1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c.  See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/slab.h>
22#include <linux/delay.h>
23#include <linux/blkdev.h>
24#include <linux/module.h>
25#include <linux/seq_file.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include "md.h"
29#include "raid10.h"
30#include "raid0.h"
31#include "bitmap.h"
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 *    chunk_size
37 *    raid_disks
38 *    near_copies (stored in low byte of layout)
39 *    far_copies (stored in second byte of layout)
40 *    far_offset (stored in bit 16 of layout )
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
56 */
57
58/*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61#define	NR_RAID10_BIOS 256
62
63/* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error.  To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67 */
68#define IO_BLOCKED ((struct bio *)1)
69/* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context.  So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
72 */
73#define IO_MADE_GOOD ((struct bio *)2)
74
75#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76
77/* When there are this many requests queued to be written by
78 * the raid10 thread, we become 'congested' to provide back-pressure
79 * for writeback.
80 */
81static int max_queued_requests = 1024;
82
83static void allow_barrier(struct r10conf *conf);
84static void lower_barrier(struct r10conf *conf);
85static int enough(struct r10conf *conf, int ignore);
86static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87				int *skipped);
88static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89static void end_reshape_write(struct bio *bio, int error);
90static void end_reshape(struct r10conf *conf);
91
92static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93{
94	struct r10conf *conf = data;
95	int size = offsetof(struct r10bio, devs[conf->copies]);
96
97	/* allocate a r10bio with room for raid_disks entries in the
98	 * bios array */
99	return kzalloc(size, gfp_flags);
100}
101
102static void r10bio_pool_free(void *r10_bio, void *data)
103{
104	kfree(r10_bio);
105}
106
107/* Maximum size of each resync request */
108#define RESYNC_BLOCK_SIZE (64*1024)
109#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110/* amount of memory to reserve for resync requests */
111#define RESYNC_WINDOW (1024*1024)
112/* maximum number of concurrent requests, memory permitting */
113#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114
115/*
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
120 *
121 */
122static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123{
124	struct r10conf *conf = data;
125	struct page *page;
126	struct r10bio *r10_bio;
127	struct bio *bio;
128	int i, j;
129	int nalloc;
130
131	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132	if (!r10_bio)
133		return NULL;
134
135	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137		nalloc = conf->copies; /* resync */
138	else
139		nalloc = 2; /* recovery */
140
141	/*
142	 * Allocate bios.
143	 */
144	for (j = nalloc ; j-- ; ) {
145		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146		if (!bio)
147			goto out_free_bio;
148		r10_bio->devs[j].bio = bio;
149		if (!conf->have_replacement)
150			continue;
151		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152		if (!bio)
153			goto out_free_bio;
154		r10_bio->devs[j].repl_bio = bio;
155	}
156	/*
157	 * Allocate RESYNC_PAGES data pages and attach them
158	 * where needed.
159	 */
160	for (j = 0 ; j < nalloc; j++) {
161		struct bio *rbio = r10_bio->devs[j].repl_bio;
162		bio = r10_bio->devs[j].bio;
163		for (i = 0; i < RESYNC_PAGES; i++) {
164			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165					       &conf->mddev->recovery)) {
166				/* we can share bv_page's during recovery
167				 * and reshape */
168				struct bio *rbio = r10_bio->devs[0].bio;
169				page = rbio->bi_io_vec[i].bv_page;
170				get_page(page);
171			} else
172				page = alloc_page(gfp_flags);
173			if (unlikely(!page))
174				goto out_free_pages;
175
176			bio->bi_io_vec[i].bv_page = page;
177			if (rbio)
178				rbio->bi_io_vec[i].bv_page = page;
179		}
180	}
181
182	return r10_bio;
183
184out_free_pages:
185	for ( ; i > 0 ; i--)
186		safe_put_page(bio->bi_io_vec[i-1].bv_page);
187	while (j--)
188		for (i = 0; i < RESYNC_PAGES ; i++)
189			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190	j = 0;
191out_free_bio:
192	for ( ; j < nalloc; j++) {
193		if (r10_bio->devs[j].bio)
194			bio_put(r10_bio->devs[j].bio);
195		if (r10_bio->devs[j].repl_bio)
196			bio_put(r10_bio->devs[j].repl_bio);
197	}
198	r10bio_pool_free(r10_bio, conf);
199	return NULL;
200}
201
202static void r10buf_pool_free(void *__r10_bio, void *data)
203{
204	int i;
205	struct r10conf *conf = data;
206	struct r10bio *r10bio = __r10_bio;
207	int j;
208
209	for (j=0; j < conf->copies; j++) {
210		struct bio *bio = r10bio->devs[j].bio;
211		if (bio) {
212			for (i = 0; i < RESYNC_PAGES; i++) {
213				safe_put_page(bio->bi_io_vec[i].bv_page);
214				bio->bi_io_vec[i].bv_page = NULL;
215			}
216			bio_put(bio);
217		}
218		bio = r10bio->devs[j].repl_bio;
219		if (bio)
220			bio_put(bio);
221	}
222	r10bio_pool_free(r10bio, conf);
223}
224
225static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226{
227	int i;
228
229	for (i = 0; i < conf->copies; i++) {
230		struct bio **bio = & r10_bio->devs[i].bio;
231		if (!BIO_SPECIAL(*bio))
232			bio_put(*bio);
233		*bio = NULL;
234		bio = &r10_bio->devs[i].repl_bio;
235		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236			bio_put(*bio);
237		*bio = NULL;
238	}
239}
240
241static void free_r10bio(struct r10bio *r10_bio)
242{
243	struct r10conf *conf = r10_bio->mddev->private;
244
245	put_all_bios(conf, r10_bio);
246	mempool_free(r10_bio, conf->r10bio_pool);
247}
248
249static void put_buf(struct r10bio *r10_bio)
250{
251	struct r10conf *conf = r10_bio->mddev->private;
252
253	mempool_free(r10_bio, conf->r10buf_pool);
254
255	lower_barrier(conf);
256}
257
258static void reschedule_retry(struct r10bio *r10_bio)
259{
260	unsigned long flags;
261	struct mddev *mddev = r10_bio->mddev;
262	struct r10conf *conf = mddev->private;
263
264	spin_lock_irqsave(&conf->device_lock, flags);
265	list_add(&r10_bio->retry_list, &conf->retry_list);
266	conf->nr_queued ++;
267	spin_unlock_irqrestore(&conf->device_lock, flags);
268
269	/* wake up frozen array... */
270	wake_up(&conf->wait_barrier);
271
272	md_wakeup_thread(mddev->thread);
273}
274
275/*
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
278 * cache layer.
279 */
280static void raid_end_bio_io(struct r10bio *r10_bio)
281{
282	struct bio *bio = r10_bio->master_bio;
283	int done;
284	struct r10conf *conf = r10_bio->mddev->private;
285
286	if (bio->bi_phys_segments) {
287		unsigned long flags;
288		spin_lock_irqsave(&conf->device_lock, flags);
289		bio->bi_phys_segments--;
290		done = (bio->bi_phys_segments == 0);
291		spin_unlock_irqrestore(&conf->device_lock, flags);
292	} else
293		done = 1;
294	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295		clear_bit(BIO_UPTODATE, &bio->bi_flags);
296	if (done) {
297		bio_endio(bio, 0);
298		/*
299		 * Wake up any possible resync thread that waits for the device
300		 * to go idle.
301		 */
302		allow_barrier(conf);
303	}
304	free_r10bio(r10_bio);
305}
306
307/*
308 * Update disk head position estimator based on IRQ completion info.
309 */
310static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311{
312	struct r10conf *conf = r10_bio->mddev->private;
313
314	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315		r10_bio->devs[slot].addr + (r10_bio->sectors);
316}
317
318/*
319 * Find the disk number which triggered given bio
320 */
321static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322			 struct bio *bio, int *slotp, int *replp)
323{
324	int slot;
325	int repl = 0;
326
327	for (slot = 0; slot < conf->copies; slot++) {
328		if (r10_bio->devs[slot].bio == bio)
329			break;
330		if (r10_bio->devs[slot].repl_bio == bio) {
331			repl = 1;
332			break;
333		}
334	}
335
336	BUG_ON(slot == conf->copies);
337	update_head_pos(slot, r10_bio);
338
339	if (slotp)
340		*slotp = slot;
341	if (replp)
342		*replp = repl;
343	return r10_bio->devs[slot].devnum;
344}
345
346static void raid10_end_read_request(struct bio *bio, int error)
347{
348	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349	struct r10bio *r10_bio = bio->bi_private;
350	int slot, dev;
351	struct md_rdev *rdev;
352	struct r10conf *conf = r10_bio->mddev->private;
353
354
355	slot = r10_bio->read_slot;
356	dev = r10_bio->devs[slot].devnum;
357	rdev = r10_bio->devs[slot].rdev;
358	/*
359	 * this branch is our 'one mirror IO has finished' event handler:
360	 */
361	update_head_pos(slot, r10_bio);
362
363	if (uptodate) {
364		/*
365		 * Set R10BIO_Uptodate in our master bio, so that
366		 * we will return a good error code to the higher
367		 * levels even if IO on some other mirrored buffer fails.
368		 *
369		 * The 'master' represents the composite IO operation to
370		 * user-side. So if something waits for IO, then it will
371		 * wait for the 'master' bio.
372		 */
373		set_bit(R10BIO_Uptodate, &r10_bio->state);
374	} else {
375		/* If all other devices that store this block have
376		 * failed, we want to return the error upwards rather
377		 * than fail the last device.  Here we redefine
378		 * "uptodate" to mean "Don't want to retry"
379		 */
380		unsigned long flags;
381		spin_lock_irqsave(&conf->device_lock, flags);
382		if (!enough(conf, rdev->raid_disk))
383			uptodate = 1;
384		spin_unlock_irqrestore(&conf->device_lock, flags);
385	}
386	if (uptodate) {
387		raid_end_bio_io(r10_bio);
388		rdev_dec_pending(rdev, conf->mddev);
389	} else {
390		/*
391		 * oops, read error - keep the refcount on the rdev
392		 */
393		char b[BDEVNAME_SIZE];
394		printk_ratelimited(KERN_ERR
395				   "md/raid10:%s: %s: rescheduling sector %llu\n",
396				   mdname(conf->mddev),
397				   bdevname(rdev->bdev, b),
398				   (unsigned long long)r10_bio->sector);
399		set_bit(R10BIO_ReadError, &r10_bio->state);
400		reschedule_retry(r10_bio);
401	}
402}
403
404static void close_write(struct r10bio *r10_bio)
405{
406	/* clear the bitmap if all writes complete successfully */
407	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408			r10_bio->sectors,
409			!test_bit(R10BIO_Degraded, &r10_bio->state),
410			0);
411	md_write_end(r10_bio->mddev);
412}
413
414static void one_write_done(struct r10bio *r10_bio)
415{
416	if (atomic_dec_and_test(&r10_bio->remaining)) {
417		if (test_bit(R10BIO_WriteError, &r10_bio->state))
418			reschedule_retry(r10_bio);
419		else {
420			close_write(r10_bio);
421			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422				reschedule_retry(r10_bio);
423			else
424				raid_end_bio_io(r10_bio);
425		}
426	}
427}
428
429static void raid10_end_write_request(struct bio *bio, int error)
430{
431	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432	struct r10bio *r10_bio = bio->bi_private;
433	int dev;
434	int dec_rdev = 1;
435	struct r10conf *conf = r10_bio->mddev->private;
436	int slot, repl;
437	struct md_rdev *rdev = NULL;
438
439	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440
441	if (repl)
442		rdev = conf->mirrors[dev].replacement;
443	if (!rdev) {
444		smp_rmb();
445		repl = 0;
446		rdev = conf->mirrors[dev].rdev;
447	}
448	/*
449	 * this branch is our 'one mirror IO has finished' event handler:
450	 */
451	if (!uptodate) {
452		if (repl)
453			/* Never record new bad blocks to replacement,
454			 * just fail it.
455			 */
456			md_error(rdev->mddev, rdev);
457		else {
458			set_bit(WriteErrorSeen,	&rdev->flags);
459			if (!test_and_set_bit(WantReplacement, &rdev->flags))
460				set_bit(MD_RECOVERY_NEEDED,
461					&rdev->mddev->recovery);
462			set_bit(R10BIO_WriteError, &r10_bio->state);
463			dec_rdev = 0;
464		}
465	} else {
466		/*
467		 * Set R10BIO_Uptodate in our master bio, so that
468		 * we will return a good error code for to the higher
469		 * levels even if IO on some other mirrored buffer fails.
470		 *
471		 * The 'master' represents the composite IO operation to
472		 * user-side. So if something waits for IO, then it will
473		 * wait for the 'master' bio.
474		 */
475		sector_t first_bad;
476		int bad_sectors;
477
478		set_bit(R10BIO_Uptodate, &r10_bio->state);
479
480		/* Maybe we can clear some bad blocks. */
481		if (is_badblock(rdev,
482				r10_bio->devs[slot].addr,
483				r10_bio->sectors,
484				&first_bad, &bad_sectors)) {
485			bio_put(bio);
486			if (repl)
487				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488			else
489				r10_bio->devs[slot].bio = IO_MADE_GOOD;
490			dec_rdev = 0;
491			set_bit(R10BIO_MadeGood, &r10_bio->state);
492		}
493	}
494
495	/*
496	 *
497	 * Let's see if all mirrored write operations have finished
498	 * already.
499	 */
500	one_write_done(r10_bio);
501	if (dec_rdev)
502		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
503}
504
505/*
506 * RAID10 layout manager
507 * As well as the chunksize and raid_disks count, there are two
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
513 *
514 * Chunks are laid out in raid0 style with near_copies copies of the
515 * first chunk, followed by near_copies copies of the next chunk and
516 * so on.
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
522 *
523 * raid10_find_phys finds the sector offset of a given virtual sector
524 * on each device that it is on.
525 *
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
528 */
529
530static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531{
532	int n,f;
533	sector_t sector;
534	sector_t chunk;
535	sector_t stripe;
536	int dev;
537	int slot = 0;
538
539	/* now calculate first sector/dev */
540	chunk = r10bio->sector >> geo->chunk_shift;
541	sector = r10bio->sector & geo->chunk_mask;
542
543	chunk *= geo->near_copies;
544	stripe = chunk;
545	dev = sector_div(stripe, geo->raid_disks);
546	if (geo->far_offset)
547		stripe *= geo->far_copies;
548
549	sector += stripe << geo->chunk_shift;
550
551	/* and calculate all the others */
552	for (n = 0; n < geo->near_copies; n++) {
553		int d = dev;
554		sector_t s = sector;
555		r10bio->devs[slot].addr = sector;
556		r10bio->devs[slot].devnum = d;
557		slot++;
558
559		for (f = 1; f < geo->far_copies; f++) {
560			d += geo->near_copies;
561			if (d >= geo->raid_disks)
562				d -= geo->raid_disks;
563			s += geo->stride;
564			r10bio->devs[slot].devnum = d;
565			r10bio->devs[slot].addr = s;
566			slot++;
567		}
568		dev++;
569		if (dev >= geo->raid_disks) {
570			dev = 0;
571			sector += (geo->chunk_mask + 1);
572		}
573	}
574}
575
576static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577{
578	struct geom *geo = &conf->geo;
579
580	if (conf->reshape_progress != MaxSector &&
581	    ((r10bio->sector >= conf->reshape_progress) !=
582	     conf->mddev->reshape_backwards)) {
583		set_bit(R10BIO_Previous, &r10bio->state);
584		geo = &conf->prev;
585	} else
586		clear_bit(R10BIO_Previous, &r10bio->state);
587
588	__raid10_find_phys(geo, r10bio);
589}
590
591static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592{
593	sector_t offset, chunk, vchunk;
594	/* Never use conf->prev as this is only called during resync
595	 * or recovery, so reshape isn't happening
596	 */
597	struct geom *geo = &conf->geo;
598
599	offset = sector & geo->chunk_mask;
600	if (geo->far_offset) {
601		int fc;
602		chunk = sector >> geo->chunk_shift;
603		fc = sector_div(chunk, geo->far_copies);
604		dev -= fc * geo->near_copies;
605		if (dev < 0)
606			dev += geo->raid_disks;
607	} else {
608		while (sector >= geo->stride) {
609			sector -= geo->stride;
610			if (dev < geo->near_copies)
611				dev += geo->raid_disks - geo->near_copies;
612			else
613				dev -= geo->near_copies;
614		}
615		chunk = sector >> geo->chunk_shift;
616	}
617	vchunk = chunk * geo->raid_disks + dev;
618	sector_div(vchunk, geo->near_copies);
619	return (vchunk << geo->chunk_shift) + offset;
620}
621
622/**
623 *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624 *	@q: request queue
625 *	@bvm: properties of new bio
626 *	@biovec: the request that could be merged to it.
627 *
628 *	Return amount of bytes we can accept at this offset
629 *	This requires checking for end-of-chunk if near_copies != raid_disks,
630 *	and for subordinate merge_bvec_fns if merge_check_needed.
631 */
632static int raid10_mergeable_bvec(struct request_queue *q,
633				 struct bvec_merge_data *bvm,
634				 struct bio_vec *biovec)
635{
636	struct mddev *mddev = q->queuedata;
637	struct r10conf *conf = mddev->private;
638	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639	int max;
640	unsigned int chunk_sectors;
641	unsigned int bio_sectors = bvm->bi_size >> 9;
642	struct geom *geo = &conf->geo;
643
644	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645	if (conf->reshape_progress != MaxSector &&
646	    ((sector >= conf->reshape_progress) !=
647	     conf->mddev->reshape_backwards))
648		geo = &conf->prev;
649
650	if (geo->near_copies < geo->raid_disks) {
651		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652					+ bio_sectors)) << 9;
653		if (max < 0)
654			/* bio_add cannot handle a negative return */
655			max = 0;
656		if (max <= biovec->bv_len && bio_sectors == 0)
657			return biovec->bv_len;
658	} else
659		max = biovec->bv_len;
660
661	if (mddev->merge_check_needed) {
662		struct {
663			struct r10bio r10_bio;
664			struct r10dev devs[conf->copies];
665		} on_stack;
666		struct r10bio *r10_bio = &on_stack.r10_bio;
667		int s;
668		if (conf->reshape_progress != MaxSector) {
669			/* Cannot give any guidance during reshape */
670			if (max <= biovec->bv_len && bio_sectors == 0)
671				return biovec->bv_len;
672			return 0;
673		}
674		r10_bio->sector = sector;
675		raid10_find_phys(conf, r10_bio);
676		rcu_read_lock();
677		for (s = 0; s < conf->copies; s++) {
678			int disk = r10_bio->devs[s].devnum;
679			struct md_rdev *rdev = rcu_dereference(
680				conf->mirrors[disk].rdev);
681			if (rdev && !test_bit(Faulty, &rdev->flags)) {
682				struct request_queue *q =
683					bdev_get_queue(rdev->bdev);
684				if (q->merge_bvec_fn) {
685					bvm->bi_sector = r10_bio->devs[s].addr
686						+ rdev->data_offset;
687					bvm->bi_bdev = rdev->bdev;
688					max = min(max, q->merge_bvec_fn(
689							  q, bvm, biovec));
690				}
691			}
692			rdev = rcu_dereference(conf->mirrors[disk].replacement);
693			if (rdev && !test_bit(Faulty, &rdev->flags)) {
694				struct request_queue *q =
695					bdev_get_queue(rdev->bdev);
696				if (q->merge_bvec_fn) {
697					bvm->bi_sector = r10_bio->devs[s].addr
698						+ rdev->data_offset;
699					bvm->bi_bdev = rdev->bdev;
700					max = min(max, q->merge_bvec_fn(
701							  q, bvm, biovec));
702				}
703			}
704		}
705		rcu_read_unlock();
706	}
707	return max;
708}
709
710/*
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
718 *
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
721 *
722 * The rdev for the device selected will have nr_pending incremented.
