1 //===- Store.cpp - Interface for maps from Locations to Values ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defined the types Store and StoreManager.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
31 #include "llvm/ADT/APSInt.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include <cassert>
37 #include <cstdint>
38 
39 using namespace clang;
40 using namespace ento;
41 
StoreManager(ProgramStateManager & stateMgr)42 StoreManager::StoreManager(ProgramStateManager &stateMgr)
43     : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
44       MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
45 
enterStackFrame(Store OldStore,const CallEvent & Call,const StackFrameContext * LCtx)46 StoreRef StoreManager::enterStackFrame(Store OldStore,
47                                        const CallEvent &Call,
48                                        const StackFrameContext *LCtx) {
49   StoreRef Store = StoreRef(OldStore, *this);
50 
51   SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
52   Call.getInitialStackFrameContents(LCtx, InitialBindings);
53 
54   for (const auto &I : InitialBindings)
55     Store = Bind(Store.getStore(), I.first.castAs<Loc>(), I.second);
56 
57   return Store;
58 }
59 
MakeElementRegion(const SubRegion * Base,QualType EleTy,uint64_t index)60 const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base,
61                                                      QualType EleTy,
62                                                      uint64_t index) {
63   NonLoc idx = svalBuilder.makeArrayIndex(index);
64   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
65 }
66 
GetElementZeroRegion(const SubRegion * R,QualType T)67 const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R,
68                                                         QualType T) {
69   NonLoc idx = svalBuilder.makeZeroArrayIndex();
70   assert(!T.isNull());
71   return MRMgr.getElementRegion(T, idx, R, Ctx);
72 }
73 
castRegion(const MemRegion * R,QualType CastToTy)74 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
75   ASTContext &Ctx = StateMgr.getContext();
76 
77   // Handle casts to Objective-C objects.
78   if (CastToTy->isObjCObjectPointerType())
79     return R->StripCasts();
80 
81   if (CastToTy->isBlockPointerType()) {
82     // FIXME: We may need different solutions, depending on the symbol
83     // involved.  Blocks can be casted to/from 'id', as they can be treated
84     // as Objective-C objects.  This could possibly be handled by enhancing
85     // our reasoning of downcasts of symbolic objects.
86     if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
87       return R;
88 
89     // We don't know what to make of it.  Return a NULL region, which
90     // will be interpreted as UnknownVal.
91     return nullptr;
92   }
93 
94   // Now assume we are casting from pointer to pointer. Other cases should
95   // already be handled.
96   QualType PointeeTy = CastToTy->getPointeeType();
97   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
98 
99   // Handle casts to void*.  We just pass the region through.
100   if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
101     return R;
102 
103   // Handle casts from compatible types.
104   if (R->isBoundable())
105     if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
106       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
107       if (CanonPointeeTy == ObjTy)
108         return R;
109     }
110 
111   // Process region cast according to the kind of the region being cast.
112   switch (R->getKind()) {
113     case MemRegion::CXXThisRegionKind:
114     case MemRegion::CodeSpaceRegionKind:
115     case MemRegion::StackLocalsSpaceRegionKind:
116     case MemRegion::StackArgumentsSpaceRegionKind:
117     case MemRegion::HeapSpaceRegionKind:
118     case MemRegion::UnknownSpaceRegionKind:
119     case MemRegion::StaticGlobalSpaceRegionKind:
120     case MemRegion::GlobalInternalSpaceRegionKind:
121     case MemRegion::GlobalSystemSpaceRegionKind:
122     case MemRegion::GlobalImmutableSpaceRegionKind: {
123       llvm_unreachable("Invalid region cast");
124     }
125 
126     case MemRegion::FunctionCodeRegionKind:
127     case MemRegion::BlockCodeRegionKind:
128     case MemRegion::BlockDataRegionKind:
129     case MemRegion::StringRegionKind:
130       // FIXME: Need to handle arbitrary downcasts.
