,#$Sigma0[0]
166	add	$h,$h,@X[$i&15]			// h+=X[i]
167	eor	$t0,$t0,$e,ror#$Sigma1[1]
168	eor	$T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
169	orr	$t1,$t1,$t2			// Ch(e,f,g)
170	eor	$t2,$a,$b			// a^b, b^c in next round
171	eor	$t0,$t0,$e,ror#$Sigma1[2]	// Sigma1(e)
172	eor	$T0,$T0,$a,ror#$Sigma0[1]
173	add	$h,$h,$t1			// h+=Ch(e,f,g)
174	and	$t3,$t3,$t2			// (b^c)&=(a^b)
175	eor	$T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
176	eor	$T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]	// sigma0(X[i+1])
177	add	$h,$h,$t0			// h+=Sigma1(e)
178	eor	$t3,$t3,$b			// Maj(a,b,c)
179	eor	$t1,$T0,$a,ror#$Sigma0[2]	// Sigma0(a)
180	eor	$T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]	// sigma1(X[i+14])
181	add	@X[$j],@X[$j],@X[($j+9)&15]
182	add	$d,$d,$h			// d+=h
183	add	$h,$h,$t3			// h+=Maj(a,b,c)
184	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
185	add	@X[$j],@X[$j],$T1
186	add	$h,$h,$t1			// h+=Sigma0(a)
187	add	@X[$j],@X[$j],$T2
188___
189	($t2,$t3)=($t3,$t2);
190}
191
192$code.=<<___;
193#ifndef	__KERNEL__
194# include "arm_arch.h"
195.extern	OPENSSL_armcap_P
196.hidden	OPENSSL_armcap_P
197#endif
198
199.text
200
201.globl	$func
202.type	$func,%function
203.align	6
204$func:
205#ifndef	__KERNEL__
206	adrp	x16,OPENSSL_armcap_P
207	ldr	w16,[x16,#:lo12:OPENSSL_armcap_P]
208___
209$code.=<<___	if ($SZ==4);
210	tst	w16,#ARMV8_SHA256
211	b.ne	.Lv8_entry
212	tst	w16,#ARMV7_NEON
213	b.ne	.Lneon_entry
214___
215$code.=<<___	if ($SZ==8);
216	tst	w16,#ARMV8_SHA512
217	b.ne	.Lv8_entry
218___
219$code.=<<___;
220#endif
221	.inst	0xd503233f				// paciasp
222	stp	x29,x30,[sp,#-128]!
223	add	x29,sp,#0
224
225	stp	x19,x20,[sp,#16]
226	stp	x21,x22,[sp,#32]
227	stp	x23,x24,[sp,#48]
228	stp	x25,x26,[sp,#64]
229	stp	x27,x28,[sp,#80]
230	sub	sp,sp,#4*$SZ
231
232	ldp	$A,$B,[$ctx]				// load context
233	ldp	$C,$D,[$ctx,#2*$SZ]
234	ldp	$E,$F,[$ctx,#4*$SZ]
235	add	$num,$inp,$num,lsl#`log(16*$SZ)/log(2)`	// end of input
236	ldp	$G,$H,[$ctx,#6*$SZ]
237	adr	$Ktbl,.LK$BITS
238	stp	$ctx,$num,[x29,#96]
239
240.Loop:
241	ldp	@X[0],@X[1],[$inp],#2*$SZ
242	ldr	$t2,[$Ktbl],#$SZ			// *K++
243	eor	$t3,$B,$C				// magic seed
244	str	$inp,[x29,#112]
245___
246for ($i=0;$i<16;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
247$code.=".Loop_16_xx:\n";
248for (;$i<32;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
249$code.=<<___;
250	cbnz	$t2,.Loop_16_xx
251
252	ldp	$ctx,$num,[x29,#96]
253	ldr	$inp,[x29,#112]
254	sub	$Ktbl,$Ktbl,#`$SZ*($rounds+1)`		// rewind
255
256	ldp	@X[0],@X[1],[$ctx]
257	ldp	@X[2],@X[3],[$ctx,#2*$SZ]
258	add	$inp,$inp,#14*$SZ			// advance input pointer
259	ldp	@X[4],@X[5],[$ctx,#4*$SZ]
260	add	$A,$A,@X[0]
261	ldp	@X[6],@X[7],[$ctx,#6*$SZ]
262	add	$B,$B,@X[1]
263	add	$C,$C,@X[2]
264	add	$D,$D,@X[3]
265	stp	$A,$B,[$ctx]
266	add	$E,$E,@X[4]
267	add	$F,$F,@X[5]
268	stp	$C,$D,[$ctx,#2*$SZ]
269	add	$G,$G,@X[6]
270	add	$H,$H,@X[7]
271	cmp	$inp,$num
272	stp	$E,$F,[$ctx,#4*$SZ]
273	stp	$G,$H,[$ctx,#6*$SZ]
274	b.ne	.Loop
275
276	ldp	x19,x20,[x29,#16]
277	add	sp,sp,#4*$SZ
278	ldp	x21,x22,[x29,#32]
279	ldp	x23,x24,[x29,#48]
280	ldp	x25,x26,[x29,#64]
281	ldp	x27,x28,[x29,#80]
282	ldp	x29,x30,[sp],#128
283	.inst	0xd50323bf				// autiasp
284	ret
285.size	$func,.-$func
286
287.align	6
288.type	.LK$BITS,%object
289.LK$BITS:
290___
291$code.=<<___ if ($SZ==8);
292	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
293	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
294	.quad	0x3956c25bf348b538,0x59f111f1b605d019
295	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
296	.quad	0xd807aa98a3030242,0x12835b0145706fbe
