1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/IntrinsicsAArch64.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/ValueMap.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BlockFrequency.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
91 #include "llvm/Transforms/Utils/Local.h"
92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
93 #include "llvm/Transforms/Utils/SizeOpts.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <limits>
99 #include <memory>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 
106 #define DEBUG_TYPE "codegenprepare"
107 
108 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
109 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
110 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
112                       "sunken Cmps");
113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
114                        "of sunken Casts");
115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
116                           "computations were sunk");
117 STATISTIC(NumMemoryInstsPhiCreated,
118           "Number of phis created when address "
119           "computations were sunk to memory instructions");
120 STATISTIC(NumMemoryInstsSelectCreated,
121           "Number of select created when address "
122           "computations were sunk to memory instructions");
123 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
124 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
125 STATISTIC(NumAndsAdded,
126           "Number of and mask instructions added to form ext loads");
127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
128 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
132 
133 static cl::opt<bool> DisableBranchOpts(
134   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
135   cl::desc("Disable branch optimizations in CodeGenPrepare"));
136 
137 static cl::opt<bool>
138     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
139                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
140 
141 static cl::opt<bool> DisableSelectToBranch(
142   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
143   cl::desc("Disable select to branch conversion."));
144 
145 static cl::opt<bool> AddrSinkUsingGEPs(
146   "addr-sink-using-gep", cl::Hidden, cl::init(true),
147   cl::desc("Address sinking in CGP using GEPs."));
148 
149 static cl::opt<bool> EnableAndCmpSinking(
150    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
151    cl::desc("Enable sinkinig and/cmp into branches."));
152 
153 static cl::opt<bool> DisableStoreExtract(
154     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
155     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
156 
157 static cl::opt<bool> StressStoreExtract(
158     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
159     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
160 
161 static cl::opt<bool> DisableExtLdPromotion(
162     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
163     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
164              "CodeGenPrepare"));
165 
166 static cl::opt<bool> StressExtLdPromotion(
167     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
168     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
169              "optimization in CodeGenPrepare"));
170 
171 static cl::opt<bool> DisablePreheaderProtect(
172     "disable-preheader-prot", cl::Hidden, cl::init(false),
173     cl::desc("Disable protection against removing loop preheaders"));
174 
175 static cl::opt<bool> ProfileGuidedSectionPrefix(
176     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
177     cl::desc("Use profile info to add section prefix for hot/cold functions"));
178 
179 static cl::opt<bool> ProfileUnknownInSpecialSection(
180     "profile-unknown-in-special-section", cl::Hidden, cl::init(false),
181     cl::ZeroOrMore,
182     cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
183              "profile, we cannot tell the function is cold for sure because "
184              "it may be a function newly added without ever being sampled. "
185              "With the flag enabled, compiler can put such profile unknown "
186              "functions into a special section, so runtime system can choose "
187              "to handle it in a different way than .text section, to save "
188              "RAM for example. "));
189 
190 static cl::opt<unsigned> FreqRatioToSkipMerge(
191     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
192     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
193              "(frequency of destination block) is greater than this ratio"));
194 
195 static cl::opt<bool> ForceSplitStore(
196     "force-split-store", cl::Hidden, cl::init(false),
197     cl::desc("Force store splitting no matter what the target query says."));
198 
199 static cl::opt<bool>
200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
201     cl::desc("Enable merging of redundant sexts when one is dominating"
202     " the other."), cl::init(true));
203 
204 static cl::opt<bool> DisableComplexAddrModes(
205     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
206     cl::desc("Disables combining addressing modes with different parts "
207              "in optimizeMemoryInst."));
208 
209 static cl::opt<bool>
210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
211                 cl::desc("Allow creation of Phis in Address sinking."));
212 
213 static cl::opt<bool>
214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
215                    cl::desc("Allow creation of selects in Address sinking."));
216 
217 static cl::opt<bool> AddrSinkCombineBaseReg(
218     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
219     cl::desc("Allow combining of BaseReg field in Address sinking."));
220 
221 static cl::opt<bool> AddrSinkCombineBaseGV(
222     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
223     cl::desc("Allow combining of BaseGV field in Address sinking."));
224 
225 static cl::opt<bool> AddrSinkCombineBaseOffs(
226     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
227     cl::desc("Allow combining of BaseOffs field in Address sinking."));
228 
229 static cl::opt<bool> AddrSinkCombineScaledReg(
230     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
231     cl::desc("Allow combining of ScaledReg field in Address sinking."));
232 
233 static cl::opt<bool>
234     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
235                          cl::init(true),
236                          cl::desc("Enable splitting large offset of GEP."));
237 
238 static cl::opt<bool> EnableICMP_EQToICMP_ST(
239     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
240     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
241 
242 static cl::opt<bool>
243     VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
244                      cl::desc("Enable BFI update verification for "
245                               "CodeGenPrepare."));
246 
247 static cl::opt<bool> OptimizePhiTypes(
248     "cgp-optimize-phi-types", cl::Hidden, cl::init(false),
249     cl::desc("Enable converting phi types in CodeGenPrepare"));
250 
251 namespace {
252 
253 enum ExtType {
254   ZeroExtension,   // Zero extension has been seen.
255   SignExtension,   // Sign extension has been seen.
256   BothExtension    // This extension type is used if we saw sext after
257                    // ZeroExtension had been set, or if we saw zext after
258                    // SignExtension had been set. It makes the type
259                    // information of a promoted instruction invalid.
260 };
261 
262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
265 using SExts = SmallVector<Instruction *, 16>;
266 using ValueToSExts = DenseMap<Value *, SExts>;
267 
268 class TypePromotionTransaction;
269 
270   class CodeGenPrepare : public FunctionPass {
271     const TargetMachine *TM = nullptr;
272     const TargetSubtargetInfo *SubtargetInfo;
273     const TargetLowering *TLI = nullptr;
274     const TargetRegisterInfo *TRI;
275     const TargetTransformInfo *TTI = nullptr;
276     const TargetLibraryInfo *TLInfo;
277     const LoopInfo *LI;
278     std::unique_ptr<BlockFrequencyInfo> BFI;
279     std::unique_ptr<BranchProbabilityInfo> BPI;
280     ProfileSummaryInfo *PSI;
281 
282     /// As we scan instructions optimizing them, this is the next instruction
283     /// to optimize. Transforms that can invalidate this should update it.
284     BasicBlock::iterator CurInstIterator;
285 
286     /// Keeps track of non-local addresses that have been sunk into a block.
287     /// This allows us to avoid inserting duplicate code for blocks with
288     /// multiple load/stores of the same address. The usage of WeakTrackingVH
289     /// enables SunkAddrs to be treated as a cache whose entries can be
290     /// invalidated if a sunken address computation has been erased.
291     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
292 
293     /// Keeps track of all instructions inserted for the current function.
294     SetOfInstrs InsertedInsts;
295 
296     /// Keeps track of the type of the related instruction before their
297     /// promotion for the current function.
298     InstrToOrigTy PromotedInsts;
299 
300     /// Keep track of instructions removed during promotion.
301     SetOfInstrs RemovedInsts;
302 
303     /// Keep track of sext chains based on their initial value.
304     DenseMap<Value *, Instruction *> SeenChainsForSExt;
305 
306     /// Keep track of GEPs accessing the same data structures such as structs or
307     /// arrays that are candidates to be split later because of their large
308     /// size.
309     MapVector<
310         AssertingVH<Value>,
311         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
312         LargeOffsetGEPMap;
313 
314     /// Keep track of new GEP base after splitting the GEPs having large offset.
315     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
316 
317     /// Map serial numbers to Large offset GEPs.
318     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
319 
320     /// Keep track of SExt promoted.
321     ValueToSExts ValToSExtendedUses;
322 
323     /// True if the function has the OptSize attribute.
324     bool OptSize;
325 
326     /// DataLayout for the Function being processed.
327     const DataLayout *DL = nullptr;
328 
329     /// Building the dominator tree can be expensive, so we only build it
330     /// lazily and update it when required.
331     std::unique_ptr<DominatorTree> DT;
332 
333   public:
334     static char ID; // Pass identification, replacement for typeid
335 
CodeGenPrepare()336     CodeGenPrepare() : FunctionPass(ID) {
337       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
338     }
339 
340     bool runOnFunction(Function &F) override;
341 
getPassName() const342     StringRef getPassName() const override { return "CodeGen Prepare"; }
343 
getAnalysisUsage(AnalysisUsage & AU) const344     void getAnalysisUsage(AnalysisUsage &AU) const override {
345       // FIXME: When we can selectively preserve passes, preserve the domtree.
346       AU.addRequired<ProfileSummaryInfoWrapperPass>();
347       AU.addRequired<TargetLibraryInfoWrapperPass>();
348       AU.addRequired<TargetPassConfig>();
349       AU.addRequired<TargetTransformInfoWrapperPass>();
350       AU.addRequired<LoopInfoWrapperPass>();
351     }
352 
353   private:
354     template <typename F>
resetIteratorIfInvalidatedWhileCalling(BasicBlock * BB,F f)355     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
356       // Substituting can cause recursive simplifications, which can invalidate
357       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
358       // happens.
359       Value *CurValue = &*CurInstIterator;
360       WeakTrackingVH IterHandle(CurValue);
361 
362       f();
363 
364       // If the iterator instruction was recursively deleted, start over at the
365       // start of the block.
366       if (IterHandle != CurValue) {
367         CurInstIterator = BB->begin();
368         SunkAddrs.clear();
369       }
370     }
371 
372     // Get the DominatorTree, building if necessary.
getDT(Function & F)373     DominatorTree &getDT(Function &F) {
374       if (!DT)
375         DT = std::make_unique<DominatorTree>(F);
376       return *DT;
377     }
378 
379     void removeAllAssertingVHReferences(Value *V);
380     bool eliminateFallThrough(Function &F);
381     bool eliminateMostlyEmptyBlocks(Function &F);
382     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
383     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
384     void eliminateMostlyEmptyBlock(BasicBlock *BB);
385     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
386                                        bool isPreheader);
387     bool makeBitReverse(Instruction &I);
388     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
389     bool optimizeInst(Instruction *I, bool &ModifiedDT);
390     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
391                             Type *AccessTy, unsigned AddrSpace);
392     bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
393     bool optimizeInlineAsmInst(CallInst *CS);
394     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
395     bool optimizeExt(Instruction *&I);
396     bool optimizeExtUses(Instruction *I);
397     bool optimizeLoadExt(LoadInst *Load);
398     bool optimizeShiftInst(BinaryOperator *BO);
399     bool optimizeFunnelShift(IntrinsicInst *Fsh);
400     bool optimizeSelectInst(SelectInst *SI);
401     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
402     bool optimizeSwitchInst(SwitchInst *SI);
403     bool optimizeExtractElementInst(Instruction *Inst);
404     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
405     bool fixupDbgValue(Instruction *I);
406     bool placeDbgValues(Function &F);
407     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
408                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
409     bool tryToPromoteExts(TypePromotionTransaction &TPT,
410                           const SmallVectorImpl<Instruction *> &Exts,
411                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
412                           unsigned CreatedInstsCost = 0);
413     bool mergeSExts(Function &F);
414     bool splitLargeGEPOffsets();
415     bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
416                          SmallPtrSetImpl<Instruction *> &DeletedInstrs);
417     bool optimizePhiTypes(Function &F);
418     bool performAddressTypePromotion(
419         Instruction *&Inst,
420         bool AllowPromotionWithoutCommonHeader,
421         bool HasPromoted, TypePromotionTransaction &TPT,
422         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
423     bool splitBranchCondition(Function &F, bool &ModifiedDT);
424     bool simplifyOffsetableRelocate(GCStatepointInst &I);
425 
426     bool tryToSinkFreeOperands(Instruction *I);
427     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
428                                      Value *Arg1, CmpInst *Cmp,
429                                      Intrinsic::ID IID);
430     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
431     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
432     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
433     void verifyBFIUpdates(Function &F);
434   };
435 
436 } // end anonymous namespace
437 
438 char CodeGenPrepare::ID = 0;
439 
440 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
441                       "Optimize for code generation", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
443 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
444 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
445 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
446 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
447 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
448                     "Optimize for code generation", false, false)
449 
450 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
451 
runOnFunction(Function & F)452 bool CodeGenPrepare::runOnFunction(Function &F) {
453   if (skipFunction(F))
454     return false;
455 
456   DL = &F.getParent()->getDataLayout();
457 
458   bool EverMadeChange = false;
459   // Clear per function information.
460   InsertedInsts.clear();
461   PromotedInsts.clear();
462 
463   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
464   SubtargetInfo = TM->getSubtargetImpl(F);
465   TLI = SubtargetInfo->getTargetLowering();
466   TRI = SubtargetInfo->getRegisterInfo();
467   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
468   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
469   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
470   BPI.reset(new BranchProbabilityInfo(F, *LI));
471   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
472   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
473   OptSize = F.hasOptSize();
474   if (ProfileGuidedSectionPrefix) {
475     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
476       F.setSectionPrefix(".hot");
477     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
478       F.setSectionPrefix(".unlikely");
479     else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
480              PSI->isFunctionHotnessUnknown(F))
481       F.setSectionPrefix(".unknown");
482   }
483 
484   /// This optimization identifies DIV instructions that can be
485   /// profitably bypassed and carried out with a shorter, faster divide.
486   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
487     const DenseMap<unsigned int, unsigned int> &BypassWidths =
488         TLI->getBypassSlowDivWidths();
489     BasicBlock* BB = &*F.begin();
490     while (BB != nullptr) {
491       // bypassSlowDivision may create new BBs, but we don't want to reapply the
492       // optimization to those blocks.
493       BasicBlock* Next = BB->getNextNode();
494       // F.hasOptSize is already checked in the outer if statement.
495       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
496         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
497       BB = Next;
498     }
499   }
500 
501   // Eliminate blocks that contain only PHI nodes and an
502   // unconditional branch.
503   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
504 
505   bool ModifiedDT = false;
506   if (!DisableBranchOpts)
507     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
508 
509   // Split some critical edges where one of the sources is an indirect branch,
510   // to help generate sane code for PHIs involving such edges.
511   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
512 
513   bool MadeChange = true;
514   while (MadeChange) {
515     MadeChange = false;
516     DT.reset();
517     for (Function::iterator I = F.begin(); I != F.end(); ) {
518       BasicBlock *BB = &*I++;
519       bool ModifiedDTOnIteration = false;
520       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
521 
522       // Restart BB iteration if the dominator tree of the Function was changed
523       if (ModifiedDTOnIteration)
524         break;
525     }
526     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
527       MadeChange |= mergeSExts(F);
528     if (!LargeOffsetGEPMap.empty())
529       MadeChange |= splitLargeGEPOffsets();
530     MadeChange |= optimizePhiTypes(F);
531 
532     if (MadeChange)
533       eliminateFallThrough(F);
534 
535     // Really free removed instructions during promotion.
536     for (Instruction *I : RemovedInsts)
537       I->deleteValue();
538 
539     EverMadeChange |= MadeChange;
540     SeenChainsForSExt.clear();
541     ValToSExtendedUses.clear();
542     RemovedInsts.clear();
543     LargeOffsetGEPMap.clear();
544     LargeOffsetGEPID.clear();
545   }
546 
547   SunkAddrs.clear();
548 
549   if (!DisableBranchOpts) {
550     MadeChange = false;
551     // Use a set vector to get deterministic iteration order. The order the
552     // blocks are removed may affect whether or not PHI nodes in successors
553     // are removed.
554     SmallSetVector<BasicBlock*, 8> WorkList;
555     for (BasicBlock &BB : F) {
556       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
557       MadeChange |= ConstantFoldTerminator(&BB, true);
558       if (!MadeChange) continue;
559 
560       for (SmallVectorImpl<BasicBlock*>::iterator
561              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
562         if (pred_begin(*II) == pred_end(*II))
563           WorkList.insert(*II);
564     }
565 
566     // Delete the dead blocks and any of their dead successors.
567     MadeChange |= !WorkList.empty();
568     while (!WorkList.empty()) {
569       BasicBlock *BB = WorkList.pop_back_val();
570       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
571 
572       DeleteDeadBlock(BB);
573 
574       for (SmallVectorImpl<BasicBlock*>::iterator
575              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
576         if (pred_begin(*II) == pred_end(*II))
577           WorkList.insert(*II);
578     }
579 
580     // Merge pairs of basic blocks with unconditional branches, connected by
581     // a single edge.
582     if (EverMadeChange || MadeChange)
583       MadeChange |= eliminateFallThrough(F);
584 
585     EverMadeChange |= MadeChange;
586   }
587 
588   if (!DisableGCOpts) {
589     SmallVector<GCStatepointInst *, 2> Statepoints;
590     for (BasicBlock &BB : F)
591       for (Instruction &I : BB)
592         if (auto *SP = dyn_cast<GCStatepointInst>(&I))
593           Statepoints.push_back(SP);
594     for (auto &I : Statepoints)
595       EverMadeChange |= simplifyOffsetableRelocate(*I);
596   }
597 
598   // Do this last to clean up use-before-def scenarios introduced by other
599   // preparatory transforms.
600   EverMadeChange |= placeDbgValues(F);
601 
602 #ifndef NDEBUG
603   if (VerifyBFIUpdates)
604     verifyBFIUpdates(F);
605 #endif
606 
607   return EverMadeChange;
608 }
609 
610 /// An instruction is about to be deleted, so remove all references to it in our
611 /// GEP-tracking data strcutures.
removeAllAssertingVHReferences(Value * V)612 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
613   LargeOffsetGEPMap.erase(V);
614   NewGEPBases.erase(V);
615 
616   auto GEP = dyn_cast<GetElementPtrInst>(V);
617   if (!GEP)
618     return;
619 
620   LargeOffsetGEPID.erase(GEP);
621 
622   auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
623   if (VecI == LargeOffsetGEPMap.end())
624     return;
625 
626   auto &GEPVector = VecI->second;
627   const auto &I = std::find_if(GEPVector.begin(), GEPVector.end(),
628                                [=](auto &Elt) { return Elt.first == GEP; });
629   if (I == GEPVector.end())
630     return;
631 
632   GEPVector.erase(I);
633   if (GEPVector.empty())
634     LargeOffsetGEPMap.erase(VecI);
635 }
636 
637 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
verifyBFIUpdates(Function & F)638 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
639   DominatorTree NewDT(F);
640   LoopInfo NewLI(NewDT);
641   BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
642   BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
643   NewBFI.verifyMatch(*BFI);
644 }
645 
646 /// Merge basic blocks which are connected by a single edge, where one of the
647 /// basic blocks has a single successor pointing to the other basic block,
648 /// which has a single predecessor.
eliminateFallThrough(Function & F)649 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
650   bool Changed = false;
651   // Scan all of the blocks in the function, except for the entry block.
652   // Use a temporary array to avoid iterator being invalidated when
653   // deleting blocks.
654   SmallVector<WeakTrackingVH, 16> Blocks;
655   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
656     Blocks.push_back(&Block);
657 
658   SmallSet<WeakTrackingVH, 16> Preds;
659   for (auto &Block : Blocks) {
660     auto *BB = cast_or_null<BasicBlock>(Block);
661     if (!BB)
662       continue;
663     // If the destination block has a single pred, then this is a trivial
664     // edge, just collapse it.
665     BasicBlock *SinglePred = BB->getSinglePredecessor();
666 
667     // Don't merge if BB's address is taken.
668     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
669 
670     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
671     if (Term && !Term->isConditional()) {
672       Changed = true;
673       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
674 
675       // Merge BB into SinglePred and delete it.
676       MergeBlockIntoPredecessor(BB);
677       Preds.insert(SinglePred);
678     }
679   }
680 
681   // (Repeatedly) merging blocks into their predecessors can create redundant
682   // debug intrinsics.
683   for (auto &Pred : Preds)
684     if (auto *BB = cast_or_null<BasicBlock>(Pred))
685       RemoveRedundantDbgInstrs(BB);
686 
687   return Changed;
688 }
689 
690 /// Find a destination block from BB if BB is mergeable empty block.
findDestBlockOfMergeableEmptyBlock(BasicBlock * BB)691 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
692   // If this block doesn't end with an uncond branch, ignore it.
693   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
694   if (!BI || !BI->isUnconditional())
695     return nullptr;
696 
697   // If the instruction before the branch (skipping debug info) isn't a phi
698   // node, then other stuff is happening here.
699   BasicBlock::iterator BBI = BI->getIterator();
700   if (BBI != BB->begin()) {
701     --BBI;
702     while (isa<DbgInfoIntrinsic>(BBI)) {
703       if (BBI == BB->begin())
704         break;
705       --BBI;
706     }
707     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
708       return nullptr;
709   }
710 
711   // Do not break infinite loops.
712   BasicBlock *DestBB = BI->getSuccessor(0);
713   if (DestBB == BB)
714     return nullptr;
715 
716   if (!canMergeBlocks(BB, DestBB))
717     DestBB = nullptr;
718 
719   return DestBB;
720 }
721 
722 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
723 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
724 /// edges in ways that are non-optimal for isel. Start by eliminating these
725 /// blocks so we can split them the way we want them.
eliminateMostlyEmptyBlocks(Function & F)726 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
727   SmallPtrSet<BasicBlock *, 16> Preheaders;
728   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
729   while (!LoopList.empty()) {
730     Loop *L = LoopList.pop_back_val();
731     LoopList.insert(LoopList.end(), L->begin(), L->end());
732     if (BasicBlock *Preheader = L->getLoopPreheader())
733       Preheaders.insert(Preheader);
734   }
735 
736   bool MadeChange = false;
737   // Copy blocks into a temporary array to avoid iterator invalidation issues
738   // as we remove them.
739   // Note that this intentionally skips the entry block.