131     case MemRegion::SymbolicRegionKind:
132     case MemRegion::AllocaRegionKind:
133     case MemRegion::CompoundLiteralRegionKind:
134     case MemRegion::FieldRegionKind:
135     case MemRegion::ObjCIvarRegionKind:
136     case MemRegion::ObjCStringRegionKind:
137     case MemRegion::NonParamVarRegionKind:
138     case MemRegion::ParamVarRegionKind:
139     case MemRegion::CXXTempObjectRegionKind:
140     case MemRegion::CXXBaseObjectRegionKind:
141     case MemRegion::CXXDerivedObjectRegionKind:
142       return MakeElementRegion(cast<SubRegion>(R), PointeeTy);
143 
144     case MemRegion::ElementRegionKind: {
145       // If we are casting from an ElementRegion to another type, the
146       // algorithm is as follows:
147       //
148       // (1) Compute the "raw offset" of the ElementRegion from the
149       //     base region.  This is done by calling 'getAsRawOffset()'.
150       //
151       // (2a) If we get a 'RegionRawOffset' after calling
152       //      'getAsRawOffset()', determine if the absolute offset
153       //      can be exactly divided into chunks of the size of the
154       //      casted-pointee type.  If so, create a new ElementRegion with
155       //      the pointee-cast type as the new ElementType and the index
156       //      being the offset divded by the chunk size.  If not, create
157       //      a new ElementRegion at offset 0 off the raw offset region.
158       //
159       // (2b) If we don't a get a 'RegionRawOffset' after calling
160       //      'getAsRawOffset()', it means that we are at offset 0.
161       //
162       // FIXME: Handle symbolic raw offsets.
163 
164       const ElementRegion *elementR = cast<ElementRegion>(R);
165       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
166       const MemRegion *baseR = rawOff.getRegion();
167 
168       // If we cannot compute a raw offset, throw up our hands and return
169       // a NULL MemRegion*.
170       if (!baseR)
171         return nullptr;
172 
173       CharUnits off = rawOff.getOffset();
174 
175       if (off.isZero()) {
176         // Edge case: we are at 0 bytes off the beginning of baseR.  We
177         // check to see if type we are casting to is the same as the base
178         // region.  If so, just return the base region.
179         if (const auto *TR = dyn_cast<TypedValueRegion>(baseR)) {
180           QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
181           QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
182           if (CanonPointeeTy == ObjTy)
183             return baseR;
184         }
185 
186         // Otherwise, create a new ElementRegion at offset 0.
187         return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
188       }
189 
190       // We have a non-zero offset from the base region.  We want to determine
191       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
192       // we create an ElementRegion whose index is that value.  Otherwise, we
193       // create two ElementRegions, one that reflects a raw offset and the other
194       // that reflects the cast.
195 
196       // Compute the index for the new ElementRegion.
197       int64_t newIndex = 0;
198       const MemRegion *newSuperR = nullptr;
199 
200       // We can only compute sizeof(PointeeTy) if it is a complete type.
201       if (!PointeeTy->isIncompleteType()) {
202         // Compute the size in **bytes**.
203         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
204         if (!pointeeTySize.isZero()) {
205           // Is the offset a multiple of the size?  If so, we can layer the
206           // ElementRegion (with elementType == PointeeTy) directly on top of
207           // the base region.
208           if (off % pointeeTySize == 0) {
209             newIndex = off / pointeeTySize;
210             newSuperR = baseR;
211           }
212         }
213       }
214 
215       if (!newSuperR) {
216         // Create an intermediate ElementRegion to represent the raw byte.
217         // This will be the super region of the final ElementRegion.
