1 /*
2  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3  * Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
4  * Copyright 1996-1999 by Silicon Graphics.  All rights reserved.
5  * Copyright 1999 by Hewlett-Packard Company.  All rights reserved.
6  * Copyright (C) 2007 Free Software Foundation, Inc
7  *
8  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
9  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
10  *
11  * Permission is hereby granted to use or copy this program
12  * for any purpose,  provided the above notices are retained on all copies.
13  * Permission to modify the code and to distribute modified code is granted,
14  * provided the above notices are retained, and a notice that the code was
15  * modified is included with the above copyright notice.
16  */
17 
18 /*
19  * Note that this defines a large number of tuning hooks, which can
20  * safely be ignored in nearly all cases.  For normal use it suffices
21  * to call only GC_MALLOC and perhaps GC_REALLOC.
22  * For better performance, also look at GC_MALLOC_ATOMIC, and
23  * GC_enable_incremental.  If you need an action to be performed
24  * immediately before an object is collected, look at GC_register_finalizer.
25  * If you are using Solaris threads, look at the end of this file.
26  * Everything else is best ignored unless you encounter performance
27  * problems.
28  */
29 
30 #ifndef _GC_H
31 
32 # define _GC_H
33 
34 # include "gc_config_macros.h"
35 
36 # ifdef __cplusplus
37     extern "C" {
38 # endif
39 
40 
41 /* Define word and signed_word to be unsigned and signed types of the 	*/
42 /* size as char * or void *.  There seems to be no way to do this	*/
43 /* even semi-portably.  The following is probably no better/worse 	*/
44 /* than almost anything else.						*/
45 /* The ANSI standard suggests that size_t and ptr_diff_t might be 	*/
46 /* better choices.  But those had incorrect definitions on some older	*/
47 /* systems.  Notably "typedef int size_t" is WRONG.			*/
48 #ifndef _WIN64
49   typedef unsigned long GC_word;
50   typedef long GC_signed_word;
51 #else
52   /* Win64 isn't really supported yet, but this is the first step. And	*/
53   /* it might cause error messages to show up in more plausible places.	*/
54   /* This needs basetsd.h, which is included by windows.h.	 	*/
55   typedef unsigned long long GC_word;
56   typedef long long GC_signed_word;
57 #endif
58 
59 /* Public read-only variables */
60 
61 GC_API GC_word GC_gc_no;/* Counter incremented per collection.  	*/
62 			/* Includes empty GCs at startup.		*/
63 
64 GC_API int GC_parallel;	/* GC is parallelized for performance on	*/
65 			/* multiprocessors.  Currently set only		*/
66 			/* implicitly if collector is built with	*/
67 			/* -DPARALLEL_MARK and if either:		*/
68 			/*  Env variable GC_NPROC is set to > 1, or	*/
69 			/*  GC_NPROC is not set and this is an MP.	*/
70 			/* If GC_parallel is set, incremental		*/
71 			/* collection is only partially functional,	*/
72 			/* and may not be desirable.			*/
73 
74 
75 /* Public R/W variables */
76 
77 GC_API void * (*GC_oom_fn) (size_t bytes_requested);
78 			/* When there is insufficient memory to satisfy */
79 			/* an allocation request, we return		*/
80 			/* (*GC_oom_fn)().  By default this just	*/
81 			/* returns 0.					*/
82 			/* If it returns, it must return 0 or a valid	*/
83 			/* pointer to a previously allocated heap 	*/
84 			/* object.					*/
85 
86 GC_API int GC_find_leak;
87 			/* Do not actually garbage collect, but simply	*/
88 			/* report inaccessible memory that was not	*/
89 			/* deallocated with GC_free.  Initial value	*/
90 			/* is determined by FIND_LEAK macro.		*/
91 
92 GC_API int GC_all_interior_pointers;
93 			/* Arrange for pointers to object interiors to	*/
94 			/* be recognized as valid.  May not be changed	*/
95 			/* after GC initialization.			*/
96 			/* Initial value is determined by 		*/
97 			/* -DALL_INTERIOR_POINTERS.			*/
98 			/* Unless DONT_ADD_BYTE_AT_END is defined, this	*/
99 			/* also affects whether sizes are increased by	*/
100 			/* at least a byte to allow "off the end"	*/
101 			/* pointer recognition.				*/
102 			/* MUST BE 0 or 1.				*/
103 
104 GC_API int GC_finalize_on_demand;
105 			/* If nonzero, finalizers will only be run in 	*/
106 			/* response to an explicit GC_invoke_finalizers	*/
107 			/* call.  The default is determined by whether	*/
108 			/* the FINALIZE_ON_DEMAND macro is defined	*/
109 			/* when the collector is built.			*/
110 
111 GC_API int GC_java_finalization;
112 			/* Mark objects reachable from finalizable 	*/
113 			/* objects in a separate postpass.  This makes	*/
114 			/* it a bit safer to use non-topologically-	*/
115 			/* ordered finalization.  Default value is	*/
116 			/* determined by JAVA_FINALIZATION macro.	*/
117 			/* Enables register_finalizer_unreachable to	*/
118 			/* work correctly.				*/
119 
120 GC_API void (* GC_finalizer_notifier)(void);
121 			/* Invoked by the collector when there are 	*/
122 			/* objects to be finalized.  Invoked at most	*/
123 			/* once per GC cycle.  Never invoked unless 	*/
124 			/* GC_finalize_on_demand is set.		*/
125 			/* Typically this will notify a finalization	*/
126 			/* thread, which will call GC_invoke_finalizers */
127 			/* in response.					*/
128 
129 GC_API int GC_dont_gc;	/* != 0 ==> Dont collect.  In versions 6.2a1+,	*/
130 			/* this overrides explicit GC_gcollect() calls.	*/
131 			/* Used as a counter, so that nested enabling	*/
132 			/* and disabling work correctly.  Should	*/
133 			/* normally be updated with GC_enable() and	*/
134 			/* GC_disable() calls.				*/
135 			/* Direct assignment to GC_dont_gc is 		*/
136 			/* deprecated.					*/
137 
138 GC_API int GC_dont_expand;
139 			/* Dont expand heap unless explicitly requested */
140 			/* or forced to.				*/
141 
142 GC_API int GC_use_entire_heap;
143 		/* Causes the nonincremental collector to use the	*/
144 		/* entire heap before collecting.  This was the only 	*/
145 		/* option for GC versions < 5.0.  This sometimes	*/
146 		/* results in more large block fragmentation, since	*/
147 		/* very larg blocks will tend to get broken up		*/
148 		/* during each GC cycle.  It is likely to result in a	*/
149 		/* larger working set, but lower collection		*/
150 		/* frequencies, and hence fewer instructions executed	*/
151 		/* in the collector.					*/
152 
153 GC_API int GC_full_freq;    /* Number of partial collections between	*/
154 			    /* full collections.  Matters only if	*/
