1 /*
2  * Taken from https://github.com/swenson/sort
3  * Revision: 05fd77bfec049ce8b7c408c4d3dd2d51ee061a15
4  * Removed all code unrelated to Timsort and made minor adjustments for
5  * cross-platform compatibility.
6  */
7 
8 /*
9  * The MIT License (MIT)
10  *
11  * Copyright (c) 2010-2017 Christopher Swenson.
12  * Copyright (c) 2012 Vojtech Fried.
13  * Copyright (c) 2012 Google Inc. All Rights Reserved.
14  *
15  * Permission is hereby granted, free of charge, to any person obtaining a
16  * copy of this software and associated documentation files (the "Software"),
17  * to deal in the Software without restriction, including without limitation
18  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
19  * and/or sell copies of the Software, and to permit persons to whom the
20  * Software is furnished to do so, subject to the following conditions:
21  *
22  * The above copyright notice and this permission notice shall be included in
23  * all copies or substantial portions of the Software.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
26  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
27  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
28  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
29  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
30  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
31  * DEALINGS IN THE SOFTWARE.
32  */
33 
34 #include <stdlib.h>
35 #include <stdio.h>
36 #include <string.h>
37 #ifdef HAVE_STDINT_H
38 #include <stdint.h>
39 #elif defined(_WIN32)
40 typedef unsigned __int64 uint64_t;
41 #endif
42 
43 #ifndef SORT_NAME
44 #error "Must declare SORT_NAME"
45 #endif
46 
47 #ifndef SORT_TYPE
48 #error "Must declare SORT_TYPE"
49 #endif
50 
51 #ifndef SORT_CMP
52 #define SORT_CMP(x, y)  ((x) < (y) ? -1 : ((x) == (y) ? 0 : 1))
53 #endif
54 
55 #ifndef TIM_SORT_STACK_SIZE
56 #define TIM_SORT_STACK_SIZE 128
57 #endif
58 
59 #define SORT_SWAP(x,y) {SORT_TYPE __SORT_SWAP_t = (x); (x) = (y); (y) = __SORT_SWAP_t;}
60 
61 
62 /* Common, type-agnostic functions and constants that we don't want to declare twice. */
63 #ifndef SORT_COMMON_H
64 #define SORT_COMMON_H
65 
66 #ifndef MAX
67 #define MAX(x,y) (((x) > (y) ? (x) : (y)))
68 #endif
69 
70 #ifndef MIN
71 #define MIN(x,y) (((x) < (y) ? (x) : (y)))
72 #endif
73 
74 static int compute_minrun(const uint64_t);
75 
76 #ifndef CLZ
77 #if defined(__GNUC__) && ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ > 3))
78 #define CLZ __builtin_clzll
79 #else
80 
81 static int clzll(uint64_t);
82 
83 /* adapted from Hacker's Delight */
clzll(uint64_t x)84 static int clzll(uint64_t x) {
85   int n;
86 
87   if (x == 0) {
88     return 64;
89   }
90 
91   n = 0;
92 
93   if (x <= 0x00000000FFFFFFFFL) {
94     n = n + 32;
95     x = x << 32;
96   }
97 
98   if (x <= 0x0000FFFFFFFFFFFFL) {
99     n = n + 16;
100     x = x << 16;
101   }
102 
103   if (x <= 0x00FFFFFFFFFFFFFFL) {
104     n = n + 8;
105     x = x << 8;
106   }
107 
108   if (x <= 0x0FFFFFFFFFFFFFFFL) {
109     n = n + 4;
110     x = x << 4;
111   }
112 
113   if (x <= 0x3FFFFFFFFFFFFFFFL) {
114     n = n + 2;
115     x = x << 2;
116   }
117 
118   if (x <= 0x7FFFFFFFFFFFFFFFL) {
119     n = n + 1;
120   }
121 
122   return n;
123 }
124 
125 #define CLZ clzll
126 #endif
127 #endif
128 
compute_minrun(const uint64_t size)129 static __inline int compute_minrun(const uint64_t size) {
130   const int top_bit = 64 - CLZ(size);