297	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
298	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
299	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
300	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
301	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
302	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
303	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
304	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
305	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
306	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
307	.quad	0x06ca6351e003826f,0x142929670a0e6e70
308	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
309	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
310	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
311	.quad	0x81c2c92e47edaee6,0x92722c851482353b
312	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
313	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
314	.quad	0xd192e819d6ef5218,0xd69906245565a910
315	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
316	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
317	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
318	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
319	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
320	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
321	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
322	.quad	0x90befffa23631e28,0xa4506cebde82bde9
323	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
324	.quad	0xca273eceea26619c,0xd186b8c721c0c207
325	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
326	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
327	.quad	0x113f9804bef90dae,0x1b710b35131c471b
328	.quad	0x28db77f523047d84,0x32caab7b40c72493
329	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
330	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
331	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
332	.quad	0	// terminator
333___
334$code.=<<___ if ($SZ==4);
335	.long	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
336	.long	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
337	.long	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
338	.long	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
339	.long	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
340	.long	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
341	.long	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
342	.long	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
343	.long	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
344	.long	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
345	.long	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
346	.long	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
347	.long	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
348	.long	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
349	.long	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
350	.long	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
351	.long	0	//terminator
352___
353$code.=<<___;
354.size	.LK$BITS,.-.LK$BITS
355.asciz	"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
356.align	2
357___
358
359if ($SZ==4) {
360my $Ktbl="x3";
361
362my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
363my @MSG=map("v$_.16b",(4..7));
364my ($W0,$W1)=("v16.4s","v17.4s");
365my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
366
367$code.=<<___;
368#ifndef	__KERNEL__
369.type	sha256_block_armv8,%function
370.align	6
371sha256_block_armv8:
372.Lv8_entry:
373	stp		x29,x30,[sp,#-16]!