155 			    /* GC_incremental is set.			*/
156 			    /* Full collections are also triggered if	*/
157 			    /* the collector detects a substantial	*/
158 			    /* increase in the number of in-use heap	*/
159 			    /* blocks.  Values in the tens are now	*/
160 			    /* perfectly reasonable, unlike for		*/
161 			    /* earlier GC versions.			*/
162 
163 GC_API GC_word GC_non_gc_bytes;
164 			/* Bytes not considered candidates for collection. */
165 			/* Used only to control scheduling of collections. */
166 			/* Updated by GC_malloc_uncollectable and GC_free. */
167 			/* Wizards only.				   */
168 
169 GC_API int GC_no_dls;
170 			/* Don't register dynamic library data segments. */
171 			/* Wizards only.  Should be used only if the	 */
172 			/* application explicitly registers all roots.	 */
173 			/* In Microsoft Windows environments, this will	 */
174 			/* usually also prevent registration of the	 */
175 			/* main data segment as part of the root set.	 */
176 
177 GC_API GC_word GC_free_space_divisor;
178 			/* We try to make sure that we allocate at 	*/
179 			/* least N/GC_free_space_divisor bytes between	*/
180 			/* collections, where N is twice the number	*/
181 			/* of traced bytes, plus the number of untraced */
182 			/* bytes (bytes in "atomic" objects), plus	*/
183 			/* a rough estimate of the root set size.	*/
184 			/* N approximates GC tracing work per GC.	*/
185 			/* Initially, GC_free_space_divisor = 3.	*/
186 			/* Increasing its value will use less space	*/
187 			/* but more collection time.  Decreasing it	*/
188 			/* will appreciably decrease collection time	*/
189 			/* at the expense of space.			*/
190 
191 GC_API GC_word GC_max_retries;
192 			/* The maximum number of GCs attempted before	*/
193 			/* reporting out of memory after heap		*/
194 			/* expansion fails.  Initially 0.		*/
195 
196 
197 GC_API char *GC_stackbottom;    /* Cool end of user stack.		*/
198 				/* May be set in the client prior to	*/
199 				/* calling any GC_ routines.  This	*/
200 				/* avoids some overhead, and 		*/
201 				/* potentially some signals that can 	*/
202 				/* confuse debuggers.  Otherwise the	*/
203 				/* collector attempts to set it 	*/
204 				/* automatically.			*/
205 				/* For multithreaded code, this is the	*/
206 				/* cold end of the stack for the	*/
207 				/* primordial thread.			*/
208 
209 GC_API int GC_dont_precollect;  /* Don't collect as part of 		*/
210 				/* initialization.  Should be set only	*/
211 				/* if the client wants a chance to	*/
212 				/* manually initialize the root set	*/
213 				/* before the first collection.		*/
214 				/* Interferes with blacklisting.	*/
215 				/* Wizards only.			*/
216 
217 GC_API unsigned long GC_time_limit;
218 				/* If incremental collection is enabled, */
219 				/* We try to terminate collections	 */
220 				/* after this many milliseconds.  Not a	 */
221 				/* hard time bound.  Setting this to 	 */
222 				/* GC_TIME_UNLIMITED will essentially	 */
223 				/* disable incremental collection while  */
224 				/* leaving generational collection	 */
225 				/* enabled.	 			 */
226 #	define GC_TIME_UNLIMITED 999999
227 				/* Setting GC_time_limit to this value	 */
228 				/* will disable the "pause time exceeded"*/
229 				/* tests.				 */
230 
231 /* Public procedures */
232 
233 /* Initialize the collector.  This is only required when using thread-local
234  * allocation, since unlike the regular allocation routines, GC_local_malloc
235  * is not self-initializing.  If you use GC_local_malloc you should arrange
236  * to call this somehow (e.g. from a constructor) before doing any allocation.
237  * For win32 threads, it needs to be called explicitly.
238  */
239 GC_API void GC_init(void);
240 
241 /*
242  * general purpose allocation routines, with roughly malloc calling conv.
243  * The atomic versions promise that no relevant pointers are contained
244  * in the object.  The nonatomic versions guarantee that the new object
245  * is cleared.  GC_malloc_stubborn promises that no changes to the object
246  * will occur after GC_end_stubborn_change has been called on the
247  * result of GC_malloc_stubborn. GC_malloc_uncollectable allocates an object
248  * that is scanned for pointers to collectable objects, but is not itself
249  * collectable.  The object is scanned even if it does not appear to
250  * be reachable.  GC_malloc_uncollectable and GC_free called on the resulting
251  * object implicitly update GC_non_gc_bytes appropriately.
252  *
253  * Note that the GC_malloc_stubborn support is stubbed out by default
254  * starting in 6.0.  GC_malloc_stubborn is an alias for GC_malloc unless
255  * the collector is built with STUBBORN_ALLOC defined.
256  */
257 GC_API void * GC_malloc(size_t size_in_bytes);
258 GC_API void * GC_malloc_atomic(size_t size_in_bytes);
259 GC_API char * GC_strdup (const char *str);
260 GC_API void * GC_malloc_uncollectable(size_t size_in_bytes);
261 GC_API void * GC_malloc_stubborn(size_t size_in_bytes);
262 
263 /* The following is only defined if the library has been suitably	*/
264 /* compiled:								*/
265 GC_API void * GC_malloc_atomic_uncollectable(size_t size_in_bytes);
266 
267 /* Explicitly deallocate an object.  Dangerous if used incorrectly.     */
268 /* Requires a pointer to the base of an object.				*/
269 /* If the argument is stubborn, it should not be changeable when freed. */
270 /* An object should not be enable for finalization when it is 		*/
271 /* explicitly deallocated.						*/
272 /* GC_free(0) is a no-op, as required by ANSI C for free.		*/
273 GC_API void GC_free(void * object_addr);
274 
275 /*
276  * Stubborn objects may be changed only if the collector is explicitly informed.
277  * The collector is implicitly informed of coming change when such
278  * an object is first allocated.  The following routines inform the
279  * collector that an object will no longer be changed, or that it will
280  * once again be changed.  Only nonNIL pointer stores into the object
281  * are considered to be changes.  The argument to GC_end_stubborn_change
282  * must be exacly the value returned by GC_malloc_stubborn or passed to
283  * GC_change_stubborn.  (In the second case it may be an interior pointer
284  * within 512 bytes of the beginning of the objects.)
285  * There is a performance penalty for allowing more than
286  * one stubborn object to be changed at once, but it is acceptable to
287  * do so.  The same applies to dropping stubborn objects that are still
288  * changeable.