131   const int shift = MAX(top_bit, 6) - 6;
132   const int minrun = size >> shift;
133   const uint64_t mask = (1ULL << shift) - 1;
134 
135   if (mask & size) {
136     return minrun + 1;
137   }
138 
139   return minrun;
140 }
141 
142 #endif /* SORT_COMMON_H */
143 
144 #define SORT_CONCAT(x, y) x ## _ ## y
145 #define SORT_MAKE_STR1(x, y) SORT_CONCAT(x,y)
146 #define SORT_MAKE_STR(x) SORT_MAKE_STR1(SORT_NAME,x)
147 
148 #define BINARY_INSERTION_FIND          SORT_MAKE_STR(binary_insertion_find)
149 #define BINARY_INSERTION_SORT_START    SORT_MAKE_STR(binary_insertion_sort_start)
150 #define BINARY_INSERTION_SORT          SORT_MAKE_STR(binary_insertion_sort)
151 #define REVERSE_ELEMENTS               SORT_MAKE_STR(reverse_elements)
152 #define COUNT_RUN                      SORT_MAKE_STR(count_run)
153 #define CHECK_INVARIANT                SORT_MAKE_STR(check_invariant)
154 #define TIM_SORT                       SORT_MAKE_STR(tim_sort)
155 #define TIM_SORT_RESIZE                SORT_MAKE_STR(tim_sort_resize)
156 #define TIM_SORT_MERGE                 SORT_MAKE_STR(tim_sort_merge)
157 #define TIM_SORT_COLLAPSE              SORT_MAKE_STR(tim_sort_collapse)
158 
159 #ifndef MAX
160 #define MAX(x,y) (((x) > (y) ? (x) : (y)))
161 #endif
162 #ifndef MIN
163 #define MIN(x,y) (((x) < (y) ? (x) : (y)))
164 #endif
165 
166 typedef struct {
167   size_t start;
168   size_t length;
169 } TIM_SORT_RUN_T;
170 
171 
172 void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size);
173 void TIM_SORT(SORT_TYPE *dst, const size_t size);
174 
175 
176 /* Function used to do a binary search for binary insertion sort */
BINARY_INSERTION_FIND(SORT_TYPE * dst,const SORT_TYPE x,const size_t size)177 static __inline size_t BINARY_INSERTION_FIND(SORT_TYPE *dst, const SORT_TYPE x,
178     const size_t size) {
179   size_t l, c, r;
180   SORT_TYPE cx;
181   l = 0;
182   r = size - 1;
183   c = r >> 1;
184 
185   /* check for out of bounds at the beginning. */
186   if (SORT_CMP(x, dst[0]) < 0) {
187     return 0;
188   } else if (SORT_CMP(x, dst[r]) > 0) {
189     return r;
190   }
191 
192   cx = dst[c];
193 
194   while (1) {
195     const int val = SORT_CMP(x, cx);
196 
197     if (val < 0) {
198       if (c - l <= 1) {
199         return c;
200       }
201 
202       r = c;
203     } else { /* allow = for stability. The binary search favors the right. */
204       if (r - c <= 1) {
205         return c + 1;
206       }
207 
208       l = c;
209     }
210 
211     c = l + ((r - l) >> 1);
212     cx = dst[c];
213   }
214 }
215 
216 /* Binary insertion sort, but knowing that the first "start" entries are sorted.  Used in timsort. */
BINARY_INSERTION_SORT_START(SORT_TYPE * dst,const size_t start,const size_t size)217 static void BINARY_INSERTION_SORT_START(SORT_TYPE *dst, const size_t start, const size_t size) {
218   size_t i;
219 
220   for (i = start; i < size; i++) {
221     size_t j;
222     SORT_TYPE x;
223     size_t location;
224 
225     /* If this entry is already correct, just move along */
226     if (SORT_CMP(dst[i - 1], dst[i]) <= 0) {
227       continue;
228     }
229 
230     /* Else we need to find the right place, shift everything over, and squeeze in */
231     x = dst[i];
232     location = BINARY_INSERTION_FIND(dst, x, i);
233 
234     for (j = i - 1; j >= location; j--) {
235       dst[j + 1] = dst[j];
236 
237       if (j == 0) { /* check edge case because j is unsigned */