740   SmallVector<WeakTrackingVH, 16> Blocks;
741   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
742     Blocks.push_back(&Block);
743 
744   for (auto &Block : Blocks) {
745     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
746     if (!BB)
747       continue;
748     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
749     if (!DestBB ||
750         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
751       continue;
752 
753     eliminateMostlyEmptyBlock(BB);
754     MadeChange = true;
755   }
756   return MadeChange;
757 }
758 
isMergingEmptyBlockProfitable(BasicBlock * BB,BasicBlock * DestBB,bool isPreheader)759 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
760                                                    BasicBlock *DestBB,
761                                                    bool isPreheader) {
762   // Do not delete loop preheaders if doing so would create a critical edge.
763   // Loop preheaders can be good locations to spill registers. If the
764   // preheader is deleted and we create a critical edge, registers may be
765   // spilled in the loop body instead.
766   if (!DisablePreheaderProtect && isPreheader &&
767       !(BB->getSinglePredecessor() &&
768         BB->getSinglePredecessor()->getSingleSuccessor()))
769     return false;
770 
771   // Skip merging if the block's successor is also a successor to any callbr
772   // that leads to this block.
773   // FIXME: Is this really needed? Is this a correctness issue?
774   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
775     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
776       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
777         if (DestBB == CBI->getSuccessor(i))
778           return false;
779   }
780 
781   // Try to skip merging if the unique predecessor of BB is terminated by a
782   // switch or indirect branch instruction, and BB is used as an incoming block
783   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
784   // add COPY instructions in the predecessor of BB instead of BB (if it is not
785   // merged). Note that the critical edge created by merging such blocks wont be
786   // split in MachineSink because the jump table is not analyzable. By keeping
787   // such empty block (BB), ISel will place COPY instructions in BB, not in the
788   // predecessor of BB.
789   BasicBlock *Pred = BB->getUniquePredecessor();
790   if (!Pred ||
791       !(isa<SwitchInst>(Pred->getTerminator()) ||
792         isa<IndirectBrInst>(Pred->getTerminator())))
793     return true;
794 
795   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
796     return true;
797 
798   // We use a simple cost heuristic which determine skipping merging is
799   // profitable if the cost of skipping merging is less than the cost of
800   // merging : Cost(skipping merging) < Cost(merging BB), where the
801   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
802   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
803   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
804   //   Freq(Pred) / Freq(BB) > 2.
805   // Note that if there are multiple empty blocks sharing the same incoming
806   // value for the PHIs in the DestBB, we consider them together. In such
807   // case, Cost(merging BB) will be the sum of their frequencies.
808 
809   if (!isa<PHINode>(DestBB->begin()))
810     return true;
811 
812   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
813 
814   // Find all other incoming blocks from which incoming values of all PHIs in
815   // DestBB are the same as the ones from BB.
816   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
817        ++PI) {
818     BasicBlock *DestBBPred = *PI;
819     if (DestBBPred == BB)
820       continue;
821 
822     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
823           return DestPN.getIncomingValueForBlock(BB) ==
824                  DestPN.getIncomingValueForBlock(DestBBPred);
825         }))
826       SameIncomingValueBBs.insert(DestBBPred);
827   }
828 
829   // See if all BB's incoming values are same as the value from Pred. In this
830   // case, no reason to skip merging because COPYs are expected to be place in
831   // Pred already.
832   if (SameIncomingValueBBs.count(Pred))
833     return true;
834 
835   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
836   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
837 
838   for (auto *SameValueBB : SameIncomingValueBBs)
839     if (SameValueBB->getUniquePredecessor() == Pred &&
840         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
841       BBFreq += BFI->getBlockFreq(SameValueBB);
842 
843   return PredFreq.getFrequency() <=
844          BBFreq.getFrequency() * FreqRatioToSkipMerge;
845 }
846 
847 /// Return true if we can merge BB into DestBB if there is a single
848 /// unconditional branch between them, and BB contains no other non-phi
849 /// instructions.
canMergeBlocks(const BasicBlock * BB,const BasicBlock * DestBB) const850 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
851                                     const BasicBlock *DestBB) const {
852   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
853   // the successor.  If there are more complex condition (e.g. preheaders),
854   // don't mess around with them.
855   for (const PHINode &PN : BB->phis()) {
856     for (const User *U : PN.users()) {
857       const Instruction *UI = cast<Instruction>(U);
858       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
859         return false;
860       // If User is inside DestBB block and it is a PHINode then check
861       // incoming value. If incoming value is not from BB then this is
862       // a complex condition (e.g. preheaders) we want to avoid here.
863       if (UI->getParent() == DestBB) {
864         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
865           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
866             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
867             if (Insn && Insn->getParent() == BB &&
868                 Insn->getParent() != UPN->getIncomingBlock(I))
869               return false;
870           }
871       }
872     }
873   }
874 
875   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
876   // and DestBB may have conflicting incoming values for the block.  If so, we
877   // can't merge the block.
878   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
879   if (!DestBBPN) return true;  // no conflict.
880 
881   // Collect the preds of BB.
882   SmallPtrSet<const BasicBlock*, 16> BBPreds;
883   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
884     // It is faster to get preds from a PHI than with pred_iterator.
885     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
886       BBPreds.insert(BBPN->getIncomingBlock(i));
887   } else {
888     BBPreds.insert(pred_begin(BB), pred_end(BB));
889   }
890 
891   // Walk the preds of DestBB.
892   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
893     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
894     if (BBPreds.count(Pred)) {   // Common predecessor?
895       for (const PHINode &PN : DestBB->phis()) {
896         const Value *V1 = PN.getIncomingValueForBlock(Pred);
897         const Value *V2 = PN.getIncomingValueForBlock(BB);
898 
899         // If V2 is a phi node in BB, look up what the mapped value will be.
900         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
901           if (V2PN->getParent() == BB)
902             V2 = V2PN->getIncomingValueForBlock(Pred);
903 
904         // If there is a conflict, bail out.
905         if (V1 != V2) return false;
906       }
907     }
908   }
909 
910   return true;
911 }
912 
913 /// Eliminate a basic block that has only phi's and an unconditional branch in
914 /// it.
eliminateMostlyEmptyBlock(BasicBlock * BB)915 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
916   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
917   BasicBlock *DestBB = BI->getSuccessor(0);
918 
919   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
920                     << *BB << *DestBB);
921 
922   // If the destination block has a single pred, then this is a trivial edge,
923   // just collapse it.
924   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
925     if (SinglePred != DestBB) {
926       assert(SinglePred == BB &&
927              "Single predecessor not the same as predecessor");
928       // Merge DestBB into SinglePred/BB and delete it.
929       MergeBlockIntoPredecessor(DestBB);
930       // Note: BB(=SinglePred) will not be deleted on this path.
931       // DestBB(=its single successor) is the one that was deleted.
932       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
933       return;
934     }
935   }
936 
937   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
938   // to handle the new incoming edges it is about to have.
939   for (PHINode &PN : DestBB->phis()) {
940     // Remove the incoming value for BB, and remember it.
941     Value *InVal = PN.removeIncomingValue(BB, false);
942 
943     // Two options: either the InVal is a phi node defined in BB or it is some
944     // value that dominates BB.
945     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
946     if (InValPhi && InValPhi->getParent() == BB) {
947       // Add all of the input values of the input PHI as inputs of this phi.
948       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
949         PN.addIncoming(InValPhi->getIncomingValue(i),
950                        InValPhi->getIncomingBlock(i));
951     } else {
952       // Otherwise, add one instance of the dominating value for each edge that
953       // we will be adding.
954       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
955         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
956           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
957       } else {
958         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
959           PN.addIncoming(InVal, *PI);
960       }
961     }
962   }
963 
964   // The PHIs are now updated, change everything that refers to BB to use
965   // DestBB and remove BB.
966   BB->replaceAllUsesWith(DestBB);
967   BB->eraseFromParent();
968   ++NumBlocksElim;
969 
970   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
971 }
972 
973 // Computes a map of base pointer relocation instructions to corresponding
974 // derived pointer relocation instructions given a vector of all relocate calls
computeBaseDerivedRelocateMap(const SmallVectorImpl<GCRelocateInst * > & AllRelocateCalls,DenseMap<GCRelocateInst *,SmallVector<GCRelocateInst *,2>> & RelocateInstMap)975 static void computeBaseDerivedRelocateMap(
976     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
977     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
978         &RelocateInstMap) {
979   // Collect information in two maps: one primarily for locating the base object
980   // while filling the second map; the second map is the final structure holding
981   // a mapping between Base and corresponding Derived relocate calls
982   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
983   for (auto *ThisRelocate : AllRelocateCalls) {
984     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
985                             ThisRelocate->getDerivedPtrIndex());
986     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
987   }
988   for (auto &Item : RelocateIdxMap) {
989     std::pair<unsigned, unsigned> Key = Item.first;
990     if (Key.first == Key.second)
991       // Base relocation: nothing to insert
992       continue;
993 
994     GCRelocateInst *I = Item.second;
995     auto BaseKey = std::make_pair(Key.first, Key.first);
996 
997     // We're iterating over RelocateIdxMap so we cannot modify it.
998     auto MaybeBase = RelocateIdxMap.find(BaseKey);
999     if (MaybeBase == RelocateIdxMap.end())
1000       // TODO: We might want to insert a new base object relocate and gep off
1001       // that, if there are enough derived object relocates.
1002       continue;
1003 
1004     RelocateInstMap[MaybeBase->second].push_back(I);
1005   }
1006 }
1007 
1008 // Accepts a GEP and extracts the operands into a vector provided they're all
1009 // small integer constants
getGEPSmallConstantIntOffsetV(GetElementPtrInst * GEP,SmallVectorImpl<Value * > & OffsetV)1010 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1011                                           SmallVectorImpl<Value *> &OffsetV) {
1012   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1013     // Only accept small constant integer operands
1014     auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1015     if (!Op || Op->getZExtValue() > 20)
1016       return false;
1017   }
1018 
1019   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1020     OffsetV.push_back(GEP->getOperand(i));
1021   return true;
1022 }
1023 
1024 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1025 // replace, computes a replacement, and affects it.
1026 static bool
simplifyRelocatesOffABase(GCRelocateInst * RelocatedBase,const SmallVectorImpl<GCRelocateInst * > & Targets)1027 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1028                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
1029   bool MadeChange = false;
1030   // We must ensure the relocation of derived pointer is defined after
1031   // relocation of base pointer. If we find a relocation corresponding to base
1032   // defined earlier than relocation of base then we move relocation of base
1033   // right before found relocation. We consider only relocation in the same
1034   // basic block as relocation of base. Relocations from other basic block will
1035   // be skipped by optimization and we do not care about them.
1036   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1037        &*R != RelocatedBase; ++R)
1038     if (auto *RI = dyn_cast<GCRelocateInst>(R))
1039       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1040         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1041           RelocatedBase->moveBefore(RI);
1042           break;
1043         }
1044 
1045   for (GCRelocateInst *ToReplace : Targets) {
1046     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1047            "Not relocating a derived object of the original base object");
1048     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1049       // A duplicate relocate call. TODO: coalesce duplicates.
1050       continue;
1051     }
1052 
1053     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1054       // Base and derived relocates are in different basic blocks.
1055       // In this case transform is only valid when base dominates derived
1056       // relocate. However it would be too expensive to check dominance
1057       // for each such relocate, so we skip the whole transformation.
1058       continue;
1059     }
1060 
1061     Value *Base = ToReplace->getBasePtr();
1062     auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1063     if (!Derived || Derived->getPointerOperand() != Base)
1064       continue;
1065 
1066     SmallVector<Value *, 2> OffsetV;
1067     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1068       continue;
1069 
1070     // Create a Builder and replace the target callsite with a gep
1071     assert(RelocatedBase->getNextNode() &&
1072            "Should always have one since it's not a terminator");
1073 
1074     // Insert after RelocatedBase
1075     IRBuilder<> Builder(RelocatedBase->getNextNode());
1076     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1077 
1078     // If gc_relocate does not match the actual type, cast it to the right type.
1079     // In theory, there must be a bitcast after gc_relocate if the type does not
1080     // match, and we should reuse it to get the derived pointer. But it could be
1081     // cases like this:
1082     // bb1:
1083     //  ...
1084     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1085     //  br label %merge
1086     //
1087     // bb2:
1088     //  ...
1089     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1090     //  br label %merge
1091     //
1092     // merge:
1093     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1094     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1095     //
1096     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1097     // no matter there is already one or not. In this way, we can handle all cases, and
1098     // the extra bitcast should be optimized away in later passes.
1099     Value *ActualRelocatedBase = RelocatedBase;
1100     if (RelocatedBase->getType() != Base->getType()) {
1101       ActualRelocatedBase =
1102           Builder.CreateBitCast(RelocatedBase, Base->getType());
1103     }
1104     Value *Replacement = Builder.CreateGEP(
1105         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1106     Replacement->takeName(ToReplace);
1107     // If the newly generated derived pointer's type does not match the original derived
1108     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1109     Value *ActualReplacement = Replacement;
1110     if (Replacement->getType() != ToReplace->getType()) {
1111       ActualReplacement =
1112           Builder.CreateBitCast(Replacement, ToReplace->getType());
1113     }
1114     ToReplace->replaceAllUsesWith(ActualReplacement);
1115     ToReplace->eraseFromParent();
1116 
1117     MadeChange = true;
1118   }
1119   return MadeChange;
1120 }
1121 
1122 // Turns this:
1123 //
1124 // %base = ...
1125 // %ptr = gep %base + 15
1126 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1127 // %base' = relocate(%tok, i32 4, i32 4)
1128 // %ptr' = relocate(%tok, i32 4, i32 5)
1129 // %val = load %ptr'
1130 //
1131 // into this:
1132 //
1133 // %base = ...
1134 // %ptr = gep %base + 15
1135 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1136 // %base' = gc.relocate(%tok, i32 4, i32 4)
1137 // %ptr' = gep %base' + 15
1138 // %val = load %ptr'
simplifyOffsetableRelocate(GCStatepointInst & I)1139 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1140   bool MadeChange = false;
1141   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1142   for (auto *U : I.users())
1143     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1144       // Collect all the relocate calls associated with a statepoint
1145       AllRelocateCalls.push_back(Relocate);
1146 
1147   // We need at least one base pointer relocation + one derived pointer
1148   // relocation to mangle
1149   if (AllRelocateCalls.size() < 2)
1150     return false;
1151 
1152   // RelocateInstMap is a mapping from the base relocate instruction to the
1153   // corresponding derived relocate instructions
1154   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1155   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1156   if (RelocateInstMap.empty())
1157     return false;
1158 
1159   for (auto &Item : RelocateInstMap)
1160     // Item.first is the RelocatedBase to offset against
1161     // Item.second is the vector of Targets to replace
1162     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1163   return MadeChange;
1164 }
1165 
1166 /// Sink the specified cast instruction into its user blocks.
SinkCast(CastInst * CI)1167 static bool SinkCast(CastInst *CI) {
1168   BasicBlock *DefBB = CI->getParent();
1169 
1170   /// InsertedCasts - Only insert a cast in each block once.
1171   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1172 
1173   bool MadeChange = false;
1174   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1175        UI != E; ) {
1176     Use &TheUse = UI.getUse();
1177     Instruction *User = cast<Instruction>(*UI);
1178 
1179     // Figure out which BB this cast is used in.  For PHI's this is the
1180     // appropriate predecessor block.
1181     BasicBlock *UserBB = User->getParent();
1182     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1183       UserBB = PN->getIncomingBlock(TheUse);
1184     }
1185 
1186     // Preincrement use iterator so we don't invalidate it.
1187     ++UI;
1188 
1189     // The first insertion point of a block containing an EH pad is after the
1190     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1191     if (User->isEHPad())
1192       continue;
1193 
1194     // If the block selected to receive the cast is an EH pad that does not
1195     // allow non-PHI instructions before the terminator, we can't sink the
1196     // cast.
1197     if (UserBB->getTerminator()->isEHPad())
1198       continue;
1199 
1200     // If this user is in the same block as the cast, don't change the cast.
1201     if (UserBB == DefBB) continue;
1202 
1203     // If we have already inserted a cast into this block, use it.
1204     CastInst *&InsertedCast = InsertedCasts[UserBB];
1205 
1206     if (!InsertedCast) {
1207       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1208       assert(InsertPt != UserBB->end());
1209       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1210                                       CI->getType(), "", &*InsertPt);
1211       InsertedCast->setDebugLoc(CI->getDebugLoc());
1212     }
1213 
1214     // Replace a use of the cast with a use of the new cast.
1215     TheUse = InsertedCast;
1216     MadeChange = true;
1217     ++NumCastUses;
1218   }
1219 
1220   // If we removed all uses, nuke the cast.
1221   if (CI->use_empty()) {
1222     salvageDebugInfo(*CI);
1223     CI->eraseFromParent();
1224     MadeChange = true;
1225   }
1226 
1227   return MadeChange;
1228 }
1229 
1230 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1231 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1232 /// reduce the number of virtual registers that must be created and coalesced.
1233 ///
1234 /// Return true if any changes are made.
OptimizeNoopCopyExpression(CastInst * CI,const TargetLowering & TLI,const DataLayout & DL)1235 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1236                                        const DataLayout &DL) {
1237   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1238   // than sinking only nop casts, but is helpful on some platforms.
1239   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1240     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1241                                  ASC->getDestAddressSpace()))
1242       return false;
1243   }
1244 
1245   // If this is a noop copy,
1246   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1247   EVT DstVT = TLI.getValueType(DL, CI->getType());
1248 
1249   // This is an fp<->int conversion?
1250   if (SrcVT.isInteger() != DstVT.isInteger())
1251     return false;
1252 
1253   // If this is an extension, it will be a zero or sign extension, which
1254   // isn't a noop.
1255   if (SrcVT.bitsLT(DstVT)) return false;
1256 
1257   // If these values will be promoted, find out what they will be promoted
1258   // to.  This helps us consider truncates on PPC as noop copies when they
1259   // are.
1260   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1261       TargetLowering::TypePromoteInteger)
1262     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1263   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1264       TargetLowering::TypePromoteInteger)
1265     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1266 
1267   // If, after promotion, these are the same types, this is a noop copy.
1268   if (SrcVT != DstVT)
1269     return false;
1270 
1271   return SinkCast(CI);
1272 }
1273 
replaceMathCmpWithIntrinsic(BinaryOperator * BO,Value * Arg0,Value * Arg1,CmpInst * Cmp,Intrinsic::ID IID)1274 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1275                                                  Value *Arg0, Value *Arg1,
1276                                                  CmpInst *Cmp,
1277                                                  Intrinsic::ID IID) {
1278   if (BO->getParent() != Cmp->getParent()) {
1279     // We used to use a dominator tree here to allow multi-block optimization.
1280     // But that was problematic because:
1281     // 1. It could cause a perf regression by hoisting the math op into the
1282     //    critical path.
1283     // 2. It could cause a perf regression by creating a value that was live
1284     //    across multiple blocks and increasing register pressure.
1285     // 3. Use of a dominator tree could cause large compile-time regression.
1286     //    This is because we recompute the DT on every change in the main CGP
1287     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1288     //    that was fixed, using a DT here would be ok.
1289     return false;
1290   }
1291 
1292   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1293   if (BO->getOpcode() == Instruction::Add &&
1294       IID == Intrinsic::usub_with_overflow) {
1295     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1296     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1297   }
1298 
1299   // Insert at the first instruction of the pair.
1300   Instruction *InsertPt = nullptr;
1301   for (Instruction &Iter : *Cmp->getParent()) {
1302     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1303     // the overflow intrinsic are defined.
1304     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1305       InsertPt = &Iter;
1306       break;
1307     }
1308   }
1309   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1310 
1311   IRBuilder<> Builder(InsertPt);
1312   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1313   if (BO->getOpcode() != Instruction::Xor) {
1314     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1315     BO->replaceAllUsesWith(Math);
1316   } else
1317     assert(BO->hasOneUse() &&
1318            "Patterns with XOr should use the BO only in the compare");
1319   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1320   Cmp->replaceAllUsesWith(OV);
1321   Cmp->eraseFromParent();
1322   BO->eraseFromParent();
1323   return true;
1324 }
1325 
1326 /// Match special-case patterns that check for unsigned add overflow.
matchUAddWithOverflowConstantEdgeCases(CmpInst * Cmp,BinaryOperator * & Add)1327 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1328                                                    BinaryOperator *&Add) {
1329   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1330   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1331   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1332 
1333   // We are not expecting non-canonical/degenerate code. Just bail out.
1334   if (isa<Constant>(A))
1335     return false;
1336 
1337   ICmpInst::Predicate Pred = Cmp->getPredicate();
1338   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1339     B = ConstantInt::get(B->getType(), 1);
1340   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1341     B = ConstantInt::get(B->getType(), -1);
1342   else
1343     return false;
1344 
1345   // Check the users of the variable operand of the compare looking for an add
1346   // with the adjusted constant.
1347   for (User *U : A->users()) {
1348     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1349       Add = cast<BinaryOperator>(U);
1350       return true;
1351     }
1352   }
1353   return false;
1354 }
1355 
1356 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1357 /// intrinsic. Return true if any changes were made.
combineToUAddWithOverflow(CmpInst * Cmp,bool & ModifiedDT)1358 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1359                                                bool &ModifiedDT) {
1360   Value *A, *B;
1361   BinaryOperator *Add;
1362   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1363     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1364       return false;
1365     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1366     A = Add->getOperand(0);
1367     B = Add->getOperand(1);
1368   }
1369 
1370   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1371                                  TLI->getValueType(*DL, Add->getType()),
1372                                  Add->hasNUsesOrMore(2)))
1373     return false;
1374 
1375   // We don't want to move around uses of condition values this late, so we
1376   // check if it is legal to create the call to the intrinsic in the basic
1377   // block containing the icmp.
1378   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1379     return false;
1380 
1381   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1382                                    Intrinsic::uadd_with_overflow))
1383     return false;
1384 
1385   // Reset callers - do not crash by iterating over a dead instruction.