289  */
290 GC_API void GC_change_stubborn(void *);
291 GC_API void GC_end_stubborn_change(void *);
292 
293 /* Return a pointer to the base (lowest address) of an object given	*/
294 /* a pointer to a location within the object.				*/
295 /* I.e. map an interior pointer to the corresponding bas pointer.	*/
296 /* Note that with debugging allocation, this returns a pointer to the	*/
297 /* actual base of the object, i.e. the debug information, not to	*/
298 /* the base of the user object.						*/
299 /* Return 0 if displaced_pointer doesn't point to within a valid	*/
300 /* object.								*/
301 /* Note that a deallocated object in the garbage collected heap		*/
302 /* may be considered valid, even if it has been deallocated with	*/
303 /* GC_free.								*/
304 GC_API void * GC_base(void * displaced_pointer);
305 
306 /* Given a pointer to the base of an object, return its size in bytes.	*/
307 /* The returned size may be slightly larger than what was originally	*/
308 /* requested.								*/
309 GC_API size_t GC_size(void * object_addr);
310 
311 /* For compatibility with C library.  This is occasionally faster than	*/
312 /* a malloc followed by a bcopy.  But if you rely on that, either here	*/
313 /* or with the standard C library, your code is broken.  In my		*/
314 /* opinion, it shouldn't have been invented, but now we're stuck. -HB	*/
315 /* The resulting object has the same kind as the original.		*/
316 /* If the argument is stubborn, the result will have changes enabled.	*/
317 /* It is an error to have changes enabled for the original object.	*/
318 /* Follows ANSI comventions for NULL old_object.			*/
319 GC_API void * GC_realloc(void * old_object, size_t new_size_in_bytes);
320 
321 /* Explicitly increase the heap size.	*/
322 /* Returns 0 on failure, 1 on success.  */
323 GC_API int GC_expand_hp(size_t number_of_bytes);
324 
325 /* Limit the heap size to n bytes.  Useful when you're debugging, 	*/
326 /* especially on systems that don't handle running out of memory well.	*/
327 /* n == 0 ==> unbounded.  This is the default.				*/
328 GC_API void GC_set_max_heap_size(GC_word n);
329 
330 /* Inform the collector that a certain section of statically allocated	*/
331 /* memory contains no pointers to garbage collected memory.  Thus it 	*/
332 /* need not be scanned.  This is sometimes important if the application */
333 /* maps large read/write files into the address space, which could be	*/
334 /* mistaken for dynamic library data segments on some systems.		*/
335 GC_API void GC_exclude_static_roots(void * low_address,
336 				    void * high_address_plus_1);
337 
338 /* Clear the set of root segments.  Wizards only. */
339 GC_API void GC_clear_roots(void);
340 
341 /* Add a root segment.  Wizards only. */
342 GC_API void GC_add_roots(void * low_address, void * high_address_plus_1);
343 
344 /* Remove a root segment.  Wizards only. */
345 GC_API void GC_remove_roots(void * low_address, void * high_address_plus_1);
346 
347 /* Add a displacement to the set of those considered valid by the	*/
348 /* collector.  GC_register_displacement(n) means that if p was returned */
349 /* by GC_malloc, then (char *)p + n will be considered to be a valid	*/
350 /* pointer to p.  N must be small and less than the size of p.		*/
351 /* (All pointers to the interior of objects from the stack are		*/
352 /* considered valid in any case.  This applies to heap objects and	*/
353 /* static data.)							*/
354 /* Preferably, this should be called before any other GC procedures.	*/
355 /* Calling it later adds to the probability of excess memory		*/
356 /* retention.								*/
357 /* This is a no-op if the collector has recognition of			*/
358 /* arbitrary interior pointers enabled, which is now the default.	*/
359 GC_API void GC_register_displacement(size_t n);
360 
361 /* The following version should be used if any debugging allocation is	*/
362 /* being done.								*/
363 GC_API void GC_debug_register_displacement(size_t n);
364 
365 /* Explicitly trigger a full, world-stop collection. 	*/
366 GC_API void GC_gcollect(void);
367 
368 /* Trigger a full world-stopped collection.  Abort the collection if 	*/
369 /* and when stop_func returns a nonzero value.  Stop_func will be 	*/
370 /* called frequently, and should be reasonably fast.  This works even	*/
371 /* if virtual dirty bits, and hence incremental collection is not 	*/
372 /* available for this architecture.  Collections can be aborted faster	*/
373 /* than normal pause times for incremental collection.  However,	*/
374 /* aborted collections do no useful work; the next collection needs	*/
375 /* to start from the beginning.						*/
376 /* Return 0 if the collection was aborted, 1 if it succeeded.		*/
377 typedef int (* GC_stop_func)(void);
378 GC_API int GC_try_to_collect(GC_stop_func stop_func);
379 
380 /* Return the number of bytes in the heap.  Excludes collector private	*/
381 /* data structures.  Includes empty blocks and fragmentation loss.	*/
382 /* Includes some pages that were allocated but never written.		*/
383 GC_API size_t GC_get_heap_size(void);
384 
385 /* Return a lower bound on the number of free bytes in the heap.	*/
386 GC_API size_t GC_get_free_bytes(void);
387 
388 /* Return the number of bytes allocated since the last collection.	*/
389 GC_API size_t GC_get_bytes_since_gc(void);
390 
391 /* Return the total number of bytes allocated in this process.		*/
392 /* Never decreases, except due to wrapping.				*/
393 GC_API size_t GC_get_total_bytes(void);
394 
395 /* Disable garbage collection.  Even GC_gcollect calls will be 		*/
396 /* ineffective.								*/
397 GC_API void GC_disable(void);
398 
399 /* Reenable garbage collection.  GC_disable() and GC_enable() calls 	*/
400 /* nest.  Garbage collection is enabled if the number of calls to both	*/
401 /* both functions is equal.						*/
402 GC_API void GC_enable(void);
403 
404 /* Enable incremental/generational collection.	*/
405 /* Not advisable unless dirty bits are 		*/
406 /* available or most heap objects are		*/
407 /* pointerfree(atomic) or immutable.		*/
408 /* Don't use in leak finding mode.		*/
409 /* Ignored if GC_dont_gc is true.		*/
410 /* Only the generational piece of this is	*/
411 /* functional if GC_parallel is TRUE		*/
412 /* or if GC_time_limit is GC_TIME_UNLIMITED.	*/
413 /* Causes GC_local_gcj_malloc() to revert to	*/
414 /* locked allocation.  Must be called 		*/
415 /* before any GC_local_gcj_malloc() calls.	*/
416 /* For best performance, should be called as early as possible.	*/
417 /* On some platforms, calling it later may have adverse effects.*/
418 /* Safe to call before GC_INIT().  Includes a GC_init() call.	*/
419 GC_API void GC_enable_incremental(void);
420 
421 /* Does incremental mode write-protect pages?  Returns zero or	*/
422 /* more of the following, or'ed together:			*/
423 #define GC_PROTECTS_POINTER_HEAP  1 /* May protect non-atomic objs.	*/
424 #define GC_PROTECTS_PTRFREE_HEAP  2
425 #define GC_PROTECTS_STATIC_DATA   4 /* Currently never.			*/
426 #define GC_PROTECTS_STACK	  8 /* Probably impractical.		*/
427 
428 #define GC_PROTECTS_NONE 0
429 GC_API int GC_incremental_protection_needs(void);
430 
431 /* Perform some garbage collection work, if appropriate.	*/
432 /* Return 0 if there is no more work to be done.		*/