218         newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
219                                       off.getQuantity());
220       }
221 
222       return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
223     }
224   }
225 
226   llvm_unreachable("unreachable");
227 }
228 
regionMatchesCXXRecordType(SVal V,QualType Ty)229 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
230   const MemRegion *MR = V.getAsRegion();
231   if (!MR)
232     return true;
233 
234   const auto *TVR = dyn_cast<TypedValueRegion>(MR);
235   if (!TVR)
236     return true;
237 
238   const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
239   if (!RD)
240     return true;
241 
242   const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
243   if (!Expected)
244     Expected = Ty->getAsCXXRecordDecl();
245 
246   return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
247 }
248 
evalDerivedToBase(SVal Derived,const CastExpr * Cast)249 SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
250   // Sanity check to avoid doing the wrong thing in the face of
251   // reinterpret_cast.
252   if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
253     return UnknownVal();
254 
255   // Walk through the cast path to create nested CXXBaseRegions.
256   SVal Result = Derived;
257   for (CastExpr::path_const_iterator I = Cast->path_begin(),
258                                      E = Cast->path_end();
259        I != E; ++I) {
260     Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
261   }
262   return Result;
263 }
264 
evalDerivedToBase(SVal Derived,const CXXBasePath & Path)265 SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
266   // Walk through the path to create nested CXXBaseRegions.
267   SVal Result = Derived;
268   for (const auto &I : Path)
269     Result = evalDerivedToBase(Result, I.Base->getType(),
270                                I.Base->isVirtual());
271   return Result;
272 }
273 
evalDerivedToBase(SVal Derived,QualType BaseType,bool IsVirtual)274 SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
275                                      bool IsVirtual) {
276   const MemRegion *DerivedReg = Derived.getAsRegion();
277   if (!DerivedReg)
278     return Derived;
279 
280   const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
281   if (!BaseDecl)
282     BaseDecl = BaseType->getAsCXXRecordDecl();
283   assert(BaseDecl && "not a C++ object?");
284 
285   if (const auto *AlreadyDerivedReg =
286           dyn_cast<CXXDerivedObjectRegion>(DerivedReg)) {
287     if (const auto *SR =
288             dyn_cast<SymbolicRegion>(AlreadyDerivedReg->getSuperRegion()))
289       if (SR->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl)
290         return loc::MemRegionVal(SR);
291 
292     DerivedReg = AlreadyDerivedReg->getSuperRegion();
293   }
294 
295   const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
296       BaseDecl, cast<SubRegion>(DerivedReg), IsVirtual);
297 
298   return loc::MemRegionVal(BaseReg);
299 }
300 
301 /// Returns the static type of the given region, if it represents a C++ class
302 /// object.
303 ///
304 /// This handles both fully-typed regions, where the dynamic type is known, and
305 /// symbolic regions, where the dynamic type is merely bounded (and even then,
306 /// only ostensibly!), but does not take advantage of any dynamic type info.
getCXXRecordType(const MemRegion * MR)307 static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
308   if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
309     return TVR->getValueType()->getAsCXXRecordDecl();
310   if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
311     return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
312   return nullptr;
313 }
314 
attemptDownCast(SVal Base,QualType TargetType,bool & Failed)315 SVal StoreManager::attemptDownCast(SVal Base, QualType TargetType,
316                                    bool &Failed) {
317   Failed = false;
318 
319   const MemRegion *MR = Base.getAsRegion();
320   if (!MR)
321     return UnknownVal();
322 
323   // Assume the derived class is a pointer or a reference to a CXX record.
324   TargetType = TargetType->getPointeeType();
325   assert(!TargetType.isNull());
326   const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
327   if (!TargetClass && !TargetType->isVoidType())
328     return UnknownVal();
329 
330   // Drill down the CXXBaseObject chains, which represent upcasts (casts from
331   // derived to base).
332   while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
333     // If found the derived class, the cast succeeds.
334     if (MRClass == TargetClass)
335       return loc::MemRegionVal(MR);
336 
337     // We skip over incomplete types. They must be the result of an earlier
338     // reinterpret_cast, as one can only dynamic_cast between types in the same
339     // class hierarchy.
340     if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
341       // Static upcasts are marked as DerivedToBase casts by Sema, so this will
342       // only happen when multiple or virtual inheritance is involved.