374	add		x29,sp,#0
375
376	ld1.32		{$ABCD,$EFGH},[$ctx]
377	adr		$Ktbl,.LK256
378
379.Loop_hw:
380	ld1		{@MSG[0]-@MSG[3]},[$inp],#64
381	sub		$num,$num,#1
382	ld1.32		{$W0},[$Ktbl],#16
383	rev32		@MSG[0],@MSG[0]
384	rev32		@MSG[1],@MSG[1]
385	rev32		@MSG[2],@MSG[2]
386	rev32		@MSG[3],@MSG[3]
387	orr		$ABCD_SAVE,$ABCD,$ABCD		// offload
388	orr		$EFGH_SAVE,$EFGH,$EFGH
389___
390for($i=0;$i<12;$i++) {
391$code.=<<___;
392	ld1.32		{$W1},[$Ktbl],#16
393	add.i32		$W0,$W0,@MSG[0]
394	sha256su0	@MSG[0],@MSG[1]
395	orr		$abcd,$ABCD,$ABCD
396	sha256h		$ABCD,$EFGH,$W0
397	sha256h2	$EFGH,$abcd,$W0
398	sha256su1	@MSG[0],@MSG[2],@MSG[3]
399___
400	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
401}
402$code.=<<___;
403	ld1.32		{$W1},[$Ktbl],#16
404	add.i32		$W0,$W0,@MSG[0]
405	orr		$abcd,$ABCD,$ABCD
406	sha256h		$ABCD,$EFGH,$W0
407	sha256h2	$EFGH,$abcd,$W0
408
409	ld1.32		{$W0},[$Ktbl],#16
410	add.i32		$W1,$W1,@MSG[1]
411	orr		$abcd,$ABCD,$ABCD
412	sha256h		$ABCD,$EFGH,$W1
413	sha256h2	$EFGH,$abcd,$W1
414
415	ld1.32		{$W1},[$Ktbl]
416	add.i32		$W0,$W0,@MSG[2]
417	sub		$Ktbl,$Ktbl,#$rounds*$SZ-16	// rewind
418	orr		$abcd,$ABCD,$ABCD
419	sha256h		$ABCD,$EFGH,$W0
420	sha256h2	$EFGH,$abcd,$W0
421
422	add.i32		$W1,$W1,@MSG[3]
423	orr		$abcd,$ABCD,$ABCD
424	sha256h		$ABCD,$EFGH,$W1
425	sha256h2	$EFGH,$abcd,$W1
426
427	add.i32		$ABCD,$ABCD,$ABCD_SAVE
428	add.i32		$EFGH,$EFGH,$EFGH_SAVE
429
430	cbnz		$num,.Loop_hw
431
432	st1.32		{$ABCD,$EFGH},[$ctx]
433
434	ldr		x29,[sp],#16
435	ret
436.size	sha256_block_armv8,.-sha256_block_armv8
437#endif
438___
439}
440
441if ($SZ==4) {	######################################### NEON stuff #
442# You'll surely note a lot of similarities with sha256-armv4 module,
443# and of course it's not a coincidence. sha256-armv4 was used as
444# initial template, but was adapted for ARMv8 instruction set and
445# extensively re-tuned for all-round performance.
446
447my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
448my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
449my $Ktbl="x16";
450my $Xfer="x17";
451my @X = map("q$_",(0..3));
452my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
453my $j=0;
454
455sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
456{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
457  my $arg = pop;
458    $arg = "#$arg" if ($arg*1 eq $arg);
459    $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
460}
461
462sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
463sub Dlo     { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
464sub Dhi     { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
465
466sub Xupdate()
467{ use integer;
468  my $body = shift;
469  my @insns = (&$body,&$body,&$body,&$body);
470  my ($a,$b,$c,$d,$e,$f,$g,$h);
471
472	&ext_8		($T0,@X[0],@X[1],4);	# X[1..4]
473	 eval(shift(@insns));