1386   ModifiedDT = true;
1387   return true;
1388 }
1389 
combineToUSubWithOverflow(CmpInst * Cmp,bool & ModifiedDT)1390 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1391                                                bool &ModifiedDT) {
1392   // We are not expecting non-canonical/degenerate code. Just bail out.
1393   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1394   if (isa<Constant>(A) && isa<Constant>(B))
1395     return false;
1396 
1397   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1398   ICmpInst::Predicate Pred = Cmp->getPredicate();
1399   if (Pred == ICmpInst::ICMP_UGT) {
1400     std::swap(A, B);
1401     Pred = ICmpInst::ICMP_ULT;
1402   }
1403   // Convert special-case: (A == 0) is the same as (A u< 1).
1404   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1405     B = ConstantInt::get(B->getType(), 1);
1406     Pred = ICmpInst::ICMP_ULT;
1407   }
1408   // Convert special-case: (A != 0) is the same as (0 u< A).
1409   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1410     std::swap(A, B);
1411     Pred = ICmpInst::ICMP_ULT;
1412   }
1413   if (Pred != ICmpInst::ICMP_ULT)
1414     return false;
1415 
1416   // Walk the users of a variable operand of a compare looking for a subtract or
1417   // add with that same operand. Also match the 2nd operand of the compare to
1418   // the add/sub, but that may be a negated constant operand of an add.
1419   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1420   BinaryOperator *Sub = nullptr;
1421   for (User *U : CmpVariableOperand->users()) {
1422     // A - B, A u< B --> usubo(A, B)
1423     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1424       Sub = cast<BinaryOperator>(U);
1425       break;
1426     }
1427 
1428     // A + (-C), A u< C (canonicalized form of (sub A, C))
1429     const APInt *CmpC, *AddC;
1430     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1431         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1432       Sub = cast<BinaryOperator>(U);
1433       break;
1434     }
1435   }
1436   if (!Sub)
1437     return false;
1438 
1439   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1440                                  TLI->getValueType(*DL, Sub->getType()),
1441                                  Sub->hasNUsesOrMore(2)))
1442     return false;
1443 
1444   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1445                                    Cmp, Intrinsic::usub_with_overflow))
1446     return false;
1447 
1448   // Reset callers - do not crash by iterating over a dead instruction.
1449   ModifiedDT = true;
1450   return true;
1451 }
1452 
1453 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1454 /// registers that must be created and coalesced. This is a clear win except on
1455 /// targets with multiple condition code registers (PowerPC), where it might
1456 /// lose; some adjustment may be wanted there.
1457 ///
1458 /// Return true if any changes are made.
sinkCmpExpression(CmpInst * Cmp,const TargetLowering & TLI)1459 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1460   if (TLI.hasMultipleConditionRegisters())
1461     return false;
1462 
1463   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1464   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1465     return false;
1466 
1467   // Only insert a cmp in each block once.
1468   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1469 
1470   bool MadeChange = false;
1471   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1472        UI != E; ) {
1473     Use &TheUse = UI.getUse();
1474     Instruction *User = cast<Instruction>(*UI);
1475 
1476     // Preincrement use iterator so we don't invalidate it.
1477     ++UI;
1478 
1479     // Don't bother for PHI nodes.
1480     if (isa<PHINode>(User))
1481       continue;
1482 
1483     // Figure out which BB this cmp is used in.
1484     BasicBlock *UserBB = User->getParent();
1485     BasicBlock *DefBB = Cmp->getParent();
1486 
1487     // If this user is in the same block as the cmp, don't change the cmp.
1488     if (UserBB == DefBB) continue;
1489 
1490     // If we have already inserted a cmp into this block, use it.
1491     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1492 
1493     if (!InsertedCmp) {
1494       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1495       assert(InsertPt != UserBB->end());
1496       InsertedCmp =
1497           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1498                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1499                           &*InsertPt);
1500       // Propagate the debug info.
1501       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1502     }
1503 
1504     // Replace a use of the cmp with a use of the new cmp.
1505     TheUse = InsertedCmp;
1506     MadeChange = true;
1507     ++NumCmpUses;
1508   }
1509 
1510   // If we removed all uses, nuke the cmp.
1511   if (Cmp->use_empty()) {
1512     Cmp->eraseFromParent();
1513     MadeChange = true;
1514   }
1515 
1516   return MadeChange;
1517 }
1518 
1519 /// For pattern like:
1520 ///
1521 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1522 ///   ...
1523 /// DomBB:
1524 ///   ...
1525 ///   br DomCond, TrueBB, CmpBB
1526 /// CmpBB: (with DomBB being the single predecessor)
1527 ///   ...
1528 ///   Cmp = icmp eq CmpOp0, CmpOp1
1529 ///   ...
1530 ///
1531 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1532 /// different from lowering of icmp eq (PowerPC). This function try to convert
1533 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1534 /// After that, DomCond and Cmp can use the same comparison so reduce one
1535 /// comparison.
1536 ///
1537 /// Return true if any changes are made.
foldICmpWithDominatingICmp(CmpInst * Cmp,const TargetLowering & TLI)1538 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1539                                        const TargetLowering &TLI) {
1540   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1541     return false;
1542 
1543   ICmpInst::Predicate Pred = Cmp->getPredicate();
1544   if (Pred != ICmpInst::ICMP_EQ)
1545     return false;
1546 
1547   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1548   // icmp slt/sgt would introduce more redundant LLVM IR.
1549   for (User *U : Cmp->users()) {
1550     if (isa<BranchInst>(U))
1551       continue;
1552     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1553       continue;
1554     return false;
1555   }
1556 
1557   // This is a cheap/incomplete check for dominance - just match a single
1558   // predecessor with a conditional branch.
1559   BasicBlock *CmpBB = Cmp->getParent();
1560   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1561   if (!DomBB)
1562     return false;
1563 
1564   // We want to ensure that the only way control gets to the comparison of
1565   // interest is that a less/greater than comparison on the same operands is
1566   // false.
1567   Value *DomCond;
1568   BasicBlock *TrueBB, *FalseBB;
1569   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1570     return false;
1571   if (CmpBB != FalseBB)
1572     return false;
1573 
1574   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1575   ICmpInst::Predicate DomPred;
1576   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1577     return false;
1578   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1579     return false;
1580 
1581   // Convert the equality comparison to the opposite of the dominating
1582   // comparison and swap the direction for all branch/select users.
1583   // We have conceptually converted:
1584   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1585   // to
1586   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1587   // And similarly for branches.
1588   for (User *U : Cmp->users()) {
1589     if (auto *BI = dyn_cast<BranchInst>(U)) {
1590       assert(BI->isConditional() && "Must be conditional");
1591       BI->swapSuccessors();
1592       continue;
1593     }
1594     if (auto *SI = dyn_cast<SelectInst>(U)) {
1595       // Swap operands
1596       SI->swapValues();
1597       SI->swapProfMetadata();
1598       continue;
1599     }
1600     llvm_unreachable("Must be a branch or a select");
1601   }
1602   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1603   return true;
1604 }
1605 
optimizeCmp(CmpInst * Cmp,bool & ModifiedDT)1606 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1607   if (sinkCmpExpression(Cmp, *TLI))
1608     return true;
1609 
1610   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1611     return true;
1612 
1613   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1614     return true;
1615 
1616   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1617     return true;
1618 
1619   return false;
1620 }
1621 
1622 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1623 /// used in a compare to allow isel to generate better code for targets where
1624 /// this operation can be combined.
1625 ///
1626 /// Return true if any changes are made.
sinkAndCmp0Expression(Instruction * AndI,const TargetLowering & TLI,SetOfInstrs & InsertedInsts)1627 static bool sinkAndCmp0Expression(Instruction *AndI,
1628                                   const TargetLowering &TLI,
1629                                   SetOfInstrs &InsertedInsts) {
1630   // Double-check that we're not trying to optimize an instruction that was
1631   // already optimized by some other part of this pass.
1632   assert(!InsertedInsts.count(AndI) &&
1633          "Attempting to optimize already optimized and instruction");
1634   (void) InsertedInsts;
1635 
1636   // Nothing to do for single use in same basic block.
1637   if (AndI->hasOneUse() &&
1638       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1639     return false;
1640 
1641   // Try to avoid cases where sinking/duplicating is likely to increase register
1642   // pressure.
1643   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1644       !isa<ConstantInt>(AndI->getOperand(1)) &&
1645       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1646     return false;
1647 
1648   for (auto *U : AndI->users()) {
1649     Instruction *User = cast<Instruction>(U);
1650 
1651     // Only sink 'and' feeding icmp with 0.
1652     if (!isa<ICmpInst>(User))
1653       return false;
1654 
1655     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1656     if (!CmpC || !CmpC->isZero())
1657       return false;
1658   }
1659 
1660   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1661     return false;
1662 
1663   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1664   LLVM_DEBUG(AndI->getParent()->dump());
1665 
1666   // Push the 'and' into the same block as the icmp 0.  There should only be
1667   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1668   // others, so we don't need to keep track of which BBs we insert into.
1669   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1670        UI != E; ) {
1671     Use &TheUse = UI.getUse();
1672     Instruction *User = cast<Instruction>(*UI);
1673 
1674     // Preincrement use iterator so we don't invalidate it.
1675     ++UI;
1676 
1677     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1678 
1679     // Keep the 'and' in the same place if the use is already in the same block.
1680     Instruction *InsertPt =
1681         User->getParent() == AndI->getParent() ? AndI : User;
1682     Instruction *InsertedAnd =
1683         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1684                                AndI->getOperand(1), "", InsertPt);
1685     // Propagate the debug info.
1686     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1687 
1688     // Replace a use of the 'and' with a use of the new 'and'.
1689     TheUse = InsertedAnd;
1690     ++NumAndUses;
1691     LLVM_DEBUG(User->getParent()->dump());
1692   }
1693 
1694   // We removed all uses, nuke the and.
1695   AndI->eraseFromParent();
1696   return true;
1697 }
1698 
1699 /// Check if the candidates could be combined with a shift instruction, which
1700 /// includes:
1701 /// 1. Truncate instruction
1702 /// 2. And instruction and the imm is a mask of the low bits:
1703 /// imm & (imm+1) == 0
isExtractBitsCandidateUse(Instruction * User)1704 static bool isExtractBitsCandidateUse(Instruction *User) {
1705   if (!isa<TruncInst>(User)) {
1706     if (User->getOpcode() != Instruction::And ||
1707         !isa<ConstantInt>(User->getOperand(1)))
1708       return false;
1709 
1710     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1711 
1712     if ((Cimm & (Cimm + 1)).getBoolValue())
1713       return false;
1714   }
1715   return true;
1716 }
1717 
1718 /// Sink both shift and truncate instruction to the use of truncate's BB.
1719 static bool
SinkShiftAndTruncate(BinaryOperator * ShiftI,Instruction * User,ConstantInt * CI,DenseMap<BasicBlock *,BinaryOperator * > & InsertedShifts,const TargetLowering & TLI,const DataLayout & DL)1720 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1721                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1722                      const TargetLowering &TLI, const DataLayout &DL) {
1723   BasicBlock *UserBB = User->getParent();
1724   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1725   auto *TruncI = cast<TruncInst>(User);
1726   bool MadeChange = false;
1727 
1728   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1729                             TruncE = TruncI->user_end();
1730        TruncUI != TruncE;) {
1731 
1732     Use &TruncTheUse = TruncUI.getUse();
1733     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1734     // Preincrement use iterator so we don't invalidate it.
1735 
1736     ++TruncUI;
1737 
1738     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1739     if (!ISDOpcode)
1740       continue;
1741 
1742     // If the use is actually a legal node, there will not be an
1743     // implicit truncate.
1744     // FIXME: always querying the result type is just an
1745     // approximation; some nodes' legality is determined by the
1746     // operand or other means. There's no good way to find out though.
1747     if (TLI.isOperationLegalOrCustom(
1748             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1749       continue;
1750 
1751     // Don't bother for PHI nodes.
1752     if (isa<PHINode>(TruncUser))
1753       continue;
1754 
1755     BasicBlock *TruncUserBB = TruncUser->getParent();
1756 
1757     if (UserBB == TruncUserBB)
1758       continue;
1759 
1760     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1761     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1762 
1763     if (!InsertedShift && !InsertedTrunc) {
1764       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1765       assert(InsertPt != TruncUserBB->end());
1766       // Sink the shift
1767       if (ShiftI->getOpcode() == Instruction::AShr)
1768         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1769                                                    "", &*InsertPt);
1770       else
1771         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1772                                                    "", &*InsertPt);
1773       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1774 
1775       // Sink the trunc
1776       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1777       TruncInsertPt++;
1778       assert(TruncInsertPt != TruncUserBB->end());
1779 
1780       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1781                                        TruncI->getType(), "", &*TruncInsertPt);
1782       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1783 
1784       MadeChange = true;
1785 
1786       TruncTheUse = InsertedTrunc;
1787     }
1788   }
1789   return MadeChange;
1790 }
1791 
1792 /// Sink the shift *right* instruction into user blocks if the uses could
1793 /// potentially be combined with this shift instruction and generate BitExtract
1794 /// instruction. It will only be applied if the architecture supports BitExtract
1795 /// instruction. Here is an example:
1796 /// BB1:
1797 ///   %x.extract.shift = lshr i64 %arg1, 32
1798 /// BB2:
1799 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1800 /// ==>
1801 ///
1802 /// BB2:
1803 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1804 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1805 ///
1806 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1807 /// instruction.
1808 /// Return true if any changes are made.
OptimizeExtractBits(BinaryOperator * ShiftI,ConstantInt * CI,const TargetLowering & TLI,const DataLayout & DL)1809 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1810                                 const TargetLowering &TLI,
1811                                 const DataLayout &DL) {
1812   BasicBlock *DefBB = ShiftI->getParent();
1813 
1814   /// Only insert instructions in each block once.
1815   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1816 
1817   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1818 
1819   bool MadeChange = false;
1820   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1821        UI != E;) {
1822     Use &TheUse = UI.getUse();
1823     Instruction *User = cast<Instruction>(*UI);
1824     // Preincrement use iterator so we don't invalidate it.
1825     ++UI;
1826 
1827     // Don't bother for PHI nodes.
1828     if (isa<PHINode>(User))
1829       continue;
1830 
1831     if (!isExtractBitsCandidateUse(User))
1832       continue;
1833 
1834     BasicBlock *UserBB = User->getParent();
1835 
1836     if (UserBB == DefBB) {
1837       // If the shift and truncate instruction are in the same BB. The use of
1838       // the truncate(TruncUse) may still introduce another truncate if not
1839       // legal. In this case, we would like to sink both shift and truncate
1840       // instruction to the BB of TruncUse.
1841       // for example:
1842       // BB1:
1843       // i64 shift.result = lshr i64 opnd, imm
1844       // trunc.result = trunc shift.result to i16
1845       //
1846       // BB2:
1847       //   ----> We will have an implicit truncate here if the architecture does
1848       //   not have i16 compare.
1849       // cmp i16 trunc.result, opnd2
1850       //
1851       if (isa<TruncInst>(User) && shiftIsLegal
1852           // If the type of the truncate is legal, no truncate will be
1853           // introduced in other basic blocks.
1854           &&
1855           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1856         MadeChange =
1857             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1858 
1859       continue;
1860     }
1861     // If we have already inserted a shift into this block, use it.
1862     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1863 
1864     if (!InsertedShift) {
1865       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1866       assert(InsertPt != UserBB->end());
1867 
1868       if (ShiftI->getOpcode() == Instruction::AShr)
1869         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1870                                                    "", &*InsertPt);
1871       else
1872         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1873                                                    "", &*InsertPt);
1874       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1875 
1876       MadeChange = true;
1877     }
1878 
1879     // Replace a use of the shift with a use of the new shift.
1880     TheUse = InsertedShift;
1881   }
1882 
1883   // If we removed all uses, or there are none, nuke the shift.
1884   if (ShiftI->use_empty()) {
1885     salvageDebugInfo(*ShiftI);
1886     ShiftI->eraseFromParent();
1887     MadeChange = true;
1888   }
1889 
1890   return MadeChange;
1891 }
1892 
1893 /// If counting leading or trailing zeros is an expensive operation and a zero
1894 /// input is defined, add a check for zero to avoid calling the intrinsic.
1895 ///
1896 /// We want to transform:
1897 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1898 ///
1899 /// into:
1900 ///   entry:
1901 ///     %cmpz = icmp eq i64 %A, 0
1902 ///     br i1 %cmpz, label %cond.end, label %cond.false
1903 ///   cond.false:
1904 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1905 ///     br label %cond.end
1906 ///   cond.end:
1907 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1908 ///
1909 /// If the transform is performed, return true and set ModifiedDT to true.
despeculateCountZeros(IntrinsicInst * CountZeros,const TargetLowering * TLI,const DataLayout * DL,bool & ModifiedDT)1910 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1911                                   const TargetLowering *TLI,
1912                                   const DataLayout *DL,
1913                                   bool &ModifiedDT) {
1914   // If a zero input is undefined, it doesn't make sense to despeculate that.
1915   if (match(CountZeros->getOperand(1), m_One()))
1916     return false;
1917 
1918   // If it's cheap to speculate, there's nothing to do.
1919   auto IntrinsicID = CountZeros->getIntrinsicID();
1920   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1921       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1922     return false;
1923 
1924   // Only handle legal scalar cases. Anything else requires too much work.
1925   Type *Ty = CountZeros->getType();
1926   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1927   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1928     return false;
1929 
1930   // The intrinsic will be sunk behind a compare against zero and branch.
1931   BasicBlock *StartBlock = CountZeros->getParent();
1932   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1933 
1934   // Create another block after the count zero intrinsic. A PHI will be added
1935   // in this block to select the result of the intrinsic or the bit-width
1936   // constant if the input to the intrinsic is zero.
1937   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1938   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1939 
1940   // Set up a builder to create a compare, conditional branch, and PHI.
1941   IRBuilder<> Builder(CountZeros->getContext());
1942   Builder.SetInsertPoint(StartBlock->getTerminator());
1943   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1944 
1945   // Replace the unconditional branch that was created by the first split with
1946   // a compare against zero and a conditional branch.
1947   Value *Zero = Constant::getNullValue(Ty);
1948   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1949   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1950   StartBlock->getTerminator()->eraseFromParent();
1951 
1952   // Create a PHI in the end block to select either the output of the intrinsic
1953   // or the bit width of the operand.
1954   Builder.SetInsertPoint(&EndBlock->front());
1955   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1956   CountZeros->replaceAllUsesWith(PN);
1957   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1958   PN->addIncoming(BitWidth, StartBlock);
1959   PN->addIncoming(CountZeros, CallBlock);
1960 
1961   // We are explicitly handling the zero case, so we can set the intrinsic's
1962   // undefined zero argument to 'true'. This will also prevent reprocessing the
1963   // intrinsic; we only despeculate when a zero input is defined.
1964   CountZeros->setArgOperand(1, Builder.getTrue());
1965   ModifiedDT = true;
1966   return true;
1967 }
1968 
optimizeCallInst(CallInst * CI,bool & ModifiedDT)1969 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1970   BasicBlock *BB = CI->getParent();
1971 
1972   // Lower inline assembly if we can.
1973   // If we found an inline asm expession, and if the target knows how to
1974   // lower it to normal LLVM code, do so now.
1975   if (CI->isInlineAsm()) {
1976     if (TLI->ExpandInlineAsm(CI)) {
1977       // Avoid invalidating the iterator.
1978       CurInstIterator = BB->begin();
1979       // Avoid processing instructions out of order, which could cause
1980       // reuse before a value is defined.
1981       SunkAddrs.clear();
1982       return true;
1983     }
1984     // Sink address computing for memory operands into the block.
1985     if (optimizeInlineAsmInst(CI))
1986       return true;
1987   }
1988 
1989   // Align the pointer arguments to this call if the target thinks it's a good
1990   // idea
1991   unsigned MinSize, PrefAlign;
1992   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1993     for (auto &Arg : CI->arg_operands()) {
1994       // We want to align both objects whose address is used directly and
1995       // objects whose address is used in casts and GEPs, though it only makes
1996       // sense for GEPs if the offset is a multiple of the desired alignment and
1997       // if size - offset meets the size threshold.
1998       if (!Arg->getType()->isPointerTy())
1999         continue;
2000       APInt Offset(DL->getIndexSizeInBits(
2001                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2002                    0);
2003       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2004       uint64_t Offset2 = Offset.getLimitedValue();
2005       if ((Offset2 & (PrefAlign-1)) != 0)
2006         continue;
2007       AllocaInst *AI;
2008       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2009           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2010         AI->setAlignment(Align(PrefAlign));
2011       // Global variables can only be aligned if they are defined in this
2012       // object (i.e. they are uniquely initialized in this object), and
2013       // over-aligning global variables that have an explicit section is
2014       // forbidden.
2015       GlobalVariable *GV;
2016       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2017           GV->getPointerAlignment(*DL) < PrefAlign &&
2018           DL->getTypeAllocSize(GV->getValueType()) >=
2019               MinSize + Offset2)
2020         GV->setAlignment(MaybeAlign(PrefAlign));
2021     }
2022     // If this is a memcpy (or similar) then we may be able to improve the
2023     // alignment
2024     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2025       Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2026       MaybeAlign MIDestAlign = MI->getDestAlign();
2027       if (!MIDestAlign || DestAlign > *MIDestAlign)
2028         MI->setDestAlignment(DestAlign);
2029       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2030         MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2031         Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2032         if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2033           MTI->setSourceAlignment(SrcAlign);
2034       }
2035     }
2036   }
2037 
2038   // If we have a cold call site, try to sink addressing computation into the
2039   // cold block.  This interacts with our handling for loads and stores to
2040   // ensure that we can fold all uses of a potential addressing computation
2041   // into their uses.  TODO: generalize this to work over profiling data
2042   if (CI->hasFnAttr(Attribute::Cold) &&
2043       !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2044     for (auto &Arg : CI->arg_operands()) {
2045       if (!Arg->getType()->isPointerTy())
2046         continue;
2047       unsigned AS = Arg->getType()->getPointerAddressSpace();
2048       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2049     }
2050 
2051   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2052   if (II) {
2053     switch (II->getIntrinsicID()) {
2054     default: break;
2055     case Intrinsic::assume: {
2056       Value *Operand = II->getOperand(0);
2057       II->eraseFromParent();
2058       // Prune the operand, it's most likely dead.