723 */
724
725/*
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
728 */
729static struct md_rdev *read_balance(struct r10conf *conf,
730				    struct r10bio *r10_bio,
731				    int *max_sectors)
732{
733	const sector_t this_sector = r10_bio->sector;
734	int disk, slot;
735	int sectors = r10_bio->sectors;
736	int best_good_sectors;
737	sector_t new_distance, best_dist;
738	struct md_rdev *best_rdev, *rdev = NULL;
739	int do_balance;
740	int best_slot;
741	struct geom *geo = &conf->geo;
742
743	raid10_find_phys(conf, r10_bio);
744	rcu_read_lock();
745retry:
746	sectors = r10_bio->sectors;
747	best_slot = -1;
748	best_rdev = NULL;
749	best_dist = MaxSector;
750	best_good_sectors = 0;
751	do_balance = 1;
752	/*
753	 * Check if we can balance. We can balance on the whole
754	 * device if no resync is going on (recovery is ok), or below
755	 * the resync window. We take the first readable disk when
756	 * above the resync window.
757	 */
758	if (conf->mddev->recovery_cp < MaxSector
759	    && (this_sector + sectors >= conf->next_resync))
760		do_balance = 0;
761
762	for (slot = 0; slot < conf->copies ; slot++) {
763		sector_t first_bad;
764		int bad_sectors;
765		sector_t dev_sector;
766
767		if (r10_bio->devs[slot].bio == IO_BLOCKED)
768			continue;
769		disk = r10_bio->devs[slot].devnum;
770		rdev = rcu_dereference(conf->mirrors[disk].replacement);
771		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
772		    test_bit(Unmerged, &rdev->flags) ||
773		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774			rdev = rcu_dereference(conf->mirrors[disk].rdev);
775		if (rdev == NULL ||
776		    test_bit(Faulty, &rdev->flags) ||
777		    test_bit(Unmerged, &rdev->flags))
778			continue;
779		if (!test_bit(In_sync, &rdev->flags) &&
780		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
781			continue;
782
783		dev_sector = r10_bio->devs[slot].addr;
784		if (is_badblock(rdev, dev_sector, sectors,
785				&first_bad, &bad_sectors)) {
786			if (best_dist < MaxSector)
787				/* Already have a better slot */
788				continue;
789			if (first_bad <= dev_sector) {
790				/* Cannot read here.  If this is the
791				 * 'primary' device, then we must not read
792				 * beyond 'bad_sectors' from another device.
793				 */
794				bad_sectors -= (dev_sector - first_bad);
795				if (!do_balance && sectors > bad_sectors)
796					sectors = bad_sectors;
797				if (best_good_sectors > sectors)
798					best_good_sectors = sectors;
799			} else {
800				sector_t good_sectors =
801					first_bad - dev_sector;
802				if (good_sectors > best_good_sectors) {
803					best_good_sectors = good_sectors;
804					best_slot = slot;
805					best_rdev = rdev;
806				}
807				if (!do_balance)
808					/* Must read from here */
809					break;
810			}
811			continue;
812		} else
813			best_good_sectors = sectors;
814
815		if (!do_balance)
816			break;
817
818		/* This optimisation is debatable, and completely destroys
819		 * sequential read speed for 'far copies' arrays.  So only
820		 * keep it for 'near' arrays, and review those later.
821		 */
822		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
823			break;
824
825		/* for far > 1 always use the lowest address */
826		if (geo->far_copies > 1)
827			new_distance = r10_bio->devs[slot].addr;
828		else
829			new_distance = abs(r10_bio->devs[slot].addr -
830					   conf->mirrors[disk].head_position);
831		if (new_distance < best_dist) {
832			best_dist = new_distance;
833			best_slot = slot;
834			best_rdev = rdev;
835		}
836	}
837	if (slot >= conf->copies) {
838		slot = best_slot;
839		rdev = best_rdev;
840	}
841
842	if (slot >= 0) {
843		atomic_inc(&rdev->nr_pending);
844		if (test_bit(Faulty, &rdev->flags)) {
845			/* Cannot risk returning a device that failed
846			 * before we inc'ed nr_pending
847			 */
848			rdev_dec_pending(rdev, conf->mddev);
849			goto retry;
850		}
851		r10_bio->read_slot = slot;
852	} else
853		rdev = NULL;
854	rcu_read_unlock();
855	*max_sectors = best_good_sectors;
856
857	return rdev;
858}
859
860int md_raid10_congested(struct mddev *mddev, int bits)
861{
862	struct r10conf *conf = mddev->private;
863	int i, ret = 0;
864
865	if ((bits & (1 << BDI_async_congested)) &&
866	    conf->pending_count >= max_queued_requests)
867		return 1;
868
869	rcu_read_lock();
870	for (i = 0;
871	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872		     && ret == 0;
873	     i++) {
874		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875		if (rdev && !test_bit(Faulty, &rdev->flags)) {
876			struct request_queue *q = bdev_get_queue(rdev->bdev);
877
878			ret |= bdi_congested(&q->backing_dev_info, bits);
879		}
880	}
881	rcu_read_unlock();
882	return ret;
883}
884EXPORT_SYMBOL_GPL(md_raid10_congested);
885
886static int raid10_congested(void *data, int bits)
887{
888	struct mddev *mddev = data;
889
890	return mddev_congested(mddev, bits) ||
891		md_raid10_congested(mddev, bits);
892}
893
894static void flush_pending_writes(struct r10conf *conf)
895{
896	/* Any writes that have been queued but are awaiting
897	 * bitmap updates get flushed here.
898	 */
899	spin_lock_irq(&conf->device_lock);
900
901	if (conf->pending_bio_list.head) {
902		struct bio *bio;
903		bio = bio_list_get(&conf->pending_bio_list);
904		conf->pending_count = 0;
905		spin_unlock_irq(&conf->device_lock);
906		/* flush any pending bitmap writes to disk
907		 * before proceeding w/ I/O */
908		bitmap_unplug(conf->mddev->bitmap);
909		wake_up(&conf->wait_barrier);
910
911		while (bio) { /* submit pending writes */
912			struct bio *next = bio->bi_next;
913			bio->bi_next = NULL;
914			generic_make_request(bio);
915			bio = next;
916		}
917	} else
918		spin_unlock_irq(&conf->device_lock);
919}
920
921/* Barriers....
922 * Sometimes we need to suspend IO while we do something else,
923 * either some resync/recovery, or reconfigure the array.
924 * To do this we raise a 'barrier'.
925 * The 'barrier' is a counter that can be raised multiple times
926 * to count how many activities are happening which preclude
927 * normal IO.
928 * We can only raise the barrier if there is no pending IO.
929 * i.e. if nr_pending == 0.
930 * We choose only to raise the barrier if no-one is waiting for the
931 * barrier to go down.  This means that as soon as an IO request
932 * is ready, no other operations which require a barrier will start
933 * until the IO request has had a chance.
934 *
935 * So: regular IO calls 'wait_barrier'.  When that returns there
936 *    is no backgroup IO happening,  It must arrange to call
937 *    allow_barrier when it has finished its IO.
938 * backgroup IO calls must call raise_barrier.  Once that returns
939 *    there is no normal IO happeing.  It must arrange to call
940 *    lower_barrier when the particular background IO completes.
941 */
942
943static void raise_barrier(struct r10conf *conf, int force)
944{
945	BUG_ON(force && !conf->barrier);
946	spin_lock_irq(&conf->resync_lock);
947
948	/* Wait until no block IO is waiting (unless 'force') */
949	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
950			    conf->resync_lock, );
951
952	/* block any new IO from starting */
953	conf->barrier++;
954
955	/* Now wait for all pending IO to complete */
956	wait_event_lock_irq(conf->wait_barrier,
957			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
958			    conf->resync_lock, );
959
960	spin_unlock_irq(&conf->resync_lock);
961}
962
963static void lower_barrier(struct r10conf *conf)
964{
965	unsigned long flags;
966	spin_lock_irqsave(&conf->resync_lock, flags);
967	conf->barrier--;
968	spin_unlock_irqrestore(&conf->resync_lock, flags);
969	wake_up(&conf->wait_barrier);
970}
971
972static void wait_barrier(struct r10conf *conf)
973{
974	spin_lock_irq(&conf->resync_lock);
975	if (conf->barrier) {
976		conf->nr_waiting++;
977		/* Wait for the barrier to drop.
978		 * However if there are already pending
979		 * requests (preventing the barrier from
980		 * rising completely), and the
981		 * pre-process bio queue isn't empty,
982		 * then don't wait, as we need to empty
983		 * that queue to get the nr_pending
984		 * count down.
985		 */
986		wait_event_lock_irq(conf->wait_barrier,
987				    !conf->barrier ||
988				    (conf->nr_pending &&
989				     current->bio_list &&
990				     !bio_list_empty(current->bio_list)),
991				    conf->resync_lock,
992			);
993		conf->nr_waiting--;
994	}
995	conf->nr_pending++;
996	spin_unlock_irq(&conf->resync_lock);
997}
998
999static void allow_barrier(struct r10conf *conf)
1000{
1001	unsigned long flags;
1002	spin_lock_irqsave(&conf->resync_lock, flags);
1003	conf->nr_pending--;
1004	spin_unlock_irqrestore(&conf->resync_lock, flags);
1005	wake_up(&conf->wait_barrier);
1006}
1007
1008static void freeze_array(struct r10conf *conf)
1009{
1010	/* stop syncio and normal IO and wait for everything to
1011	 * go quiet.
1012	 * We increment barrier and nr_waiting, and then
1013	 * wait until nr_pending match nr_queued+1
1014	 * This is called in the context of one normal IO request
1015	 * that has failed. Thus any sync request that might be pending
1016	 * will be blocked by nr_pending, and we need to wait for
1017	 * pending IO requests to complete or be queued for re-try.
1018	 * Thus the number queued (nr_queued) plus this request (1)
1019	 * must match the number of pending IOs (nr_pending) before
1020	 * we continue.
1021	 */
1022	spin_lock_irq(&conf->resync_lock);
1023	conf->barrier++;
1024	conf->nr_waiting++;
1025	wait_event_lock_irq(conf->wait_barrier,
1026			    conf->nr_pending == conf->nr_queued+1,
1027			    conf->resync_lock,
1028			    flush_pending_writes(conf));
1029
1030	spin_unlock_irq(&conf->resync_lock);
1031}
1032
1033static void unfreeze_array(struct r10conf *conf)
1034{
1035	/* reverse the effect of the freeze */
1036	spin_lock_irq(&conf->resync_lock);
1037	conf->barrier--;
1038	conf->nr_waiting--;
1039	wake_up(&conf->wait_barrier);
1040	spin_unlock_irq(&conf->resync_lock);
1041}
1042
1043static sector_t choose_data_offset(struct r10bio *r10_bio,
1044				   struct md_rdev *rdev)
1045{
1046	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1047	    test_bit(R10BIO_Previous, &r10_bio->state))
1048		return rdev->data_offset;
1049	else
1050		return rdev->new_data_offset;
1051}
1052
1053static void make_request(struct mddev *mddev, struct bio * bio)
1054{
1055	struct r10conf *conf = mddev->private;
1056	struct r10bio *r10_bio;
1057	struct bio *read_bio;
1058	int i;
1059	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1060	int chunk_sects = chunk_mask + 1;
1061	const int rw = bio_data_dir(bio);
1062	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064	unsigned long flags;
1065	struct md_rdev *blocked_rdev;
1066	int sectors_handled;
1067	int max_sectors;
1068	int sectors;
1069
1070	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1071		md_flush_request(mddev, bio);
1072		return;
1073	}
1074
1075	/* If this request crosses a chunk boundary, we need to
1076	 * split it.  This will only happen for 1 PAGE (or less) requests.
1077	 */
1078	if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1079		     > chunk_sects
1080		     && (conf->geo.near_copies < conf->geo.raid_disks
1081			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1082		struct bio_pair *bp;
1083		/* Sanity check -- queue functions should prevent this happening */
1084		if (bio->bi_vcnt != 1 ||
1085		    bio->bi_idx != 0)
1086			goto bad_map;
1087		/* This is a one page bio that upper layers
1088		 * refuse to split for us, so we need to split it.
1089		 */
1090		bp = bio_split(bio,
1091			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1092
1093		/* Each of these 'make_request' calls will call 'wait_barrier'.
1094		 * If the first succeeds but the second blocks due to the resync
1095		 * thread raising the barrier, we will deadlock because the
1096		 * IO to the underlying device will be queued in generic_make_request
1097		 * and will never complete, so will never reduce nr_pending.
1098		 * So increment nr_waiting here so no new raise_barriers will
1099		 * succeed, and so the second wait_barrier cannot block.
1100		 */
1101		spin_lock_irq(&conf->resync_lock);
1102		conf->nr_waiting++;
1103		spin_unlock_irq(&conf->resync_lock);
1104
1105		make_request(mddev, &bp->bio1);
1106		make_request(mddev, &bp->bio2);
1107
1108		spin_lock_irq(&conf->resync_lock);
1109		conf->nr_waiting--;
1110		wake_up(&conf->wait_barrier);
1111		spin_unlock_irq(&conf->resync_lock);
1112
1113		bio_pair_release(bp);
1114		return;
1115	bad_map:
1116		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1117		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1118		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1119
1120		bio_io_error(bio);
1121		return;
1122	}
1123
1124	md_write_start(mddev, bio);
1125
1126	/*
1127	 * Register the new request and wait if the reconstruction
1128	 * thread has put up a bar for new requests.
1129	 * Continue immediately if no resync is active currently.
1130	 */
1131	wait_barrier(conf);
1132
1133	sectors = bio->bi_size >> 9;
1134	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1135	    bio->bi_sector < conf->reshape_progress &&
1136	    bio->bi_sector + sectors > conf->reshape_progress) {
1137		/* IO spans the reshape position.  Need to wait for
1138		 * reshape to pass
1139		 */
1140		allow_barrier(conf);
1141		wait_event(conf->wait_barrier,
1142			   conf->reshape_progress <= bio->bi_sector ||
1143			   conf->reshape_progress >= bio->bi_sector + sectors);
1144		wait_barrier(conf);
1145	}
1146	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1147	    bio_data_dir(bio) == WRITE &&
1148	    (mddev->reshape_backwards
1149	     ? (bio->bi_sector < conf->reshape_safe &&
1150		bio->bi_sector + sectors > conf->reshape_progress)
1151	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1152		bio->bi_sector < conf->reshape_progress))) {
1153		/* Need to update reshape_position in metadata */
1154		mddev->reshape_position = conf->reshape_progress;
1155		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1156		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1157		md_wakeup_thread(mddev->thread);
1158		wait_event(mddev->sb_wait,
1159			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1160
1161		conf->reshape_safe = mddev->reshape_position;
1162	}
1163
1164	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1165
1166	r10_bio->master_bio = bio;
1167	r10_bio->sectors = sectors;
1168
1169	r10_bio->mddev = mddev;
1170	r10_bio->sector = bio->bi_sector;
1171	r10_bio->state = 0;
1172
1173	/* We might need to issue multiple reads to different
1174	 * devices if there are bad blocks around, so we keep
1175	 * track of the number of reads in bio->bi_phys_segments.
1176	 * If this is 0, there is only one r10_bio and no locking
1177	 * will be needed when the request completes.  If it is
1178	 * non-zero, then it is the number of not-completed requests.
1179	 */
1180	bio->bi_phys_segments = 0;
1181	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1182
1183	if (rw == READ) {
1184		/*
1185		 * read balancing logic:
1186		 */
1187		struct md_rdev *rdev;
1188		int slot;
1189
1190read_again:
1191		rdev = read_balance(conf, r10_bio, &max_sectors);
1192		if (!rdev) {
1193			raid_end_bio_io(r10_bio);
1194			return;
1195		}
1196		slot = r10_bio->read_slot;
1197
1198		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1199		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1200			    max_sectors);
1201
1202		r10_bio->devs[slot].bio = read_bio;
1203		r10_bio->devs[slot].rdev = rdev;
1204
1205		read_bio->bi_sector = r10_bio->devs[slot].addr +
1206			choose_data_offset(r10_bio, rdev);
1207		read_bio->bi_bdev = rdev->bdev;
1208		read_bio->bi_end_io = raid10_end_read_request;
1209		read_bio->bi_rw = READ | do_sync;
1210		read_bio->bi_private = r10_bio;
1211
1212		if (max_sectors < r10_bio->sectors) {
1213			/* Could not read all from this device, so we will
1214			 * need another r10_bio.
1215			 */
1216			sectors_handled = (r10_bio->sectors + max_sectors
1217					   - bio->bi_sector);
1218			r10_bio->sectors = max_sectors;
1219			spin_lock_irq(&conf->device_lock);
1220			if (bio->bi_phys_segments == 0)
1221				bio->bi_phys_segments = 2;
1222			else
1223				bio->bi_phys_segments++;
1224			spin_unlock(&conf->device_lock);
1225			/* Cannot call generic_make_request directly
1226			 * as that will be queued in __generic_make_request
1227			 * and subsequent mempool_alloc might block
1228			 * waiting for it.  so hand bio over to raid10d.
1229			 */
1230			reschedule_retry(r10_bio);
1231
1232			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1233
1234			r10_bio->master_bio = bio;
1235			r10_bio->sectors = ((bio->bi_size >> 9)
1236					    - sectors_handled);
1237			r10_bio->state = 0;
1238			r10_bio->mddev = mddev;
1239			r10_bio->sector = bio->bi_sector + sectors_handled;
1240			goto read_again;
1241		} else
1242			generic_make_request(read_bio);
1243		return;
1244	}
1245
1246	/*
1247	 * WRITE:
1248	 */
1249	if (conf->pending_count >= max_queued_requests) {
1250		md_wakeup_thread(mddev->thread);
1251		wait_event(conf->wait_barrier,
1252			   conf->pending_count < max_queued_requests);
1253	}
1254	/* first select target devices under rcu_lock and
1255	 * inc refcount on their rdev.  Record them by setting
1256	 * bios[x] to bio
1257	 * If there are known/acknowledged bad blocks on any device
1258	 * on which we have seen a write error, we want to avoid
1259	 * writing to those blocks.  This potentially requires several
1260	 * writes to write around the bad blocks.  Each set of writes
1261	 * gets its own r10_bio with a set of bios attached.  The number
1262	 * of r10_bios is recored in bio->bi_phys_segments just as with
1263	 * the read case.