474	 eval(shift(@insns));
475	 eval(shift(@insns));
476	&ext_8		($T3,@X[2],@X[3],4);	# X[9..12]
477	 eval(shift(@insns));
478	 eval(shift(@insns));
479	&mov		(&Dscalar($T7),&Dhi(@X[3]));	# X[14..15]
480	 eval(shift(@insns));
481	 eval(shift(@insns));
482	&ushr_32	($T2,$T0,$sigma0[0]);
483	 eval(shift(@insns));
484	&ushr_32	($T1,$T0,$sigma0[2]);
485	 eval(shift(@insns));
486	&add_32 	(@X[0],@X[0],$T3);	# X[0..3] += X[9..12]
487	 eval(shift(@insns));
488	&sli_32		($T2,$T0,32-$sigma0[0]);
489	 eval(shift(@insns));
490	 eval(shift(@insns));
491	&ushr_32	($T3,$T0,$sigma0[1]);
492	 eval(shift(@insns));
493	 eval(shift(@insns));
494	&eor_8		($T1,$T1,$T2);
495	 eval(shift(@insns));
496	 eval(shift(@insns));
497	&sli_32		($T3,$T0,32-$sigma0[1]);
498	 eval(shift(@insns));
499	 eval(shift(@insns));
500	  &ushr_32	($T4,$T7,$sigma1[0]);
501	 eval(shift(@insns));
502	 eval(shift(@insns));
503	&eor_8		($T1,$T1,$T3);		# sigma0(X[1..4])
504	 eval(shift(@insns));
505	 eval(shift(@insns));
506	  &sli_32	($T4,$T7,32-$sigma1[0]);
507	 eval(shift(@insns));
508	 eval(shift(@insns));
509	  &ushr_32	($T5,$T7,$sigma1[2]);
510	 eval(shift(@insns));
511	 eval(shift(@insns));
512	  &ushr_32	($T3,$T7,$sigma1[1]);
513	 eval(shift(@insns));
514	 eval(shift(@insns));
515	&add_32		(@X[0],@X[0],$T1);	# X[0..3] += sigma0(X[1..4])
516	 eval(shift(@insns));
517	 eval(shift(@insns));
518	  &sli_u32	($T3,$T7,32-$sigma1[1]);
519	 eval(shift(@insns));
520	 eval(shift(@insns));
521	  &eor_8	($T5,$T5,$T4);
522	 eval(shift(@insns));
523	 eval(shift(@insns));
524	 eval(shift(@insns));
525	  &eor_8	($T5,$T5,$T3);		# sigma1(X[14..15])
526	 eval(shift(@insns));
527	 eval(shift(@insns));
528	 eval(shift(@insns));
529	&add_32		(@X[0],@X[0],$T5);	# X[0..1] += sigma1(X[14..15])
530	 eval(shift(@insns));
531	 eval(shift(@insns));
532	 eval(shift(@insns));
533	  &ushr_32	($T6,@X[0],$sigma1[0]);
534	 eval(shift(@insns));
535	  &ushr_32	($T7,@X[0],$sigma1[2]);
536	 eval(shift(@insns));
537	 eval(shift(@insns));
538	  &sli_32	($T6,@X[0],32-$sigma1[0]);
539	 eval(shift(@insns));
540	  &ushr_32	($T5,@X[0],$sigma1[1]);
541	 eval(shift(@insns));
542	 eval(shift(@insns));
543	  &eor_8	($T7,$T7,$T6);
544	 eval(shift(@insns));
545	 eval(shift(@insns));
546	  &sli_32	($T5,@X[0],32-$sigma1[1]);
547	 eval(shift(@insns));
548	 eval(shift(@insns));
549	&ld1_32		("{$T0}","[$Ktbl], #16");
550	 eval(shift(@insns));
551	  &eor_8	($T7,$T7,$T5);		# sigma1(X[16..17])
552	 eval(shift(@insns));
553	 eval(shift(@insns));
554	&eor_8		($T5,$T5,$T5);
555	 eval(shift(@insns));
556	 eval(shift(@insns));
557	&mov		(&Dhi($T5), &Dlo($T7));
558	 eval(shift(@insns));
559	 eval(shift(@insns));
560	 eval(shift(@insns));
561	&add_32		(@X[0],@X[0],$T5);	# X[2..3] += sigma1(X[16..17])
562	 eval(shift(@insns));
563	 eval(shift(@insns));
564	 eval(shift(@insns));
565	&add_32		($T0,$T0,@X[0]);