2059       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2060         RecursivelyDeleteTriviallyDeadInstructions(
2061             Operand, TLInfo, nullptr,
2062             [&](Value *V) { removeAllAssertingVHReferences(V); });
2063       });
2064       return true;
2065     }
2066 
2067     case Intrinsic::experimental_widenable_condition: {
2068       // Give up on future widening oppurtunties so that we can fold away dead
2069       // paths and merge blocks before going into block-local instruction
2070       // selection.
2071       if (II->use_empty()) {
2072         II->eraseFromParent();
2073         return true;
2074       }
2075       Constant *RetVal = ConstantInt::getTrue(II->getContext());
2076       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2077         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2078       });
2079       return true;
2080     }
2081     case Intrinsic::objectsize:
2082       llvm_unreachable("llvm.objectsize.* should have been lowered already");
2083     case Intrinsic::is_constant:
2084       llvm_unreachable("llvm.is.constant.* should have been lowered already");
2085     case Intrinsic::aarch64_stlxr:
2086     case Intrinsic::aarch64_stxr: {
2087       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2088       if (!ExtVal || !ExtVal->hasOneUse() ||
2089           ExtVal->getParent() == CI->getParent())
2090         return false;
2091       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2092       ExtVal->moveBefore(CI);
2093       // Mark this instruction as "inserted by CGP", so that other
2094       // optimizations don't touch it.
2095       InsertedInsts.insert(ExtVal);
2096       return true;
2097     }
2098 
2099     case Intrinsic::launder_invariant_group:
2100     case Intrinsic::strip_invariant_group: {
2101       Value *ArgVal = II->getArgOperand(0);
2102       auto it = LargeOffsetGEPMap.find(II);
2103       if (it != LargeOffsetGEPMap.end()) {
2104           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2105           // Make sure not to have to deal with iterator invalidation
2106           // after possibly adding ArgVal to LargeOffsetGEPMap.
2107           auto GEPs = std::move(it->second);
2108           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2109           LargeOffsetGEPMap.erase(II);
2110       }
2111 
2112       II->replaceAllUsesWith(ArgVal);
2113       II->eraseFromParent();
2114       return true;
2115     }
2116     case Intrinsic::cttz:
2117     case Intrinsic::ctlz:
2118       // If counting zeros is expensive, try to avoid it.
2119       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2120     case Intrinsic::fshl:
2121     case Intrinsic::fshr:
2122       return optimizeFunnelShift(II);
2123     case Intrinsic::dbg_value:
2124       return fixupDbgValue(II);
2125     case Intrinsic::vscale: {
2126       // If datalayout has no special restrictions on vector data layout,
2127       // replace `llvm.vscale` by an equivalent constant expression
2128       // to benefit from cheap constant propagation.
2129       Type *ScalableVectorTy =
2130           VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2131       if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2132         auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2133         auto *One = ConstantInt::getSigned(II->getType(), 1);
2134         auto *CGep =
2135             ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2136         II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2137         II->eraseFromParent();
2138         return true;
2139       }
2140       break;
2141     }
2142     case Intrinsic::masked_gather:
2143       return optimizeGatherScatterInst(II, II->getArgOperand(0));
2144     case Intrinsic::masked_scatter:
2145       return optimizeGatherScatterInst(II, II->getArgOperand(1));
2146     }
2147 
2148     SmallVector<Value *, 2> PtrOps;
2149     Type *AccessTy;
2150     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2151       while (!PtrOps.empty()) {
2152         Value *PtrVal = PtrOps.pop_back_val();
2153         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2154         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2155           return true;
2156       }
2157   }
2158 
2159   // From here on out we're working with named functions.
2160   if (!CI->getCalledFunction()) return false;
2161 
2162   // Lower all default uses of _chk calls.  This is very similar
2163   // to what InstCombineCalls does, but here we are only lowering calls
2164   // to fortified library functions (e.g. __memcpy_chk) that have the default
2165   // "don't know" as the objectsize.  Anything else should be left alone.
2166   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2167   IRBuilder<> Builder(CI);
2168   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2169     CI->replaceAllUsesWith(V);
2170     CI->eraseFromParent();
2171     return true;
2172   }
2173 
2174   return false;
2175 }
2176 
2177 /// Look for opportunities to duplicate return instructions to the predecessor
2178 /// to enable tail call optimizations. The case it is currently looking for is:
2179 /// @code
2180 /// bb0:
2181 ///   %tmp0 = tail call i32 @f0()
2182 ///   br label %return
2183 /// bb1:
2184 ///   %tmp1 = tail call i32 @f1()
2185 ///   br label %return
2186 /// bb2:
2187 ///   %tmp2 = tail call i32 @f2()
2188 ///   br label %return
2189 /// return:
2190 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2191 ///   ret i32 %retval
2192 /// @endcode
2193 ///
2194 /// =>
2195 ///
2196 /// @code
2197 /// bb0:
2198 ///   %tmp0 = tail call i32 @f0()
2199 ///   ret i32 %tmp0
2200 /// bb1:
2201 ///   %tmp1 = tail call i32 @f1()
2202 ///   ret i32 %tmp1
2203 /// bb2:
2204 ///   %tmp2 = tail call i32 @f2()
2205 ///   ret i32 %tmp2
2206 /// @endcode
dupRetToEnableTailCallOpts(BasicBlock * BB,bool & ModifiedDT)2207 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2208   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2209   if (!RetI)
2210     return false;
2211 
2212   PHINode *PN = nullptr;
2213   ExtractValueInst *EVI = nullptr;
2214   BitCastInst *BCI = nullptr;
2215   Value *V = RetI->getReturnValue();
2216   if (V) {
2217     BCI = dyn_cast<BitCastInst>(V);
2218     if (BCI)
2219       V = BCI->getOperand(0);
2220 
2221     EVI = dyn_cast<ExtractValueInst>(V);
2222     if (EVI) {
2223       V = EVI->getOperand(0);
2224       if (!std::all_of(EVI->idx_begin(), EVI->idx_end(),
2225                        [](unsigned idx) { return idx == 0; }))
2226         return false;
2227     }
2228 
2229     PN = dyn_cast<PHINode>(V);
2230     if (!PN)
2231       return false;
2232   }
2233 
2234   if (PN && PN->getParent() != BB)
2235     return false;
2236 
2237   // Make sure there are no instructions between the PHI and return, or that the
2238   // return is the first instruction in the block.
2239   if (PN) {
2240     BasicBlock::iterator BI = BB->begin();
2241     // Skip over debug and the bitcast.
2242     do {
2243       ++BI;
2244     } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI);
2245     if (&*BI != RetI)
2246       return false;
2247   } else {
2248     BasicBlock::iterator BI = BB->begin();
2249     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2250     if (&*BI != RetI)
2251       return false;
2252   }
2253 
2254   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2255   /// call.
2256   const Function *F = BB->getParent();
2257   SmallVector<BasicBlock*, 4> TailCallBBs;
2258   if (PN) {
2259     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2260       // Look through bitcasts.
2261       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2262       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2263       BasicBlock *PredBB = PN->getIncomingBlock(I);
2264       // Make sure the phi value is indeed produced by the tail call.
2265       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2266           TLI->mayBeEmittedAsTailCall(CI) &&
2267           attributesPermitTailCall(F, CI, RetI, *TLI))
2268         TailCallBBs.push_back(PredBB);
2269     }
2270   } else {
2271     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2272     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2273       if (!VisitedBBs.insert(*PI).second)
2274         continue;
2275 
2276       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2277       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2278       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2279       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2280       if (RI == RE)
2281         continue;
2282 
2283       CallInst *CI = dyn_cast<CallInst>(&*RI);
2284       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2285           attributesPermitTailCall(F, CI, RetI, *TLI))
2286         TailCallBBs.push_back(*PI);
2287     }
2288   }
2289 
2290   bool Changed = false;
2291   for (auto const &TailCallBB : TailCallBBs) {
2292     // Make sure the call instruction is followed by an unconditional branch to
2293     // the return block.
2294     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2295     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2296       continue;
2297 
2298     // Duplicate the return into TailCallBB.
2299     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2300     assert(!VerifyBFIUpdates ||
2301            BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2302     BFI->setBlockFreq(
2303         BB,
2304         (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
2305     ModifiedDT = Changed = true;
2306     ++NumRetsDup;
2307   }
2308 
2309   // If we eliminated all predecessors of the block, delete the block now.
2310   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2311     BB->eraseFromParent();
2312 
2313   return Changed;
2314 }
2315 
2316 //===----------------------------------------------------------------------===//
2317 // Memory Optimization
2318 //===----------------------------------------------------------------------===//
2319 
2320 namespace {
2321 
2322 /// This is an extended version of TargetLowering::AddrMode
2323 /// which holds actual Value*'s for register values.
2324 struct ExtAddrMode : public TargetLowering::AddrMode {
2325   Value *BaseReg = nullptr;
2326   Value *ScaledReg = nullptr;
2327   Value *OriginalValue = nullptr;
2328   bool InBounds = true;
2329 
2330   enum FieldName {
2331     NoField        = 0x00,
2332     BaseRegField   = 0x01,
2333     BaseGVField    = 0x02,
2334     BaseOffsField  = 0x04,
2335     ScaledRegField = 0x08,
2336     ScaleField     = 0x10,
2337     MultipleFields = 0xff
2338   };
2339 
2340 
2341   ExtAddrMode() = default;
2342 
2343   void print(raw_ostream &OS) const;
2344   void dump() const;
2345 
compare__anon5bb5e3b10811::ExtAddrMode2346   FieldName compare(const ExtAddrMode &other) {
2347     // First check that the types are the same on each field, as differing types
2348     // is something we can't cope with later on.
2349     if (BaseReg && other.BaseReg &&
2350         BaseReg->getType() != other.BaseReg->getType())
2351       return MultipleFields;
2352     if (BaseGV && other.BaseGV &&
2353         BaseGV->getType() != other.BaseGV->getType())
2354       return MultipleFields;
2355     if (ScaledReg && other.ScaledReg &&
2356         ScaledReg->getType() != other.ScaledReg->getType())
2357       return MultipleFields;
2358 
2359     // Conservatively reject 'inbounds' mismatches.
2360     if (InBounds != other.InBounds)
2361       return MultipleFields;
2362 
2363     // Check each field to see if it differs.
2364     unsigned Result = NoField;
2365     if (BaseReg != other.BaseReg)
2366       Result |= BaseRegField;
2367     if (BaseGV != other.BaseGV)
2368       Result |= BaseGVField;
2369     if (BaseOffs != other.BaseOffs)
2370       Result |= BaseOffsField;
2371     if (ScaledReg != other.ScaledReg)
2372       Result |= ScaledRegField;
2373     // Don't count 0 as being a different scale, because that actually means
2374     // unscaled (which will already be counted by having no ScaledReg).
2375     if (Scale && other.Scale && Scale != other.Scale)
2376       Result |= ScaleField;
2377 
2378     if (countPopulation(Result) > 1)
2379       return MultipleFields;
2380     else
2381       return static_cast<FieldName>(Result);
2382   }
2383 
2384   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2385   // with no offset.
isTrivial__anon5bb5e3b10811::ExtAddrMode2386   bool isTrivial() {
2387     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2388     // trivial if at most one of these terms is nonzero, except that BaseGV and
2389     // BaseReg both being zero actually means a null pointer value, which we
2390     // consider to be 'non-zero' here.
2391     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2392   }
2393 
GetFieldAsValue__anon5bb5e3b10811::ExtAddrMode2394   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2395     switch (Field) {
2396     default:
2397       return nullptr;
2398     case BaseRegField:
2399       return BaseReg;
2400     case BaseGVField:
2401       return BaseGV;
2402     case ScaledRegField:
2403       return ScaledReg;
2404     case BaseOffsField:
2405       return ConstantInt::get(IntPtrTy, BaseOffs);
2406     }
2407   }
2408 
SetCombinedField__anon5bb5e3b10811::ExtAddrMode2409   void SetCombinedField(FieldName Field, Value *V,
2410                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2411     switch (Field) {
2412     default:
2413       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2414       break;
2415     case ExtAddrMode::BaseRegField:
2416       BaseReg = V;
2417       break;
2418     case ExtAddrMode::BaseGVField:
2419       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2420       // in the BaseReg field.
2421       assert(BaseReg == nullptr);
2422       BaseReg = V;
2423       BaseGV = nullptr;
2424       break;
2425     case ExtAddrMode::ScaledRegField:
2426       ScaledReg = V;
2427       // If we have a mix of scaled and unscaled addrmodes then we want scale
2428       // to be the scale and not zero.
2429       if (!Scale)
2430         for (const ExtAddrMode &AM : AddrModes)
2431           if (AM.Scale) {
2432             Scale = AM.Scale;
2433             break;
2434           }
2435       break;
2436     case ExtAddrMode::BaseOffsField:
2437       // The offset is no longer a constant, so it goes in ScaledReg with a
2438       // scale of 1.
2439       assert(ScaledReg == nullptr);
2440       ScaledReg = V;
2441       Scale = 1;
2442       BaseOffs = 0;
2443       break;
2444     }
2445   }
2446 };
2447 
2448 } // end anonymous namespace
2449 
2450 #ifndef NDEBUG
operator <<(raw_ostream & OS,const ExtAddrMode & AM)2451 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2452   AM.print(OS);
2453   return OS;
2454 }
2455 #endif
2456 
2457 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const2458 void ExtAddrMode::print(raw_ostream &OS) const {
2459   bool NeedPlus = false;
2460   OS << "[";
2461   if (InBounds)
2462     OS << "inbounds ";
2463   if (BaseGV) {
2464     OS << (NeedPlus ? " + " : "")
2465        << "GV:";
2466     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2467     NeedPlus = true;
2468   }
2469 
2470   if (BaseOffs) {
2471     OS << (NeedPlus ? " + " : "")
2472        << BaseOffs;
2473     NeedPlus = true;
2474   }
2475 
2476   if (BaseReg) {
2477     OS << (NeedPlus ? " + " : "")
2478        << "Base:";
2479     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2480     NeedPlus = true;
2481   }
2482   if (Scale) {
2483     OS << (NeedPlus ? " + " : "")
2484        << Scale << "*";
2485     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2486   }
2487 
2488   OS << ']';
2489 }
2490 
dump() const2491 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2492   print(dbgs());
2493   dbgs() << '\n';
2494 }
2495 #endif
2496 
2497 namespace {
2498 
2499 /// This class provides transaction based operation on the IR.
2500 /// Every change made through this class is recorded in the internal state and
2501 /// can be undone (rollback) until commit is called.
2502 /// CGP does not check if instructions could be speculatively executed when
2503 /// moved. Preserving the original location would pessimize the debugging
2504 /// experience, as well as negatively impact the quality of sample PGO.
2505 class TypePromotionTransaction {
2506   /// This represents the common interface of the individual transaction.
2507   /// Each class implements the logic for doing one specific modification on
2508   /// the IR via the TypePromotionTransaction.
2509   class TypePromotionAction {
2510   protected:
2511     /// The Instruction modified.
2512     Instruction *Inst;
2513 
2514   public:
2515     /// Constructor of the action.
2516     /// The constructor performs the related action on the IR.
TypePromotionAction(Instruction * Inst)2517     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2518 
2519     virtual ~TypePromotionAction() = default;
2520 
2521     /// Undo the modification done by this action.
2522     /// When this method is called, the IR must be in the same state as it was
2523     /// before this action was applied.
2524     /// \pre Undoing the action works if and only if the IR is in the exact same
2525     /// state as it was directly after this action was applied.
2526     virtual void undo() = 0;
2527 
2528     /// Advocate every change made by this action.
2529     /// When the results on the IR of the action are to be kept, it is important
2530     /// to call this function, otherwise hidden information may be kept forever.
commit()2531     virtual void commit() {
2532       // Nothing to be done, this action is not doing anything.
2533     }
2534   };
2535 
2536   /// Utility to remember the position of an instruction.
2537   class InsertionHandler {
2538     /// Position of an instruction.
2539     /// Either an instruction:
2540     /// - Is the first in a basic block: BB is used.
2541     /// - Has a previous instruction: PrevInst is used.
2542     union {
2543       Instruction *PrevInst;
2544       BasicBlock *BB;
2545     } Point;
2546 
2547     /// Remember whether or not the instruction had a previous instruction.
2548     bool HasPrevInstruction;
2549 
2550   public:
2551     /// Record the position of \p Inst.
InsertionHandler(Instruction * Inst)2552     InsertionHandler(Instruction *Inst) {
2553       BasicBlock::iterator It = Inst->getIterator();
2554       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2555       if (HasPrevInstruction)
2556         Point.PrevInst = &*--It;
2557       else
2558         Point.BB = Inst->getParent();
2559     }
2560 
2561     /// Insert \p Inst at the recorded position.
insert(Instruction * Inst)2562     void insert(Instruction *Inst) {
2563       if (HasPrevInstruction) {
2564         if (Inst->getParent())
2565           Inst->removeFromParent();
2566         Inst->insertAfter(Point.PrevInst);
2567       } else {
2568         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2569         if (Inst->getParent())
2570           Inst->moveBefore(Position);
2571         else
2572           Inst->insertBefore(Position);
2573       }
2574     }
2575   };
2576 
2577   /// Move an instruction before another.
2578   class InstructionMoveBefore : public TypePromotionAction {
2579     /// Original position of the instruction.
2580     InsertionHandler Position;
2581 
2582   public:
2583     /// Move \p Inst before \p Before.
InstructionMoveBefore(Instruction * Inst,Instruction * Before)2584     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2585         : TypePromotionAction(Inst), Position(Inst) {
2586       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2587                         << "\n");
2588       Inst->moveBefore(Before);
2589     }
2590 
2591     /// Move the instruction back to its original position.
undo()2592     void undo() override {
2593       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2594       Position.insert(Inst);
2595     }
2596   };
2597 
2598   /// Set the operand of an instruction with a new value.
2599   class OperandSetter : public TypePromotionAction {
2600     /// Original operand of the instruction.
2601     Value *Origin;
2602 
2603     /// Index of the modified instruction.
2604     unsigned Idx;
2605 
2606   public:
2607     /// Set \p Idx operand of \p Inst with \p NewVal.
OperandSetter(Instruction * Inst,unsigned Idx,Value * NewVal)2608     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2609         : TypePromotionAction(Inst), Idx(Idx) {
2610       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2611                         << "for:" << *Inst << "\n"
2612                         << "with:" << *NewVal << "\n");
2613       Origin = Inst->getOperand(Idx);
2614       Inst->setOperand(Idx, NewVal);
2615     }
2616 
2617     /// Restore the original value of the instruction.
undo()2618     void undo() override {
2619       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2620                         << "for: " << *Inst << "\n"
2621                         << "with: " << *Origin << "\n");
2622       Inst->setOperand(Idx, Origin);
2623     }
2624   };
2625 
2626   /// Hide the operands of an instruction.
2627   /// Do as if this instruction was not using any of its operands.
2628   class OperandsHider : public TypePromotionAction {
2629     /// The list of original operands.
2630     SmallVector<Value *, 4> OriginalValues;
2631 
2632   public:
2633     /// Remove \p Inst from the uses of the operands of \p Inst.
OperandsHider(Instruction * Inst)2634     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2635       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2636       unsigned NumOpnds = Inst->getNumOperands();
2637       OriginalValues.reserve(NumOpnds);
2638       for (unsigned It = 0; It < NumOpnds; ++It) {
2639         // Save the current operand.
2640         Value *Val = Inst->getOperand(It);
2641         OriginalValues.push_back(Val);
2642         // Set a dummy one.
2643         // We could use OperandSetter here, but that would imply an overhead
2644         // that we are not willing to pay.
2645         Inst->setOperand(It, UndefValue::get(Val->getType()));
2646       }
2647     }
2648 
2649     /// Restore the original list of uses.
undo()2650     void undo() override {
2651       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2652       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2653         Inst->setOperand(It, OriginalValues[It]);
2654     }
2655   };
2656 
2657   /// Build a truncate instruction.
2658   class TruncBuilder : public TypePromotionAction {
2659     Value *Val;
2660 
2661   public:
2662     /// Build a truncate instruction of \p Opnd producing a \p Ty
2663     /// result.
2664     /// trunc Opnd to Ty.
TruncBuilder(Instruction * Opnd,Type * Ty)2665     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2666       IRBuilder<> Builder(Opnd);
2667       Builder.SetCurrentDebugLocation(DebugLoc());
2668       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2669       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2670     }
2671 
2672     /// Get the built value.
getBuiltValue()2673     Value *getBuiltValue() { return Val; }
2674 
2675     /// Remove the built instruction.
undo()2676     void undo() override {
2677       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2678       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2679         IVal->eraseFromParent();
2680     }
2681   };
2682 
2683   /// Build a sign extension instruction.
2684   class SExtBuilder : public TypePromotionAction {
2685     Value *Val;
2686 
2687   public:
2688     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2689     /// result.
2690     /// sext Opnd to Ty.
SExtBuilder(Instruction * InsertPt,Value * Opnd,Type * Ty)2691     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2692         : TypePromotionAction(InsertPt) {
2693       IRBuilder<> Builder(InsertPt);
2694       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2695       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2696     }
2697 
2698     /// Get the built value.
getBuiltValue()2699     Value *getBuiltValue() { return Val; }
2700 
2701     /// Remove the built instruction.
undo()2702     void undo() override {
2703       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2704       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2705         IVal->eraseFromParent();
2706     }
2707   };
2708 
2709   /// Build a zero extension instruction.