1264	 */
1265
1266	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1267	raid10_find_phys(conf, r10_bio);
1268retry_write:
1269	blocked_rdev = NULL;
1270	rcu_read_lock();
1271	max_sectors = r10_bio->sectors;
1272
1273	for (i = 0;  i < conf->copies; i++) {
1274		int d = r10_bio->devs[i].devnum;
1275		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1276		struct md_rdev *rrdev = rcu_dereference(
1277			conf->mirrors[d].replacement);
1278		if (rdev == rrdev)
1279			rrdev = NULL;
1280		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1281			atomic_inc(&rdev->nr_pending);
1282			blocked_rdev = rdev;
1283			break;
1284		}
1285		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1286			atomic_inc(&rrdev->nr_pending);
1287			blocked_rdev = rrdev;
1288			break;
1289		}
1290		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1291			      || test_bit(Unmerged, &rrdev->flags)))
1292			rrdev = NULL;
1293
1294		r10_bio->devs[i].bio = NULL;
1295		r10_bio->devs[i].repl_bio = NULL;
1296		if (!rdev || test_bit(Faulty, &rdev->flags) ||
1297		    test_bit(Unmerged, &rdev->flags)) {
1298			set_bit(R10BIO_Degraded, &r10_bio->state);
1299			continue;
1300		}
1301		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1302			sector_t first_bad;
1303			sector_t dev_sector = r10_bio->devs[i].addr;
1304			int bad_sectors;
1305			int is_bad;
1306
1307			is_bad = is_badblock(rdev, dev_sector,
1308					     max_sectors,
1309					     &first_bad, &bad_sectors);
1310			if (is_bad < 0) {
1311				/* Mustn't write here until the bad block
1312				 * is acknowledged
1313				 */
1314				atomic_inc(&rdev->nr_pending);
1315				set_bit(BlockedBadBlocks, &rdev->flags);
1316				blocked_rdev = rdev;
1317				break;
1318			}
1319			if (is_bad && first_bad <= dev_sector) {
1320				/* Cannot write here at all */
1321				bad_sectors -= (dev_sector - first_bad);
1322				if (bad_sectors < max_sectors)
1323					/* Mustn't write more than bad_sectors
1324					 * to other devices yet
1325					 */
1326					max_sectors = bad_sectors;
1327				/* We don't set R10BIO_Degraded as that
1328				 * only applies if the disk is missing,
1329				 * so it might be re-added, and we want to
1330				 * know to recover this chunk.
1331				 * In this case the device is here, and the
1332				 * fact that this chunk is not in-sync is
1333				 * recorded in the bad block log.
1334				 */
1335				continue;
1336			}
1337			if (is_bad) {
1338				int good_sectors = first_bad - dev_sector;
1339				if (good_sectors < max_sectors)
1340					max_sectors = good_sectors;
1341			}
1342		}
1343		r10_bio->devs[i].bio = bio;
1344		atomic_inc(&rdev->nr_pending);
1345		if (rrdev) {
1346			r10_bio->devs[i].repl_bio = bio;
1347			atomic_inc(&rrdev->nr_pending);
1348		}
1349	}
1350	rcu_read_unlock();
1351
1352	if (unlikely(blocked_rdev)) {
1353		/* Have to wait for this device to get unblocked, then retry */
1354		int j;
1355		int d;
1356
1357		for (j = 0; j < i; j++) {
1358			if (r10_bio->devs[j].bio) {
1359				d = r10_bio->devs[j].devnum;
1360				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1361			}
1362			if (r10_bio->devs[j].repl_bio) {
1363				struct md_rdev *rdev;
1364				d = r10_bio->devs[j].devnum;
1365				rdev = conf->mirrors[d].replacement;
1366				if (!rdev) {
1367					/* Race with remove_disk */
1368					smp_mb();
1369					rdev = conf->mirrors[d].rdev;
1370				}
1371				rdev_dec_pending(rdev, mddev);
1372			}
1373		}
1374		allow_barrier(conf);
1375		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1376		wait_barrier(conf);
1377		goto retry_write;
1378	}
1379
1380	if (max_sectors < r10_bio->sectors) {
1381		/* We are splitting this into multiple parts, so
1382		 * we need to prepare for allocating another r10_bio.
1383		 */
1384		r10_bio->sectors = max_sectors;
1385		spin_lock_irq(&conf->device_lock);
1386		if (bio->bi_phys_segments == 0)
1387			bio->bi_phys_segments = 2;
1388		else
1389			bio->bi_phys_segments++;
1390		spin_unlock_irq(&conf->device_lock);
1391	}
1392	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1393
1394	atomic_set(&r10_bio->remaining, 1);
1395	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1396
1397	for (i = 0; i < conf->copies; i++) {
1398		struct bio *mbio;
1399		int d = r10_bio->devs[i].devnum;
1400		if (!r10_bio->devs[i].bio)
1401			continue;
1402
1403		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1404		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1405			    max_sectors);
1406		r10_bio->devs[i].bio = mbio;
1407
1408		mbio->bi_sector	= (r10_bio->devs[i].addr+
1409				   choose_data_offset(r10_bio,
1410						      conf->mirrors[d].rdev));
1411		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1412		mbio->bi_end_io	= raid10_end_write_request;
1413		mbio->bi_rw = WRITE | do_sync | do_fua;
1414		mbio->bi_private = r10_bio;
1415
1416		atomic_inc(&r10_bio->remaining);
1417		spin_lock_irqsave(&conf->device_lock, flags);
1418		bio_list_add(&conf->pending_bio_list, mbio);
1419		conf->pending_count++;
1420		spin_unlock_irqrestore(&conf->device_lock, flags);
1421		if (!mddev_check_plugged(mddev))
1422			md_wakeup_thread(mddev->thread);
1423
1424		if (!r10_bio->devs[i].repl_bio)
1425			continue;
1426
1427		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1428		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1429			    max_sectors);
1430		r10_bio->devs[i].repl_bio = mbio;
1431
1432		/* We are actively writing to the original device
1433		 * so it cannot disappear, so the replacement cannot
1434		 * become NULL here
1435		 */
1436		mbio->bi_sector	= (r10_bio->devs[i].addr +
1437				   choose_data_offset(
1438					   r10_bio,
1439					   conf->mirrors[d].replacement));
1440		mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1441		mbio->bi_end_io	= raid10_end_write_request;
1442		mbio->bi_rw = WRITE | do_sync | do_fua;
1443		mbio->bi_private = r10_bio;
1444
1445		atomic_inc(&r10_bio->remaining);
1446		spin_lock_irqsave(&conf->device_lock, flags);
1447		bio_list_add(&conf->pending_bio_list, mbio);
1448		conf->pending_count++;
1449		spin_unlock_irqrestore(&conf->device_lock, flags);
1450		if (!mddev_check_plugged(mddev))
1451			md_wakeup_thread(mddev->thread);
1452	}
1453
1454	/* Don't remove the bias on 'remaining' (one_write_done) until
1455	 * after checking if we need to go around again.
1456	 */
1457
1458	if (sectors_handled < (bio->bi_size >> 9)) {
1459		one_write_done(r10_bio);
1460		/* We need another r10_bio.  It has already been counted
1461		 * in bio->bi_phys_segments.
1462		 */
1463		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1464
1465		r10_bio->master_bio = bio;
1466		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1467
1468		r10_bio->mddev = mddev;
1469		r10_bio->sector = bio->bi_sector + sectors_handled;
1470		r10_bio->state = 0;
1471		goto retry_write;
1472	}
1473	one_write_done(r10_bio);
1474
1475	/* In case raid10d snuck in to freeze_array */
1476	wake_up(&conf->wait_barrier);
1477}
1478
1479static void status(struct seq_file *seq, struct mddev *mddev)
1480{
1481	struct r10conf *conf = mddev->private;
1482	int i;
1483
1484	if (conf->geo.near_copies < conf->geo.raid_disks)
1485		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1486	if (conf->geo.near_copies > 1)
1487		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1488	if (conf->geo.far_copies > 1) {
1489		if (conf->geo.far_offset)
1490			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1491		else
1492			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1493	}
1494	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1495					conf->geo.raid_disks - mddev->degraded);
1496	for (i = 0; i < conf->geo.raid_disks; i++)
1497		seq_printf(seq, "%s",
1498			      conf->mirrors[i].rdev &&
1499			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1500	seq_printf(seq, "]");
1501}
1502
1503/* check if there are enough drives for
1504 * every block to appear on atleast one.
1505 * Don't consider the device numbered 'ignore'
1506 * as we might be about to remove it.
1507 */
1508static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1509{
1510	int first = 0;
1511
1512	do {
1513		int n = conf->copies;
1514		int cnt = 0;
1515		int this = first;
1516		while (n--) {
1517			if (conf->mirrors[this].rdev &&
1518			    this != ignore)
1519				cnt++;
1520			this = (this+1) % geo->raid_disks;
1521		}
1522		if (cnt == 0)
1523			return 0;
1524		first = (first + geo->near_copies) % geo->raid_disks;
1525	} while (first != 0);
1526	return 1;
1527}
1528
1529static int enough(struct r10conf *conf, int ignore)
1530{
1531	return _enough(conf, &conf->geo, ignore) &&
1532		_enough(conf, &conf->prev, ignore);
1533}
1534
1535static void error(struct mddev *mddev, struct md_rdev *rdev)
1536{
1537	char b[BDEVNAME_SIZE];
1538	struct r10conf *conf = mddev->private;
1539
1540	/*
1541	 * If it is not operational, then we have already marked it as dead
1542	 * else if it is the last working disks, ignore the error, let the
1543	 * next level up know.
1544	 * else mark the drive as failed
1545	 */
1546	if (test_bit(In_sync, &rdev->flags)
1547	    && !enough(conf, rdev->raid_disk))
1548		/*
1549		 * Don't fail the drive, just return an IO error.
1550		 */
1551		return;
1552	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1553		unsigned long flags;
1554		spin_lock_irqsave(&conf->device_lock, flags);
1555		mddev->degraded++;
1556		spin_unlock_irqrestore(&conf->device_lock, flags);
1557		/*
1558		 * if recovery is running, make sure it aborts.
1559		 */
1560		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1561	}
1562	set_bit(Blocked, &rdev->flags);
1563	set_bit(Faulty, &rdev->flags);
1564	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1565	printk(KERN_ALERT
1566	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1567	       "md/raid10:%s: Operation continuing on %d devices.\n",
1568	       mdname(mddev), bdevname(rdev->bdev, b),
1569	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1570}
1571
1572static void print_conf(struct r10conf *conf)
1573{
1574	int i;
1575	struct raid10_info *tmp;
1576
1577	printk(KERN_DEBUG "RAID10 conf printout:\n");
1578	if (!conf) {
1579		printk(KERN_DEBUG "(!conf)\n");
1580		return;
1581	}
1582	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1583		conf->geo.raid_disks);
1584
1585	for (i = 0; i < conf->geo.raid_disks; i++) {
1586		char b[BDEVNAME_SIZE];
1587		tmp = conf->mirrors + i;
1588		if (tmp->rdev)
1589			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1590				i, !test_bit(In_sync, &tmp->rdev->flags),
1591			        !test_bit(Faulty, &tmp->rdev->flags),
1592				bdevname(tmp->rdev->bdev,b));
1593	}
1594}
1595
1596static void close_sync(struct r10conf *conf)
1597{
1598	wait_barrier(conf);
1599	allow_barrier(conf);
1600
1601	mempool_destroy(conf->r10buf_pool);
1602	conf->r10buf_pool = NULL;
1603}
1604
1605static int raid10_spare_active(struct mddev *mddev)
1606{
1607	int i;
1608	struct r10conf *conf = mddev->private;
1609	struct raid10_info *tmp;
1610	int count = 0;
1611	unsigned long flags;
1612
1613	/*
1614	 * Find all non-in_sync disks within the RAID10 configuration
1615	 * and mark them in_sync
1616	 */
1617	for (i = 0; i < conf->geo.raid_disks; i++) {
1618		tmp = conf->mirrors + i;
1619		if (tmp->replacement
1620		    && tmp->replacement->recovery_offset == MaxSector
1621		    && !test_bit(Faulty, &tmp->replacement->flags)
1622		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1623			/* Replacement has just become active */
1624			if (!tmp->rdev
1625			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1626				count++;
1627			if (tmp->rdev) {
1628				/* Replaced device not technically faulty,
1629				 * but we need to be sure it gets removed
1630				 * and never re-added.
1631				 */
1632				set_bit(Faulty, &tmp->rdev->flags);
1633				sysfs_notify_dirent_safe(
1634					tmp->rdev->sysfs_state);
1635			}
1636			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1637		} else if (tmp->rdev
1638			   && !test_bit(Faulty, &tmp->rdev->flags)
1639			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1640			count++;
1641			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1642		}
1643	}
1644	spin_lock_irqsave(&conf->device_lock, flags);
1645	mddev->degraded -= count;
1646	spin_unlock_irqrestore(&conf->device_lock, flags);
1647
1648	print_conf(conf);
1649	return count;
1650}
1651
1652
1653static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1654{
1655	struct r10conf *conf = mddev->private;
1656	int err = -EEXIST;
1657	int mirror;
1658	int first = 0;
1659	int last = conf->geo.raid_disks - 1;
1660	struct request_queue *q = bdev_get_queue(rdev->bdev);
1661
1662	if (mddev->recovery_cp < MaxSector)
1663		/* only hot-add to in-sync arrays, as recovery is
1664		 * very different from resync
1665		 */
1666		return -EBUSY;
1667	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1668		return -EINVAL;
1669
1670	if (rdev->raid_disk >= 0)
1671		first = last = rdev->raid_disk;
1672
1673	if (q->merge_bvec_fn) {
1674		set_bit(Unmerged, &rdev->flags);
1675		mddev->merge_check_needed = 1;
1676	}
1677
1678	if (rdev->saved_raid_disk >= first &&
1679	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1680		mirror = rdev->saved_raid_disk;
1681	else
1682		mirror = first;
1683	for ( ; mirror <= last ; mirror++) {
1684		struct raid10_info *p = &conf->mirrors[mirror];
1685		if (p->recovery_disabled == mddev->recovery_disabled)
1686			continue;
1687		if (p->rdev) {
1688			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1689			    p->replacement != NULL)
1690				continue;
1691			clear_bit(In_sync, &rdev->flags);
1692			set_bit(Replacement, &rdev->flags);
1693			rdev->raid_disk = mirror;
1694			err = 0;
1695			disk_stack_limits(mddev->gendisk, rdev->bdev,
1696					  rdev->data_offset << 9);
1697			conf->fullsync = 1;
1698			rcu_assign_pointer(p->replacement, rdev);
1699			break;
1700		}
1701
1702		disk_stack_limits(mddev->gendisk, rdev->bdev,
1703				  rdev->data_offset << 9);
1704
1705		p->head_position = 0;
1706		p->recovery_disabled = mddev->recovery_disabled - 1;
1707		rdev->raid_disk = mirror;
1708		err = 0;
1709		if (rdev->saved_raid_disk != mirror)
1710			conf->fullsync = 1;
1711		rcu_assign_pointer(p->rdev, rdev);
1712		break;
1713	}
1714	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1715		/* Some requests might not have seen this new
1716		 * merge_bvec_fn.  We must wait for them to complete
1717		 * before merging the device fully.
1718		 * First we make sure any code which has tested
1719		 * our function has submitted the request, then
1720		 * we wait for all outstanding requests to complete.
1721		 */
1722		synchronize_sched();
1723		raise_barrier(conf, 0);
1724		lower_barrier(conf);
1725		clear_bit(Unmerged, &rdev->flags);
1726	}
1727	md_integrity_add_rdev(rdev, mddev);
1728	print_conf(conf);
1729	return err;
1730}
1731
1732static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1733{
1734	struct r10conf *conf = mddev->private;
1735	int err = 0;
1736	int number = rdev->raid_disk;
1737	struct md_rdev **rdevp;
1738	struct raid10_info *p = conf->mirrors + number;
1739
1740	print_conf(conf);
1741	if (rdev == p->rdev)
1742		rdevp = &p->rdev;
1743	else if (rdev == p->replacement)
1744		rdevp = &p->replacement;
1745	else
1746		return 0;
1747
1748	if (test_bit(In_sync, &rdev->flags) ||
1749	    atomic_read(&rdev->nr_pending)) {
1750		err = -EBUSY;
1751		goto abort;
1752	}
1753	/* Only remove faulty devices if recovery
1754	 * is not possible.
1755	 */
1756	if (!test_bit(Faulty, &rdev->flags) &&
1757	    mddev->recovery_disabled != p->recovery_disabled &&
1758	    (!p->replacement || p->replacement == rdev) &&
1759	    number < conf->geo.raid_disks &&
1760	    enough(conf, -1)) {
1761		err = -EBUSY;
1762		goto abort;
1763	}
1764	*rdevp = NULL;
1765	synchronize_rcu();
1766	if (atomic_read(&rdev->nr_pending)) {
1767		/* lost the race, try later */
1768		err = -EBUSY;
1769		*rdevp = rdev;
1770		goto abort;
1771	} else if (p->replacement) {
1772		/* We must have just cleared 'rdev' */
1773		p->rdev = p->replacement;
1774		clear_bit(Replacement, &p->replacement->flags);
1775		smp_mb(); /* Make sure other CPUs may see both as identical
1776			   * but will never see neither -- if they are careful.
1777			   */
1778		p->replacement = NULL;
1779		clear_bit(WantReplacement, &rdev->flags);
1780	} else
1781		/* We might have just remove the Replacement as faulty
1782		 * Clear the flag just in case
1783		 */
1784		clear_bit(WantReplacement, &rdev->flags);
1785
1786	err = md_integrity_register(mddev);
1787
1788abort:
1789
1790	print_conf(conf);
1791	return err;
1792}
1793
1794
1795static void end_sync_read(struct bio *bio, int error)
1796{
1797	struct r10bio *r10_bio = bio->bi_private;
1798	struct r10conf *conf = r10_bio->mddev->private;
1799	int d;
1800
1801	if (bio == r10_bio->master_bio) {
1802		/* this is a reshape read */
1803		d = r10_bio->read_slot; /* really the read dev */
1804	} else
1805		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1806
1807	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1808		set_bit(R10BIO_Uptodate, &r10_bio->state);
1809	else
1810		/* The write handler will notice the lack of
1811		 * R10BIO_Uptodate and record any errors etc
1812		 */
1813		atomic_add(r10_bio->sectors,
1814			   &conf->mirrors[d].rdev->corrected_errors);
1815
1816	/* for reconstruct, we always reschedule after a read.