566	 while($#insns>=1) { eval(shift(@insns)); }
567	&st1_32		("{$T0}","[$Xfer], #16");
568	 eval(shift(@insns));
569
570	push(@X,shift(@X));		# "rotate" X[]
571}
572
573sub Xpreload()
574{ use integer;
575  my $body = shift;
576  my @insns = (&$body,&$body,&$body,&$body);
577  my ($a,$b,$c,$d,$e,$f,$g,$h);
578
579	 eval(shift(@insns));
580	 eval(shift(@insns));
581	&ld1_8		("{@X[0]}","[$inp],#16");
582	 eval(shift(@insns));
583	 eval(shift(@insns));
584	&ld1_32		("{$T0}","[$Ktbl],#16");
585	 eval(shift(@insns));
586	 eval(shift(@insns));
587	 eval(shift(@insns));
588	 eval(shift(@insns));
589	&rev32		(@X[0],@X[0]);
590	 eval(shift(@insns));
591	 eval(shift(@insns));
592	 eval(shift(@insns));
593	 eval(shift(@insns));
594	&add_32		($T0,$T0,@X[0]);
595	 foreach (@insns) { eval; }	# remaining instructions
596	&st1_32		("{$T0}","[$Xfer], #16");
597
598	push(@X,shift(@X));		# "rotate" X[]
599}
600
601sub body_00_15 () {
602	(
603	'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
604	'&add	($h,$h,$t1)',			# h+=X[i]+K[i]
605	'&add	($a,$a,$t4);'.			# h+=Sigma0(a) from the past
606	'&and	($t1,$f,$e)',
607	'&bic	($t4,$g,$e)',
608	'&eor	($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
609	'&add	($a,$a,$t2)',			# h+=Maj(a,b,c) from the past
610	'&orr	($t1,$t1,$t4)',			# Ch(e,f,g)
611	'&eor	($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))',	# Sigma1(e)
612	'&eor	($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
613	'&add	($h,$h,$t1)',			# h+=Ch(e,f,g)
614	'&ror	($t0,$t0,"#$Sigma1[0]")',
615	'&eor	($t2,$a,$b)',			# a^b, b^c in next round
616	'&eor	($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))',	# Sigma0(a)
617	'&add	($h,$h,$t0)',			# h+=Sigma1(e)
618	'&ldr	($t1,sprintf "[sp,#%d]",4*(($j+1)&15))	if (($j&15)!=15);'.
619	'&ldr	($t1,"[$Ktbl]")				if ($j==15);'.
620	'&and	($t3,$t3,$t2)',			# (b^c)&=(a^b)
621	'&ror	($t4,$t4,"#$Sigma0[0]")',
622	'&add	($d,$d,$h)',			# d+=h
623	'&eor	($t3,$t3,$b)',			# Maj(a,b,c)
624	'$j++;	unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
625	)
626}
627
628$code.=<<___;
629#ifdef	__KERNEL__
630.globl	sha256_block_neon
631#endif
632.type	sha256_block_neon,%function
633.align	4
634sha256_block_neon:
635.Lneon_entry:
636	stp	x29, x30, [sp, #-16]!
637	mov	x29, sp
638	sub	sp,sp,#16*4
639
640	adr	$Ktbl,.LK256
641	add	$num,$inp,$num,lsl#6	// len to point at the end of inp
642
643	ld1.8	{@X[0]},[$inp], #16
644	ld1.8	{@X[1]},[$inp], #16
645	ld1.8	{@X[2]},[$inp], #16
646	ld1.8	{@X[3]},[$inp], #16
647	ld1.32	{$T0},[$Ktbl], #16
648	ld1.32	{$T1},[$Ktbl], #16
649	ld1.32	{$T2},[$Ktbl], #16
650	ld1.32	{$T3},[$Ktbl], #16
651	rev32	@X[0],@X[0]		// yes, even on
652	rev32	@X[1],@X[1]		// big-endian
653	rev32	@X[2],@X[2]
654	rev32	@X[3],@X[3]
655	mov	$Xfer,sp
656	add.32	$T0,$T0,@X[0]
657	add.32	$T1,$T1,@X[1]
658	add.32	$T2,$T2,@X[2]
659	st1.32	{$T0-$T1},[$Xfer], #32