2710   class ZExtBuilder : public TypePromotionAction {
2711     Value *Val;
2712 
2713   public:
2714     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2715     /// result.
2716     /// zext Opnd to Ty.
ZExtBuilder(Instruction * InsertPt,Value * Opnd,Type * Ty)2717     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2718         : TypePromotionAction(InsertPt) {
2719       IRBuilder<> Builder(InsertPt);
2720       Builder.SetCurrentDebugLocation(DebugLoc());
2721       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2722       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2723     }
2724 
2725     /// Get the built value.
getBuiltValue()2726     Value *getBuiltValue() { return Val; }
2727 
2728     /// Remove the built instruction.
undo()2729     void undo() override {
2730       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2731       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2732         IVal->eraseFromParent();
2733     }
2734   };
2735 
2736   /// Mutate an instruction to another type.
2737   class TypeMutator : public TypePromotionAction {
2738     /// Record the original type.
2739     Type *OrigTy;
2740 
2741   public:
2742     /// Mutate the type of \p Inst into \p NewTy.
TypeMutator(Instruction * Inst,Type * NewTy)2743     TypeMutator(Instruction *Inst, Type *NewTy)
2744         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2745       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2746                         << "\n");
2747       Inst->mutateType(NewTy);
2748     }
2749 
2750     /// Mutate the instruction back to its original type.
undo()2751     void undo() override {
2752       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2753                         << "\n");
2754       Inst->mutateType(OrigTy);
2755     }
2756   };
2757 
2758   /// Replace the uses of an instruction by another instruction.
2759   class UsesReplacer : public TypePromotionAction {
2760     /// Helper structure to keep track of the replaced uses.
2761     struct InstructionAndIdx {
2762       /// The instruction using the instruction.
2763       Instruction *Inst;
2764 
2765       /// The index where this instruction is used for Inst.
2766       unsigned Idx;
2767 
InstructionAndIdx__anon5bb5e3b10911::TypePromotionTransaction::UsesReplacer::InstructionAndIdx2768       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2769           : Inst(Inst), Idx(Idx) {}
2770     };
2771 
2772     /// Keep track of the original uses (pair Instruction, Index).
2773     SmallVector<InstructionAndIdx, 4> OriginalUses;
2774     /// Keep track of the debug users.
2775     SmallVector<DbgValueInst *, 1> DbgValues;
2776 
2777     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2778 
2779   public:
2780     /// Replace all the use of \p Inst by \p New.
UsesReplacer(Instruction * Inst,Value * New)2781     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2782       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2783                         << "\n");
2784       // Record the original uses.
2785       for (Use &U : Inst->uses()) {
2786         Instruction *UserI = cast<Instruction>(U.getUser());
2787         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2788       }
2789       // Record the debug uses separately. They are not in the instruction's
2790       // use list, but they are replaced by RAUW.
2791       findDbgValues(DbgValues, Inst);
2792 
2793       // Now, we can replace the uses.
2794       Inst->replaceAllUsesWith(New);
2795     }
2796 
2797     /// Reassign the original uses of Inst to Inst.
undo()2798     void undo() override {
2799       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2800       for (use_iterator UseIt = OriginalUses.begin(),
2801                         EndIt = OriginalUses.end();
2802            UseIt != EndIt; ++UseIt) {
2803         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2804       }
2805       // RAUW has replaced all original uses with references to the new value,
2806       // including the debug uses. Since we are undoing the replacements,
2807       // the original debug uses must also be reinstated to maintain the
2808       // correctness and utility of debug value instructions.
2809       for (auto *DVI: DbgValues) {
2810         LLVMContext &Ctx = Inst->getType()->getContext();
2811         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2812         DVI->setOperand(0, MV);
2813       }
2814     }
2815   };
2816 
2817   /// Remove an instruction from the IR.
2818   class InstructionRemover : public TypePromotionAction {
2819     /// Original position of the instruction.
2820     InsertionHandler Inserter;
2821 
2822     /// Helper structure to hide all the link to the instruction. In other
2823     /// words, this helps to do as if the instruction was removed.
2824     OperandsHider Hider;
2825 
2826     /// Keep track of the uses replaced, if any.
2827     UsesReplacer *Replacer = nullptr;
2828 
2829     /// Keep track of instructions removed.
2830     SetOfInstrs &RemovedInsts;
2831 
2832   public:
2833     /// Remove all reference of \p Inst and optionally replace all its
2834     /// uses with New.
2835     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2836     /// \pre If !Inst->use_empty(), then New != nullptr
InstructionRemover(Instruction * Inst,SetOfInstrs & RemovedInsts,Value * New=nullptr)2837     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2838                        Value *New = nullptr)
2839         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2840           RemovedInsts(RemovedInsts) {
2841       if (New)
2842         Replacer = new UsesReplacer(Inst, New);
2843       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2844       RemovedInsts.insert(Inst);
2845       /// The instructions removed here will be freed after completing
2846       /// optimizeBlock() for all blocks as we need to keep track of the
2847       /// removed instructions during promotion.
2848       Inst->removeFromParent();
2849     }
2850 
~InstructionRemover()2851     ~InstructionRemover() override { delete Replacer; }
2852 
2853     /// Resurrect the instruction and reassign it to the proper uses if
2854     /// new value was provided when build this action.
undo()2855     void undo() override {
2856       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2857       Inserter.insert(Inst);
2858       if (Replacer)
2859         Replacer->undo();
2860       Hider.undo();
2861       RemovedInsts.erase(Inst);
2862     }
2863   };
2864 
2865 public:
2866   /// Restoration point.
2867   /// The restoration point is a pointer to an action instead of an iterator
2868   /// because the iterator may be invalidated but not the pointer.
2869   using ConstRestorationPt = const TypePromotionAction *;
2870 
TypePromotionTransaction(SetOfInstrs & RemovedInsts)2871   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2872       : RemovedInsts(RemovedInsts) {}
2873 
2874   /// Advocate every changes made in that transaction. Return true if any change
2875   /// happen.
2876   bool commit();
2877 
2878   /// Undo all the changes made after the given point.
2879   void rollback(ConstRestorationPt Point);
2880 
2881   /// Get the current restoration point.
2882   ConstRestorationPt getRestorationPoint() const;
2883 
2884   /// \name API for IR modification with state keeping to support rollback.
2885   /// @{
2886   /// Same as Instruction::setOperand.
2887   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2888 
2889   /// Same as Instruction::eraseFromParent.
2890   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2891 
2892   /// Same as Value::replaceAllUsesWith.
2893   void replaceAllUsesWith(Instruction *Inst, Value *New);
2894 
2895   /// Same as Value::mutateType.
2896   void mutateType(Instruction *Inst, Type *NewTy);
2897 
2898   /// Same as IRBuilder::createTrunc.
2899   Value *createTrunc(Instruction *Opnd, Type *Ty);
2900 
2901   /// Same as IRBuilder::createSExt.
2902   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2903 
2904   /// Same as IRBuilder::createZExt.
2905   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2906 
2907   /// Same as Instruction::moveBefore.
2908   void moveBefore(Instruction *Inst, Instruction *Before);
2909   /// @}
2910 
2911 private:
2912   /// The ordered list of actions made so far.
2913   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2914 
2915   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2916 
2917   SetOfInstrs &RemovedInsts;
2918 };
2919 
2920 } // end anonymous namespace
2921 
setOperand(Instruction * Inst,unsigned Idx,Value * NewVal)2922 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2923                                           Value *NewVal) {
2924   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2925       Inst, Idx, NewVal));
2926 }
2927 
eraseInstruction(Instruction * Inst,Value * NewVal)2928 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2929                                                 Value *NewVal) {
2930   Actions.push_back(
2931       std::make_unique<TypePromotionTransaction::InstructionRemover>(
2932           Inst, RemovedInsts, NewVal));
2933 }
2934 
replaceAllUsesWith(Instruction * Inst,Value * New)2935 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2936                                                   Value *New) {
2937   Actions.push_back(
2938       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2939 }
2940 
mutateType(Instruction * Inst,Type * NewTy)2941 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2942   Actions.push_back(
2943       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2944 }
2945 
createTrunc(Instruction * Opnd,Type * Ty)2946 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2947                                              Type *Ty) {
2948   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2949   Value *Val = Ptr->getBuiltValue();
2950   Actions.push_back(std::move(Ptr));
2951   return Val;
2952 }
2953 
createSExt(Instruction * Inst,Value * Opnd,Type * Ty)2954 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2955                                             Value *Opnd, Type *Ty) {
2956   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2957   Value *Val = Ptr->getBuiltValue();
2958   Actions.push_back(std::move(Ptr));
2959   return Val;
2960 }
2961 
createZExt(Instruction * Inst,Value * Opnd,Type * Ty)2962 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2963                                             Value *Opnd, Type *Ty) {
2964   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2965   Value *Val = Ptr->getBuiltValue();
2966   Actions.push_back(std::move(Ptr));
2967   return Val;
2968 }
2969 
moveBefore(Instruction * Inst,Instruction * Before)2970 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2971                                           Instruction *Before) {
2972   Actions.push_back(
2973       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2974           Inst, Before));
2975 }
2976 
2977 TypePromotionTransaction::ConstRestorationPt
getRestorationPoint() const2978 TypePromotionTransaction::getRestorationPoint() const {
2979   return !Actions.empty() ? Actions.back().get() : nullptr;
2980 }
2981 
commit()2982 bool TypePromotionTransaction::commit() {
2983   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2984        ++It)
2985     (*It)->commit();
2986   bool Modified = !Actions.empty();
2987   Actions.clear();
2988   return Modified;
2989 }
2990 
rollback(TypePromotionTransaction::ConstRestorationPt Point)2991 void TypePromotionTransaction::rollback(
2992     TypePromotionTransaction::ConstRestorationPt Point) {
2993   while (!Actions.empty() && Point != Actions.back().get()) {
2994     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2995     Curr->undo();
2996   }
2997 }
2998 
2999 namespace {
3000 
3001 /// A helper class for matching addressing modes.
3002 ///
3003 /// This encapsulates the logic for matching the target-legal addressing modes.
3004 class AddressingModeMatcher {
3005   SmallVectorImpl<Instruction*> &AddrModeInsts;
3006   const TargetLowering &TLI;
3007   const TargetRegisterInfo &TRI;
3008   const DataLayout &DL;
3009 
3010   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3011   /// the memory instruction that we're computing this address for.
3012   Type *AccessTy;
3013   unsigned AddrSpace;
3014   Instruction *MemoryInst;
3015 
3016   /// This is the addressing mode that we're building up. This is
3017   /// part of the return value of this addressing mode matching stuff.
3018   ExtAddrMode &AddrMode;
3019 
3020   /// The instructions inserted by other CodeGenPrepare optimizations.
3021   const SetOfInstrs &InsertedInsts;
3022 
3023   /// A map from the instructions to their type before promotion.
3024   InstrToOrigTy &PromotedInsts;
3025 
3026   /// The ongoing transaction where every action should be registered.
3027   TypePromotionTransaction &TPT;
3028 
3029   // A GEP which has too large offset to be folded into the addressing mode.
3030   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3031 
3032   /// This is set to true when we should not do profitability checks.
3033   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3034   bool IgnoreProfitability;
3035 
3036   /// True if we are optimizing for size.
3037   bool OptSize;
3038 
3039   ProfileSummaryInfo *PSI;
3040   BlockFrequencyInfo *BFI;
3041 
AddressingModeMatcher(SmallVectorImpl<Instruction * > & AMI,const TargetLowering & TLI,const TargetRegisterInfo & TRI,Type * AT,unsigned AS,Instruction * MI,ExtAddrMode & AM,const SetOfInstrs & InsertedInsts,InstrToOrigTy & PromotedInsts,TypePromotionTransaction & TPT,std::pair<AssertingVH<GetElementPtrInst>,int64_t> & LargeOffsetGEP,bool OptSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)3042   AddressingModeMatcher(
3043       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3044       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
3045       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
3046       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3047       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3048       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3049       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3050         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
3051         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
3052         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP),
3053         OptSize(OptSize), PSI(PSI), BFI(BFI) {
3054     IgnoreProfitability = false;
3055   }
3056 
3057 public:
3058   /// Find the maximal addressing mode that a load/store of V can fold,
3059   /// give an access type of AccessTy.  This returns a list of involved
3060   /// instructions in AddrModeInsts.
3061   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3062   /// optimizations.
3063   /// \p PromotedInsts maps the instructions to their type before promotion.
3064   /// \p The ongoing transaction where every action should be registered.
3065   static ExtAddrMode
Match(Value * V,Type * AccessTy,unsigned AS,Instruction * MemoryInst,SmallVectorImpl<Instruction * > & AddrModeInsts,const TargetLowering & TLI,const TargetRegisterInfo & TRI,const SetOfInstrs & InsertedInsts,InstrToOrigTy & PromotedInsts,TypePromotionTransaction & TPT,std::pair<AssertingVH<GetElementPtrInst>,int64_t> & LargeOffsetGEP,bool OptSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)3066   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3067         SmallVectorImpl<Instruction *> &AddrModeInsts,
3068         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
3069         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3070         TypePromotionTransaction &TPT,
3071         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3072         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3073     ExtAddrMode Result;
3074 
3075     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
3076                                          MemoryInst, Result, InsertedInsts,
3077                                          PromotedInsts, TPT, LargeOffsetGEP,
3078                                          OptSize, PSI, BFI)
3079                        .matchAddr(V, 0);
3080     (void)Success; assert(Success && "Couldn't select *anything*?");
3081     return Result;
3082   }
3083 
3084 private:
3085   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3086   bool matchAddr(Value *Addr, unsigned Depth);
3087   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3088                           bool *MovedAway = nullptr);
3089   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3090                                             ExtAddrMode &AMBefore,
3091                                             ExtAddrMode &AMAfter);
3092   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3093   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3094                              Value *PromotedOperand) const;
3095 };
3096 
3097 class PhiNodeSet;
3098 
3099 /// An iterator for PhiNodeSet.
3100 class PhiNodeSetIterator {
3101   PhiNodeSet * const Set;
3102   size_t CurrentIndex = 0;
3103 
3104 public:
3105   /// The constructor. Start should point to either a valid element, or be equal
3106   /// to the size of the underlying SmallVector of the PhiNodeSet.
3107   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
3108   PHINode * operator*() const;
3109   PhiNodeSetIterator& operator++();
3110   bool operator==(const PhiNodeSetIterator &RHS) const;
3111   bool operator!=(const PhiNodeSetIterator &RHS) const;
3112 };
3113 
3114 /// Keeps a set of PHINodes.
3115 ///
3116 /// This is a minimal set implementation for a specific use case:
3117 /// It is very fast when there are very few elements, but also provides good
3118 /// performance when there are many. It is similar to SmallPtrSet, but also
3119 /// provides iteration by insertion order, which is deterministic and stable
3120 /// across runs. It is also similar to SmallSetVector, but provides removing
3121 /// elements in O(1) time. This is achieved by not actually removing the element
3122 /// from the underlying vector, so comes at the cost of using more memory, but
3123 /// that is fine, since PhiNodeSets are used as short lived objects.
3124 class PhiNodeSet {
3125   friend class PhiNodeSetIterator;
3126 
3127   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3128   using iterator =  PhiNodeSetIterator;
3129 
3130   /// Keeps the elements in the order of their insertion in the underlying
3131   /// vector. To achieve constant time removal, it never deletes any element.
3132   SmallVector<PHINode *, 32> NodeList;
3133 
3134   /// Keeps the elements in the underlying set implementation. This (and not the
3135   /// NodeList defined above) is the source of truth on whether an element
3136   /// is actually in the collection.
3137   MapType NodeMap;
3138 
3139   /// Points to the first valid (not deleted) element when the set is not empty
3140   /// and the value is not zero. Equals to the size of the underlying vector
3141   /// when the set is empty. When the value is 0, as in the beginning, the
3142   /// first element may or may not be valid.
3143   size_t FirstValidElement = 0;
3144 
3145 public:
3146   /// Inserts a new element to the collection.
3147   /// \returns true if the element is actually added, i.e. was not in the
3148   /// collection before the operation.
insert(PHINode * Ptr)3149   bool insert(PHINode *Ptr) {
3150     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3151       NodeList.push_back(Ptr);
3152       return true;
3153     }
3154     return false;
3155   }
3156 
3157   /// Removes the element from the collection.
3158   /// \returns whether the element is actually removed, i.e. was in the
3159   /// collection before the operation.
erase(PHINode * Ptr)3160   bool erase(PHINode *Ptr) {
3161     auto it = NodeMap.find(Ptr);
3162     if (it != NodeMap.end()) {
3163       NodeMap.erase(Ptr);
3164       SkipRemovedElements(FirstValidElement);
3165       return true;
3166     }
3167     return false;
3168   }
3169 
3170   /// Removes all elements and clears the collection.
clear()3171   void clear() {
3172     NodeMap.clear();
3173     NodeList.clear();
3174     FirstValidElement = 0;
3175   }
3176 
3177   /// \returns an iterator that will iterate the elements in the order of
3178   /// insertion.
begin()3179   iterator begin() {
3180     if (FirstValidElement == 0)
3181       SkipRemovedElements(FirstValidElement);
3182     return PhiNodeSetIterator(this, FirstValidElement);
3183   }
3184 
3185   /// \returns an iterator that points to the end of the collection.
end()3186   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3187 
3188   /// Returns the number of elements in the collection.
size() const3189   size_t size() const {
3190     return NodeMap.size();
3191   }
3192 
3193   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
count(PHINode * Ptr) const3194   size_t count(PHINode *Ptr) const {
3195     return NodeMap.count(Ptr);
3196   }
3197 
3198 private:
3199   /// Updates the CurrentIndex so that it will point to a valid element.
3200   ///
3201   /// If the element of NodeList at CurrentIndex is valid, it does not
3202   /// change it. If there are no more valid elements, it updates CurrentIndex
3203   /// to point to the end of the NodeList.
SkipRemovedElements(size_t & CurrentIndex)3204   void SkipRemovedElements(size_t &CurrentIndex) {
3205     while (CurrentIndex < NodeList.size()) {
3206       auto it = NodeMap.find(NodeList[CurrentIndex]);
3207       // If the element has been deleted and added again later, NodeMap will
3208       // point to a different index, so CurrentIndex will still be invalid.
3209       if (it != NodeMap.end() && it->second == CurrentIndex)
3210         break;
3211       ++CurrentIndex;
3212     }
3213   }
3214 };
3215 
PhiNodeSetIterator(PhiNodeSet * const Set,size_t Start)3216 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3217     : Set(Set), CurrentIndex(Start) {}
3218 
operator *() const3219 PHINode * PhiNodeSetIterator::operator*() const {
3220   assert(CurrentIndex < Set->NodeList.size() &&
3221          "PhiNodeSet access out of range");
3222   return Set->NodeList[CurrentIndex];
3223 }
3224 
operator ++()3225 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3226   assert(CurrentIndex < Set->NodeList.size() &&
3227          "PhiNodeSet access out of range");
3228   ++CurrentIndex;
3229   Set->SkipRemovedElements(CurrentIndex);
3230   return *this;
3231 }
3232 
operator ==(const PhiNodeSetIterator & RHS) const3233 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3234   return CurrentIndex == RHS.CurrentIndex;
3235 }
3236 
operator !=(const PhiNodeSetIterator & RHS) const3237 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3238   return !((*this) == RHS);
3239 }
3240 
3241 /// Keep track of simplification of Phi nodes.
3242 /// Accept the set of all phi nodes and erase phi node from this set
3243 /// if it is simplified.
3244 class SimplificationTracker {
3245   DenseMap<Value *, Value *> Storage;
3246   const SimplifyQuery &SQ;
3247   // Tracks newly created Phi nodes. The elements are iterated by insertion
3248   // order.
3249   PhiNodeSet AllPhiNodes;
3250   // Tracks newly created Select nodes.
3251   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3252 
3253 public:
SimplificationTracker(const SimplifyQuery & sq)3254   SimplificationTracker(const SimplifyQuery &sq)
3255       : SQ(sq) {}
3256 
Get(Value * V)3257   Value *Get(Value *V) {
3258     do {
3259       auto SV = Storage.find(V);
3260       if (SV == Storage.end())
3261         return V;
3262       V = SV->second;
3263     } while (true);
3264   }
3265 
Simplify(Value * Val)3266   Value *Simplify(Value *Val) {
3267     SmallVector<Value *, 32> WorkList;
3268     SmallPtrSet<Value *, 32> Visited;
3269     WorkList.push_back(Val);
3270     while (!WorkList.empty()) {
3271       auto *P = WorkList.pop_back_val();
3272       if (!Visited.insert(P).second)
3273         continue;
3274       if (auto *PI = dyn_cast<Instruction>(P))
3275         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3276           for (auto *U : PI->users())
3277             WorkList.push_back(cast<Value>(U));
3278           Put(PI, V);
3279           PI->replaceAllUsesWith(V);
3280           if (auto *PHI = dyn_cast<PHINode>(PI))
3281             AllPhiNodes.erase(PHI);
3282           if (auto *Select = dyn_cast<SelectInst>(PI))
3283             AllSelectNodes.erase(Select);
3284           PI->eraseFromParent();
3285         }
3286     }
3287     return Get(Val);
3288   }
3289 
Put(Value * From,Value * To)3290   void Put(Value *From, Value *To) {
3291     Storage.insert({ From, To });
3292   }
3293 
ReplacePhi(PHINode * From,PHINode * To)3294   void ReplacePhi(PHINode *From, PHINode *To) {
3295     Value* OldReplacement = Get(From);
3296     while (OldReplacement != From) {
3297       From = To;
3298       To = dyn_cast<PHINode>(OldReplacement);
3299       OldReplacement = Get(From);
3300     }
3301     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3302     Put(From, To);
3303     From->replaceAllUsesWith(To);
3304     AllPhiNodes.erase(From);
3305     From->eraseFromParent();
3306   }
3307 
newPhiNodes()3308   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3309 
insertNewPhi(PHINode * PN)3310   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3311 
insertNewSelect(SelectInst * SI)3312   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3313 
countNewPhiNodes() const3314   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3315 
countNewSelectNodes() const3316   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3317 
destroyNewNodes(Type * CommonType)3318   void destroyNewNodes(Type *CommonType) {
3319     // For safe erasing, replace the uses with dummy value first.