238         break;
239       }
240     }
241 
242     dst[location] = x;
243   }
244 }
245 
246 /* Binary insertion sort */
BINARY_INSERTION_SORT(SORT_TYPE * dst,const size_t size)247 void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size) {
248   /* don't bother sorting an array of size <= 1 */
249   if (size <= 1) {
250     return;
251   }
252 
253   BINARY_INSERTION_SORT_START(dst, 1, size);
254 }
255 
256 /* timsort implementation, based on timsort.txt */
257 
REVERSE_ELEMENTS(SORT_TYPE * dst,size_t start,size_t end)258 static __inline void REVERSE_ELEMENTS(SORT_TYPE *dst, size_t start, size_t end) {
259   while (1) {
260     if (start >= end) {
261       return;
262     }
263 
264     SORT_SWAP(dst[start], dst[end]);
265     start++;
266     end--;
267   }
268 }
269 
COUNT_RUN(SORT_TYPE * dst,const size_t start,const size_t size)270 static size_t COUNT_RUN(SORT_TYPE *dst, const size_t start, const size_t size) {
271   size_t curr;
272 
273   if (size - start == 1) {
274     return 1;
275   }
276 
277   if (start >= size - 2) {
278     if (SORT_CMP(dst[size - 2], dst[size - 1]) > 0) {
279       SORT_SWAP(dst[size - 2], dst[size - 1]);
280     }
281 
282     return 2;
283   }
284 
285   curr = start + 2;
286 
287   if (SORT_CMP(dst[start], dst[start + 1]) <= 0) {
288     /* increasing run */
289     while (1) {
290       if (curr == size - 1) {
291         break;
292       }
293 
294       if (SORT_CMP(dst[curr - 1], dst[curr]) > 0) {
295         break;
296       }
297 
298       curr++;
299     }
300 
301     return curr - start;
302   } else {
303     /* decreasing run */
304     while (1) {
305       if (curr == size - 1) {
306         break;
307       }
308 
309       if (SORT_CMP(dst[curr - 1], dst[curr]) <= 0) {
310         break;
311       }
312 
313       curr++;
314     }
315 
316     /* reverse in-place */
317     REVERSE_ELEMENTS(dst, start, curr - 1);
318     return curr - start;
319   }
320 }
321 
CHECK_INVARIANT(TIM_SORT_RUN_T * stack,const int stack_curr)322 static int CHECK_INVARIANT(TIM_SORT_RUN_T *stack, const int stack_curr) {
323   size_t A, B, C;
324 
325   if (stack_curr < 2) {
326     return 1;
327   }
328 
329   if (stack_curr == 2) {
330     const size_t A1 = stack[stack_curr - 2].length;
331     const size_t B1 = stack[stack_curr - 1].length;
332 
333     if (A1 <= B1) {
334       return 0;
335     }
336 
337     return 1;
338   }
339 
340   A = stack[stack_curr - 3].length;
341   B = stack[stack_curr - 2].length;
342   C = stack[stack_curr - 1].length;
343 
344   if ((A <= B + C) || (B <= C)) {
345     return 0;
346   }
347 
348   return 1;
349 }
350 
351 typedef struct {
352   size_t alloc;
353   SORT_TYPE *storage;
354 } TEMP_STORAGE_T;
355 
TIM_SORT_RESIZE(TEMP_STORAGE_T * store,const size_t new_size)356 static void TIM_SORT_RESIZE(TEMP_STORAGE_T *store, const size_t new_size) {
357   if (store->alloc < new_size) {
358     SORT_TYPE *tempstore = (SORT_TYPE *)realloc(store->storage, new_size * sizeof(SORT_TYPE));
359 
360     if (tempstore == NULL) {
361       fprintf(stderr, "Error allocating temporary storage for tim sort: need %lu bytes",
362               (unsigned long)(sizeof(SORT_TYPE) * new_size));
363       exit(1);
364     }
365 
366     store->storage = tempstore;
367     store->alloc = new_size;
368   }
369 }
370 