433 /* Typically performs an amount of work corresponding roughly	*/
434 /* to marking from one page.  May do more work if further	*/
435 /* progress requires it, e.g. if incremental collection is	*/
436 /* disabled.  It is reasonable to call this in a wait loop	*/
437 /* until it returns 0.						*/
438 GC_API int GC_collect_a_little(void);
439 
440 /* Allocate an object of size lb bytes.  The client guarantees that	*/
441 /* as long as the object is live, it will be referenced by a pointer	*/
442 /* that points to somewhere within the first 256 bytes of the object.	*/
443 /* (This should normally be declared volatile to prevent the compiler	*/
444 /* from invalidating this assertion.)  This routine is only useful	*/
445 /* if a large array is being allocated.  It reduces the chance of 	*/
446 /* accidentally retaining such an array as a result of scanning an	*/
447 /* integer that happens to be an address inside the array.  (Actually,	*/
448 /* it reduces the chance of the allocator not finding space for such	*/
449 /* an array, since it will try hard to avoid introducing such a false	*/
450 /* reference.)  On a SunOS 4.X or MS Windows system this is recommended */
451 /* for arrays likely to be larger than 100K or so.  For other systems,	*/
452 /* or if the collector is not configured to recognize all interior	*/
453 /* pointers, the threshold is normally much higher.			*/
454 GC_API void * GC_malloc_ignore_off_page(size_t lb);
455 GC_API void * GC_malloc_atomic_ignore_off_page(size_t lb);
456 
457 #if defined(__sgi) && !defined(__GNUC__) && _COMPILER_VERSION >= 720
458 #   define GC_ADD_CALLER
459 #   define GC_RETURN_ADDR (GC_word)__return_address
460 #endif
461 
462 #if defined(__linux__) || defined(__GLIBC__)
463 # include <features.h>
464 # if (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 1 || __GLIBC__ > 2) \
465      && !defined(__ia64__)
466 #   ifndef GC_HAVE_BUILTIN_BACKTRACE
467 #     define GC_HAVE_BUILTIN_BACKTRACE
468 #   endif
469 # endif
470 # if defined(__i386__) || defined(__x86_64__)
471 #   define GC_CAN_SAVE_CALL_STACKS
472 # endif
473 #endif
474 
475 #if defined(_MSC_VER) && _MSC_VER >= 1200 /* version 12.0+ (MSVC 6.0+)  */ \
476     && !defined(_AMD64_)
477 # ifndef GC_HAVE_NO_BUILTIN_BACKTRACE
478 #   define GC_HAVE_BUILTIN_BACKTRACE
479 # endif
480 #endif
481 
482 #if defined(GC_HAVE_BUILTIN_BACKTRACE) && !defined(GC_CAN_SAVE_CALL_STACKS)
483 # define GC_CAN_SAVE_CALL_STACKS
484 #endif
485 
486 #if defined(__sparc__)
487 #   define GC_CAN_SAVE_CALL_STACKS
488 #endif
489 
490 /* If we're on an a platform on which we can't save call stacks, but	*/
491 /* gcc is normally used, we go ahead and define GC_ADD_CALLER.  	*/
492 /* We make this decision independent of whether gcc is actually being	*/
493 /* used, in order to keep the interface consistent, and allow mixing	*/
494 /* of compilers.							*/
495 /* This may also be desirable if it is possible but expensive to	*/
496 /* retrieve the call chain.						*/
497 #if (defined(__linux__) || defined(__NetBSD__) || defined(__OpenBSD__) \
498      || defined(__FreeBSD__) || defined(__DragonFly__)) & !defined(GC_CAN_SAVE_CALL_STACKS)
499 # define GC_ADD_CALLER
500 # if __GNUC__ >= 3 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 95)
501     /* gcc knows how to retrieve return address, but we don't know */
502     /* how to generate call stacks.				   */
503 #   define GC_RETURN_ADDR (GC_word)__builtin_return_address(0)
504 # else
505     /* Just pass 0 for gcc compatibility. */
506 #   define GC_RETURN_ADDR 0
507 # endif
508 #endif
509 
510 #ifdef GC_ADD_CALLER
511 #  define GC_EXTRAS GC_RETURN_ADDR, __FILE__, __LINE__
512 #  define GC_EXTRA_PARAMS GC_word ra, const char * s, int i
513 #else
514 #  define GC_EXTRAS __FILE__, __LINE__
515 #  define GC_EXTRA_PARAMS const char * s, int i
516 #endif
517 
518 /* Debugging (annotated) allocation.  GC_gcollect will check 		*/
519 /* objects allocated in this way for overwrites, etc.			*/
520 GC_API void * GC_debug_malloc(size_t size_in_bytes, GC_EXTRA_PARAMS);
521 GC_API void * GC_debug_malloc_atomic(size_t size_in_bytes, GC_EXTRA_PARAMS);
522 GC_API char * GC_debug_strdup(const char *str, GC_EXTRA_PARAMS);
523 GC_API void * GC_debug_malloc_uncollectable
524 	(size_t size_in_bytes, GC_EXTRA_PARAMS);
525 GC_API void * GC_debug_malloc_stubborn
526 	(size_t size_in_bytes, GC_EXTRA_PARAMS);
527 GC_API void * GC_debug_malloc_ignore_off_page
528 	(size_t size_in_bytes, GC_EXTRA_PARAMS);
529 GC_API void * GC_debug_malloc_atomic_ignore_off_page
530 	(size_t size_in_bytes, GC_EXTRA_PARAMS);
531 GC_API void GC_debug_free (void * object_addr);
532 GC_API void * GC_debug_realloc
533 	(void * old_object, size_t new_size_in_bytes, GC_EXTRA_PARAMS);
534 GC_API void GC_debug_change_stubborn(void *);
535 GC_API void GC_debug_end_stubborn_change(void *);
536 
537 /* Routines that allocate objects with debug information (like the 	*/
538 /* above), but just fill in dummy file and line number information.	*/
539 /* Thus they can serve as drop-in malloc/realloc replacements.  This	*/
540 /* can be useful for two reasons:  					*/
541 /* 1) It allows the collector to be built with DBG_HDRS_ALL defined	*/
542 /*    even if some allocation calls come from 3rd party libraries	*/
543 /*    that can't be recompiled.						*/
544 /* 2) On some platforms, the file and line information is redundant,	*/
545 /*    since it can be reconstructed from a stack trace.  On such	*/
546 /*    platforms it may be more convenient not to recompile, e.g. for	*/
547 /*    leak detection.  This can be accomplished by instructing the	*/
548 /*    linker to replace malloc/realloc with these.			*/
549 GC_API void * GC_debug_malloc_replacement (size_t size_in_bytes);
550 GC_API void * GC_debug_realloc_replacement
551 	      (void * object_addr, size_t size_in_bytes);
552 
553 # ifdef GC_DEBUG
554 #   define GC_MALLOC(sz) GC_debug_malloc(sz, GC_EXTRAS)
555 #   define GC_MALLOC_ATOMIC(sz) GC_debug_malloc_atomic(sz, GC_EXTRAS)
556 #   define GC_STRDUP(s) GC_debug_strdup((s), GC_EXTRAS)
557 #   define GC_MALLOC_UNCOLLECTABLE(sz) \
558 			GC_debug_malloc_uncollectable(sz, GC_EXTRAS)
559 #   define GC_MALLOC_IGNORE_OFF_PAGE(sz) \
560 			GC_debug_malloc_ignore_off_page(sz, GC_EXTRAS)
561 #   define GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(sz) \
562 			GC_debug_malloc_atomic_ignore_off_page(sz, GC_EXTRAS)
563 #   define GC_REALLOC(old, sz) GC_debug_realloc(old, sz, GC_EXTRAS)
564 #   define GC_FREE(p) GC_debug_free(p)
565 #   define GC_REGISTER_FINALIZER(p, f, d, of, od) \
566 	GC_debug_register_finalizer(p, f, d, of, od)
567 #   define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
568 	GC_debug_register_finalizer_ignore_self(p, f, d, of, od)
569 #   define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
570 	GC_debug_register_finalizer_no_order(p, f, d, of, od)
571 #   define GC_REGISTER_FINALIZER_UNREACHABLE(p, f, d, of, od) \
572 	GC_debug_register_finalizer_unreachable(p, f, d, of, od)
573 #   define GC_MALLOC_STUBBORN(sz) GC_debug_malloc_stubborn(sz, GC_EXTRAS);
574 #   define GC_CHANGE_STUBBORN(p) GC_debug_change_stubborn(p)
575 #   define GC_END_STUBBORN_CHANGE(p) GC_debug_end_stubborn_change(p)
576 #   define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