660	add.32	$T3,$T3,@X[3]
661	st1.32	{$T2-$T3},[$Xfer]
662	sub	$Xfer,$Xfer,#32
663
664	ldp	$A,$B,[$ctx]
665	ldp	$C,$D,[$ctx,#8]
666	ldp	$E,$F,[$ctx,#16]
667	ldp	$G,$H,[$ctx,#24]
668	ldr	$t1,[sp,#0]
669	mov	$t2,wzr
670	eor	$t3,$B,$C
671	mov	$t4,wzr
672	b	.L_00_48
673
674.align	4
675.L_00_48:
676___
677	&Xupdate(\&body_00_15);
678	&Xupdate(\&body_00_15);
679	&Xupdate(\&body_00_15);
680	&Xupdate(\&body_00_15);
681$code.=<<___;
682	cmp	$t1,#0				// check for K256 terminator
683	ldr	$t1,[sp,#0]
684	sub	$Xfer,$Xfer,#64
685	bne	.L_00_48
686
687	sub	$Ktbl,$Ktbl,#256		// rewind $Ktbl
688	cmp	$inp,$num
689	mov	$Xfer, #64
690	csel	$Xfer, $Xfer, xzr, eq
691	sub	$inp,$inp,$Xfer			// avoid SEGV
692	mov	$Xfer,sp
693___
694	&Xpreload(\&body_00_15);
695	&Xpreload(\&body_00_15);
696	&Xpreload(\&body_00_15);
697	&Xpreload(\&body_00_15);
698$code.=<<___;
699	add	$A,$A,$t4			// h+=Sigma0(a) from the past
700	ldp	$t0,$t1,[$ctx,#0]
701	add	$A,$A,$t2			// h+=Maj(a,b,c) from the past
702	ldp	$t2,$t3,[$ctx,#8]
703	add	$A,$A,$t0			// accumulate
704	add	$B,$B,$t1
705	ldp	$t0,$t1,[$ctx,#16]
706	add	$C,$C,$t2
707	add	$D,$D,$t3
708	ldp	$t2,$t3,[$ctx,#24]
709	add	$E,$E,$t0
710	add	$F,$F,$t1
711	 ldr	$t1,[sp,#0]
712	stp	$A,$B,[$ctx,#0]
713	add	$G,$G,$t2
714	 mov	$t2,wzr
715	stp	$C,$D,[$ctx,#8]
716	add	$H,$H,$t3
717	stp	$E,$F,[$ctx,#16]
718	 eor	$t3,$B,$C
719	stp	$G,$H,[$ctx,#24]
720	 mov	$t4,wzr
721	 mov	$Xfer,sp
722	b.ne	.L_00_48
723
724	ldr	x29,[x29]
725	add	sp,sp,#16*4+16
726	ret
727.size	sha256_block_neon,.-sha256_block_neon
728___
729}
730
731if ($SZ==8) {
732my $Ktbl="x3";
733
734my @H = map("v$_.16b",(0..4));
735my ($fg,$de,$m9_10)=map("v$_.16b",(5..7));
736my @MSG=map("v$_.16b",(16..23));
737my ($W0,$W1)=("v24.2d","v25.2d");
738my ($AB,$CD,$EF,$GH)=map("v$_.16b",(26..29));
739
740$code.=<<___;
741#ifndef	__KERNEL__
742.type	sha512_block_armv8,%function
743.align	6
744sha512_block_armv8:
745.Lv8_entry:
746	stp		x29,x30,[sp,#-16]!
747	add		x29,sp,#0
748
749	ld1		{@MSG[0]-@MSG[3]},[$inp],#64	// load input
750	ld1		{@MSG[4]-@MSG[7]},[$inp],#64
751
752	ld1.64		{@H[0]-@H[3]},[$ctx]		// load context
753	adr		$Ktbl,.LK512
754
755	rev64		@MSG[0],@MSG[0]
756	rev64		@MSG[1],@MSG[1]
757	rev64		@MSG[2],@MSG[2]
758	rev64		@MSG[3],@MSG[3]
759	rev64		@MSG[4],@MSG[4]
760	rev64		@MSG[5],@MSG[5]
761	rev64		@MSG[6],@MSG[6]
762	rev64		@MSG[7],@MSG[7]
763	b		.Loop_hw
764
765.align	4
766.Loop_hw:
767	ld1.64		{$W0},[$Ktbl],#16
768	subs		$num,$num,#1
769	sub		x4,$inp,#128
770	orr		$AB,@H[0],@H[0]			// offload
771	orr		$CD,@H[1],@H[1]
772	orr		$EF,@H[2],@H[2]
773	orr		$GH,@H[3],@H[3]
774	csel		$inp,$inp,x4,ne			// conditional rewind
775___
776for($i=0;$i<32;$i++) {
777$code.=<<___;
778	add.i64		$W0,$W0,@MSG[0]
779	ld1.64		{$W1},[$Ktbl],#16
780	ext		$W0,$W0,$W0,#8
781	ext		$fg,@H[2],@H[3],#8
782	ext		$de,@H[1],@H[2],#8