343       CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
344                          /*DetectVirtual=*/false);
345       if (MRClass->isDerivedFrom(TargetClass, Paths))
346         return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
347     }
348 
349     if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
350       // Drill down the chain to get the derived classes.
351       MR = BaseR->getSuperRegion();
352       continue;
353     }
354 
355     // If this is a cast to void*, return the region.
356     if (TargetType->isVoidType())
357       return loc::MemRegionVal(MR);
358 
359     // Strange use of reinterpret_cast can give us paths we don't reason
360     // about well, by putting in ElementRegions where we'd expect
361     // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
362     // derived class has a zero offset from the base class), then it's safe
363     // to strip the cast; if it's invalid, -Wreinterpret-base-class should
364     // catch it. In the interest of performance, the analyzer will silently
365     // do the wrong thing in the invalid case (because offsets for subregions
366     // will be wrong).
367     const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
368     if (Uncasted == MR) {
369       // We reached the bottom of the hierarchy and did not find the derived
370       // class. We must be casting the base to derived, so the cast should
371       // fail.
372       break;
373     }
374 
375     MR = Uncasted;
376   }
377 
378   // If we're casting a symbolic base pointer to a derived class, use
379   // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
380   // unrelated type, it must be a weird reinterpret_cast and we have to
381   // be fine with ElementRegion. TODO: Should we instead make
382   // Derived{TargetClass, Element{SourceClass, SR}}?
383   if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
384     QualType T = SR->getSymbol()->getType();
385     const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
386     if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
387       return loc::MemRegionVal(
388           MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
389     return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
390   }
391 
392   // We failed if the region we ended up with has perfect type info.
393   Failed = isa<TypedValueRegion>(MR);
394   return UnknownVal();
395 }
396 
hasSameUnqualifiedPointeeType(QualType ty1,QualType ty2)397 static bool hasSameUnqualifiedPointeeType(QualType ty1, QualType ty2) {
398   return ty1->getPointeeType().getCanonicalType().getTypePtr() ==
399          ty2->getPointeeType().getCanonicalType().getTypePtr();
400 }
401 
402 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
403 ///  implicit casts that arise from loads from regions that are reinterpreted
404 ///  as another region.
CastRetrievedVal(SVal V,const TypedValueRegion * R,QualType castTy)405 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
406                                     QualType castTy) {
407   if (castTy.isNull() || V.isUnknownOrUndef())
408     return V;
409 
410   // The dispatchCast() call below would convert the int into a float.
411   // What we want, however, is a bit-by-bit reinterpretation of the int
412   // as a float, which usually yields nothing garbage. For now skip casts
413   // from ints to floats.
414   // TODO: What other combinations of types are affected?
415   if (castTy->isFloatingType()) {
416     SymbolRef Sym = V.getAsSymbol();
417     if (Sym && !Sym->getType()->isFloatingType())
418       return UnknownVal();
419   }
420 
421   // When retrieving symbolic pointer and expecting a non-void pointer,
422   // wrap them into element regions of the expected type if necessary.
423   // SValBuilder::dispatchCast() doesn't do that, but it is necessary to
424   // make sure that the retrieved value makes sense, because there's no other
425   // cast in the AST that would tell us to cast it to the correct pointer type.
426   // We might need to do that for non-void pointers as well.
427   // FIXME: We really need a single good function to perform casts for us
428   // correctly every time we need it.
429   if (castTy->isPointerType() && !castTy->isVoidPointerType())
430     if (const auto *SR = dyn_cast_or_null<SymbolicRegion>(V.getAsRegion())) {
431       QualType sr = SR->getSymbol()->getType();
432       if (!hasSameUnqualifiedPointeeType(sr, castTy))
433           return loc::MemRegionVal(castRegion(SR, castTy));
434     }
435 
436   return svalBuilder.dispatchCast(V, castTy);
437 }
438 
getLValueFieldOrIvar(const Decl * D,SVal Base)439 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
440   if (Base.isUnknownOrUndef())
441     return Base;
442 
443   Loc BaseL = Base.castAs<Loc>();
444   const SubRegion* BaseR = nullptr;
445 
446   switch (BaseL.getSubKind()) {
447   case loc::MemRegionValKind:
448     BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
449     break;
450 
451   case loc::GotoLabelKind:
452     // These are anormal cases. Flag an undefined value.