1817	 * for resync, only after all reads
1818	 */
1819	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1820	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1821	    atomic_dec_and_test(&r10_bio->remaining)) {
1822		/* we have read all the blocks,
1823		 * do the comparison in process context in raid10d
1824		 */
1825		reschedule_retry(r10_bio);
1826	}
1827}
1828
1829static void end_sync_request(struct r10bio *r10_bio)
1830{
1831	struct mddev *mddev = r10_bio->mddev;
1832
1833	while (atomic_dec_and_test(&r10_bio->remaining)) {
1834		if (r10_bio->master_bio == NULL) {
1835			/* the primary of several recovery bios */
1836			sector_t s = r10_bio->sectors;
1837			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1838			    test_bit(R10BIO_WriteError, &r10_bio->state))
1839				reschedule_retry(r10_bio);
1840			else
1841				put_buf(r10_bio);
1842			md_done_sync(mddev, s, 1);
1843			break;
1844		} else {
1845			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1846			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1847			    test_bit(R10BIO_WriteError, &r10_bio->state))
1848				reschedule_retry(r10_bio);
1849			else
1850				put_buf(r10_bio);
1851			r10_bio = r10_bio2;
1852		}
1853	}
1854}
1855
1856static void end_sync_write(struct bio *bio, int error)
1857{
1858	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1859	struct r10bio *r10_bio = bio->bi_private;
1860	struct mddev *mddev = r10_bio->mddev;
1861	struct r10conf *conf = mddev->private;
1862	int d;
1863	sector_t first_bad;
1864	int bad_sectors;
1865	int slot;
1866	int repl;
1867	struct md_rdev *rdev = NULL;
1868
1869	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1870	if (repl)
1871		rdev = conf->mirrors[d].replacement;
1872	else
1873		rdev = conf->mirrors[d].rdev;
1874
1875	if (!uptodate) {
1876		if (repl)
1877			md_error(mddev, rdev);
1878		else {
1879			set_bit(WriteErrorSeen, &rdev->flags);
1880			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1881				set_bit(MD_RECOVERY_NEEDED,
1882					&rdev->mddev->recovery);
1883			set_bit(R10BIO_WriteError, &r10_bio->state);
1884		}
1885	} else if (is_badblock(rdev,
1886			     r10_bio->devs[slot].addr,
1887			     r10_bio->sectors,
1888			     &first_bad, &bad_sectors))
1889		set_bit(R10BIO_MadeGood, &r10_bio->state);
1890
1891	rdev_dec_pending(rdev, mddev);
1892
1893	end_sync_request(r10_bio);
1894}
1895
1896/*
1897 * Note: sync and recover and handled very differently for raid10
1898 * This code is for resync.
1899 * For resync, we read through virtual addresses and read all blocks.
1900 * If there is any error, we schedule a write.  The lowest numbered
1901 * drive is authoritative.
1902 * However requests come for physical address, so we need to map.
1903 * For every physical address there are raid_disks/copies virtual addresses,
1904 * which is always are least one, but is not necessarly an integer.
1905 * This means that a physical address can span multiple chunks, so we may
1906 * have to submit multiple io requests for a single sync request.
1907 */
1908/*
1909 * We check if all blocks are in-sync and only write to blocks that
1910 * aren't in sync
1911 */
1912static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1913{
1914	struct r10conf *conf = mddev->private;
1915	int i, first;
1916	struct bio *tbio, *fbio;
1917	int vcnt;
1918
1919	atomic_set(&r10_bio->remaining, 1);
1920
1921	/* find the first device with a block */
1922	for (i=0; i<conf->copies; i++)
1923		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1924			break;
1925
1926	if (i == conf->copies)
1927		goto done;
1928
1929	first = i;
1930	fbio = r10_bio->devs[i].bio;
1931
1932	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1933	/* now find blocks with errors */
1934	for (i=0 ; i < conf->copies ; i++) {
1935		int  j, d;
1936
1937		tbio = r10_bio->devs[i].bio;
1938
1939		if (tbio->bi_end_io != end_sync_read)
1940			continue;
1941		if (i == first)
1942			continue;
1943		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1944			/* We know that the bi_io_vec layout is the same for
1945			 * both 'first' and 'i', so we just compare them.
1946			 * All vec entries are PAGE_SIZE;
1947			 */
1948			for (j = 0; j < vcnt; j++)
1949				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1950					   page_address(tbio->bi_io_vec[j].bv_page),
1951					   fbio->bi_io_vec[j].bv_len))
1952					break;
1953			if (j == vcnt)
1954				continue;
1955			mddev->resync_mismatches += r10_bio->sectors;
1956			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1957				/* Don't fix anything. */
1958				continue;
1959		}
1960		/* Ok, we need to write this bio, either to correct an
1961		 * inconsistency or to correct an unreadable block.
1962		 * First we need to fixup bv_offset, bv_len and
1963		 * bi_vecs, as the read request might have corrupted these
1964		 */
1965		tbio->bi_vcnt = vcnt;
1966		tbio->bi_size = r10_bio->sectors << 9;
1967		tbio->bi_idx = 0;
1968		tbio->bi_phys_segments = 0;
1969		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1970		tbio->bi_flags |= 1 << BIO_UPTODATE;
1971		tbio->bi_next = NULL;
1972		tbio->bi_rw = WRITE;
1973		tbio->bi_private = r10_bio;
1974		tbio->bi_sector = r10_bio->devs[i].addr;
1975
1976		for (j=0; j < vcnt ; j++) {
1977			tbio->bi_io_vec[j].bv_offset = 0;
1978			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1979
1980			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1981			       page_address(fbio->bi_io_vec[j].bv_page),
1982			       PAGE_SIZE);
1983		}
1984		tbio->bi_end_io = end_sync_write;
1985
1986		d = r10_bio->devs[i].devnum;
1987		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1988		atomic_inc(&r10_bio->remaining);
1989		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1990
1991		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1992		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1993		generic_make_request(tbio);
1994	}
1995
1996	/* Now write out to any replacement devices
1997	 * that are active
1998	 */
1999	for (i = 0; i < conf->copies; i++) {
2000		int j, d;
2001
2002		tbio = r10_bio->devs[i].repl_bio;
2003		if (!tbio || !tbio->bi_end_io)
2004			continue;
2005		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2006		    && r10_bio->devs[i].bio != fbio)
2007			for (j = 0; j < vcnt; j++)
2008				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2009				       page_address(fbio->bi_io_vec[j].bv_page),
2010				       PAGE_SIZE);
2011		d = r10_bio->devs[i].devnum;
2012		atomic_inc(&r10_bio->remaining);
2013		md_sync_acct(conf->mirrors[d].replacement->bdev,
2014			     tbio->bi_size >> 9);
2015		generic_make_request(tbio);
2016	}
2017
2018done:
2019	if (atomic_dec_and_test(&r10_bio->remaining)) {
2020		md_done_sync(mddev, r10_bio->sectors, 1);
2021		put_buf(r10_bio);
2022	}
2023}
2024
2025/*
2026 * Now for the recovery code.
2027 * Recovery happens across physical sectors.
2028 * We recover all non-is_sync drives by finding the virtual address of
2029 * each, and then choose a working drive that also has that virt address.
2030 * There is a separate r10_bio for each non-in_sync drive.
2031 * Only the first two slots are in use. The first for reading,
2032 * The second for writing.
2033 *
2034 */
2035static void fix_recovery_read_error(struct r10bio *r10_bio)
2036{
2037	/* We got a read error during recovery.
2038	 * We repeat the read in smaller page-sized sections.
2039	 * If a read succeeds, write it to the new device or record
2040	 * a bad block if we cannot.
2041	 * If a read fails, record a bad block on both old and
2042	 * new devices.
2043	 */
2044	struct mddev *mddev = r10_bio->mddev;
2045	struct r10conf *conf = mddev->private;
2046	struct bio *bio = r10_bio->devs[0].bio;
2047	sector_t sect = 0;
2048	int sectors = r10_bio->sectors;
2049	int idx = 0;
2050	int dr = r10_bio->devs[0].devnum;
2051	int dw = r10_bio->devs[1].devnum;
2052
2053	while (sectors) {
2054		int s = sectors;
2055		struct md_rdev *rdev;
2056		sector_t addr;
2057		int ok;
2058
2059		if (s > (PAGE_SIZE>>9))
2060			s = PAGE_SIZE >> 9;
2061
2062		rdev = conf->mirrors[dr].rdev;
2063		addr = r10_bio->devs[0].addr + sect,
2064		ok = sync_page_io(rdev,
2065				  addr,
2066				  s << 9,
2067				  bio->bi_io_vec[idx].bv_page,
2068				  READ, false);
2069		if (ok) {
2070			rdev = conf->mirrors[dw].rdev;
2071			addr = r10_bio->devs[1].addr + sect;
2072			ok = sync_page_io(rdev,
2073					  addr,
2074					  s << 9,
2075					  bio->bi_io_vec[idx].bv_page,
2076					  WRITE, false);
2077			if (!ok) {
2078				set_bit(WriteErrorSeen, &rdev->flags);
2079				if (!test_and_set_bit(WantReplacement,
2080						      &rdev->flags))
2081					set_bit(MD_RECOVERY_NEEDED,
2082						&rdev->mddev->recovery);
2083			}
2084		}
2085		if (!ok) {
2086			/* We don't worry if we cannot set a bad block -
2087			 * it really is bad so there is no loss in not
2088			 * recording it yet
2089			 */
2090			rdev_set_badblocks(rdev, addr, s, 0);
2091
2092			if (rdev != conf->mirrors[dw].rdev) {
2093				/* need bad block on destination too */
2094				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2095				addr = r10_bio->devs[1].addr + sect;
2096				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2097				if (!ok) {
2098					/* just abort the recovery */
2099					printk(KERN_NOTICE
2100					       "md/raid10:%s: recovery aborted"
2101					       " due to read error\n",
2102					       mdname(mddev));
2103
2104					conf->mirrors[dw].recovery_disabled
2105						= mddev->recovery_disabled;
2106					set_bit(MD_RECOVERY_INTR,
2107						&mddev->recovery);
2108					break;
2109				}
2110			}
2111		}
2112
2113		sectors -= s;
2114		sect += s;
2115		idx++;
2116	}
2117}
2118
2119static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2120{
2121	struct r10conf *conf = mddev->private;
2122	int d;
2123	struct bio *wbio, *wbio2;
2124
2125	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2126		fix_recovery_read_error(r10_bio);
2127		end_sync_request(r10_bio);
2128		return;
2129	}
2130
2131	/*
2132	 * share the pages with the first bio
2133	 * and submit the write request
2134	 */
2135	d = r10_bio->devs[1].devnum;
2136	wbio = r10_bio->devs[1].bio;
2137	wbio2 = r10_bio->devs[1].repl_bio;
2138	if (wbio->bi_end_io) {
2139		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2140		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2141		generic_make_request(wbio);
2142	}
2143	if (wbio2 && wbio2->bi_end_io) {
2144		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2145		md_sync_acct(conf->mirrors[d].replacement->bdev,
2146			     wbio2->bi_size >> 9);
2147		generic_make_request(wbio2);
2148	}
2149}
2150
2151
2152/*
2153 * Used by fix_read_error() to decay the per rdev read_errors.
2154 * We halve the read error count for every hour that has elapsed
2155 * since the last recorded read error.
2156 *
2157 */
2158static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2159{
2160	struct timespec cur_time_mon;
2161	unsigned long hours_since_last;
2162	unsigned int read_errors = atomic_read(&rdev->read_errors);
2163
2164	ktime_get_ts(&cur_time_mon);
2165
2166	if (rdev->last_read_error.tv_sec == 0 &&
2167	    rdev->last_read_error.tv_nsec == 0) {
2168		/* first time we've seen a read error */
2169		rdev->last_read_error = cur_time_mon;
2170		return;
2171	}
2172
2173	hours_since_last = (cur_time_mon.tv_sec -
2174			    rdev->last_read_error.tv_sec) / 3600;
2175
2176	rdev->last_read_error = cur_time_mon;
2177
2178	/*
2179	 * if hours_since_last is > the number of bits in read_errors
2180	 * just set read errors to 0. We do this to avoid
2181	 * overflowing the shift of read_errors by hours_since_last.
2182	 */
2183	if (hours_since_last >= 8 * sizeof(read_errors))
2184		atomic_set(&rdev->read_errors, 0);
2185	else
2186		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2187}
2188
2189static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2190			    int sectors, struct page *page, int rw)
2191{
2192	sector_t first_bad;
2193	int bad_sectors;
2194
2195	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2196	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2197		return -1;
2198	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2199		/* success */
2200		return 1;
2201	if (rw == WRITE) {
2202		set_bit(WriteErrorSeen, &rdev->flags);
2203		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2204			set_bit(MD_RECOVERY_NEEDED,
2205				&rdev->mddev->recovery);
2206	}
2207	/* need to record an error - either for the block or the device */
2208	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2209		md_error(rdev->mddev, rdev);
2210	return 0;
2211}
2212
2213/*
2214 * This is a kernel thread which:
2215 *
2216 *	1.	Retries failed read operations on working mirrors.
2217 *	2.	Updates the raid superblock when problems encounter.
2218 *	3.	Performs writes following reads for array synchronising.
2219 */
2220
2221static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2222{
2223	int sect = 0; /* Offset from r10_bio->sector */
2224	int sectors = r10_bio->sectors;
2225	struct md_rdev*rdev;
2226	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2227	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2228
2229	/* still own a reference to this rdev, so it cannot
2230	 * have been cleared recently.
2231	 */
2232	rdev = conf->mirrors[d].rdev;
2233
2234	if (test_bit(Faulty, &rdev->flags))
2235		/* drive has already been failed, just ignore any
2236		   more fix_read_error() attempts */
2237		return;
2238
2239	check_decay_read_errors(mddev, rdev);
2240	atomic_inc(&rdev->read_errors);
2241	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2242		char b[BDEVNAME_SIZE];
2243		bdevname(rdev->bdev, b);
2244
2245		printk(KERN_NOTICE
2246		       "md/raid10:%s: %s: Raid device exceeded "
2247		       "read_error threshold [cur %d:max %d]\n",
2248		       mdname(mddev), b,
2249		       atomic_read(&rdev->read_errors), max_read_errors);
2250		printk(KERN_NOTICE
2251		       "md/raid10:%s: %s: Failing raid device\n",
2252		       mdname(mddev), b);
2253		md_error(mddev, conf->mirrors[d].rdev);
2254		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2255		return;
2256	}
2257
2258	while(sectors) {
2259		int s = sectors;
2260		int sl = r10_bio->read_slot;
2261		int success = 0;
2262		int start;
2263
2264		if (s > (PAGE_SIZE>>9))
2265			s = PAGE_SIZE >> 9;
2266
2267		rcu_read_lock();
2268		do {
2269			sector_t first_bad;
2270			int bad_sectors;
2271
2272			d = r10_bio->devs[sl].devnum;
2273			rdev = rcu_dereference(conf->mirrors[d].rdev);
2274			if (rdev &&
2275			    !test_bit(Unmerged, &rdev->flags) &&
2276			    test_bit(In_sync, &rdev->flags) &&
2277			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2278					&first_bad, &bad_sectors) == 0) {
2279				atomic_inc(&rdev->nr_pending);
2280				rcu_read_unlock();
2281				success = sync_page_io(rdev,
2282						       r10_bio->devs[sl].addr +
2283						       sect,
2284						       s<<9,
2285						       conf->tmppage, READ, false);
2286				rdev_dec_pending(rdev, mddev);
2287				rcu_read_lock();
2288				if (success)
2289					break;
2290			}
2291			sl++;
2292			if (sl == conf->copies)
2293				sl = 0;
2294		} while (!success && sl != r10_bio->read_slot);
2295		rcu_read_unlock();
2296
2297		if (!success) {
2298			/* Cannot read from anywhere, just mark the block
2299			 * as bad on the first device to discourage future
2300			 * reads.
2301			 */
2302			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2303			rdev = conf->mirrors[dn].rdev;
2304
2305			if (!rdev_set_badblocks(
2306				    rdev,
2307				    r10_bio->devs[r10_bio->read_slot].addr
2308				    + sect,
2309				    s, 0)) {
2310				md_error(mddev, rdev);
2311				r10_bio->devs[r10_bio->read_slot].bio
2312					= IO_BLOCKED;
2313			}
2314			break;
2315		}
2316
2317		start = sl;
2318		/* write it back and re-read */
2319		rcu_read_lock();
2320		while (sl != r10_bio->read_slot) {
2321			char b[BDEVNAME_SIZE];
2322
2323			if (sl==0)
2324				sl = conf->copies;
2325			sl--;
2326			d = r10_bio->devs[sl].devnum;
2327			rdev = rcu_dereference(conf->mirrors[d].rdev);
2328			if (!rdev ||
2329			    test_bit(Unmerged, &rdev->flags) ||
2330			    !test_bit(In_sync, &rdev->flags))
2331				continue;
2332
2333			atomic_inc(&rdev->nr_pending);
2334			rcu_read_unlock();
2335			if (r10_sync_page_io(rdev,
2336					     r10_bio->devs[sl].addr +
2337					     sect,
2338					     s, conf->tmppage, WRITE)
2339			    == 0) {
2340				/* Well, this device is dead */
2341				printk(KERN_NOTICE
2342				       "md/raid10:%s: read correction "
2343				       "write failed"
2344				       " (%d sectors at %llu on %s)\n",
2345				       mdname(mddev), s,
2346				       (unsigned long long)(
2347					       sect +
2348					       choose_data_offset(r10_bio,
2349								  rdev)),
2350				       bdevname(rdev->bdev, b));
2351				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2352				       "drive\n",
2353				       mdname(mddev),
2354				       bdevname(rdev->bdev, b));
2355			}
2356			rdev_dec_pending(rdev, mddev);
2357			rcu_read_lock();
2358		}
2359		sl = start;
2360		while (sl != r10_bio->read_slot) {
2361			char b[BDEVNAME_SIZE];
2362
2363			if (sl==0)
2364				sl = conf->copies;
2365			sl--;
2366			d = r10_bio->devs[sl].devnum;
2367			rdev = rcu_dereference(conf->mirrors[d].rdev);
2368			if (!rdev ||
2369			    !test_bit(In_sync, &rdev->flags))
2370				continue;
2371
2372			atomic_inc(&rdev->nr_pending);
2373			rcu_read_unlock();
2374			switch (r10_sync_page_io(rdev,
2375					     r10_bio->devs[sl].addr +
2376					     sect,
2377					     s, conf->tmppage,
2378						 READ)) {
2379			case 0:
2380				/* Well, this device is dead */
2381				printk(KERN_NOTICE
2382				       "md/raid10:%s: unable to read back "
2383				       "corrected sectors"
2384				       " (%d sectors at %llu on %s)\n",
2385				       mdname(mddev), s,
2386				       (unsigned long long)(
2387					       sect +
2388					       choose_data_offset(r10_bio, rdev)),
2389				       bdevname(rdev->bdev, b));
2390				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2391				       "drive\n",
2392				       mdname(mddev),
2393				       bdevname(rdev->bdev, b));
2394				break;
2395			case 1:
2396				printk(KERN_INFO
2397				       "md/raid10:%s: read error corrected"
2398				       " (%d sectors at %llu on %s)\n",
2399				       mdname(mddev), s,
2400				       (unsigned long long)(
2401					       sect +
2402					       choose_data_offset(r10_bio, rdev)),
2403				       bdevname(rdev->bdev, b));
2404				atomic_add(s, &rdev->corrected_errors);
2405			}
2406
2407			rdev_dec_pending(rdev, mddev);
2408			rcu_read_lock();
2409		}
2410		rcu_read_unlock();
2411
2412		sectors -= s;
2413		sect += s;
2414	}
2415}
2416
2417static void bi_complete(struct bio *bio, int error)
2418{
2419	complete((struct completion *)bio->bi_private);
2420}
2421
2422static int submit_bio_wait(int rw, struct bio *bio)
2423{
2424	struct completion event;
2425	rw |= REQ_SYNC;
2426
2427	init_completion(&event);
2428	bio->bi_private = &event;
2429	bio->bi_end_io = bi_complete;
2430	submit_bio(rw, bio);
2431	wait_for_completion(&event);
2432
2433	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2434}
2435
2436static int narrow_write_error(struct r10bio *r10_bio, int i)
2437{
2438	struct bio *bio = r10_bio->master_bio;
2439	struct mddev *mddev = r10_bio->mddev;
2440	struct r10conf *conf = mddev->private;
2441	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2442	/* bio has the data to be written to slot 'i' where
2443	 * we just recently had a write error.