TIM_SORT_MERGE(SORT_TYPE * dst,const TIM_SORT_RUN_T * stack,const int stack_curr,TEMP_STORAGE_T * store)371 static void TIM_SORT_MERGE(SORT_TYPE *dst, const TIM_SORT_RUN_T *stack, const int stack_curr,
372                            TEMP_STORAGE_T *store) {
373   const size_t A = stack[stack_curr - 2].length;
374   const size_t B = stack[stack_curr - 1].length;
375   const size_t curr = stack[stack_curr - 2].start;
376   SORT_TYPE *storage;
377   size_t i, j, k;
378   TIM_SORT_RESIZE(store, MIN(A, B));
379   storage = store->storage;
380 
381   /* left merge */
382   if (A < B) {
383     memcpy(storage, &dst[curr], A * sizeof(SORT_TYPE));
384     i = 0;
385     j = curr + A;
386 
387     for (k = curr; k < curr + A + B; k++) {
388       if ((i < A) && (j < curr + A + B)) {
389         if (SORT_CMP(storage[i], dst[j]) <= 0) {
390           dst[k] = storage[i++];
391         } else {
392           dst[k] = dst[j++];
393         }
394       } else if (i < A) {
395         dst[k] = storage[i++];
396       } else {
397         break;
398       }
399     }
400   } else {
401     /* right merge */
402     memcpy(storage, &dst[curr + A], B * sizeof(SORT_TYPE));
403     i = B;
404     j = curr + A;
405     k = curr + A + B;
406 
407     while (k > curr) {
408       k--;
409       if ((i > 0) && (j > curr)) {
410         if (SORT_CMP(dst[j - 1], storage[i - 1]) > 0) {
411           dst[k] = dst[--j];
412         } else {
413           dst[k] = storage[--i];
414         }
415       } else if (i > 0) {
416         dst[k] = storage[--i];
417       } else {
418         break;
419       }
420     }
421   }
422 }
423 
TIM_SORT_COLLAPSE(SORT_TYPE * dst,TIM_SORT_RUN_T * stack,int stack_curr,TEMP_STORAGE_T * store,const size_t size)424 static int TIM_SORT_COLLAPSE(SORT_TYPE *dst, TIM_SORT_RUN_T *stack, int stack_curr,
425                              TEMP_STORAGE_T *store, const size_t size) {
426   while (1) {
427     size_t A, B, C, D;
428     int ABC, BCD, CD;
429 
430     /* if the stack only has one thing on it, we are done with the collapse */
431     if (stack_curr <= 1) {
432       break;
433     }
434 
435     /* if this is the last merge, just do it */
436     if ((stack_curr == 2) && (stack[0].length + stack[1].length == size)) {
437       TIM_SORT_MERGE(dst, stack, stack_curr, store);
438       stack[0].length += stack[1].length;
439       stack_curr--;
440       break;
441     }
442     /* check if the invariant is off for a stack of 2 elements */
443     else if ((stack_curr == 2) && (stack[0].length <= stack[1].length)) {
444       TIM_SORT_MERGE(dst, stack, stack_curr, store);
445       stack[0].length += stack[1].length;
446       stack_curr--;
447       break;
448     } else if (stack_curr == 2) {
449       break;
450     }
451 
452     B = stack[stack_curr - 3].length;
453     C = stack[stack_curr - 2].length;
454     D = stack[stack_curr - 1].length;
455 
456     if (stack_curr >= 4) {
457       A = stack[stack_curr - 4].length;
458       ABC = (A <= B + C);
459     } else {
460       ABC = 0;
461     }
462 
463     BCD = (B <= C + D) || ABC;
464     CD = (C <= D);
465 
466     /* Both invariants are good */
467     if (!BCD && !CD) {
468       break;
469     }
470 
471     /* left merge */
472     if (BCD && !CD) {
473       TIM_SORT_MERGE(dst, stack, stack_curr - 1, store);
474       stack[stack_curr - 3].length += stack[stack_curr - 2].length;
475       stack[stack_curr - 2] = stack[stack_curr - 1];
476       stack_curr--;
477     } else {
478       /* right merge */