577 	GC_general_register_disappearing_link(link, GC_base(obj))
578 #   define GC_REGISTER_DISPLACEMENT(n) GC_debug_register_displacement(n)
579 # else
580 #   define GC_MALLOC(sz) GC_malloc(sz)
581 #   define GC_MALLOC_ATOMIC(sz) GC_malloc_atomic(sz)
582 #   define GC_STRDUP(s) GC_strdup(s)
583 #   define GC_MALLOC_UNCOLLECTABLE(sz) GC_malloc_uncollectable(sz)
584 #   define GC_MALLOC_IGNORE_OFF_PAGE(sz) \
585 			GC_malloc_ignore_off_page(sz)
586 #   define GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(sz) \
587 			GC_malloc_atomic_ignore_off_page(sz)
588 #   define GC_REALLOC(old, sz) GC_realloc(old, sz)
589 #   define GC_FREE(p) GC_free(p)
590 #   define GC_REGISTER_FINALIZER(p, f, d, of, od) \
591 	GC_register_finalizer(p, f, d, of, od)
592 #   define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
593 	GC_register_finalizer_ignore_self(p, f, d, of, od)
594 #   define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
595 	GC_register_finalizer_no_order(p, f, d, of, od)
596 #   define GC_REGISTER_FINALIZER_UNREACHABLE(p, f, d, of, od) \
597 	GC_register_finalizer_unreachable(p, f, d, of, od)
598 #   define GC_MALLOC_STUBBORN(sz) GC_malloc_stubborn(sz)
599 #   define GC_CHANGE_STUBBORN(p) GC_change_stubborn(p)
600 #   define GC_END_STUBBORN_CHANGE(p) GC_end_stubborn_change(p)
601 #   define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
602 	GC_general_register_disappearing_link(link, obj)
603 #   define GC_REGISTER_DISPLACEMENT(n) GC_register_displacement(n)
604 # endif
605 /* The following are included because they are often convenient, and	*/
606 /* reduce the chance for a misspecifed size argument.  But calls may	*/
607 /* expand to something syntactically incorrect if t is a complicated	*/
608 /* type expression.  							*/
609 # define GC_NEW(t) (t *)GC_MALLOC(sizeof (t))
610 # define GC_NEW_ATOMIC(t) (t *)GC_MALLOC_ATOMIC(sizeof (t))
611 # define GC_NEW_STUBBORN(t) (t *)GC_MALLOC_STUBBORN(sizeof (t))
612 # define GC_NEW_UNCOLLECTABLE(t) (t *)GC_MALLOC_UNCOLLECTABLE(sizeof (t))
613 
614 /* Finalization.  Some of these primitives are grossly unsafe.		*/
615 /* The idea is to make them both cheap, and sufficient to build		*/
616 /* a safer layer, closer to Modula-3, Java, or PCedar finalization.	*/
617 /* The interface represents my conclusions from a long discussion	*/
618 /* with Alan Demers, Dan Greene, Carl Hauser, Barry Hayes, 		*/
619 /* Christian Jacobi, and Russ Atkinson.  It's not perfect, and		*/
620 /* probably nobody else agrees with it.	    Hans-J. Boehm  3/13/92	*/
621 typedef void (*GC_finalization_proc) (void * obj, void * client_data);
622 
623 GC_API void GC_register_finalizer(void * obj, GC_finalization_proc fn,
624 				  void * cd, GC_finalization_proc *ofn,
625 				  void * *ocd);
626 GC_API void GC_debug_register_finalizer
627     	         (void * obj, GC_finalization_proc fn, void * cd,
628 		  GC_finalization_proc *ofn, void * *ocd);
629 	/* When obj is no longer accessible, invoke		*/
630 	/* (*fn)(obj, cd).  If a and b are inaccessible, and	*/
631 	/* a points to b (after disappearing links have been	*/
632 	/* made to disappear), then only a will be		*/
633 	/* finalized.  (If this does not create any new		*/
634 	/* pointers to b, then b will be finalized after the	*/
635 	/* next collection.)  Any finalizable object that	*/
636 	/* is reachable from itself by following one or more	*/
637 	/* pointers will not be finalized (or collected).	*/
638 	/* Thus cycles involving finalizable objects should	*/
639 	/* be avoided, or broken by disappearing links.		*/
640 	/* All but the last finalizer registered for an object  */
641 	/* is ignored.						*/
642 	/* Finalization may be removed by passing 0 as fn.	*/
643 	/* Finalizers are implicitly unregistered just before   */
644 	/* they are invoked.					*/
645 	/* The old finalizer and client data are stored in	*/
646 	/* *ofn and *ocd.					*/
647 	/* Fn is never invoked on an accessible object,		*/
648 	/* provided hidden pointers are converted to real 	*/
649 	/* pointers only if the allocation lock is held, and	*/
650 	/* such conversions are not performed by finalization	*/
651 	/* routines.						*/
652 	/* If GC_register_finalizer is aborted as a result of	*/
653 	/* a signal, the object may be left with no		*/
654 	/* finalization, even if neither the old nor new	*/
655 	/* finalizer were NULL.					*/
656 	/* Obj should be the nonNULL starting address of an 	*/
657 	/* object allocated by GC_malloc or friends.		*/
658 	/* Note that any garbage collectable object referenced	*/
659 	/* by cd will be considered accessible until the	*/
660 	/* finalizer is invoked.				*/
661 
662 /* Another versions of the above follow.  It ignores		*/
663 /* self-cycles, i.e. pointers from a finalizable object to	*/
664 /* itself.  There is a stylistic argument that this is wrong,	*/
665 /* but it's unavoidable for C++, since the compiler may		*/
666 /* silently introduce these.  It's also benign in that specific	*/
667 /* case.  And it helps if finalizable objects are split to	*/
668 /* avoid cycles.						*/
669 /* Note that cd will still be viewed as accessible, even if it	*/
670 /* refers to the object itself.					*/
671 GC_API void GC_register_finalizer_ignore_self
672 		(void * obj, GC_finalization_proc fn, void * cd,
673 		 GC_finalization_proc *ofn, void * *ocd);
674 GC_API void GC_debug_register_finalizer_ignore_self
675 		(void * obj, GC_finalization_proc fn, void * cd,
676 		 GC_finalization_proc *ofn, void * *ocd);
677 
678 /* Another version of the above.  It ignores all cycles.        */
679 /* It should probably only be used by Java implementations.     */
680 /* Note that cd will still be viewed as accessible, even if it	*/
681 /* refers to the object itself.					*/
682 GC_API void GC_register_finalizer_no_order
683 	  	(void * obj, GC_finalization_proc fn, void * cd,
684 	 	 GC_finalization_proc *ofn, void * *ocd);
685 GC_API void GC_debug_register_finalizer_no_order
686 		(void * obj, GC_finalization_proc fn, void * cd,
687 		 GC_finalization_proc *ofn, void * *ocd);
688 
689 /* This is a special finalizer that is useful when an object's  */
690 /* finalizer must be run when the object is known to be no      */
691 /* longer reachable, not even from other finalizable objects.   */
692 /* It behaves like "normal" finalization, except that the 	*/
693 /* finalizer is not run while the object is reachable from	*/
694 /* other objects specifying unordered finalization.		*/
695 /* Effectively it allows an object referenced, possibly		*/
696 /* indirectly, from an unordered finalizable object to override */
697 /* the unordered finalization request.				*/
698 /* This can be used in combination with finalizer_no_order so   */
699 /* as to release resources that must not be released while an   */
700 /* object can still be brought back to life by other            */
701 /* finalizers.                                                  */
702 /* Only works if GC_java_finalization is set.  Probably only 	*/
703 /* of interest when implementing a language that requires	*/
704 /* unordered finalization (e.g. Java, C#).			*/
705 GC_API void GC_register_finalizer_unreachable
706 	         (void * obj, GC_finalization_proc fn, void * cd,