2444	 * We repeatedly clone the bio and trim down to one block,
2445	 * then try the write.  Where the write fails we record
2446	 * a bad block.
2447	 * It is conceivable that the bio doesn't exactly align with
2448	 * blocks.  We must handle this.
2449	 *
2450	 * We currently own a reference to the rdev.
2451	 */
2452
2453	int block_sectors;
2454	sector_t sector;
2455	int sectors;
2456	int sect_to_write = r10_bio->sectors;
2457	int ok = 1;
2458
2459	if (rdev->badblocks.shift < 0)
2460		return 0;
2461
2462	block_sectors = 1 << rdev->badblocks.shift;
2463	sector = r10_bio->sector;
2464	sectors = ((r10_bio->sector + block_sectors)
2465		   & ~(sector_t)(block_sectors - 1))
2466		- sector;
2467
2468	while (sect_to_write) {
2469		struct bio *wbio;
2470		if (sectors > sect_to_write)
2471			sectors = sect_to_write;
2472		/* Write at 'sector' for 'sectors' */
2473		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2474		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2475		wbio->bi_sector = (r10_bio->devs[i].addr+
2476				   choose_data_offset(r10_bio, rdev) +
2477				   (sector - r10_bio->sector));
2478		wbio->bi_bdev = rdev->bdev;
2479		if (submit_bio_wait(WRITE, wbio) == 0)
2480			/* Failure! */
2481			ok = rdev_set_badblocks(rdev, sector,
2482						sectors, 0)
2483				&& ok;
2484
2485		bio_put(wbio);
2486		sect_to_write -= sectors;
2487		sector += sectors;
2488		sectors = block_sectors;
2489	}
2490	return ok;
2491}
2492
2493static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2494{
2495	int slot = r10_bio->read_slot;
2496	struct bio *bio;
2497	struct r10conf *conf = mddev->private;
2498	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2499	char b[BDEVNAME_SIZE];
2500	unsigned long do_sync;
2501	int max_sectors;
2502
2503	/* we got a read error. Maybe the drive is bad.  Maybe just
2504	 * the block and we can fix it.
2505	 * We freeze all other IO, and try reading the block from
2506	 * other devices.  When we find one, we re-write
2507	 * and check it that fixes the read error.
2508	 * This is all done synchronously while the array is
2509	 * frozen.
2510	 */
2511	bio = r10_bio->devs[slot].bio;
2512	bdevname(bio->bi_bdev, b);
2513	bio_put(bio);
2514	r10_bio->devs[slot].bio = NULL;
2515
2516	if (mddev->ro == 0) {
2517		freeze_array(conf);
2518		fix_read_error(conf, mddev, r10_bio);
2519		unfreeze_array(conf);
2520	} else
2521		r10_bio->devs[slot].bio = IO_BLOCKED;
2522
2523	rdev_dec_pending(rdev, mddev);
2524
2525read_more:
2526	rdev = read_balance(conf, r10_bio, &max_sectors);
2527	if (rdev == NULL) {
2528		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2529		       " read error for block %llu\n",
2530		       mdname(mddev), b,
2531		       (unsigned long long)r10_bio->sector);
2532		raid_end_bio_io(r10_bio);
2533		return;
2534	}
2535
2536	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2537	slot = r10_bio->read_slot;
2538	printk_ratelimited(
2539		KERN_ERR
2540		"md/raid10:%s: %s: redirecting "
2541		"sector %llu to another mirror\n",
2542		mdname(mddev),
2543		bdevname(rdev->bdev, b),
2544		(unsigned long long)r10_bio->sector);
2545	bio = bio_clone_mddev(r10_bio->master_bio,
2546			      GFP_NOIO, mddev);
2547	md_trim_bio(bio,
2548		    r10_bio->sector - bio->bi_sector,
2549		    max_sectors);
2550	r10_bio->devs[slot].bio = bio;
2551	r10_bio->devs[slot].rdev = rdev;
2552	bio->bi_sector = r10_bio->devs[slot].addr
2553		+ choose_data_offset(r10_bio, rdev);
2554	bio->bi_bdev = rdev->bdev;
2555	bio->bi_rw = READ | do_sync;
2556	bio->bi_private = r10_bio;
2557	bio->bi_end_io = raid10_end_read_request;
2558	if (max_sectors < r10_bio->sectors) {
2559		/* Drat - have to split this up more */
2560		struct bio *mbio = r10_bio->master_bio;
2561		int sectors_handled =
2562			r10_bio->sector + max_sectors
2563			- mbio->bi_sector;
2564		r10_bio->sectors = max_sectors;
2565		spin_lock_irq(&conf->device_lock);
2566		if (mbio->bi_phys_segments == 0)
2567			mbio->bi_phys_segments = 2;
2568		else
2569			mbio->bi_phys_segments++;
2570		spin_unlock_irq(&conf->device_lock);
2571		generic_make_request(bio);
2572
2573		r10_bio = mempool_alloc(conf->r10bio_pool,
2574					GFP_NOIO);
2575		r10_bio->master_bio = mbio;
2576		r10_bio->sectors = (mbio->bi_size >> 9)
2577			- sectors_handled;
2578		r10_bio->state = 0;
2579		set_bit(R10BIO_ReadError,
2580			&r10_bio->state);
2581		r10_bio->mddev = mddev;
2582		r10_bio->sector = mbio->bi_sector
2583			+ sectors_handled;
2584
2585		goto read_more;
2586	} else
2587		generic_make_request(bio);
2588}
2589
2590static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2591{
2592	/* Some sort of write request has finished and it
2593	 * succeeded in writing where we thought there was a
2594	 * bad block.  So forget the bad block.
2595	 * Or possibly if failed and we need to record
2596	 * a bad block.
2597	 */
2598	int m;
2599	struct md_rdev *rdev;
2600
2601	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2602	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2603		for (m = 0; m < conf->copies; m++) {
2604			int dev = r10_bio->devs[m].devnum;
2605			rdev = conf->mirrors[dev].rdev;
2606			if (r10_bio->devs[m].bio == NULL)
2607				continue;
2608			if (test_bit(BIO_UPTODATE,
2609				     &r10_bio->devs[m].bio->bi_flags)) {
2610				rdev_clear_badblocks(
2611					rdev,
2612					r10_bio->devs[m].addr,
2613					r10_bio->sectors, 0);
2614			} else {
2615				if (!rdev_set_badblocks(
2616					    rdev,
2617					    r10_bio->devs[m].addr,
2618					    r10_bio->sectors, 0))
2619					md_error(conf->mddev, rdev);
2620			}
2621			rdev = conf->mirrors[dev].replacement;
2622			if (r10_bio->devs[m].repl_bio == NULL)
2623				continue;
2624			if (test_bit(BIO_UPTODATE,
2625				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2626				rdev_clear_badblocks(
2627					rdev,
2628					r10_bio->devs[m].addr,
2629					r10_bio->sectors, 0);
2630			} else {
2631				if (!rdev_set_badblocks(
2632					    rdev,
2633					    r10_bio->devs[m].addr,
2634					    r10_bio->sectors, 0))
2635					md_error(conf->mddev, rdev);
2636			}
2637		}
2638		put_buf(r10_bio);
2639	} else {
2640		for (m = 0; m < conf->copies; m++) {
2641			int dev = r10_bio->devs[m].devnum;
2642			struct bio *bio = r10_bio->devs[m].bio;
2643			rdev = conf->mirrors[dev].rdev;
2644			if (bio == IO_MADE_GOOD) {
2645				rdev_clear_badblocks(
2646					rdev,
2647					r10_bio->devs[m].addr,
2648					r10_bio->sectors, 0);
2649				rdev_dec_pending(rdev, conf->mddev);
2650			} else if (bio != NULL &&
2651				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2652				if (!narrow_write_error(r10_bio, m)) {
2653					md_error(conf->mddev, rdev);
2654					set_bit(R10BIO_Degraded,
2655						&r10_bio->state);
2656				}
2657				rdev_dec_pending(rdev, conf->mddev);
2658			}
2659			bio = r10_bio->devs[m].repl_bio;
2660			rdev = conf->mirrors[dev].replacement;
2661			if (rdev && bio == IO_MADE_GOOD) {
2662				rdev_clear_badblocks(
2663					rdev,
2664					r10_bio->devs[m].addr,
2665					r10_bio->sectors, 0);
2666				rdev_dec_pending(rdev, conf->mddev);
2667			}
2668		}
2669		if (test_bit(R10BIO_WriteError,
2670			     &r10_bio->state))
2671			close_write(r10_bio);
2672		raid_end_bio_io(r10_bio);
2673	}
2674}
2675
2676static void raid10d(struct mddev *mddev)
2677{
2678	struct r10bio *r10_bio;
2679	unsigned long flags;
2680	struct r10conf *conf = mddev->private;
2681	struct list_head *head = &conf->retry_list;
2682	struct blk_plug plug;
2683
2684	md_check_recovery(mddev);
2685
2686	blk_start_plug(&plug);
2687	for (;;) {
2688
2689		flush_pending_writes(conf);
2690
2691		spin_lock_irqsave(&conf->device_lock, flags);
2692		if (list_empty(head)) {
2693			spin_unlock_irqrestore(&conf->device_lock, flags);
2694			break;
2695		}
2696		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2697		list_del(head->prev);
2698		conf->nr_queued--;
2699		spin_unlock_irqrestore(&conf->device_lock, flags);
2700
2701		mddev = r10_bio->mddev;
2702		conf = mddev->private;
2703		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2704		    test_bit(R10BIO_WriteError, &r10_bio->state))
2705			handle_write_completed(conf, r10_bio);
2706		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2707			reshape_request_write(mddev, r10_bio);
2708		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2709			sync_request_write(mddev, r10_bio);
2710		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2711			recovery_request_write(mddev, r10_bio);
2712		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2713			handle_read_error(mddev, r10_bio);
2714		else {
2715			/* just a partial read to be scheduled from a
2716			 * separate context
2717			 */
2718			int slot = r10_bio->read_slot;
2719			generic_make_request(r10_bio->devs[slot].bio);
2720		}
2721
2722		cond_resched();
2723		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2724			md_check_recovery(mddev);
2725	}
2726	blk_finish_plug(&plug);
2727}
2728
2729
2730static int init_resync(struct r10conf *conf)
2731{
2732	int buffs;
2733	int i;
2734
2735	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2736	BUG_ON(conf->r10buf_pool);
2737	conf->have_replacement = 0;
2738	for (i = 0; i < conf->geo.raid_disks; i++)
2739		if (conf->mirrors[i].replacement)
2740			conf->have_replacement = 1;
2741	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2742	if (!conf->r10buf_pool)
2743		return -ENOMEM;
2744	conf->next_resync = 0;
2745	return 0;
2746}
2747
2748/*
2749 * perform a "sync" on one "block"
2750 *
2751 * We need to make sure that no normal I/O request - particularly write
2752 * requests - conflict with active sync requests.
2753 *
2754 * This is achieved by tracking pending requests and a 'barrier' concept
2755 * that can be installed to exclude normal IO requests.
2756 *
2757 * Resync and recovery are handled very differently.
2758 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2759 *
2760 * For resync, we iterate over virtual addresses, read all copies,
2761 * and update if there are differences.  If only one copy is live,
2762 * skip it.
2763 * For recovery, we iterate over physical addresses, read a good
2764 * value for each non-in_sync drive, and over-write.
2765 *
2766 * So, for recovery we may have several outstanding complex requests for a
2767 * given address, one for each out-of-sync device.  We model this by allocating
2768 * a number of r10_bio structures, one for each out-of-sync device.
2769 * As we setup these structures, we collect all bio's together into a list
2770 * which we then process collectively to add pages, and then process again
2771 * to pass to generic_make_request.
2772 *
2773 * The r10_bio structures are linked using a borrowed master_bio pointer.
2774 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2775 * has its remaining count decremented to 0, the whole complex operation
2776 * is complete.
2777 *
2778 */
2779
2780static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2781			     int *skipped, int go_faster)
2782{
2783	struct r10conf *conf = mddev->private;
2784	struct r10bio *r10_bio;
2785	struct bio *biolist = NULL, *bio;
2786	sector_t max_sector, nr_sectors;
2787	int i;
2788	int max_sync;
2789	sector_t sync_blocks;
2790	sector_t sectors_skipped = 0;
2791	int chunks_skipped = 0;
2792	sector_t chunk_mask = conf->geo.chunk_mask;
2793
2794	if (!conf->r10buf_pool)
2795		if (init_resync(conf))
2796			return 0;
2797
2798 skipped:
2799	max_sector = mddev->dev_sectors;
2800	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2801	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2802		max_sector = mddev->resync_max_sectors;
2803	if (sector_nr >= max_sector) {
2804		/* If we aborted, we need to abort the
2805		 * sync on the 'current' bitmap chucks (there can
2806		 * be several when recovering multiple devices).
2807		 * as we may have started syncing it but not finished.
2808		 * We can find the current address in
2809		 * mddev->curr_resync, but for recovery,
2810		 * we need to convert that to several
2811		 * virtual addresses.
2812		 */
2813		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2814			end_reshape(conf);
2815			return 0;
2816		}
2817
2818		if (mddev->curr_resync < max_sector) { /* aborted */
2819			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2820				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2821						&sync_blocks, 1);
2822			else for (i = 0; i < conf->geo.raid_disks; i++) {
2823				sector_t sect =
2824					raid10_find_virt(conf, mddev->curr_resync, i);
2825				bitmap_end_sync(mddev->bitmap, sect,
2826						&sync_blocks, 1);
2827			}
2828		} else {
2829			/* completed sync */
2830			if ((!mddev->bitmap || conf->fullsync)
2831			    && conf->have_replacement
2832			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2833				/* Completed a full sync so the replacements
2834				 * are now fully recovered.
2835				 */
2836				for (i = 0; i < conf->geo.raid_disks; i++)
2837					if (conf->mirrors[i].replacement)
2838						conf->mirrors[i].replacement
2839							->recovery_offset
2840							= MaxSector;
2841			}
2842			conf->fullsync = 0;
2843		}
2844		bitmap_close_sync(mddev->bitmap);
2845		close_sync(conf);
2846		*skipped = 1;
2847		return sectors_skipped;
2848	}
2849
2850	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2851		return reshape_request(mddev, sector_nr, skipped);
2852
2853	if (chunks_skipped >= conf->geo.raid_disks) {
2854		/* if there has been nothing to do on any drive,
2855		 * then there is nothing to do at all..
2856		 */
2857		*skipped = 1;
2858		return (max_sector - sector_nr) + sectors_skipped;
2859	}
2860
2861	if (max_sector > mddev->resync_max)
2862		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2863
2864	/* make sure whole request will fit in a chunk - if chunks
2865	 * are meaningful
2866	 */
2867	if (conf->geo.near_copies < conf->geo.raid_disks &&
2868	    max_sector > (sector_nr | chunk_mask))
2869		max_sector = (sector_nr | chunk_mask) + 1;
2870	/*
2871	 * If there is non-resync activity waiting for us then
2872	 * put in a delay to throttle resync.
2873	 */
2874	if (!go_faster && conf->nr_waiting)
2875		msleep_interruptible(1000);
2876
2877	/* Again, very different code for resync and recovery.
2878	 * Both must result in an r10bio with a list of bios that
2879	 * have bi_end_io, bi_sector, bi_bdev set,
2880	 * and bi_private set to the r10bio.
2881	 * For recovery, we may actually create several r10bios
2882	 * with 2 bios in each, that correspond to the bios in the main one.
2883	 * In this case, the subordinate r10bios link back through a
2884	 * borrowed master_bio pointer, and the counter in the master
2885	 * includes a ref from each subordinate.
2886	 */
2887	/* First, we decide what to do and set ->bi_end_io
2888	 * To end_sync_read if we want to read, and
2889	 * end_sync_write if we will want to write.
2890	 */
2891
2892	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2893	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2894		/* recovery... the complicated one */
2895		int j;
2896		r10_bio = NULL;
2897
2898		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2899			int still_degraded;
2900			struct r10bio *rb2;
2901			sector_t sect;
2902			int must_sync;
2903			int any_working;
2904			struct raid10_info *mirror = &conf->mirrors[i];
2905
2906			if ((mirror->rdev == NULL ||
2907			     test_bit(In_sync, &mirror->rdev->flags))
2908			    &&
2909			    (mirror->replacement == NULL ||
2910			     test_bit(Faulty,
2911				      &mirror->replacement->flags)))
2912				continue;
2913
2914			still_degraded = 0;
2915			/* want to reconstruct this device */
2916			rb2 = r10_bio;
2917			sect = raid10_find_virt(conf, sector_nr, i);
2918			if (sect >= mddev->resync_max_sectors) {
2919				/* last stripe is not complete - don't
2920				 * try to recover this sector.