3320     auto *Dummy = UndefValue::get(CommonType);
3321     for (auto *I : AllPhiNodes) {
3322       I->replaceAllUsesWith(Dummy);
3323       I->eraseFromParent();
3324     }
3325     AllPhiNodes.clear();
3326     for (auto *I : AllSelectNodes) {
3327       I->replaceAllUsesWith(Dummy);
3328       I->eraseFromParent();
3329     }
3330     AllSelectNodes.clear();
3331   }
3332 };
3333 
3334 /// A helper class for combining addressing modes.
3335 class AddressingModeCombiner {
3336   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3337   typedef std::pair<PHINode *, PHINode *> PHIPair;
3338 
3339 private:
3340   /// The addressing modes we've collected.
3341   SmallVector<ExtAddrMode, 16> AddrModes;
3342 
3343   /// The field in which the AddrModes differ, when we have more than one.
3344   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3345 
3346   /// Are the AddrModes that we have all just equal to their original values?
3347   bool AllAddrModesTrivial = true;
3348 
3349   /// Common Type for all different fields in addressing modes.
3350   Type *CommonType;
3351 
3352   /// SimplifyQuery for simplifyInstruction utility.
3353   const SimplifyQuery &SQ;
3354 
3355   /// Original Address.
3356   Value *Original;
3357 
3358 public:
AddressingModeCombiner(const SimplifyQuery & _SQ,Value * OriginalValue)3359   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3360       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3361 
3362   /// Get the combined AddrMode
getAddrMode() const3363   const ExtAddrMode &getAddrMode() const {
3364     return AddrModes[0];
3365   }
3366 
3367   /// Add a new AddrMode if it's compatible with the AddrModes we already
3368   /// have.
3369   /// \return True iff we succeeded in doing so.
addNewAddrMode(ExtAddrMode & NewAddrMode)3370   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3371     // Take note of if we have any non-trivial AddrModes, as we need to detect
3372     // when all AddrModes are trivial as then we would introduce a phi or select
3373     // which just duplicates what's already there.
3374     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3375 
3376     // If this is the first addrmode then everything is fine.
3377     if (AddrModes.empty()) {
3378       AddrModes.emplace_back(NewAddrMode);
3379       return true;
3380     }
3381 
3382     // Figure out how different this is from the other address modes, which we
3383     // can do just by comparing against the first one given that we only care
3384     // about the cumulative difference.
3385     ExtAddrMode::FieldName ThisDifferentField =
3386       AddrModes[0].compare(NewAddrMode);
3387     if (DifferentField == ExtAddrMode::NoField)
3388       DifferentField = ThisDifferentField;
3389     else if (DifferentField != ThisDifferentField)
3390       DifferentField = ExtAddrMode::MultipleFields;
3391 
3392     // If NewAddrMode differs in more than one dimension we cannot handle it.
3393     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3394 
3395     // If Scale Field is different then we reject.
3396     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3397 
3398     // We also must reject the case when base offset is different and
3399     // scale reg is not null, we cannot handle this case due to merge of
3400     // different offsets will be used as ScaleReg.
3401     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3402                               !NewAddrMode.ScaledReg);
3403 
3404     // We also must reject the case when GV is different and BaseReg installed
3405     // due to we want to use base reg as a merge of GV values.
3406     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3407                               !NewAddrMode.HasBaseReg);
3408 
3409     // Even if NewAddMode is the same we still need to collect it due to
3410     // original value is different. And later we will need all original values
3411     // as anchors during finding the common Phi node.
3412     if (CanHandle)
3413       AddrModes.emplace_back(NewAddrMode);
3414     else
3415       AddrModes.clear();
3416 
3417     return CanHandle;
3418   }
3419 
3420   /// Combine the addressing modes we've collected into a single
3421   /// addressing mode.
3422   /// \return True iff we successfully combined them or we only had one so
3423   /// didn't need to combine them anyway.
combineAddrModes()3424   bool combineAddrModes() {
3425     // If we have no AddrModes then they can't be combined.
3426     if (AddrModes.size() == 0)
3427       return false;
3428 
3429     // A single AddrMode can trivially be combined.
3430     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3431       return true;
3432 
3433     // If the AddrModes we collected are all just equal to the value they are
3434     // derived from then combining them wouldn't do anything useful.
3435     if (AllAddrModesTrivial)
3436       return false;
3437 
3438     if (!addrModeCombiningAllowed())
3439       return false;
3440 
3441     // Build a map between <original value, basic block where we saw it> to
3442     // value of base register.
3443     // Bail out if there is no common type.
3444     FoldAddrToValueMapping Map;
3445     if (!initializeMap(Map))
3446       return false;
3447 
3448     Value *CommonValue = findCommon(Map);
3449     if (CommonValue)
3450       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3451     return CommonValue != nullptr;
3452   }
3453 
3454 private:
3455   /// Initialize Map with anchor values. For address seen
3456   /// we set the value of different field saw in this address.
3457   /// At the same time we find a common type for different field we will
3458   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3459   /// Return false if there is no common type found.
initializeMap(FoldAddrToValueMapping & Map)3460   bool initializeMap(FoldAddrToValueMapping &Map) {
3461     // Keep track of keys where the value is null. We will need to replace it
3462     // with constant null when we know the common type.
3463     SmallVector<Value *, 2> NullValue;
3464     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3465     for (auto &AM : AddrModes) {
3466       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3467       if (DV) {
3468         auto *Type = DV->getType();
3469         if (CommonType && CommonType != Type)
3470           return false;
3471         CommonType = Type;
3472         Map[AM.OriginalValue] = DV;
3473       } else {
3474         NullValue.push_back(AM.OriginalValue);
3475       }
3476     }
3477     assert(CommonType && "At least one non-null value must be!");
3478     for (auto *V : NullValue)
3479       Map[V] = Constant::getNullValue(CommonType);
3480     return true;
3481   }
3482 
3483   /// We have mapping between value A and other value B where B was a field in
3484   /// addressing mode represented by A. Also we have an original value C
3485   /// representing an address we start with. Traversing from C through phi and
3486   /// selects we ended up with A's in a map. This utility function tries to find
3487   /// a value V which is a field in addressing mode C and traversing through phi
3488   /// nodes and selects we will end up in corresponded values B in a map.
3489   /// The utility will create a new Phi/Selects if needed.
3490   // The simple example looks as follows:
3491   // BB1:
3492   //   p1 = b1 + 40
3493   //   br cond BB2, BB3
3494   // BB2:
3495   //   p2 = b2 + 40
3496   //   br BB3
3497   // BB3:
3498   //   p = phi [p1, BB1], [p2, BB2]
3499   //   v = load p
3500   // Map is
3501   //   p1 -> b1
3502   //   p2 -> b2
3503   // Request is
3504   //   p -> ?
3505   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
findCommon(FoldAddrToValueMapping & Map)3506   Value *findCommon(FoldAddrToValueMapping &Map) {
3507     // Tracks the simplification of newly created phi nodes. The reason we use
3508     // this mapping is because we will add new created Phi nodes in AddrToBase.
3509     // Simplification of Phi nodes is recursive, so some Phi node may
3510     // be simplified after we added it to AddrToBase. In reality this
3511     // simplification is possible only if original phi/selects were not
3512     // simplified yet.
3513     // Using this mapping we can find the current value in AddrToBase.
3514     SimplificationTracker ST(SQ);
3515 
3516     // First step, DFS to create PHI nodes for all intermediate blocks.
3517     // Also fill traverse order for the second step.
3518     SmallVector<Value *, 32> TraverseOrder;
3519     InsertPlaceholders(Map, TraverseOrder, ST);
3520 
3521     // Second Step, fill new nodes by merged values and simplify if possible.
3522     FillPlaceholders(Map, TraverseOrder, ST);
3523 
3524     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3525       ST.destroyNewNodes(CommonType);
3526       return nullptr;
3527     }
3528 
3529     // Now we'd like to match New Phi nodes to existed ones.
3530     unsigned PhiNotMatchedCount = 0;
3531     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3532       ST.destroyNewNodes(CommonType);
3533       return nullptr;
3534     }
3535 
3536     auto *Result = ST.Get(Map.find(Original)->second);
3537     if (Result) {
3538       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3539       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3540     }
3541     return Result;
3542   }
3543 
3544   /// Try to match PHI node to Candidate.
3545   /// Matcher tracks the matched Phi nodes.
MatchPhiNode(PHINode * PHI,PHINode * Candidate,SmallSetVector<PHIPair,8> & Matcher,PhiNodeSet & PhiNodesToMatch)3546   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3547                     SmallSetVector<PHIPair, 8> &Matcher,
3548                     PhiNodeSet &PhiNodesToMatch) {
3549     SmallVector<PHIPair, 8> WorkList;
3550     Matcher.insert({ PHI, Candidate });
3551     SmallSet<PHINode *, 8> MatchedPHIs;
3552     MatchedPHIs.insert(PHI);
3553     WorkList.push_back({ PHI, Candidate });
3554     SmallSet<PHIPair, 8> Visited;
3555     while (!WorkList.empty()) {
3556       auto Item = WorkList.pop_back_val();
3557       if (!Visited.insert(Item).second)
3558         continue;
3559       // We iterate over all incoming values to Phi to compare them.
3560       // If values are different and both of them Phi and the first one is a
3561       // Phi we added (subject to match) and both of them is in the same basic
3562       // block then we can match our pair if values match. So we state that
3563       // these values match and add it to work list to verify that.
3564       for (auto B : Item.first->blocks()) {
3565         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3566         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3567         if (FirstValue == SecondValue)
3568           continue;
3569 
3570         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3571         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3572 
3573         // One of them is not Phi or
3574         // The first one is not Phi node from the set we'd like to match or
3575         // Phi nodes from different basic blocks then
3576         // we will not be able to match.
3577         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3578             FirstPhi->getParent() != SecondPhi->getParent())
3579           return false;
3580 
3581         // If we already matched them then continue.
3582         if (Matcher.count({ FirstPhi, SecondPhi }))
3583           continue;
3584         // So the values are different and does not match. So we need them to
3585         // match. (But we register no more than one match per PHI node, so that
3586         // we won't later try to replace them twice.)
3587         if (MatchedPHIs.insert(FirstPhi).second)
3588           Matcher.insert({ FirstPhi, SecondPhi });
3589         // But me must check it.
3590         WorkList.push_back({ FirstPhi, SecondPhi });
3591       }
3592     }
3593     return true;
3594   }
3595 
3596   /// For the given set of PHI nodes (in the SimplificationTracker) try
3597   /// to find their equivalents.
3598   /// Returns false if this matching fails and creation of new Phi is disabled.
MatchPhiSet(SimplificationTracker & ST,bool AllowNewPhiNodes,unsigned & PhiNotMatchedCount)3599   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3600                    unsigned &PhiNotMatchedCount) {
3601     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3602     // order, so the replacements (ReplacePhi) are also done in a deterministic
3603     // order.
3604     SmallSetVector<PHIPair, 8> Matched;
3605     SmallPtrSet<PHINode *, 8> WillNotMatch;
3606     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3607     while (PhiNodesToMatch.size()) {
3608       PHINode *PHI = *PhiNodesToMatch.begin();
3609 
3610       // Add us, if no Phi nodes in the basic block we do not match.
3611       WillNotMatch.clear();
3612       WillNotMatch.insert(PHI);
3613 
3614       // Traverse all Phis until we found equivalent or fail to do that.
3615       bool IsMatched = false;
3616       for (auto &P : PHI->getParent()->phis()) {
3617         if (&P == PHI)
3618           continue;
3619         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3620           break;
3621         // If it does not match, collect all Phi nodes from matcher.
3622         // if we end up with no match, them all these Phi nodes will not match
3623         // later.
3624         for (auto M : Matched)
3625           WillNotMatch.insert(M.first);
3626         Matched.clear();
3627       }
3628       if (IsMatched) {
3629         // Replace all matched values and erase them.
3630         for (auto MV : Matched)
3631           ST.ReplacePhi(MV.first, MV.second);
3632         Matched.clear();
3633         continue;
3634       }
3635       // If we are not allowed to create new nodes then bail out.
3636       if (!AllowNewPhiNodes)
3637         return false;
3638       // Just remove all seen values in matcher. They will not match anything.
3639       PhiNotMatchedCount += WillNotMatch.size();
3640       for (auto *P : WillNotMatch)
3641         PhiNodesToMatch.erase(P);
3642     }
3643     return true;
3644   }
3645   /// Fill the placeholders with values from predecessors and simplify them.
FillPlaceholders(FoldAddrToValueMapping & Map,SmallVectorImpl<Value * > & TraverseOrder,SimplificationTracker & ST)3646   void FillPlaceholders(FoldAddrToValueMapping &Map,
3647                         SmallVectorImpl<Value *> &TraverseOrder,
3648                         SimplificationTracker &ST) {
3649     while (!TraverseOrder.empty()) {
3650       Value *Current = TraverseOrder.pop_back_val();
3651       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3652       Value *V = Map[Current];
3653 
3654       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3655         // CurrentValue also must be Select.
3656         auto *CurrentSelect = cast<SelectInst>(Current);
3657         auto *TrueValue = CurrentSelect->getTrueValue();
3658         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3659         Select->setTrueValue(ST.Get(Map[TrueValue]));
3660         auto *FalseValue = CurrentSelect->getFalseValue();
3661         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3662         Select->setFalseValue(ST.Get(Map[FalseValue]));
3663       } else {
3664         // Must be a Phi node then.
3665         auto *PHI = cast<PHINode>(V);
3666         // Fill the Phi node with values from predecessors.
3667         for (auto *B : predecessors(PHI->getParent())) {
3668           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3669           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3670           PHI->addIncoming(ST.Get(Map[PV]), B);
3671         }
3672       }
3673       Map[Current] = ST.Simplify(V);
3674     }
3675   }
3676 
3677   /// Starting from original value recursively iterates over def-use chain up to
3678   /// known ending values represented in a map. For each traversed phi/select
3679   /// inserts a placeholder Phi or Select.
3680   /// Reports all new created Phi/Select nodes by adding them to set.
3681   /// Also reports and order in what values have been traversed.
InsertPlaceholders(FoldAddrToValueMapping & Map,SmallVectorImpl<Value * > & TraverseOrder,SimplificationTracker & ST)3682   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3683                           SmallVectorImpl<Value *> &TraverseOrder,
3684                           SimplificationTracker &ST) {
3685     SmallVector<Value *, 32> Worklist;
3686     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3687            "Address must be a Phi or Select node");
3688     auto *Dummy = UndefValue::get(CommonType);
3689     Worklist.push_back(Original);
3690     while (!Worklist.empty()) {
3691       Value *Current = Worklist.pop_back_val();
3692       // if it is already visited or it is an ending value then skip it.
3693       if (Map.find(Current) != Map.end())
3694         continue;
3695       TraverseOrder.push_back(Current);
3696 
3697       // CurrentValue must be a Phi node or select. All others must be covered
3698       // by anchors.
3699       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3700         // Is it OK to get metadata from OrigSelect?!
3701         // Create a Select placeholder with dummy value.
3702         SelectInst *Select = SelectInst::Create(
3703             CurrentSelect->getCondition(), Dummy, Dummy,
3704             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3705         Map[Current] = Select;
3706         ST.insertNewSelect(Select);
3707         // We are interested in True and False values.
3708         Worklist.push_back(CurrentSelect->getTrueValue());
3709         Worklist.push_back(CurrentSelect->getFalseValue());
3710       } else {
3711         // It must be a Phi node then.
3712         PHINode *CurrentPhi = cast<PHINode>(Current);
3713         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3714         PHINode *PHI =
3715             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3716         Map[Current] = PHI;
3717         ST.insertNewPhi(PHI);
3718         for (Value *P : CurrentPhi->incoming_values())
3719           Worklist.push_back(P);
3720       }
3721     }
3722   }
3723 
addrModeCombiningAllowed()3724   bool addrModeCombiningAllowed() {
3725     if (DisableComplexAddrModes)
3726       return false;
3727     switch (DifferentField) {
3728     default:
3729       return false;
3730     case ExtAddrMode::BaseRegField:
3731       return AddrSinkCombineBaseReg;
3732     case ExtAddrMode::BaseGVField:
3733       return AddrSinkCombineBaseGV;
3734     case ExtAddrMode::BaseOffsField:
3735       return AddrSinkCombineBaseOffs;
3736     case ExtAddrMode::ScaledRegField:
3737       return AddrSinkCombineScaledReg;
3738     }
3739   }
3740 };
3741 } // end anonymous namespace
3742 
3743 /// Try adding ScaleReg*Scale to the current addressing mode.
3744 /// Return true and update AddrMode if this addr mode is legal for the target,
3745 /// false if not.
matchScaledValue(Value * ScaleReg,int64_t Scale,unsigned Depth)3746 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3747                                              unsigned Depth) {
3748   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3749   // mode.  Just process that directly.
3750   if (Scale == 1)
3751     return matchAddr(ScaleReg, Depth);
3752 
3753   // If the scale is 0, it takes nothing to add this.
3754   if (Scale == 0)
3755     return true;
3756 
3757   // If we already have a scale of this value, we can add to it, otherwise, we
3758   // need an available scale field.
3759   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3760     return false;
3761 
3762   ExtAddrMode TestAddrMode = AddrMode;
3763 
3764   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3765   // [A+B + A*7] -> [B+A*8].
3766   TestAddrMode.Scale += Scale;
3767   TestAddrMode.ScaledReg = ScaleReg;
3768 
3769   // If the new address isn't legal, bail out.
3770   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3771     return false;
3772 
3773   // It was legal, so commit it.
3774   AddrMode = TestAddrMode;
3775 
3776   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3777   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3778   // X*Scale + C*Scale to addr mode.
3779   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3780   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3781       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
3782       CI->getValue().isSignedIntN(64)) {
3783     TestAddrMode.InBounds = false;
3784     TestAddrMode.ScaledReg = AddLHS;
3785     TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
3786 
3787     // If this addressing mode is legal, commit it and remember that we folded
3788     // this instruction.
3789     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3790       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3791       AddrMode = TestAddrMode;
3792       return true;
3793     }
3794   }
3795 
3796   // Otherwise, not (x+c)*scale, just return what we have.
3797   return true;
3798 }
3799 
3800 /// This is a little filter, which returns true if an addressing computation
3801 /// involving I might be folded into a load/store accessing it.
3802 /// This doesn't need to be perfect, but needs to accept at least
3803 /// the set of instructions that MatchOperationAddr can.
MightBeFoldableInst(Instruction * I)3804 static bool MightBeFoldableInst(Instruction *I) {
3805   switch (I->getOpcode()) {
3806   case Instruction::BitCast:
3807   case Instruction::AddrSpaceCast:
3808     // Don't touch identity bitcasts.
3809     if (I->getType() == I->getOperand(0)->getType())
3810       return false;
3811     return I->getType()->isIntOrPtrTy();
3812   case Instruction::PtrToInt:
3813     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3814     return true;
3815   case Instruction::IntToPtr:
3816     // We know the input is intptr_t, so this is foldable.
3817     return true;
3818   case Instruction::Add:
3819     return true;
3820   case Instruction::Mul:
3821   case Instruction::Shl:
3822     // Can only handle X*C and X << C.
3823     return isa<ConstantInt>(I->getOperand(1));
3824   case Instruction::GetElementPtr:
3825     return true;
3826   default:
3827     return false;
3828   }
3829 }
3830 
3831 /// Check whether or not \p Val is a legal instruction for \p TLI.
3832 /// \note \p Val is assumed to be the product of some type promotion.
3833 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3834 /// to be legal, as the non-promoted value would have had the same state.
isPromotedInstructionLegal(const TargetLowering & TLI,const DataLayout & DL,Value * Val)3835 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3836                                        const DataLayout &DL, Value *Val) {
3837   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3838   if (!PromotedInst)
3839     return false;
3840   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3841   // If the ISDOpcode is undefined, it was undefined before the promotion.
3842   if (!ISDOpcode)
3843     return true;
3844   // Otherwise, check if the promoted instruction is legal or not.
3845   return TLI.isOperationLegalOrCustom(
3846       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3847 }
3848 
3849 namespace {
3850 
3851 /// Hepler class to perform type promotion.
3852 class TypePromotionHelper {
3853   /// Utility function to add a promoted instruction \p ExtOpnd to
3854   /// \p PromotedInsts and record the type of extension we have seen.
addPromotedInst(InstrToOrigTy & PromotedInsts,Instruction * ExtOpnd,bool IsSExt)3855   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3856                               Instruction *ExtOpnd,
3857                               bool IsSExt) {
3858     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3859     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3860     if (It != PromotedInsts.end()) {
3861       // If the new extension is same as original, the information in
3862       // PromotedInsts[ExtOpnd] is still correct.
3863       if (It->second.getInt() == ExtTy)
3864         return;
3865 
3866       // Now the new extension is different from old extension, we make
3867       // the type information invalid by setting extension type to
3868       // BothExtension.
3869       ExtTy = BothExtension;
3870     }
3871     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3872   }
3873 
3874   /// Utility function to query the original type of instruction \p Opnd
3875   /// with a matched extension type. If the extension doesn't match, we
3876   /// cannot use the information we had on the original type.