707 		  GC_finalization_proc *ofn, void * *ocd);
708 GC_API void GC_debug_register_finalizer_unreachable
709 		 (void * obj, GC_finalization_proc fn, void * cd,
710 		  GC_finalization_proc *ofn, void * *ocd);
711 
712 /* The following routine may be used to break cycles between	*/
713 /* finalizable objects, thus causing cyclic finalizable		*/
714 /* objects to be finalized in the correct order.  Standard	*/
715 /* use involves calling GC_register_disappearing_link(&p),	*/
716 /* where p is a pointer that is not followed by finalization	*/
717 /* code, and should not be considered in determining 		*/
718 /* finalization order.						*/
719 GC_API int GC_register_disappearing_link(void * * link );
720 	/* Link should point to a field of a heap allocated 	*/
721 	/* object obj.  *link will be cleared when obj is	*/
722 	/* found to be inaccessible.  This happens BEFORE any	*/
723 	/* finalization code is invoked, and BEFORE any		*/
724 	/* decisions about finalization order are made.		*/
725 	/* This is useful in telling the finalizer that 	*/
726 	/* some pointers are not essential for proper		*/
727 	/* finalization.  This may avoid finalization cycles.	*/
728 	/* Note that obj may be resurrected by another		*/
729 	/* finalizer, and thus the clearing of *link may	*/
730 	/* be visible to non-finalization code.  		*/
731 	/* There's an argument that an arbitrary action should  */
732 	/* be allowed here, instead of just clearing a pointer. */
733 	/* But this causes problems if that action alters, or 	*/
734 	/* examines connectivity.				*/
735 	/* Returns 1 if link was already registered, 0		*/
736 	/* otherwise.						*/
737 	/* Only exists for backward compatibility.  See below:	*/
738 
739 GC_API int GC_general_register_disappearing_link (void * * link, void * obj);
740 	/* A slight generalization of the above. *link is	*/
741 	/* cleared when obj first becomes inaccessible.  This	*/
742 	/* can be used to implement weak pointers easily and	*/
743 	/* safely. Typically link will point to a location	*/
744 	/* holding a disguised pointer to obj.  (A pointer 	*/
745 	/* inside an "atomic" object is effectively  		*/
746 	/* disguised.)   In this way soft			*/
747 	/* pointers are broken before any object		*/
748 	/* reachable from them are finalized.  Each link	*/
749 	/* May be registered only once, i.e. with one obj	*/
750 	/* value.  This was added after a long email discussion */
751 	/* with John Ellis.					*/
752 	/* Obj must be a pointer to the first word of an object */
753 	/* we allocated.  It is unsafe to explicitly deallocate */
754 	/* the object containing link.  Explicitly deallocating */
755 	/* obj may or may not cause link to eventually be	*/
756 	/* cleared.						*/
757 	/* This can be used to implement certain types of	*/
758 	/* weak pointers.  Note however that this generally	*/
759 	/* requires that thje allocation lock is held (see	*/
760 	/* GC_call_with_allock_lock() below) when the disguised	*/
761 	/* pointer is accessed.  Otherwise a strong pointer	*/
762 	/* could be recreated between the time the collector    */
763 	/* decides to reclaim the object and the link is	*/
764 	/* cleared.						*/
765 
766 GC_API int GC_unregister_disappearing_link (void * * link);
767 	/* Returns 0 if link was not actually registered.	*/
768 	/* Undoes a registration by either of the above two	*/
769 	/* routines.						*/
770 
771 /* Returns !=0  if GC_invoke_finalizers has something to do. 		*/
772 GC_API int GC_should_invoke_finalizers(void);
773 
774 GC_API int GC_invoke_finalizers(void);
775 	/* Run finalizers for all objects that are ready to	*/
776 	/* be finalized.  Return the number of finalizers	*/
777 	/* that were run.  Normally this is also called		*/
778 	/* implicitly during some allocations.	If		*/
779 	/* GC-finalize_on_demand is nonzero, it must be called	*/
780 	/* explicitly.						*/
781 
782 /* Explicitly tell the collector that an object is reachable	*/
783 /* at a particular program point.  This prevents the argument	*/
784 /* pointer from being optimized away, even it is otherwise no	*/
785 /* longer needed.  It should have no visible effect in the	*/
786 /* absence of finalizers or disappearing links.  But it may be	*/
787 /* needed to prevent finalizers from running while the		*/
788 /* associated external resource is still in use.		*/
789 /* The function is sometimes called keep_alive in other		*/
790 /* settings.							*/
791 # if defined(__GNUC__) && !defined(__INTEL_COMPILER)
792 #   define GC_reachable_here(ptr) \
793     __asm__ volatile(" " : : "X"(ptr) : "memory");
794 # else
795     GC_API void GC_noop1(GC_word x);
796 #   define GC_reachable_here(ptr) GC_noop1((GC_word)(ptr));
797 #endif
798 
799 /* GC_set_warn_proc can be used to redirect or filter warning messages.	*/
800 /* p may not be a NULL pointer.						*/
801 typedef void (*GC_warn_proc) (char *msg, GC_word arg);
802 GC_API GC_warn_proc GC_set_warn_proc(GC_warn_proc p);
803     /* Returns old warning procedure.	*/
804 
805 GC_API GC_word GC_set_free_space_divisor(GC_word value);
806     /* Set free_space_divisor.  See above for definition.	*/
807     /* Returns old value.					*/
808 
809 /* The following is intended to be used by a higher level	*/
810 /* (e.g. Java-like) finalization facility.  It is expected	*/
811 /* that finalization code will arrange for hidden pointers to	*/
812 /* disappear.  Otherwise objects can be accessed after they	*/
813 /* have been collected.						*/
814 /* Note that putting pointers in atomic objects or in 		*/
815 /* nonpointer slots of "typed" objects is equivalent to 	*/
816 /* disguising them in this way, and may have other advantages.	*/
817 # if defined(I_HIDE_POINTERS) || defined(GC_I_HIDE_POINTERS)
818     typedef GC_word GC_hidden_pointer;
819 #   define HIDE_POINTER(p) (~(GC_hidden_pointer)(p))
820 #   define REVEAL_POINTER(p) ((void *)(HIDE_POINTER(p)))
821     /* Converting a hidden pointer to a real pointer requires verifying	*/
822     /* that the object still exists.  This involves acquiring the  	*/
823     /* allocator lock to avoid a race with the collector.		*/
824 # endif /* I_HIDE_POINTERS */
825 
826 typedef void * (*GC_fn_type) (void * client_data);
827 GC_API void * GC_call_with_alloc_lock (GC_fn_type fn, void * client_data);
828 
829 /* These routines are intended to explicitly notify the collector	*/
830 /* of new threads.  Often this is unnecessary because thread creation	*/
831 /* is implicitly intercepted by the collector, using header-file	*/
832 /* defines, or linker-based interception.  In the long run the intent	*/
833 /* is to always make redundant registration safe.  In the short run,	*/
834 /* this is being implemented a platform at a time.			*/
835 /* The interface is complicated by the fact that we probably will not 	*/
836 /* ever be able to automatically determine the stack base for thread	*/
837 /* stacks on all platforms.						*/
838 
839 /* Structure representing the base of a thread stack.  On most		*/
840 /* platforms this contains just a single address.			*/
841 struct GC_stack_base {
842 	void * mem_base;	/* Base of memory stack.	*/
843 #	if defined(__ia64) || defined(__ia64__)
844 	  void * reg_base;	/* Base of separate register stack.	*/
845 #	endif
846 };
847 