453     return UndefinedVal();
454 
455   case loc::ConcreteIntKind:
456     // While these seem funny, this can happen through casts.
457     // FIXME: What we should return is the field offset, not base. For example,
458     //  add the field offset to the integer value.  That way things
459     //  like this work properly:  &(((struct foo *) 0xa)->f)
460     //  However, that's not easy to fix without reducing our abilities
461     //  to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
462     //  is a null dereference even though we're dereferencing offset of f
463     //  rather than null. Coming up with an approach that computes offsets
464     //  over null pointers properly while still being able to catch null
465     //  dereferences might be worth it.
466     return Base;
467 
468   default:
469     llvm_unreachable("Unhandled Base.");
470   }
471 
472   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
473   // of FieldDecl.
474   if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
475     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
476 
477   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
478 }
479 
getLValueIvar(const ObjCIvarDecl * decl,SVal base)480 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
481   return getLValueFieldOrIvar(decl, base);
482 }
483 
getLValueElement(QualType elementType,NonLoc Offset,SVal Base)484 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
485                                     SVal Base) {
486   // If the base is an unknown or undefined value, just return it back.
487   // FIXME: For absolute pointer addresses, we just return that value back as
488   //  well, although in reality we should return the offset added to that
489   //  value. See also the similar FIXME in getLValueFieldOrIvar().
490   if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
491     return Base;
492 
493   if (Base.getAs<loc::GotoLabel>())
494     return UnknownVal();
495 
496   const SubRegion *BaseRegion =
497       Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();
498 
499   // Pointer of any type can be cast and used as array base.
500   const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);
501 
502   // Convert the offset to the appropriate size and signedness.
503   Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
504 
505   if (!ElemR) {
506     // If the base region is not an ElementRegion, create one.
507     // This can happen in the following example:
508     //
509     //   char *p = __builtin_alloc(10);
510     //   p[1] = 8;
511     //
512     //  Observe that 'p' binds to an AllocaRegion.
513     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
514                                                     BaseRegion, Ctx));
515   }
516 
517   SVal BaseIdx = ElemR->getIndex();
518 
519   if (!BaseIdx.getAs<nonloc::ConcreteInt>())
520     return UnknownVal();
521 
522   const llvm::APSInt &BaseIdxI =
523       BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
524 
525   // Only allow non-integer offsets if the base region has no offset itself.
526   // FIXME: This is a somewhat arbitrary restriction. We should be using
527   // SValBuilder here to add the two offsets without checking their types.
528   if (!Offset.getAs<nonloc::ConcreteInt>()) {
529     if (isa<ElementRegion>(BaseRegion->StripCasts()))
530       return UnknownVal();
531 
532     return loc::MemRegionVal(MRMgr.getElementRegion(
533         elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
534   }
535 
536   const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
537   assert(BaseIdxI.isSigned());
538 
539   // Compute the new index.
540   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
541                                                                     OffI));
542 
543   // Construct the new ElementRegion.
544   const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
545   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
546                                                   Ctx));
547 }
548 
549 StoreManager::BindingsHandler::~BindingsHandler() = default;
550 
HandleBinding(StoreManager & SMgr,Store store,const MemRegion * R,SVal val)551 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
552                                                     Store store,
553                                                     const MemRegion* R,
554                                                     SVal val) {
555   SymbolRef SymV = val.getAsLocSymbol();
556   if (!SymV || SymV != Sym)
557     return true;
558 
559   if (Binding) {
560     First = false;
561     return false;
562   }
563   else
564     Binding = R;
565 
566   return true;
567 }
568