3877   /// BothExtension doesn't match any extension type.
getOrigType(const InstrToOrigTy & PromotedInsts,Instruction * Opnd,bool IsSExt)3878   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3879                                  Instruction *Opnd,
3880                                  bool IsSExt) {
3881     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3882     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3883     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3884       return It->second.getPointer();
3885     return nullptr;
3886   }
3887 
3888   /// Utility function to check whether or not a sign or zero extension
3889   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3890   /// either using the operands of \p Inst or promoting \p Inst.
3891   /// The type of the extension is defined by \p IsSExt.
3892   /// In other words, check if:
3893   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3894   /// #1 Promotion applies:
3895   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3896   /// #2 Operand reuses:
3897   /// ext opnd1 to ConsideredExtType.
3898   /// \p PromotedInsts maps the instructions to their type before promotion.
3899   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3900                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3901 
3902   /// Utility function to determine if \p OpIdx should be promoted when
3903   /// promoting \p Inst.
shouldExtOperand(const Instruction * Inst,int OpIdx)3904   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3905     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3906   }
3907 
3908   /// Utility function to promote the operand of \p Ext when this
3909   /// operand is a promotable trunc or sext or zext.
3910   /// \p PromotedInsts maps the instructions to their type before promotion.
3911   /// \p CreatedInstsCost[out] contains the cost of all instructions
3912   /// created to promote the operand of Ext.
3913   /// Newly added extensions are inserted in \p Exts.
3914   /// Newly added truncates are inserted in \p Truncs.
3915   /// Should never be called directly.
3916   /// \return The promoted value which is used instead of Ext.
3917   static Value *promoteOperandForTruncAndAnyExt(
3918       Instruction *Ext, TypePromotionTransaction &TPT,
3919       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3920       SmallVectorImpl<Instruction *> *Exts,
3921       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3922 
3923   /// Utility function to promote the operand of \p Ext when this
3924   /// operand is promotable and is not a supported trunc or sext.
3925   /// \p PromotedInsts maps the instructions to their type before promotion.
3926   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3927   /// created to promote the operand of Ext.
3928   /// Newly added extensions are inserted in \p Exts.
3929   /// Newly added truncates are inserted in \p Truncs.
3930   /// Should never be called directly.
3931   /// \return The promoted value which is used instead of Ext.
3932   static Value *promoteOperandForOther(Instruction *Ext,
3933                                        TypePromotionTransaction &TPT,
3934                                        InstrToOrigTy &PromotedInsts,
3935                                        unsigned &CreatedInstsCost,
3936                                        SmallVectorImpl<Instruction *> *Exts,
3937                                        SmallVectorImpl<Instruction *> *Truncs,
3938                                        const TargetLowering &TLI, bool IsSExt);
3939 
3940   /// \see promoteOperandForOther.
signExtendOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)3941   static Value *signExtendOperandForOther(
3942       Instruction *Ext, TypePromotionTransaction &TPT,
3943       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3944       SmallVectorImpl<Instruction *> *Exts,
3945       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3946     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3947                                   Exts, Truncs, TLI, true);
3948   }
3949 
3950   /// \see promoteOperandForOther.
zeroExtendOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)3951   static Value *zeroExtendOperandForOther(
3952       Instruction *Ext, TypePromotionTransaction &TPT,
3953       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3954       SmallVectorImpl<Instruction *> *Exts,
3955       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3956     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3957                                   Exts, Truncs, TLI, false);
3958   }
3959 
3960 public:
3961   /// Type for the utility function that promotes the operand of Ext.
3962   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3963                             InstrToOrigTy &PromotedInsts,
3964                             unsigned &CreatedInstsCost,
3965                             SmallVectorImpl<Instruction *> *Exts,
3966                             SmallVectorImpl<Instruction *> *Truncs,
3967                             const TargetLowering &TLI);
3968 
3969   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3970   /// action to promote the operand of \p Ext instead of using Ext.
3971   /// \return NULL if no promotable action is possible with the current
3972   /// sign extension.
3973   /// \p InsertedInsts keeps track of all the instructions inserted by the
3974   /// other CodeGenPrepare optimizations. This information is important
3975   /// because we do not want to promote these instructions as CodeGenPrepare
3976   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3977   /// \p PromotedInsts maps the instructions to their type before promotion.
3978   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3979                           const TargetLowering &TLI,
3980                           const InstrToOrigTy &PromotedInsts);
3981 };
3982 
3983 } // end anonymous namespace
3984 
canGetThrough(const Instruction * Inst,Type * ConsideredExtType,const InstrToOrigTy & PromotedInsts,bool IsSExt)3985 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3986                                         Type *ConsideredExtType,
3987                                         const InstrToOrigTy &PromotedInsts,
3988                                         bool IsSExt) {
3989   // The promotion helper does not know how to deal with vector types yet.
3990   // To be able to fix that, we would need to fix the places where we
3991   // statically extend, e.g., constants and such.
3992   if (Inst->getType()->isVectorTy())
3993     return false;
3994 
3995   // We can always get through zext.
3996   if (isa<ZExtInst>(Inst))
3997     return true;
3998 
3999   // sext(sext) is ok too.
4000   if (IsSExt && isa<SExtInst>(Inst))
4001     return true;
4002 
4003   // We can get through binary operator, if it is legal. In other words, the
4004   // binary operator must have a nuw or nsw flag.
4005   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
4006   if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) &&
4007       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4008        (IsSExt && BinOp->hasNoSignedWrap())))
4009     return true;
4010 
4011   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4012   if ((Inst->getOpcode() == Instruction::And ||
4013        Inst->getOpcode() == Instruction::Or))
4014     return true;
4015 
4016   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4017   if (Inst->getOpcode() == Instruction::Xor) {
4018     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
4019     // Make sure it is not a NOT.
4020     if (Cst && !Cst->getValue().isAllOnesValue())
4021       return true;
4022   }
4023 
4024   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4025   // It may change a poisoned value into a regular value, like
4026   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
4027   //          poisoned value                    regular value
4028   // It should be OK since undef covers valid value.
4029   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4030     return true;
4031 
4032   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4033   // It may change a poisoned value into a regular value, like
4034   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
4035   //          poisoned value                    regular value
4036   // It should be OK since undef covers valid value.
4037   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4038     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4039     if (ExtInst->hasOneUse()) {
4040       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4041       if (AndInst && AndInst->getOpcode() == Instruction::And) {
4042         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4043         if (Cst &&
4044             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4045           return true;
4046       }
4047     }
4048   }
4049 
4050   // Check if we can do the following simplification.
4051   // ext(trunc(opnd)) --> ext(opnd)
4052   if (!isa<TruncInst>(Inst))
4053     return false;
4054 
4055   Value *OpndVal = Inst->getOperand(0);
4056   // Check if we can use this operand in the extension.
4057   // If the type is larger than the result type of the extension, we cannot.
4058   if (!OpndVal->getType()->isIntegerTy() ||
4059       OpndVal->getType()->getIntegerBitWidth() >
4060           ConsideredExtType->getIntegerBitWidth())
4061     return false;
4062 
4063   // If the operand of the truncate is not an instruction, we will not have
4064   // any information on the dropped bits.
4065   // (Actually we could for constant but it is not worth the extra logic).
4066   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4067   if (!Opnd)
4068     return false;
4069 
4070   // Check if the source of the type is narrow enough.
4071   // I.e., check that trunc just drops extended bits of the same kind of
4072   // the extension.
4073   // #1 get the type of the operand and check the kind of the extended bits.
4074   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4075   if (OpndType)
4076     ;
4077   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4078     OpndType = Opnd->getOperand(0)->getType();
4079   else
4080     return false;
4081 
4082   // #2 check that the truncate just drops extended bits.
4083   return Inst->getType()->getIntegerBitWidth() >=
4084          OpndType->getIntegerBitWidth();
4085 }
4086 
getAction(Instruction * Ext,const SetOfInstrs & InsertedInsts,const TargetLowering & TLI,const InstrToOrigTy & PromotedInsts)4087 TypePromotionHelper::Action TypePromotionHelper::getAction(
4088     Instruction *Ext, const SetOfInstrs &InsertedInsts,
4089     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4090   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4091          "Unexpected instruction type");
4092   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4093   Type *ExtTy = Ext->getType();
4094   bool IsSExt = isa<SExtInst>(Ext);
4095   // If the operand of the extension is not an instruction, we cannot
4096   // get through.
4097   // If it, check we can get through.
4098   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4099     return nullptr;
4100 
4101   // Do not promote if the operand has been added by codegenprepare.
4102   // Otherwise, it means we are undoing an optimization that is likely to be
4103   // redone, thus causing potential infinite loop.
4104   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4105     return nullptr;
4106 
4107   // SExt or Trunc instructions.
4108   // Return the related handler.
4109   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4110       isa<ZExtInst>(ExtOpnd))
4111     return promoteOperandForTruncAndAnyExt;
4112 
4113   // Regular instruction.
4114   // Abort early if we will have to insert non-free instructions.
4115   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4116     return nullptr;
4117   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4118 }
4119 
promoteOperandForTruncAndAnyExt(Instruction * SExt,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)4120 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4121     Instruction *SExt, TypePromotionTransaction &TPT,
4122     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4123     SmallVectorImpl<Instruction *> *Exts,
4124     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4125   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4126   // get through it and this method should not be called.
4127   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4128   Value *ExtVal = SExt;
4129   bool HasMergedNonFreeExt = false;
4130   if (isa<ZExtInst>(SExtOpnd)) {
4131     // Replace s|zext(zext(opnd))
4132     // => zext(opnd).
4133     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4134     Value *ZExt =
4135         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4136     TPT.replaceAllUsesWith(SExt, ZExt);
4137     TPT.eraseInstruction(SExt);
4138     ExtVal = ZExt;
4139   } else {
4140     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4141     // => z|sext(opnd).
4142     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4143   }
4144   CreatedInstsCost = 0;
4145 
4146   // Remove dead code.
4147   if (SExtOpnd->use_empty())
4148     TPT.eraseInstruction(SExtOpnd);
4149 
4150   // Check if the extension is still needed.
4151   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4152   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4153     if (ExtInst) {
4154       if (Exts)
4155         Exts->push_back(ExtInst);
4156       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4157     }
4158     return ExtVal;
4159   }
4160 
4161   // At this point we have: ext ty opnd to ty.
4162   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4163   Value *NextVal = ExtInst->getOperand(0);
4164   TPT.eraseInstruction(ExtInst, NextVal);
4165   return NextVal;
4166 }
4167 
promoteOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI,bool IsSExt)4168 Value *TypePromotionHelper::promoteOperandForOther(
4169     Instruction *Ext, TypePromotionTransaction &TPT,
4170     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4171     SmallVectorImpl<Instruction *> *Exts,
4172     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4173     bool IsSExt) {
4174   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4175   // get through it and this method should not be called.
4176   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4177   CreatedInstsCost = 0;
4178   if (!ExtOpnd->hasOneUse()) {
4179     // ExtOpnd will be promoted.
4180     // All its uses, but Ext, will need to use a truncated value of the
4181     // promoted version.
4182     // Create the truncate now.
4183     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4184     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4185       // Insert it just after the definition.
4186       ITrunc->moveAfter(ExtOpnd);
4187       if (Truncs)
4188         Truncs->push_back(ITrunc);
4189     }
4190 
4191     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4192     // Restore the operand of Ext (which has been replaced by the previous call
4193     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4194     TPT.setOperand(Ext, 0, ExtOpnd);
4195   }
4196 
4197   // Get through the Instruction:
4198   // 1. Update its type.
4199   // 2. Replace the uses of Ext by Inst.
4200   // 3. Extend each operand that needs to be extended.
4201 
4202   // Remember the original type of the instruction before promotion.
4203   // This is useful to know that the high bits are sign extended bits.
4204   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4205   // Step #1.
4206   TPT.mutateType(ExtOpnd, Ext->getType());
4207   // Step #2.
4208   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4209   // Step #3.
4210   Instruction *ExtForOpnd = Ext;
4211 
4212   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4213   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4214        ++OpIdx) {
4215     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4216     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4217         !shouldExtOperand(ExtOpnd, OpIdx)) {
4218       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4219       continue;
4220     }
4221     // Check if we can statically extend the operand.
4222     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4223     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4224       LLVM_DEBUG(dbgs() << "Statically extend\n");
4225       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4226       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4227                             : Cst->getValue().zext(BitWidth);
4228       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4229       continue;
4230     }
4231     // UndefValue are typed, so we have to statically sign extend them.
4232     if (isa<UndefValue>(Opnd)) {
4233       LLVM_DEBUG(dbgs() << "Statically extend\n");
4234       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4235       continue;
4236     }
4237 
4238     // Otherwise we have to explicitly sign extend the operand.
4239     // Check if Ext was reused to extend an operand.
4240     if (!ExtForOpnd) {
4241       // If yes, create a new one.
4242       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4243       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4244         : TPT.createZExt(Ext, Opnd, Ext->getType());
4245       if (!isa<Instruction>(ValForExtOpnd)) {
4246         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4247         continue;
4248       }
4249       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4250     }
4251     if (Exts)
4252       Exts->push_back(ExtForOpnd);
4253     TPT.setOperand(ExtForOpnd, 0, Opnd);
4254 
4255     // Move the sign extension before the insertion point.
4256     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4257     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4258     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4259     // If more sext are required, new instructions will have to be created.
4260     ExtForOpnd = nullptr;
4261   }
4262   if (ExtForOpnd == Ext) {
4263     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4264     TPT.eraseInstruction(Ext);
4265   }
4266   return ExtOpnd;
4267 }
4268 
4269 /// Check whether or not promoting an instruction to a wider type is profitable.
4270 /// \p NewCost gives the cost of extension instructions created by the
4271 /// promotion.
4272 /// \p OldCost gives the cost of extension instructions before the promotion
4273 /// plus the number of instructions that have been
4274 /// matched in the addressing mode the promotion.
4275 /// \p PromotedOperand is the value that has been promoted.
4276 /// \return True if the promotion is profitable, false otherwise.
isPromotionProfitable(unsigned NewCost,unsigned OldCost,Value * PromotedOperand) const4277 bool AddressingModeMatcher::isPromotionProfitable(
4278     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4279   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4280                     << '\n');
4281   // The cost of the new extensions is greater than the cost of the
4282   // old extension plus what we folded.
4283   // This is not profitable.
4284   if (NewCost > OldCost)
4285     return false;
4286   if (NewCost < OldCost)
4287     return true;
4288   // The promotion is neutral but it may help folding the sign extension in
4289   // loads for instance.
4290   // Check that we did not create an illegal instruction.
4291   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4292 }
4293 
4294 /// Given an instruction or constant expr, see if we can fold the operation
4295 /// into the addressing mode. If so, update the addressing mode and return
4296 /// true, otherwise return false without modifying AddrMode.
4297 /// If \p MovedAway is not NULL, it contains the information of whether or
4298 /// not AddrInst has to be folded into the addressing mode on success.
4299 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4300 /// because it has been moved away.
4301 /// Thus AddrInst must not be added in the matched instructions.
4302 /// This state can happen when AddrInst is a sext, since it may be moved away.
4303 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4304 /// not be referenced anymore.
matchOperationAddr(User * AddrInst,unsigned Opcode,unsigned Depth,bool * MovedAway)4305 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4306                                                unsigned Depth,
4307                                                bool *MovedAway) {
4308   // Avoid exponential behavior on extremely deep expression trees.
4309   if (Depth >= 5) return false;
4310 
4311   // By default, all matched instructions stay in place.
4312   if (MovedAway)
4313     *MovedAway = false;
4314 
4315   switch (Opcode) {
4316   case Instruction::PtrToInt:
4317     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4318     return matchAddr(AddrInst->getOperand(0), Depth);
4319   case Instruction::IntToPtr: {
4320     auto AS = AddrInst->getType()->getPointerAddressSpace();
4321     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4322     // This inttoptr is a no-op if the integer type is pointer sized.
4323     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4324       return matchAddr(AddrInst->getOperand(0), Depth);
4325     return false;
4326   }
4327   case Instruction::BitCast:
4328     // BitCast is always a noop, and we can handle it as long as it is
4329     // int->int or pointer->pointer (we don't want int<->fp or something).
4330     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4331         // Don't touch identity bitcasts.  These were probably put here by LSR,
4332         // and we don't want to mess around with them.  Assume it knows what it
4333         // is doing.
4334         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4335       return matchAddr(AddrInst->getOperand(0), Depth);
4336     return false;
4337   case Instruction::AddrSpaceCast: {
4338     unsigned SrcAS
4339       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4340     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4341     if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4342       return matchAddr(AddrInst->getOperand(0), Depth);
4343     return false;
4344   }
4345   case Instruction::Add: {
4346     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4347     ExtAddrMode BackupAddrMode = AddrMode;
4348     unsigned OldSize = AddrModeInsts.size();
4349     // Start a transaction at this point.
4350     // The LHS may match but not the RHS.
4351     // Therefore, we need a higher level restoration point to undo partially
4352     // matched operation.
4353     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4354         TPT.getRestorationPoint();
4355 
4356     AddrMode.InBounds = false;
4357     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4358         matchAddr(AddrInst->getOperand(0), Depth+1))
4359       return true;
4360 
4361     // Restore the old addr mode info.
4362     AddrMode = BackupAddrMode;
4363     AddrModeInsts.resize(OldSize);
4364     TPT.rollback(LastKnownGood);
4365 
4366     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4367     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4368         matchAddr(AddrInst->getOperand(1), Depth+1))
4369       return true;
4370 
4371     // Otherwise we definitely can't merge the ADD in.
4372     AddrMode = BackupAddrMode;
4373     AddrModeInsts.resize(OldSize);
4374     TPT.rollback(LastKnownGood);
4375     break;
4376   }
4377   //case Instruction::Or:
4378   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4379   //break;
4380   case Instruction::Mul:
4381   case Instruction::Shl: {
4382     // Can only handle X*C and X << C.
4383     AddrMode.InBounds = false;
4384     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4385     if (!RHS || RHS->getBitWidth() > 64)
4386       return false;
4387     int64_t Scale = RHS->getSExtValue();
4388     if (Opcode == Instruction::Shl)
4389       Scale = 1LL << Scale;
4390 
4391     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4392   }
4393   case Instruction::GetElementPtr: {
4394     // Scan the GEP.  We check it if it contains constant offsets and at most
4395     // one variable offset.
4396     int VariableOperand = -1;
4397     unsigned VariableScale = 0;
4398 
4399     int64_t ConstantOffset = 0;
4400     gep_type_iterator GTI = gep_type_begin(AddrInst);
4401     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4402       if (StructType *STy = GTI.getStructTypeOrNull()) {
4403         const StructLayout *SL = DL.getStructLayout(STy);
4404         unsigned Idx =
4405           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4406         ConstantOffset += SL->getElementOffset(Idx);
4407       } else {
4408         TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
4409         if (TS.isNonZero()) {
4410           // The optimisations below currently only work for fixed offsets.
4411           if (TS.isScalable())
4412             return false;
4413           int64_t TypeSize = TS.getFixedSize();
4414           if (ConstantInt *CI =
4415                   dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4416             const APInt &CVal = CI->getValue();
4417             if (CVal.getMinSignedBits() <= 64) {
4418               ConstantOffset += CVal.getSExtValue() * TypeSize;
4419               continue;
4420             }
4421           }
4422           // We only allow one variable index at the moment.
4423           if (VariableOperand != -1)
4424             return false;
4425 
4426           // Remember the variable index.
4427           VariableOperand = i;
4428           VariableScale = TypeSize;
4429         }
4430       }
4431     }
4432 
4433     // A common case is for the GEP to only do a constant offset.  In this case,
4434     // just add it to the disp field and check validity.
4435     if (VariableOperand == -1) {
4436       AddrMode.BaseOffs += ConstantOffset;
4437       if (ConstantOffset == 0 ||
4438           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4439         // Check to see if we can fold the base pointer in too.
4440         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4441           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4442             AddrMode.InBounds = false;
4443           return true;
4444         }
4445       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4446                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4447                  ConstantOffset > 0) {
4448         // Record GEPs with non-zero offsets as candidates for splitting in the
4449         // event that the offset cannot fit into the r+i addressing mode.
4450         // Simple and common case that only one GEP is used in calculating the
4451         // address for the memory access.
4452         Value *Base = AddrInst->getOperand(0);
4453         auto *BaseI = dyn_cast<Instruction>(Base);
4454         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4455         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4456             (BaseI && !isa<CastInst>(BaseI) &&
4457              !isa<GetElementPtrInst>(BaseI))) {
4458           // Make sure the parent block allows inserting non-PHI instructions
4459           // before the terminator.
4460           BasicBlock *Parent =
4461               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4462           if (!Parent->getTerminator()->isEHPad())
4463             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4464         }
4465       }
4466       AddrMode.BaseOffs -= ConstantOffset;
4467       return false;
4468     }
4469 
4470     // Save the valid addressing mode in case we can't match.
4471     ExtAddrMode BackupAddrMode = AddrMode;
4472     unsigned OldSize = AddrModeInsts.size();
4473 
4474     // See if the scale and offset amount is valid for this target.
4475     AddrMode.BaseOffs += ConstantOffset;
4476     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4477       AddrMode.InBounds = false;
4478 
4479     // Match the base operand of the GEP.
4480     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4481       // If it couldn't be matched, just stuff the value in a register.
4482       if (AddrMode.HasBaseReg) {
4483         AddrMode = BackupAddrMode;
4484         AddrModeInsts.resize(OldSize);
4485         return false;
4486       }
4487       AddrMode.HasBaseReg = true;
4488       AddrMode.BaseReg = AddrInst->getOperand(0);
4489     }
4490 
4491     // Match the remaining variable portion of the GEP.