848 typedef void * (*GC_stack_base_func)(struct GC_stack_base *sb, void *arg);
849 
850 /* Call a function with a stack base structure corresponding to		*/
851 /* somewhere in the GC_call_with_stack_base frame.  This often can	*/
852 /* be used to provide a sufficiently accurate stack base.  And we 	*/
853 /* implement it everywhere.						*/
854 void * GC_call_with_stack_base(GC_stack_base_func fn, void *arg);
855 
856 /* Register the current thread, with the indicated stack base, as	*/
857 /* a new thread whose stack(s) should be traced by the GC.  If a 	*/
858 /* platform does not implicitly do so, this must be called before a	*/
859 /* thread can allocate garbage collected memory, or assign pointers	*/
860 /* to the garbage collected heap.  Once registered, a thread will be	*/
861 /* stopped during garbage collections.					*/
862 /* Return codes:	*/
863 #define GC_SUCCESS 0
864 #define GC_DUPLICATE 1	/* Was already registered.	*/
865 #define GC_NO_THREADS 2	/* No thread support in GC.  	*/
866 #define GC_UNIMPLEMENTED 3	/* Not yet implemented on this platform. */
867 int GC_register_my_thread(struct GC_stack_base *);
868 
869 /* Unregister the current thread.  The thread may no longer allocate	*/
870 /* garbage collected memory or manipulate pointers to the		*/
871 /* garbage collected heap after making this call.			*/
872 /* Specifically, if it wants to return or otherwise communicate a 	*/
873 /* pointer to the garbage-collected heap to another thread, it must	*/
874 /* do this before calling GC_unregister_my_thread, most probably	*/
875 /* by saving it in a global data structure.				*/
876 int GC_unregister_my_thread(void);
877 
878 /* Attempt to fill in the GC_stack_base structure with the stack base	*/
879 /* for this thread.  This appears to be required to implement anything	*/
880 /* like the JNI AttachCurrentThread in an environment in which new	*/
881 /* threads are not automatically registered with the collector.		*/
882 /* It is also unfortunately hard to implement well on many platforms.	*/
883 /* Returns GC_SUCCESS or GC_UNIMPLEMENTED.				*/
884 int GC_get_stack_base(struct GC_stack_base *);
885 
886 /* The following routines are primarily intended for use with a 	*/
887 /* preprocessor which inserts calls to check C pointer arithmetic.	*/
888 /* They indicate failure by invoking the corresponding _print_proc.	*/
889 
890 /* Check that p and q point to the same object.  		*/
891 /* Fail conspicuously if they don't.				*/
892 /* Returns the first argument.  				*/
893 /* Succeeds if neither p nor q points to the heap.		*/
894 /* May succeed if both p and q point to between heap objects.	*/
895 GC_API void * GC_same_obj (void * p, void * q);
896 
897 /* Checked pointer pre- and post- increment operations.  Note that	*/
898 /* the second argument is in units of bytes, not multiples of the	*/
899 /* object size.  This should either be invoked from a macro, or the	*/
900 /* call should be automatically generated.				*/
901 GC_API void * GC_pre_incr (void * *p, size_t how_much);
902 GC_API void * GC_post_incr (void * *p, size_t how_much);
903 
904 /* Check that p is visible						*/
905 /* to the collector as a possibly pointer containing location.		*/
906 /* If it isn't fail conspicuously.					*/
907 /* Returns the argument in all cases.  May erroneously succeed		*/
908 /* in hard cases.  (This is intended for debugging use with		*/
909 /* untyped allocations.  The idea is that it should be possible, though	*/
910 /* slow, to add such a call to all indirect pointer stores.)		*/
911 /* Currently useless for multithreaded worlds.				*/
912 GC_API void * GC_is_visible (void * p);
913 
914 /* Check that if p is a pointer to a heap page, then it points to	*/
915 /* a valid displacement within a heap object.				*/
916 /* Fail conspicuously if this property does not hold.			*/
917 /* Uninteresting with GC_all_interior_pointers.				*/
918 /* Always returns its argument.						*/
919 GC_API void * GC_is_valid_displacement (void *	p);
920 
921 /* Explicitly dump the GC state.  This is most often called from the	*/
922 /* debugger, or by setting the GC_DUMP_REGULARLY environment variable,	*/
923 /* but it may be useful to call it from client code during debugging.	*/
924 void GC_dump(void);
925 
926 /* Safer, but slow, pointer addition.  Probably useful mainly with 	*/
927 /* a preprocessor.  Useful only for heap pointers.			*/
928 #ifdef GC_DEBUG
929 #   define GC_PTR_ADD3(x, n, type_of_result) \
930 	((type_of_result)GC_same_obj((x)+(n), (x)))
931 #   define GC_PRE_INCR3(x, n, type_of_result) \
932 	((type_of_result)GC_pre_incr(&(x), (n)*sizeof(*x))
933 #   define GC_POST_INCR2(x, type_of_result) \
934 	((type_of_result)GC_post_incr(&(x), sizeof(*x))
935 #   ifdef __GNUC__
936 #       define GC_PTR_ADD(x, n) \
937 	    GC_PTR_ADD3(x, n, typeof(x))
938 #       define GC_PRE_INCR(x, n) \
939 	    GC_PRE_INCR3(x, n, typeof(x))
940 #       define GC_POST_INCR(x, n) \
941 	    GC_POST_INCR3(x, typeof(x))
942 #   else
943 	/* We can't do this right without typeof, which ANSI	*/
944 	/* decided was not sufficiently useful.  Repeatedly	*/
945 	/* mentioning the arguments seems too dangerous to be	*/
946 	/* useful.  So does not casting the result.		*/
947 #   	define GC_PTR_ADD(x, n) ((x)+(n))
948 #   endif
949 #else	/* !GC_DEBUG */
950 #   define GC_PTR_ADD3(x, n, type_of_result) ((x)+(n))
951 #   define GC_PTR_ADD(x, n) ((x)+(n))
952 #   define GC_PRE_INCR3(x, n, type_of_result) ((x) += (n))
953 #   define GC_PRE_INCR(x, n) ((x) += (n))
954 #   define GC_POST_INCR2(x, n, type_of_result) ((x)++)
955 #   define GC_POST_INCR(x, n) ((x)++)
956 #endif
957 
958 /* Safer assignment of a pointer to a nonstack location.	*/
959 #ifdef GC_DEBUG
960 #   define GC_PTR_STORE(p, q) \
961 	(*(void **)GC_is_visible(p) = GC_is_valid_displacement(q))
962 #else /* !GC_DEBUG */
963 #   define GC_PTR_STORE(p, q) *((p) = (q))
964 #endif
965 
966 /* Functions called to report pointer checking errors */
967 GC_API void (*GC_same_obj_print_proc) (void * p, void * q);
968 
969 GC_API void (*GC_is_valid_displacement_print_proc) (void * p);
970 
971 GC_API void (*GC_is_visible_print_proc) (void * p);
972 
973 
974 /* For pthread support, we generally need to intercept a number of 	*/
975 /* thread library calls.  We do that here by macro defining them.	*/
976 
977 #if !defined(GC_USE_LD_WRAP) && \
978     (defined(GC_PTHREADS) || defined(GC_SOLARIS_THREADS))
979 # include "gc_pthread_redirects.h"
980 #endif
981 
982 # if defined(PCR) || defined(GC_SOLARIS_THREADS) || \
983      defined(GC_PTHREADS) || defined(GC_WIN32_THREADS)
984    	/* Any flavor of threads.	*/
985 /* This returns a list of objects, linked through their first		*/
986 /* word.  Its use can greatly reduce lock contention problems, since	*/
987 /* the allocation lock can be acquired and released many fewer times.	*/
988 /* It is used internally by gc_local_alloc.h, which provides a simpler	*/
989 /* programming interface on Linux.					*/
990 void * GC_malloc_many(size_t lb);
991 #define GC_NEXT(p) (*(void * *)(p)) 	/* Retrieve the next element	*/
992 					/* in returned list.		*/
993 extern void GC_thr_init(void);	/* Needed for Solaris/X86 ??	*/
994 
995 #endif /* THREADS */
996 
997 /* Register a callback to control the scanning of dynamic libraries.