2921				 */
2922				continue;
2923			}
2924			/* Unless we are doing a full sync, or a replacement
2925			 * we only need to recover the block if it is set in
2926			 * the bitmap
2927			 */
2928			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2929						      &sync_blocks, 1);
2930			if (sync_blocks < max_sync)
2931				max_sync = sync_blocks;
2932			if (!must_sync &&
2933			    mirror->replacement == NULL &&
2934			    !conf->fullsync) {
2935				/* yep, skip the sync_blocks here, but don't assume
2936				 * that there will never be anything to do here
2937				 */
2938				chunks_skipped = -1;
2939				continue;
2940			}
2941
2942			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2943			raise_barrier(conf, rb2 != NULL);
2944			atomic_set(&r10_bio->remaining, 0);
2945
2946			r10_bio->master_bio = (struct bio*)rb2;
2947			if (rb2)
2948				atomic_inc(&rb2->remaining);
2949			r10_bio->mddev = mddev;
2950			set_bit(R10BIO_IsRecover, &r10_bio->state);
2951			r10_bio->sector = sect;
2952
2953			raid10_find_phys(conf, r10_bio);
2954
2955			/* Need to check if the array will still be
2956			 * degraded
2957			 */
2958			for (j = 0; j < conf->geo.raid_disks; j++)
2959				if (conf->mirrors[j].rdev == NULL ||
2960				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2961					still_degraded = 1;
2962					break;
2963				}
2964
2965			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2966						      &sync_blocks, still_degraded);
2967
2968			any_working = 0;
2969			for (j=0; j<conf->copies;j++) {
2970				int k;
2971				int d = r10_bio->devs[j].devnum;
2972				sector_t from_addr, to_addr;
2973				struct md_rdev *rdev;
2974				sector_t sector, first_bad;
2975				int bad_sectors;
2976				if (!conf->mirrors[d].rdev ||
2977				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2978					continue;
2979				/* This is where we read from */
2980				any_working = 1;
2981				rdev = conf->mirrors[d].rdev;
2982				sector = r10_bio->devs[j].addr;
2983
2984				if (is_badblock(rdev, sector, max_sync,
2985						&first_bad, &bad_sectors)) {
2986					if (first_bad > sector)
2987						max_sync = first_bad - sector;
2988					else {
2989						bad_sectors -= (sector
2990								- first_bad);
2991						if (max_sync > bad_sectors)
2992							max_sync = bad_sectors;
2993						continue;
2994					}
2995				}
2996				bio = r10_bio->devs[0].bio;
2997				bio->bi_next = biolist;
2998				biolist = bio;
2999				bio->bi_private = r10_bio;
3000				bio->bi_end_io = end_sync_read;
3001				bio->bi_rw = READ;
3002				from_addr = r10_bio->devs[j].addr;
3003				bio->bi_sector = from_addr + rdev->data_offset;
3004				bio->bi_bdev = rdev->bdev;
3005				atomic_inc(&rdev->nr_pending);
3006				/* and we write to 'i' (if not in_sync) */
3007
3008				for (k=0; k<conf->copies; k++)
3009					if (r10_bio->devs[k].devnum == i)
3010						break;
3011				BUG_ON(k == conf->copies);
3012				to_addr = r10_bio->devs[k].addr;
3013				r10_bio->devs[0].devnum = d;
3014				r10_bio->devs[0].addr = from_addr;
3015				r10_bio->devs[1].devnum = i;
3016				r10_bio->devs[1].addr = to_addr;
3017
3018				rdev = mirror->rdev;
3019				if (!test_bit(In_sync, &rdev->flags)) {
3020					bio = r10_bio->devs[1].bio;
3021					bio->bi_next = biolist;
3022					biolist = bio;
3023					bio->bi_private = r10_bio;
3024					bio->bi_end_io = end_sync_write;
3025					bio->bi_rw = WRITE;
3026					bio->bi_sector = to_addr
3027						+ rdev->data_offset;
3028					bio->bi_bdev = rdev->bdev;
3029					atomic_inc(&r10_bio->remaining);
3030				} else
3031					r10_bio->devs[1].bio->bi_end_io = NULL;
3032
3033				/* and maybe write to replacement */
3034				bio = r10_bio->devs[1].repl_bio;
3035				if (bio)
3036					bio->bi_end_io = NULL;
3037				rdev = mirror->replacement;
3038				/* Note: if rdev != NULL, then bio
3039				 * cannot be NULL as r10buf_pool_alloc will
3040				 * have allocated it.
3041				 * So the second test here is pointless.
3042				 * But it keeps semantic-checkers happy, and
3043				 * this comment keeps human reviewers
3044				 * happy.
3045				 */
3046				if (rdev == NULL || bio == NULL ||
3047				    test_bit(Faulty, &rdev->flags))
3048					break;
3049				bio->bi_next = biolist;
3050				biolist = bio;
3051				bio->bi_private = r10_bio;
3052				bio->bi_end_io = end_sync_write;
3053				bio->bi_rw = WRITE;
3054				bio->bi_sector = to_addr + rdev->data_offset;
3055				bio->bi_bdev = rdev->bdev;
3056				atomic_inc(&r10_bio->remaining);
3057				break;
3058			}
3059			if (j == conf->copies) {
3060				/* Cannot recover, so abort the recovery or
3061				 * record a bad block */
3062				put_buf(r10_bio);
3063				if (rb2)
3064					atomic_dec(&rb2->remaining);
3065				r10_bio = rb2;
3066				if (any_working) {
3067					/* problem is that there are bad blocks
3068					 * on other device(s)
3069					 */
3070					int k;
3071					for (k = 0; k < conf->copies; k++)
3072						if (r10_bio->devs[k].devnum == i)
3073							break;
3074					if (!test_bit(In_sync,
3075						      &mirror->rdev->flags)
3076					    && !rdev_set_badblocks(
3077						    mirror->rdev,
3078						    r10_bio->devs[k].addr,
3079						    max_sync, 0))
3080						any_working = 0;
3081					if (mirror->replacement &&
3082					    !rdev_set_badblocks(
3083						    mirror->replacement,
3084						    r10_bio->devs[k].addr,
3085						    max_sync, 0))
3086						any_working = 0;
3087				}
3088				if (!any_working)  {
3089					if (!test_and_set_bit(MD_RECOVERY_INTR,
3090							      &mddev->recovery))
3091						printk(KERN_INFO "md/raid10:%s: insufficient "
3092						       "working devices for recovery.\n",
3093						       mdname(mddev));
3094					mirror->recovery_disabled
3095						= mddev->recovery_disabled;
3096				}
3097				break;
3098			}
3099		}
3100		if (biolist == NULL) {
3101			while (r10_bio) {
3102				struct r10bio *rb2 = r10_bio;
3103				r10_bio = (struct r10bio*) rb2->master_bio;
3104				rb2->master_bio = NULL;
3105				put_buf(rb2);
3106			}
3107			goto giveup;
3108		}
3109	} else {
3110		/* resync. Schedule a read for every block at this virt offset */
3111		int count = 0;
3112
3113		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3114
3115		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3116				       &sync_blocks, mddev->degraded) &&
3117		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3118						 &mddev->recovery)) {
3119			/* We can skip this block */
3120			*skipped = 1;
3121			return sync_blocks + sectors_skipped;
3122		}
3123		if (sync_blocks < max_sync)
3124			max_sync = sync_blocks;
3125		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3126
3127		r10_bio->mddev = mddev;
3128		atomic_set(&r10_bio->remaining, 0);
3129		raise_barrier(conf, 0);
3130		conf->next_resync = sector_nr;
3131
3132		r10_bio->master_bio = NULL;
3133		r10_bio->sector = sector_nr;
3134		set_bit(R10BIO_IsSync, &r10_bio->state);
3135		raid10_find_phys(conf, r10_bio);
3136		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3137
3138		for (i = 0; i < conf->copies; i++) {
3139			int d = r10_bio->devs[i].devnum;
3140			sector_t first_bad, sector;
3141			int bad_sectors;
3142
3143			if (r10_bio->devs[i].repl_bio)
3144				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3145
3146			bio = r10_bio->devs[i].bio;
3147			bio->bi_end_io = NULL;
3148			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3149			if (conf->mirrors[d].rdev == NULL ||
3150			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3151				continue;
3152			sector = r10_bio->devs[i].addr;
3153			if (is_badblock(conf->mirrors[d].rdev,
3154					sector, max_sync,
3155					&first_bad, &bad_sectors)) {
3156				if (first_bad > sector)
3157					max_sync = first_bad - sector;
3158				else {
3159					bad_sectors -= (sector - first_bad);
3160					if (max_sync > bad_sectors)
3161						max_sync = bad_sectors;
3162					continue;
3163				}
3164			}
3165			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3166			atomic_inc(&r10_bio->remaining);
3167			bio->bi_next = biolist;
3168			biolist = bio;
3169			bio->bi_private = r10_bio;
3170			bio->bi_end_io = end_sync_read;
3171			bio->bi_rw = READ;
3172			bio->bi_sector = sector +
3173				conf->mirrors[d].rdev->data_offset;
3174			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3175			count++;
3176
3177			if (conf->mirrors[d].replacement == NULL ||
3178			    test_bit(Faulty,
3179				     &conf->mirrors[d].replacement->flags))
3180				continue;
3181
3182			/* Need to set up for writing to the replacement */
3183			bio = r10_bio->devs[i].repl_bio;
3184			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3185
3186			sector = r10_bio->devs[i].addr;
3187			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3188			bio->bi_next = biolist;
3189			biolist = bio;
3190			bio->bi_private = r10_bio;
3191			bio->bi_end_io = end_sync_write;
3192			bio->bi_rw = WRITE;
3193			bio->bi_sector = sector +
3194				conf->mirrors[d].replacement->data_offset;
3195			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3196			count++;
3197		}
3198
3199		if (count < 2) {
3200			for (i=0; i<conf->copies; i++) {
3201				int d = r10_bio->devs[i].devnum;
3202				if (r10_bio->devs[i].bio->bi_end_io)
3203					rdev_dec_pending(conf->mirrors[d].rdev,
3204							 mddev);
3205				if (r10_bio->devs[i].repl_bio &&
3206				    r10_bio->devs[i].repl_bio->bi_end_io)
3207					rdev_dec_pending(
3208						conf->mirrors[d].replacement,
3209						mddev);
3210			}
3211			put_buf(r10_bio);
3212			biolist = NULL;
3213			goto giveup;
3214		}
3215	}
3216
3217	for (bio = biolist; bio ; bio=bio->bi_next) {
3218
3219		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3220		if (bio->bi_end_io)
3221			bio->bi_flags |= 1 << BIO_UPTODATE;
3222		bio->bi_vcnt = 0;
3223		bio->bi_idx = 0;
3224		bio->bi_phys_segments = 0;
3225		bio->bi_size = 0;
3226	}
3227
3228	nr_sectors = 0;
3229	if (sector_nr + max_sync < max_sector)
3230		max_sector = sector_nr + max_sync;
3231	do {
3232		struct page *page;
3233		int len = PAGE_SIZE;
3234		if (sector_nr + (len>>9) > max_sector)
3235			len = (max_sector - sector_nr) << 9;
3236		if (len == 0)
3237			break;
3238		for (bio= biolist ; bio ; bio=bio->bi_next) {
3239			struct bio *bio2;
3240			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3241			if (bio_add_page(bio, page, len, 0))
3242				continue;
3243
3244			/* stop here */
3245			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3246			for (bio2 = biolist;
3247			     bio2 && bio2 != bio;
3248			     bio2 = bio2->bi_next) {
3249				/* remove last page from this bio */
3250				bio2->bi_vcnt--;
3251				bio2->bi_size -= len;
3252				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3253			}
3254			goto bio_full;
3255		}
3256		nr_sectors += len>>9;
3257		sector_nr += len>>9;
3258	} while (biolist->bi_vcnt < RESYNC_PAGES);
3259 bio_full:
3260	r10_bio->sectors = nr_sectors;
3261
3262	while (biolist) {
3263		bio = biolist;
3264		biolist = biolist->bi_next;
3265
3266		bio->bi_next = NULL;
3267		r10_bio = bio->bi_private;
3268		r10_bio->sectors = nr_sectors;
3269
3270		if (bio->bi_end_io == end_sync_read) {
3271			md_sync_acct(bio->bi_bdev, nr_sectors);
3272			generic_make_request(bio);
3273		}
3274	}
3275
3276	if (sectors_skipped)
3277		/* pretend they weren't skipped, it makes
3278		 * no important difference in this case
3279		 */
3280		md_done_sync(mddev, sectors_skipped, 1);
3281
3282	return sectors_skipped + nr_sectors;
3283 giveup:
3284	/* There is nowhere to write, so all non-sync
3285	 * drives must be failed or in resync, all drives
3286	 * have a bad block, so try the next chunk...
3287	 */
3288	if (sector_nr + max_sync < max_sector)
3289		max_sector = sector_nr + max_sync;
3290
3291	sectors_skipped += (max_sector - sector_nr);
3292	chunks_skipped ++;
3293	sector_nr = max_sector;
3294	goto skipped;
3295}
3296
3297static sector_t
3298raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3299{
3300	sector_t size;
3301	struct r10conf *conf = mddev->private;
3302
3303	if (!raid_disks)
3304		raid_disks = min(conf->geo.raid_disks,
3305				 conf->prev.raid_disks);
3306	if (!sectors)
3307		sectors = conf->dev_sectors;
3308
3309	size = sectors >> conf->geo.chunk_shift;
3310	sector_div(size, conf->geo.far_copies);
3311	size = size * raid_disks;
3312	sector_div(size, conf->geo.near_copies);
3313
3314	return size << conf->geo.chunk_shift;
3315}
3316
3317static void calc_sectors(struct r10conf *conf, sector_t size)
3318{
3319	/* Calculate the number of sectors-per-device that will
3320	 * actually be used, and set conf->dev_sectors and
3321	 * conf->stride
3322	 */
3323
3324	size = size >> conf->geo.chunk_shift;
3325	sector_div(size, conf->geo.far_copies);
3326	size = size * conf->geo.raid_disks;
3327	sector_div(size, conf->geo.near_copies);
3328	/* 'size' is now the number of chunks in the array */
3329	/* calculate "used chunks per device" */
3330	size = size * conf->copies;
3331
3332	/* We need to round up when dividing by raid_disks to
3333	 * get the stride size.