783	add.i64		@H[3],@H[3],$W0			// "T1 + H + K512[i]"
784	 sha512su0	@MSG[0],@MSG[1]
785	 ext		$m9_10,@MSG[4],@MSG[5],#8
786	sha512h		@H[3],$fg,$de
787	 sha512su1	@MSG[0],@MSG[7],$m9_10
788	add.i64		@H[4],@H[1],@H[3]		// "D + T1"
789	sha512h2	@H[3],$H[1],@H[0]
790___
791	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
792	@H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
793}
794for(;$i<40;$i++) {
795$code.=<<___	if ($i<39);
796	ld1.64		{$W1},[$Ktbl],#16
797___
798$code.=<<___	if ($i==39);
799	sub		$Ktbl,$Ktbl,#$rounds*$SZ	// rewind
800___
801$code.=<<___;
802	add.i64		$W0,$W0,@MSG[0]
803	 ld1		{@MSG[0]},[$inp],#16		// load next input
804	ext		$W0,$W0,$W0,#8
805	ext		$fg,@H[2],@H[3],#8
806	ext		$de,@H[1],@H[2],#8
807	add.i64		@H[3],@H[3],$W0			// "T1 + H + K512[i]"
808	sha512h		@H[3],$fg,$de
809	 rev64		@MSG[0],@MSG[0]
810	add.i64		@H[4],@H[1],@H[3]		// "D + T1"
811	sha512h2	@H[3],$H[1],@H[0]
812___
813	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
814	@H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
815}
816$code.=<<___;
817	add.i64		@H[0],@H[0],$AB			// accumulate
818	add.i64		@H[1],@H[1],$CD
819	add.i64		@H[2],@H[2],$EF
820	add.i64		@H[3],@H[3],$GH
821
822	cbnz		$num,.Loop_hw
823
824	st1.64		{@H[0]-@H[3]},[$ctx]		// store context
825
826	ldr		x29,[sp],#16
827	ret
828.size	sha512_block_armv8,.-sha512_block_armv8
829#endif
830___
831}
832
833{   my  %opcode = (
834	"sha256h"	=> 0x5e004000,	"sha256h2"	=> 0x5e005000,
835	"sha256su0"	=> 0x5e282800,	"sha256su1"	=> 0x5e006000	);
836
837    sub unsha256 {
838	my ($mnemonic,$arg)=@_;
839
840	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
841	&&
842	sprintf ".inst\t0x%08x\t//%s %s",
843			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
844			$mnemonic,$arg;
845    }
846}
847
848{   my  %opcode = (
849	"sha512h"	=> 0xce608000,	"sha512h2"	=> 0xce608400,
850	"sha512su0"	=> 0xcec08000,	"sha512su1"	=> 0xce608800	);
851
852    sub unsha512 {
853	my ($mnemonic,$arg)=@_;
854
855	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
856	&&
857	sprintf ".inst\t0x%08x\t//%s %s",
858			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
859			$mnemonic,$arg;
860    }
861}
862
863open SELF,$0;
864while(<SELF>) {
865        next if (/^#!/);
866        last if (!s/^#/\/\// and !/^$/);
867        print;
868}
869close SELF;
870
871foreach(split("\n",$code)) {
872
873	s/\`([^\`]*)\`/eval($1)/ge;
874
875	s/\b(sha512\w+)\s+([qv].*)/unsha512($1,$2)/ge	or
876	s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
877
878	s/\bq([0-9]+)\b/v$1.16b/g;		# old->new registers
879
880	s/\.[ui]?8(\s)/$1/;
881	s/\.\w?64\b//		and s/\.16b/\.2d/g	or
882	s/\.\w?32\b//		and s/\.16b/\.4s/g;
883	m/\bext\b/		and s/\.2d/\.16b/g	or
884	m/(ld|st)1[^\[]+\[0\]/	and s/\.4s/\.s/g;
885
886	print $_,"\n";
887}
888
889close STDOUT or die "error closing STDOUT: $!";
890