998    When the GC scans the static data of a dynamic library, it will
999    first call a user-supplied routine with filename of the library and
1000    the address and length of the memory region.  This routine should
1001    return nonzero if that region should be scanned.  */
1002 GC_API void
1003 GC_register_has_static_roots_callback
1004   (int (*callback)(const char *, void *, size_t));
1005 
1006 
1007 #if defined(GC_WIN32_THREADS) && !defined(__CYGWIN32__) \
1008 	&& !defined(__CYGWIN__) \
1009 	&& !defined(GC_PTHREADS)
1010 
1011 #ifdef __cplusplus
1012     }  /* Including windows.h in an extern "C" context no longer works. */
1013 #endif
1014 
1015 # include <windows.h>
1016 
1017 #ifdef __cplusplus
1018     extern "C" {
1019 #endif
1020   /*
1021    * All threads must be created using GC_CreateThread or GC_beginthreadex,
1022    * or must explicitly call GC_register_my_thread,
1023    * so that they will be recorded in the thread table.
1024    * For backwards compatibility, it is possible to build the GC
1025    * with GC_DLL defined, and to call GC_use_DllMain().
1026    * This implicitly registers all created threads, but appears to be
1027    * less robust.
1028    *
1029    * Currently the collector expects all threads to fall through and
1030    * terminate normally, or call GC_endthreadex() or GC_ExitThread,
1031    * so that the thread is properly unregistered.  (An explicit call
1032    * to GC_unregister_my_thread() should also work, but risks unregistering
1033    * the thread twice.)
1034    */
1035    GC_API HANDLE WINAPI GC_CreateThread(
1036       LPSECURITY_ATTRIBUTES lpThreadAttributes,
1037       DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress,
1038       LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId );
1039 
1040 
1041    GC_API uintptr_t GC_beginthreadex(
1042      void *security, unsigned stack_size,
1043      unsigned ( __stdcall *start_address )( void * ),
1044      void *arglist, unsigned initflag, unsigned *thrdaddr);
1045 
1046    GC_API void GC_endthreadex(unsigned retval);
1047 
1048    GC_API void WINAPI GC_ExitThread(DWORD dwExitCode);
1049 
1050 # if defined(_WIN32_WCE)
1051   /*
1052    * win32_threads.c implements the real WinMain, which will start a new thread
1053    * to call GC_WinMain after initializing the garbage collector.
1054    */
1055   GC_API int WINAPI GC_WinMain(
1056       HINSTANCE hInstance,
1057       HINSTANCE hPrevInstance,
1058       LPWSTR lpCmdLine,
1059       int nCmdShow );
1060 #  ifndef GC_BUILD
1061 #    define WinMain GC_WinMain
1062 #  endif
1063 # endif /* defined(_WIN32_WCE) */
1064 
1065   /*
1066    * Use implicit thread registration via DllMain.
1067    */
1068 GC_API void GC_use_DllMain(void);
1069 
1070 # define CreateThread GC_CreateThread
1071 # define ExitThread GC_ExitThread
1072 # define _beginthreadex GC_beginthreadex
1073 # define _endthreadex GC_endthreadex
1074 # define _beginthread { > "Please use _beginthreadex instead of _beginthread" < }
1075 
1076 #endif /* defined(GC_WIN32_THREADS)  && !cygwin */
1077 
1078  /*
1079   * Fully portable code should call GC_INIT() from the main program
1080   * before making any other GC_ calls.  On most platforms this is a
1081   * no-op and the collector self-initializes.  But a number of platforms
1082   * make that too hard.
1083   * A GC_INIT call is required if the collector is built with THREAD_LOCAL_ALLOC
1084   * defined and the initial allocation call is not to GC_malloc().
1085   */
1086 #if defined(__CYGWIN32__) || defined (_AIX)
1087     /*
1088      * Similarly gnu-win32 DLLs need explicit initialization from
1089      * the main program, as does AIX.
1090      */
1091 #   ifdef __CYGWIN32__
1092       extern int _data_start__[];
1093       extern int _data_end__[];
1094       extern int _bss_start__[];
1095       extern int _bss_end__[];
1096 #     define GC_MAX(x,y) ((x) > (y) ? (x) : (y))
1097 #     define GC_MIN(x,y) ((x) < (y) ? (x) : (y))
1098 #     define GC_DATASTART ((void *) GC_MIN(_data_start__, _bss_start__))
1099 #     define GC_DATAEND	 ((void *) GC_MAX(_data_end__, _bss_end__))
1100 #     if defined(GC_DLL)
1101 #       define GC_INIT() { GC_add_roots(GC_DATASTART, GC_DATAEND); \
1102 			   GC_gcollect(); /* For blacklisting. */}
1103 #     else
1104 	/* Main program init not required  */
1105 #       define GC_INIT() { GC_init(); }
1106 #     endif
1107 #   endif
1108 #   if defined(_AIX)
1109       extern int _data[], _end[];
1110 #     define GC_DATASTART ((void *)((ulong)_data))
1111 #     define GC_DATAEND ((void *)((ulong)_end))
1112 #     define GC_INIT() { GC_add_roots(GC_DATASTART, GC_DATAEND); }
1113 #   endif
1114 #else
1115 #   define GC_INIT() { GC_init(); }
1116 #endif
1117 
1118 #if !defined(_WIN32_WCE) \
1119     && ((defined(_MSDOS) || defined(_MSC_VER)) && (_M_IX86 >= 300) \
1120         || defined(_WIN32) && !defined(__CYGWIN32__) && !defined(__CYGWIN__))
1121   /* win32S may not free all resources on process exit.  */
1122   /* This explicitly deallocates the heap.		 */
1123     GC_API void GC_win32_free_heap ();
1124 #endif
1125 
1126 #if ( defined(_AMIGA) && !defined(GC_AMIGA_MAKINGLIB) )
1127   /* Allocation really goes through GC_amiga_allocwrapper_do */
1128 # include "gc_amiga_redirects.h"
1129 #endif
1130 
1131 #if defined(GC_REDIRECT_TO_LOCAL) && !defined(GC_LOCAL_ALLOC_H)
1132 #  include  "gc_local_alloc.h"
1133 #endif
1134 
1135 #ifdef __cplusplus
1136     }  /* end of extern "C" */
1137 #endif
1138 
1139 #endif /* _GC_H */
1140