3334	 */
3335	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3336
3337	conf->dev_sectors = size << conf->geo.chunk_shift;
3338
3339	if (conf->geo.far_offset)
3340		conf->geo.stride = 1 << conf->geo.chunk_shift;
3341	else {
3342		sector_div(size, conf->geo.far_copies);
3343		conf->geo.stride = size << conf->geo.chunk_shift;
3344	}
3345}
3346
3347enum geo_type {geo_new, geo_old, geo_start};
3348static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3349{
3350	int nc, fc, fo;
3351	int layout, chunk, disks;
3352	switch (new) {
3353	case geo_old:
3354		layout = mddev->layout;
3355		chunk = mddev->chunk_sectors;
3356		disks = mddev->raid_disks - mddev->delta_disks;
3357		break;
3358	case geo_new:
3359		layout = mddev->new_layout;
3360		chunk = mddev->new_chunk_sectors;
3361		disks = mddev->raid_disks;
3362		break;
3363	default: /* avoid 'may be unused' warnings */
3364	case geo_start: /* new when starting reshape - raid_disks not
3365			 * updated yet. */
3366		layout = mddev->new_layout;
3367		chunk = mddev->new_chunk_sectors;
3368		disks = mddev->raid_disks + mddev->delta_disks;
3369		break;
3370	}
3371	if (layout >> 17)
3372		return -1;
3373	if (chunk < (PAGE_SIZE >> 9) ||
3374	    !is_power_of_2(chunk))
3375		return -2;
3376	nc = layout & 255;
3377	fc = (layout >> 8) & 255;
3378	fo = layout & (1<<16);
3379	geo->raid_disks = disks;
3380	geo->near_copies = nc;
3381	geo->far_copies = fc;
3382	geo->far_offset = fo;
3383	geo->chunk_mask = chunk - 1;
3384	geo->chunk_shift = ffz(~chunk);
3385	return nc*fc;
3386}
3387
3388static struct r10conf *setup_conf(struct mddev *mddev)
3389{
3390	struct r10conf *conf = NULL;
3391	int err = -EINVAL;
3392	struct geom geo;
3393	int copies;
3394
3395	copies = setup_geo(&geo, mddev, geo_new);
3396
3397	if (copies == -2) {
3398		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3399		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3400		       mdname(mddev), PAGE_SIZE);
3401		goto out;
3402	}
3403
3404	if (copies < 2 || copies > mddev->raid_disks) {
3405		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3406		       mdname(mddev), mddev->new_layout);
3407		goto out;
3408	}
3409
3410	err = -ENOMEM;
3411	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3412	if (!conf)
3413		goto out;
3414
3415	/* FIXME calc properly */
3416	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3417							    max(0,mddev->delta_disks)),
3418				GFP_KERNEL);
3419	if (!conf->mirrors)
3420		goto out;
3421
3422	conf->tmppage = alloc_page(GFP_KERNEL);
3423	if (!conf->tmppage)
3424		goto out;
3425
3426	conf->geo = geo;
3427	conf->copies = copies;
3428	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3429					   r10bio_pool_free, conf);
3430	if (!conf->r10bio_pool)
3431		goto out;
3432
3433	calc_sectors(conf, mddev->dev_sectors);
3434	if (mddev->reshape_position == MaxSector) {
3435		conf->prev = conf->geo;
3436		conf->reshape_progress = MaxSector;
3437	} else {
3438		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3439			err = -EINVAL;
3440			goto out;
3441		}
3442		conf->reshape_progress = mddev->reshape_position;
3443		if (conf->prev.far_offset)
3444			conf->prev.stride = 1 << conf->prev.chunk_shift;
3445		else
3446			/* far_copies must be 1 */
3447			conf->prev.stride = conf->dev_sectors;
3448	}
3449	spin_lock_init(&conf->device_lock);
3450	INIT_LIST_HEAD(&conf->retry_list);
3451
3452	spin_lock_init(&conf->resync_lock);
3453	init_waitqueue_head(&conf->wait_barrier);
3454
3455	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3456	if (!conf->thread)
3457		goto out;
3458
3459	conf->mddev = mddev;
3460	return conf;
3461
3462 out:
3463	if (err == -ENOMEM)
3464		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3465		       mdname(mddev));
3466	if (conf) {
3467		if (conf->r10bio_pool)
3468			mempool_destroy(conf->r10bio_pool);
3469		kfree(conf->mirrors);
3470		safe_put_page(conf->tmppage);
3471		kfree(conf);
3472	}
3473	return ERR_PTR(err);
3474}
3475
3476static int run(struct mddev *mddev)
3477{
3478	struct r10conf *conf;
3479	int i, disk_idx, chunk_size;
3480	struct raid10_info *disk;
3481	struct md_rdev *rdev;
3482	sector_t size;
3483	sector_t min_offset_diff = 0;
3484	int first = 1;
3485
3486	if (mddev->private == NULL) {
3487		conf = setup_conf(mddev);
3488		if (IS_ERR(conf))
3489			return PTR_ERR(conf);
3490		mddev->private = conf;
3491	}
3492	conf = mddev->private;
3493	if (!conf)
3494		goto out;
3495
3496	mddev->thread = conf->thread;
3497	conf->thread = NULL;
3498
3499	chunk_size = mddev->chunk_sectors << 9;
3500	if (mddev->queue) {
3501		blk_queue_io_min(mddev->queue, chunk_size);
3502		if (conf->geo.raid_disks % conf->geo.near_copies)
3503			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3504		else
3505			blk_queue_io_opt(mddev->queue, chunk_size *
3506					 (conf->geo.raid_disks / conf->geo.near_copies));
3507	}
3508
3509	rdev_for_each(rdev, mddev) {
3510		long long diff;
3511		struct request_queue *q;
3512
3513		disk_idx = rdev->raid_disk;
3514		if (disk_idx < 0)
3515			continue;
3516		if (disk_idx >= conf->geo.raid_disks &&
3517		    disk_idx >= conf->prev.raid_disks)
3518			continue;
3519		disk = conf->mirrors + disk_idx;
3520
3521		if (test_bit(Replacement, &rdev->flags)) {
3522			if (disk->replacement)
3523				goto out_free_conf;
3524			disk->replacement = rdev;
3525		} else {
3526			if (disk->rdev)
3527				goto out_free_conf;
3528			disk->rdev = rdev;
3529		}
3530		q = bdev_get_queue(rdev->bdev);
3531		if (q->merge_bvec_fn)
3532			mddev->merge_check_needed = 1;
3533		diff = (rdev->new_data_offset - rdev->data_offset);
3534		if (!mddev->reshape_backwards)
3535			diff = -diff;
3536		if (diff < 0)
3537			diff = 0;
3538		if (first || diff < min_offset_diff)
3539			min_offset_diff = diff;
3540
3541		if (mddev->gendisk)
3542			disk_stack_limits(mddev->gendisk, rdev->bdev,
3543					  rdev->data_offset << 9);
3544
3545		disk->head_position = 0;
3546	}
3547
3548	/* need to check that every block has at least one working mirror */
3549	if (!enough(conf, -1)) {
3550		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3551		       mdname(mddev));
3552		goto out_free_conf;
3553	}
3554
3555	if (conf->reshape_progress != MaxSector) {
3556		/* must ensure that shape change is supported */
3557		if (conf->geo.far_copies != 1 &&
3558		    conf->geo.far_offset == 0)
3559			goto out_free_conf;
3560		if (conf->prev.far_copies != 1 &&
3561		    conf->geo.far_offset == 0)
3562			goto out_free_conf;
3563	}
3564
3565	mddev->degraded = 0;
3566	for (i = 0;
3567	     i < conf->geo.raid_disks
3568		     || i < conf->prev.raid_disks;
3569	     i++) {
3570
3571		disk = conf->mirrors + i;
3572
3573		if (!disk->rdev && disk->replacement) {
3574			/* The replacement is all we have - use it */
3575			disk->rdev = disk->replacement;
3576			disk->replacement = NULL;
3577			clear_bit(Replacement, &disk->rdev->flags);
3578		}
3579
3580		if (!disk->rdev ||
3581		    !test_bit(In_sync, &disk->rdev->flags)) {
3582			disk->head_position = 0;
3583			mddev->degraded++;
3584			if (disk->rdev)
3585				conf->fullsync = 1;
3586		}
3587		disk->recovery_disabled = mddev->recovery_disabled - 1;
3588	}
3589
3590	if (mddev->recovery_cp != MaxSector)
3591		printk(KERN_NOTICE "md/raid10:%s: not clean"
3592		       " -- starting background reconstruction\n",
3593		       mdname(mddev));
3594	printk(KERN_INFO
3595		"md/raid10:%s: active with %d out of %d devices\n",
3596		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3597		conf->geo.raid_disks);
3598	/*
3599	 * Ok, everything is just fine now
3600	 */
3601	mddev->dev_sectors = conf->dev_sectors;
3602	size = raid10_size(mddev, 0, 0);
3603	md_set_array_sectors(mddev, size);
3604	mddev->resync_max_sectors = size;
3605
3606	if (mddev->queue) {
3607		int stripe = conf->geo.raid_disks *
3608			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3609		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3610		mddev->queue->backing_dev_info.congested_data = mddev;
3611
3612		/* Calculate max read-ahead size.
3613		 * We need to readahead at least twice a whole stripe....
3614		 * maybe...
3615		 */
3616		stripe /= conf->geo.near_copies;
3617		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3618			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3619		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3620	}
3621
3622
3623	if (md_integrity_register(mddev))
3624		goto out_free_conf;
3625
3626	if (conf->reshape_progress != MaxSector) {
3627		unsigned long before_length, after_length;
3628
3629		before_length = ((1 << conf->prev.chunk_shift) *
3630				 conf->prev.far_copies);
3631		after_length = ((1 << conf->geo.chunk_shift) *
3632				conf->geo.far_copies);
3633
3634		if (max(before_length, after_length) > min_offset_diff) {
3635			/* This cannot work */
3636			printk("md/raid10: offset difference not enough to continue reshape\n");
3637			goto out_free_conf;
3638		}
3639		conf->offset_diff = min_offset_diff;
3640
3641		conf->reshape_safe = conf->reshape_progress;
3642		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3643		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3644		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3645		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3646		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3647							"reshape");
3648	}
3649
3650	return 0;
3651
3652out_free_conf:
3653	md_unregister_thread(&mddev->thread);
3654	if (conf->r10bio_pool)
3655		mempool_destroy(conf->r10bio_pool);
3656	safe_put_page(conf->tmppage);
3657	kfree(conf->mirrors);
3658	kfree(conf);
3659	mddev->private = NULL;
3660out:
3661	return -EIO;
3662}
3663
3664static int stop(struct mddev *mddev)
3665{
3666	struct r10conf *conf = mddev->private;
3667
3668	raise_barrier(conf, 0);
3669	lower_barrier(conf);
3670
3671	md_unregister_thread(&mddev->thread);
3672	if (mddev->queue)
3673		/* the unplug fn references 'conf'*/
3674		blk_sync_queue(mddev->queue);
3675
3676	if (conf->r10bio_pool)
3677		mempool_destroy(conf->r10bio_pool);
3678	kfree(conf->mirrors);
3679	kfree(conf);
3680	mddev->private = NULL;
3681	return 0;
3682}
3683
3684static void raid10_quiesce(struct mddev *mddev, int state)
3685{
3686	struct r10conf *conf = mddev->private;
3687
3688	switch(state) {
3689	case 1:
3690		raise_barrier(conf, 0);
3691		break;
3692	case 0:
3693		lower_barrier(conf);
3694		break;
3695	}
3696}
3697
3698static int raid10_resize(struct mddev *mddev, sector_t sectors)
3699{
3700	/* Resize of 'far' arrays is not supported.
3701	 * For 'near' and 'offset' arrays we can set the
3702	 * number of sectors used to be an appropriate multiple
3703	 * of the chunk size.
3704	 * For 'offset', this is far_copies*chunksize.
3705	 * For 'near' the multiplier is the LCM of
3706	 * near_copies and raid_disks.
3707	 * So if far_copies > 1 && !far_offset, fail.
3708	 * Else find LCM(raid_disks, near_copy)*far_copies and
3709	 * multiply by chunk_size.  Then round to this number.
3710	 * This is mostly done by raid10_size()
3711	 */
3712	struct r10conf *conf = mddev->private;
3713	sector_t oldsize, size;
3714
3715	if (mddev->reshape_position != MaxSector)
3716		return -EBUSY;
3717
3718	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3719		return -EINVAL;
3720
3721	oldsize = raid10_size(mddev, 0, 0);
3722	size = raid10_size(mddev, sectors, 0);
3723	if (mddev->external_size &&
3724	    mddev->array_sectors > size)
3725		return -EINVAL;
3726	if (mddev->bitmap) {
3727		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3728		if (ret)
3729			return ret;
3730	}
3731	md_set_array_sectors(mddev, size);
3732	set_capacity(mddev->gendisk, mddev->array_sectors);
3733	revalidate_disk(mddev->gendisk);
3734	if (sectors > mddev->dev_sectors &&
3735	    mddev->recovery_cp > oldsize) {
3736		mddev->recovery_cp = oldsize;
3737		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3738	}
3739	calc_sectors(conf, sectors);
3740	mddev->dev_sectors = conf->dev_sectors;
3741	mddev->resync_max_sectors = size;
3742	return 0;
3743}
3744
3745static void *raid10_takeover_raid0(struct mddev *mddev)
3746{
3747	struct md_rdev *rdev;
3748	struct r10conf *conf;
3749
3750	if (mddev->degraded > 0) {
3751		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3752		       mdname(mddev));
3753		return ERR_PTR(-EINVAL);
3754	}
3755
3756	/* Set new parameters */
3757	mddev->new_level = 10;
3758	/* new layout: far_copies = 1, near_copies = 2 */
3759	mddev->new_layout = (1<<8) + 2;
3760	mddev->new_chunk_sectors = mddev->chunk_sectors;
3761	mddev->delta_disks = mddev->raid_disks;
3762	mddev->raid_disks *= 2;
3763	/* make sure it will be not marked as dirty */
3764	mddev->recovery_cp = MaxSector;
3765
3766	conf = setup_conf(mddev);
3767	if (!IS_ERR(conf)) {
3768		rdev_for_each(rdev, mddev)
3769			if (rdev->raid_disk >= 0)
3770				rdev->new_raid_disk = rdev->raid_disk * 2;
3771		conf->barrier = 1;
3772	}
3773
3774	return conf;
3775}
3776
3777static void *raid10_takeover(struct mddev *mddev)
3778{
3779	struct r0conf *raid0_conf;
3780
3781	/* raid10 can take over:
3782	 *  raid0 - providing it has only two drives
3783	 */
3784	if (mddev->level == 0) {
3785		/* for raid0 takeover only one zone is supported */
3786		raid0_conf = mddev->private;
3787		if (raid0_conf->nr_strip_zones > 1) {
3788			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3789			       " with more than one zone.\n",
3790			       mdname(mddev));
3791			return ERR_PTR(-EINVAL);
3792		}
3793		return raid10_takeover_raid0(mddev);
3794	}
3795	return ERR_PTR(-EINVAL);
3796}
3797
3798static int raid10_check_reshape(struct mddev *mddev)
3799{
3800	/* Called when there is a request to change
3801	 * - layout (to ->new_layout)
3802	 * - chunk size (to ->new_chunk_sectors)
3803	 * - raid_disks (by delta_disks)
3804	 * or when trying to restart a reshape that was ongoing.
3805	 *
3806	 * We need to validate the request and possibly allocate
3807	 * space if that might be an issue later.
3808	 *
3809	 * Currently we reject any reshape of a 'far' mode array,
3810	 * allow chunk size to change if new is generally acceptable,
3811	 * allow raid_disks to increase, and allow
3812	 * a switch between 'near' mode and 'offset' mode.
3813	 */
3814	struct r10conf *conf = mddev->private;
3815	struct geom geo;
3816
3817	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3818		return -EINVAL;
3819
3820	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3821		/* mustn't change number of copies */
3822		return -EINVAL;
3823	if (geo.far_copies > 1 && !geo.far_offset)
3824		/* Cannot switch to 'far' mode */
3825		return -EINVAL;
3826
3827	if (mddev->array_sectors & geo.chunk_mask)
3828			/* not factor of array size */
3829			return -EINVAL;
3830
3831	if (!enough(conf, -1))
3832		return -EINVAL;
3833
3834	kfree(conf->mirrors_new);
3835	conf->mirrors_new = NULL;
3836	if (mddev->delta_disks > 0) {
3837		/* allocate new 'mirrors' list */
3838		conf->mirrors_new = kzalloc(
3839			sizeof(struct raid10_info)
3840			*(mddev->raid_disks +
3841			  mddev->delta_disks),
3842			GFP_KERNEL);
3843		if (!conf->mirrors_new)
3844			return -ENOMEM;
3845	}
3846	return 0;
3847}
3848
3849/*
3850 * Need to check if array has failed when deciding whether to:
3851 *  - start an array
3852 *  - remove non-faulty devices
3853 *  - add a spare
3854 *  - allow a reshape
3855 * This determination is simple when no reshape is happening.
3856 * However if there is a reshape, we need to carefully check
3857 * both the before and after sections.
3858 * This is because some failed devices may only affect one
3859 * of the two sections, and some non-in_sync devices may
3860 * be insync in the section most affected by failed devices.
3861 */
3862static int calc_degraded(struct r10conf *conf)
3863{
3864	int degraded, degraded2;
3865	int i;
3866
3867	rcu_read_lock();
3868	degraded = 0;
3869	/* 'prev' section first */
3870	for (i = 0; i < conf->prev.raid_disks; i++) {
3871		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3872		if (!rdev || test_bit(Faulty, &rdev->flags))
3873			degraded++;
3874		else if (!test_bit(In_sync, &rdev->flags))
3875			/* When we can reduce the number of devices in
3876			 * an array, this might not contribute to
3877			 * 'degraded'.  It does now.
3878			 */
3879			degraded++;
3880	}
3881	rcu_read_unlock();
3882	if (conf->geo.raid_disks == conf->prev.raid_disks)
3883		return degraded;
3884	rcu_read_lock();
3885	degraded2 = 0;
3886	for (i = 0; i < conf->geo.raid_disks; i++) {
3887		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3888		if (!rdev || test_bit(Faulty, &rdev->flags))
3889			degraded2++;
3890		else if (!test_bit(In_sync, &rdev->flags)) {
3891			/* If reshape is increasing the number of devices,
3892			 * this section has already been recovered, so
3893			 * it doesn't contribute to degraded.
3894			 * else it does.
3895			 */
3896			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3897				degraded2++;
3898		}
3899	}
3900	rcu_read_unlock();
3901	if (degraded2 > degraded)
3902		return degraded2;
3903	return degraded;
3904}
3905
3906static int raid10_start_reshape(struct mddev *mddev)
3907{
3908	/* A 'reshape' has been requested. This commits
3909	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3910	 * This also checks if there are enough spares and adds them
3911	 * to the array.
3912	 * We currently require enough spares to make the final
3913	 * array non-degraded.  We also require that the difference
3914	 * between old and new data_offset - on each device - is
3915	 * enough that we never risk over-writing.
3916	 */
3917
3918	unsigned long before_length, after_length;
3919	sector_t min_offset_diff = 0;
3920	int first = 1;
3921	struct geom new;
3922	struct r10conf *conf = mddev->private;
3923	struct md_rdev *rdev;
3924	int spares = 0;
3925	int ret;
3926
3927	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3928		return -EBUSY;
3929
3930	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3931		return -EINVAL;
3932
3933	before_length = ((1 << conf->prev.chunk_shift) *
3934			 conf->prev.far_copies);
3935	after_length = ((1 << conf->geo.chunk_shift) *
3936			conf->geo.far_copies);
3937
3938	rdev_for_each(rdev, mddev) {
3939		if (!test_bit(In_sync, &rdev->flags)
3940		    && !test_bit(Faulty, &rdev->flags))
3941			spares++;
3942		if (rdev->raid_disk >= 0) {
3943			long long diff = (rdev->new_data_offset
3944					  - rdev->data_offset);
3945			if (!mddev->reshape_backwards)
3946				diff = -diff;
3947			if (diff < 0)
3948				diff = 0;
3949			if (first || diff < min_offset_diff)
3950				min_offset_diff = diff;
3951		}
3952	}
3953
3954	if (max(before_length, after_length) > min_offset_diff)
3955		return -EINVAL;
3956
3957	if (spares < mddev->delta_disks)
3958		return -EINVAL;
3959
3960	conf->offset_diff = min_offset_diff;
3961	spin_lock_irq(&conf->device_lock);
3962	if (conf->mirrors_new) {
3963		memcpy(conf->mirrors_new, conf->mirrors,
3964		       sizeof(struct raid10_info)*conf->prev.raid_disks);
3965		smp_mb();
3966		kfree(conf->mirrors_old); /* FIXME and elsewhere */
3967		conf->mirrors_old = conf->mirrors;
3968		conf->mirrors = conf->mirrors_new;
3969		conf->mirrors_new = NULL;
3970	}
3971	setup_geo(&conf->geo, mddev, geo_start);
3972	smp_mb();
3973	if (mddev->reshape_backwards) {
3974		sector_t size = raid10_size(mddev, 0, 0);
3975		if (size < mddev->array_sectors) {
3976			spin_unlock_irq(&conf->device_lock);
3977			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3978			       mdname(mddev));
3979			return -EINVAL;
3980		}
3981		mddev->resync_max_sectors = size;
3982		conf->reshape_progress = size;
3983	} else
3984		conf->reshape_progress = 0;
3985	spin_unlock_irq(&conf->device_lock);
3986
3987	if (mddev->delta_disks && mddev->bitmap) {
3988		ret = bitmap_resize(mddev->bitmap,
3989				    raid10_size(mddev, 0,
3990						conf->geo.raid_disks),
3991				    0, 0);
3992		if (ret)
3993			goto abort;
3994	}
3995	if (mddev->delta_disks > 0) {
3996		rdev_for_each(rdev, mddev)
3997			if (rdev->raid_disk < 0 &&
3998			    !test_bit(Faulty, &rdev->flags)) {
3999				if (raid10_add_disk(mddev, rdev) == 0) {
4000					if (rdev->raid_disk >=
4001					    conf->prev.raid_disks)
4002						set_bit(In_sync, &rdev->flags);
4003					else
4004						rdev->recovery_offset = 0;
4005
4006					if (sysfs_link_rdev(mddev, rdev))
4007						/* Failure here  is OK */;
4008				}
4009			} else if (rdev->raid_disk >= conf->prev.raid_disks
4010				   && !test_bit(Faulty, &rdev->flags)) {
4011				/* This is a spare that was manually added */
4012				set_bit(In_sync, &rdev->flags);
4013			}
4014	}
4015	/* When a reshape changes the number of devices,
4016	 * ->degraded is measured against the larger of the
4017	 * pre and  post numbers.