479       TIM_SORT_MERGE(dst, stack, stack_curr, store);
480       stack[stack_curr - 2].length += stack[stack_curr - 1].length;
481       stack_curr--;
482     }
483   }
484 
485   return stack_curr;
486 }
487 
PUSH_NEXT(SORT_TYPE * dst,const size_t size,TEMP_STORAGE_T * store,const size_t minrun,TIM_SORT_RUN_T * run_stack,size_t * stack_curr,size_t * curr)488 static __inline int PUSH_NEXT(SORT_TYPE *dst,
489                               const size_t size,
490                               TEMP_STORAGE_T *store,
491                               const size_t minrun,
492                               TIM_SORT_RUN_T *run_stack,
493                               size_t *stack_curr,
494                               size_t *curr) {
495   size_t len = COUNT_RUN(dst, *curr, size);
496   size_t run = minrun;
497 
498   if (run > size - *curr) {
499     run = size - *curr;
500   }
501 
502   if (run > len) {
503     BINARY_INSERTION_SORT_START(&dst[*curr], len, run);
504     len = run;
505   }
506 
507   run_stack[*stack_curr].start = *curr;
508   run_stack[*stack_curr].length = len;
509   (*stack_curr)++;
510   *curr += len;
511 
512   if (*curr == size) {
513     /* finish up */
514     while (*stack_curr > 1) {
515       TIM_SORT_MERGE(dst, run_stack, *stack_curr, store);
516       run_stack[*stack_curr - 2].length += run_stack[*stack_curr - 1].length;
517       (*stack_curr)--;
518     }
519 
520     if (store->storage != NULL) {
521       free(store->storage);
522       store->storage = NULL;
523     }
524 
525     return 0;
526   }
527 
528   return 1;
529 }
530 
TIM_SORT(SORT_TYPE * dst,const size_t size)531 void TIM_SORT(SORT_TYPE *dst, const size_t size) {
532   size_t minrun;
533   TEMP_STORAGE_T _store, *store;
534   TIM_SORT_RUN_T run_stack[TIM_SORT_STACK_SIZE];
535   size_t stack_curr = 0;
536   size_t curr = 0;
537 
538   /* don't bother sorting an array of size 1 */
539   if (size <= 1) {
540     return;
541   }
542 
543   if (size < 64) {
544     BINARY_INSERTION_SORT(dst, size);
545     return;
546   }
547 
548   /* compute the minimum run length */
549   minrun = compute_minrun(size);
550   /* temporary storage for merges */
551   store = &_store;
552   store->alloc = 0;
553   store->storage = NULL;
554 
555   if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
556     return;
557   }
558 
559   if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
560     return;
561   }
562 
563   if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
564     return;
565   }
566 
567   while (1) {
568     if (!CHECK_INVARIANT(run_stack, stack_curr)) {
569       stack_curr = TIM_SORT_COLLAPSE(dst, run_stack, stack_curr, store, size);
570       continue;
571     }
572 
573     if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
574       return;
575     }
576   }
577 }
578 
579 #undef SORT_CONCAT
580 #undef SORT_MAKE_STR1
581 #undef SORT_MAKE_STR
582 #undef SORT_NAME
583 #undef SORT_TYPE
584 #undef SORT_CMP
585 #undef TEMP_STORAGE_T
586 #undef TIM_SORT_RUN_T
587 #undef PUSH_NEXT
588 #undef SORT_SWAP
589 #undef SORT_CONCAT
590 #undef SORT_MAKE_STR1
591 #undef SORT_MAKE_STR
592 #undef BINARY_INSERTION_FIND
593 #undef BINARY_INSERTION_SORT_START
594 #undef BINARY_INSERTION_SORT
595 #undef REVERSE_ELEMENTS
596 #undef COUNT_RUN
597 #undef TIM_SORT
598 #undef TIM_SORT_RESIZE
599 #undef TIM_SORT_COLLAPSE
600 #undef TIM_SORT_RUN_T
601 #undef TEMP_STORAGE_T
602