4018	 */
4019	spin_lock_irq(&conf->device_lock);
4020	mddev->degraded = calc_degraded(conf);
4021	spin_unlock_irq(&conf->device_lock);
4022	mddev->raid_disks = conf->geo.raid_disks;
4023	mddev->reshape_position = conf->reshape_progress;
4024	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4025
4026	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4027	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4028	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4029	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4030
4031	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4032						"reshape");
4033	if (!mddev->sync_thread) {
4034		ret = -EAGAIN;
4035		goto abort;
4036	}
4037	conf->reshape_checkpoint = jiffies;
4038	md_wakeup_thread(mddev->sync_thread);
4039	md_new_event(mddev);
4040	return 0;
4041
4042abort:
4043	mddev->recovery = 0;
4044	spin_lock_irq(&conf->device_lock);
4045	conf->geo = conf->prev;
4046	mddev->raid_disks = conf->geo.raid_disks;
4047	rdev_for_each(rdev, mddev)
4048		rdev->new_data_offset = rdev->data_offset;
4049	smp_wmb();
4050	conf->reshape_progress = MaxSector;
4051	mddev->reshape_position = MaxSector;
4052	spin_unlock_irq(&conf->device_lock);
4053	return ret;
4054}
4055
4056/* Calculate the last device-address that could contain
4057 * any block from the chunk that includes the array-address 's'
4058 * and report the next address.
4059 * i.e. the address returned will be chunk-aligned and after
4060 * any data that is in the chunk containing 's'.
4061 */
4062static sector_t last_dev_address(sector_t s, struct geom *geo)
4063{
4064	s = (s | geo->chunk_mask) + 1;
4065	s >>= geo->chunk_shift;
4066	s *= geo->near_copies;
4067	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4068	s *= geo->far_copies;
4069	s <<= geo->chunk_shift;
4070	return s;
4071}
4072
4073/* Calculate the first device-address that could contain
4074 * any block from the chunk that includes the array-address 's'.
4075 * This too will be the start of a chunk
4076 */
4077static sector_t first_dev_address(sector_t s, struct geom *geo)
4078{
4079	s >>= geo->chunk_shift;
4080	s *= geo->near_copies;
4081	sector_div(s, geo->raid_disks);
4082	s *= geo->far_copies;
4083	s <<= geo->chunk_shift;
4084	return s;
4085}
4086
4087static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4088				int *skipped)
4089{
4090	/* We simply copy at most one chunk (smallest of old and new)
4091	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4092	 * or we hit a bad block or something.
4093	 * This might mean we pause for normal IO in the middle of
4094	 * a chunk, but that is not a problem was mddev->reshape_position
4095	 * can record any location.
4096	 *
4097	 * If we will want to write to a location that isn't
4098	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4099	 * we need to flush all reshape requests and update the metadata.
4100	 *
4101	 * When reshaping forwards (e.g. to more devices), we interpret
4102	 * 'safe' as the earliest block which might not have been copied
4103	 * down yet.  We divide this by previous stripe size and multiply
4104	 * by previous stripe length to get lowest device offset that we
4105	 * cannot write to yet.
4106	 * We interpret 'sector_nr' as an address that we want to write to.
4107	 * From this we use last_device_address() to find where we might
4108	 * write to, and first_device_address on the  'safe' position.
4109	 * If this 'next' write position is after the 'safe' position,
4110	 * we must update the metadata to increase the 'safe' position.
4111	 *
4112	 * When reshaping backwards, we round in the opposite direction
4113	 * and perform the reverse test:  next write position must not be
4114	 * less than current safe position.
4115	 *
4116	 * In all this the minimum difference in data offsets
4117	 * (conf->offset_diff - always positive) allows a bit of slack,
4118	 * so next can be after 'safe', but not by more than offset_disk
4119	 *
4120	 * We need to prepare all the bios here before we start any IO
4121	 * to ensure the size we choose is acceptable to all devices.
4122	 * The means one for each copy for write-out and an extra one for
4123	 * read-in.
4124	 * We store the read-in bio in ->master_bio and the others in
4125	 * ->devs[x].bio and ->devs[x].repl_bio.
4126	 */
4127	struct r10conf *conf = mddev->private;
4128	struct r10bio *r10_bio;
4129	sector_t next, safe, last;
4130	int max_sectors;
4131	int nr_sectors;
4132	int s;
4133	struct md_rdev *rdev;
4134	int need_flush = 0;
4135	struct bio *blist;
4136	struct bio *bio, *read_bio;
4137	int sectors_done = 0;
4138
4139	if (sector_nr == 0) {
4140		/* If restarting in the middle, skip the initial sectors */
4141		if (mddev->reshape_backwards &&
4142		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4143			sector_nr = (raid10_size(mddev, 0, 0)
4144				     - conf->reshape_progress);
4145		} else if (!mddev->reshape_backwards &&
4146			   conf->reshape_progress > 0)
4147			sector_nr = conf->reshape_progress;
4148		if (sector_nr) {
4149			mddev->curr_resync_completed = sector_nr;
4150			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4151			*skipped = 1;
4152			return sector_nr;
4153		}
4154	}
4155
4156	/* We don't use sector_nr to track where we are up to
4157	 * as that doesn't work well for ->reshape_backwards.
4158	 * So just use ->reshape_progress.
4159	 */
4160	if (mddev->reshape_backwards) {
4161		/* 'next' is the earliest device address that we might
4162		 * write to for this chunk in the new layout
4163		 */
4164		next = first_dev_address(conf->reshape_progress - 1,
4165					 &conf->geo);
4166
4167		/* 'safe' is the last device address that we might read from
4168		 * in the old layout after a restart
4169		 */
4170		safe = last_dev_address(conf->reshape_safe - 1,
4171					&conf->prev);
4172
4173		if (next + conf->offset_diff < safe)
4174			need_flush = 1;
4175
4176		last = conf->reshape_progress - 1;
4177		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4178					       & conf->prev.chunk_mask);
4179		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4180			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4181	} else {
4182		/* 'next' is after the last device address that we
4183		 * might write to for this chunk in the new layout
4184		 */
4185		next = last_dev_address(conf->reshape_progress, &conf->geo);
4186
4187		/* 'safe' is the earliest device address that we might
4188		 * read from in the old layout after a restart
4189		 */
4190		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4191
4192		/* Need to update metadata if 'next' might be beyond 'safe'
4193		 * as that would possibly corrupt data
4194		 */
4195		if (next > safe + conf->offset_diff)
4196			need_flush = 1;
4197
4198		sector_nr = conf->reshape_progress;
4199		last  = sector_nr | (conf->geo.chunk_mask
4200				     & conf->prev.chunk_mask);
4201
4202		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4203			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4204	}
4205
4206	if (need_flush ||
4207	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4208		/* Need to update reshape_position in metadata */
4209		wait_barrier(conf);
4210		mddev->reshape_position = conf->reshape_progress;
4211		if (mddev->reshape_backwards)
4212			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4213				- conf->reshape_progress;
4214		else
4215			mddev->curr_resync_completed = conf->reshape_progress;
4216		conf->reshape_checkpoint = jiffies;
4217		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4218		md_wakeup_thread(mddev->thread);
4219		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4220			   kthread_should_stop());
4221		conf->reshape_safe = mddev->reshape_position;
4222		allow_barrier(conf);
4223	}
4224
4225read_more:
4226	/* Now schedule reads for blocks from sector_nr to last */
4227	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4228	raise_barrier(conf, sectors_done != 0);
4229	atomic_set(&r10_bio->remaining, 0);
4230	r10_bio->mddev = mddev;
4231	r10_bio->sector = sector_nr;
4232	set_bit(R10BIO_IsReshape, &r10_bio->state);
4233	r10_bio->sectors = last - sector_nr + 1;
4234	rdev = read_balance(conf, r10_bio, &max_sectors);
4235	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4236
4237	if (!rdev) {
4238		/* Cannot read from here, so need to record bad blocks
4239		 * on all the target devices.
4240		 */
4241		// FIXME
4242		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4243		return sectors_done;
4244	}
4245
4246	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4247
4248	read_bio->bi_bdev = rdev->bdev;
4249	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4250			       + rdev->data_offset);
4251	read_bio->bi_private = r10_bio;
4252	read_bio->bi_end_io = end_sync_read;
4253	read_bio->bi_rw = READ;
4254	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4255	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4256	read_bio->bi_vcnt = 0;
4257	read_bio->bi_idx = 0;
4258	read_bio->bi_size = 0;
4259	r10_bio->master_bio = read_bio;
4260	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4261
4262	/* Now find the locations in the new layout */
4263	__raid10_find_phys(&conf->geo, r10_bio);
4264
4265	blist = read_bio;
4266	read_bio->bi_next = NULL;
4267
4268	for (s = 0; s < conf->copies*2; s++) {
4269		struct bio *b;
4270		int d = r10_bio->devs[s/2].devnum;
4271		struct md_rdev *rdev2;
4272		if (s&1) {
4273			rdev2 = conf->mirrors[d].replacement;
4274			b = r10_bio->devs[s/2].repl_bio;
4275		} else {
4276			rdev2 = conf->mirrors[d].rdev;
4277			b = r10_bio->devs[s/2].bio;
4278		}
4279		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4280			continue;
4281		b->bi_bdev = rdev2->bdev;
4282		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4283		b->bi_private = r10_bio;
4284		b->bi_end_io = end_reshape_write;
4285		b->bi_rw = WRITE;
4286		b->bi_flags &= ~(BIO_POOL_MASK - 1);
4287		b->bi_flags |= 1 << BIO_UPTODATE;
4288		b->bi_next = blist;
4289		b->bi_vcnt = 0;
4290		b->bi_idx = 0;
4291		b->bi_size = 0;
4292		blist = b;
4293	}
4294
4295	/* Now add as many pages as possible to all of these bios. */
4296
4297	nr_sectors = 0;
4298	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4299		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4300		int len = (max_sectors - s) << 9;
4301		if (len > PAGE_SIZE)
4302			len = PAGE_SIZE;
4303		for (bio = blist; bio ; bio = bio->bi_next) {
4304			struct bio *bio2;
4305			if (bio_add_page(bio, page, len, 0))
4306				continue;
4307
4308			/* Didn't fit, must stop */
4309			for (bio2 = blist;
4310			     bio2 && bio2 != bio;
4311			     bio2 = bio2->bi_next) {
4312				/* Remove last page from this bio */
4313				bio2->bi_vcnt--;
4314				bio2->bi_size -= len;
4315				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4316			}
4317			goto bio_full;
4318		}
4319		sector_nr += len >> 9;
4320		nr_sectors += len >> 9;
4321	}
4322bio_full:
4323	r10_bio->sectors = nr_sectors;
4324
4325	/* Now submit the read */
4326	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4327	atomic_inc(&r10_bio->remaining);
4328	read_bio->bi_next = NULL;
4329	generic_make_request(read_bio);
4330	sector_nr += nr_sectors;
4331	sectors_done += nr_sectors;
4332	if (sector_nr <= last)
4333		goto read_more;
4334
4335	/* Now that we have done the whole section we can
4336	 * update reshape_progress
4337	 */
4338	if (mddev->reshape_backwards)
4339		conf->reshape_progress -= sectors_done;
4340	else
4341		conf->reshape_progress += sectors_done;
4342
4343	return sectors_done;
4344}
4345
4346static void end_reshape_request(struct r10bio *r10_bio);
4347static int handle_reshape_read_error(struct mddev *mddev,
4348				     struct r10bio *r10_bio);
4349static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4350{
4351	/* Reshape read completed.  Hopefully we have a block
4352	 * to write out.
4353	 * If we got a read error then we do sync 1-page reads from
4354	 * elsewhere until we find the data - or give up.
4355	 */
4356	struct r10conf *conf = mddev->private;
4357	int s;
4358
4359	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4360		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4361			/* Reshape has been aborted */
4362			md_done_sync(mddev, r10_bio->sectors, 0);
4363			return;
4364		}
4365
4366	/* We definitely have the data in the pages, schedule the
4367	 * writes.
4368	 */
4369	atomic_set(&r10_bio->remaining, 1);
4370	for (s = 0; s < conf->copies*2; s++) {
4371		struct bio *b;
4372		int d = r10_bio->devs[s/2].devnum;
4373		struct md_rdev *rdev;
4374		if (s&1) {
4375			rdev = conf->mirrors[d].replacement;
4376			b = r10_bio->devs[s/2].repl_bio;
4377		} else {
4378			rdev = conf->mirrors[d].rdev;
4379			b = r10_bio->devs[s/2].bio;
4380		}
4381		if (!rdev || test_bit(Faulty, &rdev->flags))
4382			continue;
4383		atomic_inc(&rdev->nr_pending);
4384		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4385		atomic_inc(&r10_bio->remaining);
4386		b->bi_next = NULL;
4387		generic_make_request(b);
4388	}
4389	end_reshape_request(r10_bio);
4390}
4391
4392static void end_reshape(struct r10conf *conf)
4393{
4394	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4395		return;
4396
4397	spin_lock_irq(&conf->device_lock);
4398	conf->prev = conf->geo;
4399	md_finish_reshape(conf->mddev);
4400	smp_wmb();
4401	conf->reshape_progress = MaxSector;
4402	spin_unlock_irq(&conf->device_lock);
4403
4404	/* read-ahead size must cover two whole stripes, which is
4405	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4406	 */
4407	if (conf->mddev->queue) {
4408		int stripe = conf->geo.raid_disks *
4409			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4410		stripe /= conf->geo.near_copies;
4411		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4412			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4413	}
4414	conf->fullsync = 0;
4415}
4416
4417
4418static int handle_reshape_read_error(struct mddev *mddev,
4419				     struct r10bio *r10_bio)
4420{
4421	/* Use sync reads to get the blocks from somewhere else */
4422	int sectors = r10_bio->sectors;
4423	struct r10conf *conf = mddev->private;
4424	struct {
4425		struct r10bio r10_bio;
4426		struct r10dev devs[conf->copies];
4427	} on_stack;
4428	struct r10bio *r10b = &on_stack.r10_bio;
4429	int slot = 0;
4430	int idx = 0;
4431	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4432
4433	r10b->sector = r10_bio->sector;
4434	__raid10_find_phys(&conf->prev, r10b);
4435
4436	while (sectors) {
4437		int s = sectors;
4438		int success = 0;
4439		int first_slot = slot;
4440
4441		if (s > (PAGE_SIZE >> 9))
4442			s = PAGE_SIZE >> 9;
4443
4444		while (!success) {
4445			int d = r10b->devs[slot].devnum;
4446			struct md_rdev *rdev = conf->mirrors[d].rdev;
4447			sector_t addr;
4448			if (rdev == NULL ||
4449			    test_bit(Faulty, &rdev->flags) ||
4450			    !test_bit(In_sync, &rdev->flags))
4451				goto failed;
4452
4453			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4454			success = sync_page_io(rdev,
4455					       addr,
4456					       s << 9,
4457					       bvec[idx].bv_page,
4458					       READ, false);
4459			if (success)
4460				break;
4461		failed:
4462			slot++;
4463			if (slot >= conf->copies)
4464				slot = 0;
4465			if (slot == first_slot)
4466				break;
4467		}
4468		if (!success) {
4469			/* couldn't read this block, must give up */
4470			set_bit(MD_RECOVERY_INTR,
4471				&mddev->recovery);
4472			return -EIO;
4473		}
4474		sectors -= s;
4475		idx++;
4476	}
4477	return 0;
4478}
4479
4480static void end_reshape_write(struct bio *bio, int error)
4481{
4482	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4483	struct r10bio *r10_bio = bio->bi_private;
4484	struct mddev *mddev = r10_bio->mddev;
4485	struct r10conf *conf = mddev->private;
4486	int d;
4487	int slot;
4488	int repl;
4489	struct md_rdev *rdev = NULL;
4490
4491	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4492	if (repl)
4493		rdev = conf->mirrors[d].replacement;
4494	if (!rdev) {
4495		smp_mb();
4496		rdev = conf->mirrors[d].rdev;
4497	}
4498
4499	if (!uptodate) {
4500		/* FIXME should record badblock */
4501		md_error(mddev, rdev);
4502	}
4503
4504	rdev_dec_pending(rdev, mddev);
4505	end_reshape_request(r10_bio);
4506}
4507
4508static void end_reshape_request(struct r10bio *r10_bio)
4509{
4510	if (!atomic_dec_and_test(&r10_bio->remaining))
4511		return;
4512	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4513	bio_put(r10_bio->master_bio);
4514	put_buf(r10_bio);
4515}
4516
4517static void raid10_finish_reshape(struct mddev *mddev)
4518{
4519	struct r10conf *conf = mddev->private;
4520
4521	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4522		return;
4523
4524	if (mddev->delta_disks > 0) {
4525		sector_t size = raid10_size(mddev, 0, 0);
4526		md_set_array_sectors(mddev, size);
4527		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4528			mddev->recovery_cp = mddev->resync_max_sectors;
4529			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4530		}
4531		mddev->resync_max_sectors = size;
4532		set_capacity(mddev->gendisk, mddev->array_sectors);
4533		revalidate_disk(mddev->gendisk);
4534	} else {
4535		int d;
4536		for (d = conf->geo.raid_disks ;
4537		     d < conf->geo.raid_disks - mddev->delta_disks;
4538		     d++) {
4539			struct md_rdev *rdev = conf->mirrors[d].rdev;
4540			if (rdev)
4541				clear_bit(In_sync, &rdev->flags);
4542			rdev = conf->mirrors[d].replacement;
4543			if (rdev)
4544				clear_bit(In_sync, &rdev->flags);
4545		}
4546	}
4547	mddev->layout = mddev->new_layout;
4548	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4549	mddev->reshape_position = MaxSector;
4550	mddev->delta_disks = 0;
4551	mddev->reshape_backwards = 0;
4552}
4553
4554static struct md_personality raid10_personality =
4555{
4556	.name		= "raid10",
4557	.level		= 10,
4558	.owner		= THIS_MODULE,
4559	.make_request	= make_request,
4560	.run		= run,
4561	.stop		= stop,
4562	.status		= status,
4563	.error_handler	= error,
4564	.hot_add_disk	= raid10_add_disk,
4565	.hot_remove_disk= raid10_remove_disk,
4566	.spare_active	= raid10_spare_active,
4567	.sync_request	= sync_request,
4568	.quiesce	= raid10_quiesce,
4569	.size		= raid10_size,
4570	.resize		= raid10_resize,
4571	.takeover	= raid10_takeover,
4572	.check_reshape	= raid10_check_reshape,
4573	.start_reshape	= raid10_start_reshape,
4574	.finish_reshape	= raid10_finish_reshape,
4575};
4576
4577static int __init raid_init(void)
4578{
4579	return register_md_personality(&raid10_personality);
4580}
4581
4582static void raid_exit(void)
4583{
4584	unregister_md_personality(&raid10_personality);
4585}
4586
4587module_init(raid_init);
4588module_exit(raid_exit);
4589MODULE_LICENSE("GPL");
4590MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4591MODULE_ALIAS("md-personality-9"); /* RAID10 */
4592MODULE_ALIAS("md-raid10");
4593MODULE_ALIAS("md-level-10");
4594
4595module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4596