4492     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4493                           Depth)) {
4494       // If it couldn't be matched, try stuffing the base into a register
4495       // instead of matching it, and retrying the match of the scale.
4496       AddrMode = BackupAddrMode;
4497       AddrModeInsts.resize(OldSize);
4498       if (AddrMode.HasBaseReg)
4499         return false;
4500       AddrMode.HasBaseReg = true;
4501       AddrMode.BaseReg = AddrInst->getOperand(0);
4502       AddrMode.BaseOffs += ConstantOffset;
4503       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4504                             VariableScale, Depth)) {
4505         // If even that didn't work, bail.
4506         AddrMode = BackupAddrMode;
4507         AddrModeInsts.resize(OldSize);
4508         return false;
4509       }
4510     }
4511 
4512     return true;
4513   }
4514   case Instruction::SExt:
4515   case Instruction::ZExt: {
4516     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4517     if (!Ext)
4518       return false;
4519 
4520     // Try to move this ext out of the way of the addressing mode.
4521     // Ask for a method for doing so.
4522     TypePromotionHelper::Action TPH =
4523         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4524     if (!TPH)
4525       return false;
4526 
4527     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4528         TPT.getRestorationPoint();
4529     unsigned CreatedInstsCost = 0;
4530     unsigned ExtCost = !TLI.isExtFree(Ext);
4531     Value *PromotedOperand =
4532         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4533     // SExt has been moved away.
4534     // Thus either it will be rematched later in the recursive calls or it is
4535     // gone. Anyway, we must not fold it into the addressing mode at this point.
4536     // E.g.,
4537     // op = add opnd, 1
4538     // idx = ext op
4539     // addr = gep base, idx
4540     // is now:
4541     // promotedOpnd = ext opnd            <- no match here
4542     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4543     // addr = gep base, op                <- match
4544     if (MovedAway)
4545       *MovedAway = true;
4546 
4547     assert(PromotedOperand &&
4548            "TypePromotionHelper should have filtered out those cases");
4549 
4550     ExtAddrMode BackupAddrMode = AddrMode;
4551     unsigned OldSize = AddrModeInsts.size();
4552 
4553     if (!matchAddr(PromotedOperand, Depth) ||
4554         // The total of the new cost is equal to the cost of the created
4555         // instructions.
4556         // The total of the old cost is equal to the cost of the extension plus
4557         // what we have saved in the addressing mode.
4558         !isPromotionProfitable(CreatedInstsCost,
4559                                ExtCost + (AddrModeInsts.size() - OldSize),
4560                                PromotedOperand)) {
4561       AddrMode = BackupAddrMode;
4562       AddrModeInsts.resize(OldSize);
4563       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4564       TPT.rollback(LastKnownGood);
4565       return false;
4566     }
4567     return true;
4568   }
4569   }
4570   return false;
4571 }
4572 
4573 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4574 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4575 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4576 /// for the target.
4577 ///
matchAddr(Value * Addr,unsigned Depth)4578 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4579   // Start a transaction at this point that we will rollback if the matching
4580   // fails.
4581   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4582       TPT.getRestorationPoint();
4583   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4584     if (CI->getValue().isSignedIntN(64)) {
4585       // Fold in immediates if legal for the target.
4586       AddrMode.BaseOffs += CI->getSExtValue();
4587       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4588         return true;
4589       AddrMode.BaseOffs -= CI->getSExtValue();
4590     }
4591   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4592     // If this is a global variable, try to fold it into the addressing mode.
4593     if (!AddrMode.BaseGV) {
4594       AddrMode.BaseGV = GV;
4595       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4596         return true;
4597       AddrMode.BaseGV = nullptr;
4598     }
4599   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4600     ExtAddrMode BackupAddrMode = AddrMode;
4601     unsigned OldSize = AddrModeInsts.size();
4602 
4603     // Check to see if it is possible to fold this operation.
4604     bool MovedAway = false;
4605     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4606       // This instruction may have been moved away. If so, there is nothing
4607       // to check here.
4608       if (MovedAway)
4609         return true;
4610       // Okay, it's possible to fold this.  Check to see if it is actually
4611       // *profitable* to do so.  We use a simple cost model to avoid increasing
4612       // register pressure too much.
4613       if (I->hasOneUse() ||
4614           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4615         AddrModeInsts.push_back(I);
4616         return true;
4617       }
4618 
4619       // It isn't profitable to do this, roll back.
4620       //cerr << "NOT FOLDING: " << *I;
4621       AddrMode = BackupAddrMode;
4622       AddrModeInsts.resize(OldSize);
4623       TPT.rollback(LastKnownGood);
4624     }
4625   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4626     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4627       return true;
4628     TPT.rollback(LastKnownGood);
4629   } else if (isa<ConstantPointerNull>(Addr)) {
4630     // Null pointer gets folded without affecting the addressing mode.
4631     return true;
4632   }
4633 
4634   // Worse case, the target should support [reg] addressing modes. :)
4635   if (!AddrMode.HasBaseReg) {
4636     AddrMode.HasBaseReg = true;
4637     AddrMode.BaseReg = Addr;
4638     // Still check for legality in case the target supports [imm] but not [i+r].
4639     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4640       return true;
4641     AddrMode.HasBaseReg = false;
4642     AddrMode.BaseReg = nullptr;
4643   }
4644 
4645   // If the base register is already taken, see if we can do [r+r].
4646   if (AddrMode.Scale == 0) {
4647     AddrMode.Scale = 1;
4648     AddrMode.ScaledReg = Addr;
4649     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4650       return true;
4651     AddrMode.Scale = 0;
4652     AddrMode.ScaledReg = nullptr;
4653   }
4654   // Couldn't match.
4655   TPT.rollback(LastKnownGood);
4656   return false;
4657 }
4658 
4659 /// Check to see if all uses of OpVal by the specified inline asm call are due
4660 /// to memory operands. If so, return true, otherwise return false.
IsOperandAMemoryOperand(CallInst * CI,InlineAsm * IA,Value * OpVal,const TargetLowering & TLI,const TargetRegisterInfo & TRI)4661 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4662                                     const TargetLowering &TLI,
4663                                     const TargetRegisterInfo &TRI) {
4664   const Function *F = CI->getFunction();
4665   TargetLowering::AsmOperandInfoVector TargetConstraints =
4666       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
4667 
4668   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4669     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4670 
4671     // Compute the constraint code and ConstraintType to use.
4672     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4673 
4674     // If this asm operand is our Value*, and if it isn't an indirect memory
4675     // operand, we can't fold it!
4676     if (OpInfo.CallOperandVal == OpVal &&
4677         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4678          !OpInfo.isIndirect))
4679       return false;
4680   }
4681 
4682   return true;
4683 }
4684 
4685 // Max number of memory uses to look at before aborting the search to conserve
4686 // compile time.
4687 static constexpr int MaxMemoryUsesToScan = 20;
4688 
4689 /// Recursively walk all the uses of I until we find a memory use.
4690 /// If we find an obviously non-foldable instruction, return true.
4691 /// Add the ultimately found memory instructions to MemoryUses.
FindAllMemoryUses(Instruction * I,SmallVectorImpl<std::pair<Instruction *,unsigned>> & MemoryUses,SmallPtrSetImpl<Instruction * > & ConsideredInsts,const TargetLowering & TLI,const TargetRegisterInfo & TRI,bool OptSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,int SeenInsts=0)4692 static bool FindAllMemoryUses(
4693     Instruction *I,
4694     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4695     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4696     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4697     BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4698   // If we already considered this instruction, we're done.
4699   if (!ConsideredInsts.insert(I).second)
4700     return false;
4701 
4702   // If this is an obviously unfoldable instruction, bail out.
4703   if (!MightBeFoldableInst(I))
4704     return true;
4705 
4706   // Loop over all the uses, recursively processing them.
4707   for (Use &U : I->uses()) {
4708     // Conservatively return true if we're seeing a large number or a deep chain
4709     // of users. This avoids excessive compilation times in pathological cases.
4710     if (SeenInsts++ >= MaxMemoryUsesToScan)
4711       return true;
4712 
4713     Instruction *UserI = cast<Instruction>(U.getUser());
4714     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4715       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4716       continue;
4717     }
4718 
4719     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4720       unsigned opNo = U.getOperandNo();
4721       if (opNo != StoreInst::getPointerOperandIndex())
4722         return true; // Storing addr, not into addr.
4723       MemoryUses.push_back(std::make_pair(SI, opNo));
4724       continue;
4725     }
4726 
4727     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4728       unsigned opNo = U.getOperandNo();
4729       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4730         return true; // Storing addr, not into addr.
4731       MemoryUses.push_back(std::make_pair(RMW, opNo));
4732       continue;
4733     }
4734 
4735     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4736       unsigned opNo = U.getOperandNo();
4737       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4738         return true; // Storing addr, not into addr.
4739       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4740       continue;
4741     }
4742 
4743     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4744       if (CI->hasFnAttr(Attribute::Cold)) {
4745         // If this is a cold call, we can sink the addressing calculation into
4746         // the cold path.  See optimizeCallInst
4747         bool OptForSize = OptSize ||
4748           llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4749         if (!OptForSize)
4750           continue;
4751       }
4752 
4753       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
4754       if (!IA) return true;
4755 
4756       // If this is a memory operand, we're cool, otherwise bail out.
4757       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4758         return true;
4759       continue;
4760     }
4761 
4762     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4763                           PSI, BFI, SeenInsts))
4764       return true;
4765   }
4766 
4767   return false;
4768 }
4769 
4770 /// Return true if Val is already known to be live at the use site that we're
4771 /// folding it into. If so, there is no cost to include it in the addressing
4772 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4773 /// instruction already.
valueAlreadyLiveAtInst(Value * Val,Value * KnownLive1,Value * KnownLive2)4774 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4775                                                    Value *KnownLive2) {
4776   // If Val is either of the known-live values, we know it is live!
4777   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4778     return true;
4779 
4780   // All values other than instructions and arguments (e.g. constants) are live.
4781   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4782 
4783   // If Val is a constant sized alloca in the entry block, it is live, this is
4784   // true because it is just a reference to the stack/frame pointer, which is
4785   // live for the whole function.
4786   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4787     if (AI->isStaticAlloca())
4788       return true;
4789 
4790   // Check to see if this value is already used in the memory instruction's
4791   // block.  If so, it's already live into the block at the very least, so we
4792   // can reasonably fold it.
4793   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4794 }
4795 
4796 /// It is possible for the addressing mode of the machine to fold the specified
4797 /// instruction into a load or store that ultimately uses it.
4798 /// However, the specified instruction has multiple uses.
4799 /// Given this, it may actually increase register pressure to fold it
4800 /// into the load. For example, consider this code:
4801 ///
4802 ///     X = ...
4803 ///     Y = X+1
4804 ///     use(Y)   -> nonload/store
4805 ///     Z = Y+1
4806 ///     load Z
4807 ///
4808 /// In this case, Y has multiple uses, and can be folded into the load of Z
4809 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4810 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4811 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4812 /// number of computations either.
4813 ///
4814 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4815 /// X was live across 'load Z' for other reasons, we actually *would* want to
4816 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4817 bool AddressingModeMatcher::
isProfitableToFoldIntoAddressingMode(Instruction * I,ExtAddrMode & AMBefore,ExtAddrMode & AMAfter)4818 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4819                                      ExtAddrMode &AMAfter) {
4820   if (IgnoreProfitability) return true;
4821 
4822   // AMBefore is the addressing mode before this instruction was folded into it,
4823   // and AMAfter is the addressing mode after the instruction was folded.  Get
4824   // the set of registers referenced by AMAfter and subtract out those
4825   // referenced by AMBefore: this is the set of values which folding in this
4826   // address extends the lifetime of.
4827   //
4828   // Note that there are only two potential values being referenced here,
4829   // BaseReg and ScaleReg (global addresses are always available, as are any
4830   // folded immediates).
4831   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4832 
4833   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4834   // lifetime wasn't extended by adding this instruction.
4835   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4836     BaseReg = nullptr;
4837   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4838     ScaledReg = nullptr;
4839 
4840   // If folding this instruction (and it's subexprs) didn't extend any live
4841   // ranges, we're ok with it.
4842   if (!BaseReg && !ScaledReg)
4843     return true;
4844 
4845   // If all uses of this instruction can have the address mode sunk into them,
4846   // we can remove the addressing mode and effectively trade one live register
4847   // for another (at worst.)  In this context, folding an addressing mode into
4848   // the use is just a particularly nice way of sinking it.
4849   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4850   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4851   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4852                         PSI, BFI))
4853     return false;  // Has a non-memory, non-foldable use!
4854 
4855   // Now that we know that all uses of this instruction are part of a chain of
4856   // computation involving only operations that could theoretically be folded
4857   // into a memory use, loop over each of these memory operation uses and see
4858   // if they could  *actually* fold the instruction.  The assumption is that
4859   // addressing modes are cheap and that duplicating the computation involved
4860   // many times is worthwhile, even on a fastpath. For sinking candidates
4861   // (i.e. cold call sites), this serves as a way to prevent excessive code
4862   // growth since most architectures have some reasonable small and fast way to
4863   // compute an effective address.  (i.e LEA on x86)
4864   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4865   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4866     Instruction *User = MemoryUses[i].first;
4867     unsigned OpNo = MemoryUses[i].second;
4868 
4869     // Get the access type of this use.  If the use isn't a pointer, we don't
4870     // know what it accesses.
4871     Value *Address = User->getOperand(OpNo);
4872     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4873     if (!AddrTy)
4874       return false;
4875     Type *AddressAccessTy = AddrTy->getElementType();
4876     unsigned AS = AddrTy->getAddressSpace();
4877 
4878     // Do a match against the root of this address, ignoring profitability. This
4879     // will tell us if the addressing mode for the memory operation will
4880     // *actually* cover the shared instruction.
4881     ExtAddrMode Result;
4882     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4883                                                                       0);
4884     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4885         TPT.getRestorationPoint();
4886     AddressingModeMatcher Matcher(
4887         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4888         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI);
4889     Matcher.IgnoreProfitability = true;
4890     bool Success = Matcher.matchAddr(Address, 0);
4891     (void)Success; assert(Success && "Couldn't select *anything*?");
4892 
4893     // The match was to check the profitability, the changes made are not
4894     // part of the original matcher. Therefore, they should be dropped
4895     // otherwise the original matcher will not present the right state.
4896     TPT.rollback(LastKnownGood);
4897 
4898     // If the match didn't cover I, then it won't be shared by it.
4899     if (!is_contained(MatchedAddrModeInsts, I))
4900       return false;
4901 
4902     MatchedAddrModeInsts.clear();
4903   }
4904 
4905   return true;
4906 }
4907 
4908 /// Return true if the specified values are defined in a
4909 /// different basic block than BB.
IsNonLocalValue(Value * V,BasicBlock * BB)4910 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4911   if (Instruction *I = dyn_cast<Instruction>(V))
4912     return I->getParent() != BB;
4913   return false;
4914 }
4915 
4916 /// Sink addressing mode computation immediate before MemoryInst if doing so
4917 /// can be done without increasing register pressure.  The need for the
4918 /// register pressure constraint means this can end up being an all or nothing
4919 /// decision for all uses of the same addressing computation.
4920 ///
4921 /// Load and Store Instructions often have addressing modes that can do
4922 /// significant amounts of computation. As such, instruction selection will try
4923 /// to get the load or store to do as much computation as possible for the
4924 /// program. The problem is that isel can only see within a single block. As
4925 /// such, we sink as much legal addressing mode work into the block as possible.
4926 ///
4927 /// This method is used to optimize both load/store and inline asms with memory
4928 /// operands.  It's also used to sink addressing computations feeding into cold
4929 /// call sites into their (cold) basic block.
4930 ///
4931 /// The motivation for handling sinking into cold blocks is that doing so can
4932 /// both enable other address mode sinking (by satisfying the register pressure
4933 /// constraint above), and reduce register pressure globally (by removing the
4934 /// addressing mode computation from the fast path entirely.).
optimizeMemoryInst(Instruction * MemoryInst,Value * Addr,Type * AccessTy,unsigned AddrSpace)4935 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4936                                         Type *AccessTy, unsigned AddrSpace) {
4937   Value *Repl = Addr;
4938 
4939   // Try to collapse single-value PHI nodes.  This is necessary to undo
4940   // unprofitable PRE transformations.
4941   SmallVector<Value*, 8> worklist;
4942   SmallPtrSet<Value*, 16> Visited;
4943   worklist.push_back(Addr);
4944 
4945   // Use a worklist to iteratively look through PHI and select nodes, and
4946   // ensure that the addressing mode obtained from the non-PHI/select roots of
4947   // the graph are compatible.
4948   bool PhiOrSelectSeen = false;
4949   SmallVector<Instruction*, 16> AddrModeInsts;
4950   const SimplifyQuery SQ(*DL, TLInfo);
4951   AddressingModeCombiner AddrModes(SQ, Addr);
4952   TypePromotionTransaction TPT(RemovedInsts);
4953   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4954       TPT.getRestorationPoint();
4955   while (!worklist.empty()) {
4956     Value *V = worklist.back();
4957     worklist.pop_back();
4958 
4959     // We allow traversing cyclic Phi nodes.
4960     // In case of success after this loop we ensure that traversing through
4961     // Phi nodes ends up with all cases to compute address of the form
4962     //    BaseGV + Base + Scale * Index + Offset
4963     // where Scale and Offset are constans and BaseGV, Base and Index
4964     // are exactly the same Values in all cases.
4965     // It means that BaseGV, Scale and Offset dominate our memory instruction
4966     // and have the same value as they had in address computation represented
4967     // as Phi. So we can safely sink address computation to memory instruction.
4968     if (!Visited.insert(V).second)
4969       continue;
4970 
4971     // For a PHI node, push all of its incoming values.
4972     if (PHINode *P = dyn_cast<PHINode>(V)) {
4973       for (Value *IncValue : P->incoming_values())
4974         worklist.push_back(IncValue);
4975       PhiOrSelectSeen = true;
4976       continue;
4977     }
4978     // Similar for select.
4979     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4980       worklist.push_back(SI->getFalseValue());
4981       worklist.push_back(SI->getTrueValue());
4982       PhiOrSelectSeen = true;
4983       continue;
4984     }
4985 
4986     // For non-PHIs, determine the addressing mode being computed.  Note that
4987     // the result may differ depending on what other uses our candidate
4988     // addressing instructions might have.
4989     AddrModeInsts.clear();
4990     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4991                                                                       0);
4992     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4993         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4994         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
4995         BFI.get());
4996 
4997     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4998     if (GEP && !NewGEPBases.count(GEP)) {
4999       // If splitting the underlying data structure can reduce the offset of a
5000       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
5001       // previously split data structures.
5002       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5003       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
5004         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
5005     }
5006 
5007     NewAddrMode.OriginalValue = V;
5008     if (!AddrModes.addNewAddrMode(NewAddrMode))
5009       break;
5010   }
5011 
5012   // Try to combine the AddrModes we've collected. If we couldn't collect any,
5013   // or we have multiple but either couldn't combine them or combining them
5014   // wouldn't do anything useful, bail out now.
5015   if (!AddrModes.combineAddrModes()) {
5016     TPT.rollback(LastKnownGood);
5017     return false;
5018   }
5019   bool Modified = TPT.commit();
5020 
5021   // Get the combined AddrMode (or the only AddrMode, if we only had one).
5022   ExtAddrMode AddrMode = AddrModes.getAddrMode();
5023 
5024   // If all the instructions matched are already in this BB, don't do anything.
5025   // If we saw a Phi node then it is not local definitely, and if we saw a select
5026   // then we want to push the address calculation past it even if it's already
5027   // in this BB.
5028   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5029         return IsNonLocalValue(V, MemoryInst->getParent());
5030                   })) {
5031     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
5032                       << "\n");
5033     return Modified;
5034   }
5035 
5036   // Insert this computation right after this user.  Since our caller is
5037   // scanning from the top of the BB to the bottom, reuse of the expr are
5038   // guaranteed to happen later.
5039   IRBuilder<> Builder(MemoryInst);
5040 
5041   // Now that we determined the addressing expression we want to use and know
5042   // that we have to sink it into this block.  Check to see if we have already
5043   // done this for some other load/store instr in this block.  If so, reuse
5044   // the computation.  Before attempting reuse, check if the address is valid
5045   // as it may have been erased.
5046 
5047   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5048 
5049   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5050   if (SunkAddr) {
5051     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5052                       << " for " << *MemoryInst << "\n");
5053     if (SunkAddr->getType() != Addr->getType())
5054       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5055   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5056                                    SubtargetInfo->addrSinkUsingGEPs())) {
5057     // By default, we use the GEP-based method when AA is used later. This
5058     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5059     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5060                       << " for " << *MemoryInst << "\n");
5061     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5062     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5063 
5064     // First, find the pointer.
5065     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5066       ResultPtr = AddrMode.BaseReg;
5067       AddrMode.BaseReg = nullptr;
5068     }
5069 
5070     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5071       // We can't add more than one pointer together, nor can we scale a
5072       // pointer (both of which seem meaningless).
5073       if (ResultPtr || AddrMode.Scale != 1)
5074         return Modified;
5075 
5076       ResultPtr = AddrMode.ScaledReg;
5077       AddrMode.Scale = 0;
5078     }
5079 
5080     // It is only safe to sign extend the BaseReg if we know that the math
5081     // required to create it did not overflow before we extend it. Since
5082     // the original IR value was tossed in favor of a constant back when
5083     // the AddrMode was created we need to bail out gracefully if widths
5084     // do not match instead of extending it.
5085     //
5086     // (See below for code to add the scale.)
5087     if (AddrMode.Scale) {
5088       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5089       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5090           cast<IntegerType>(ScaledRegTy)->getBitWidth())
5091         return Modified;
5092     }
5093 
5094     if (AddrMode.BaseGV) {
5095       if (ResultPtr)
5096         return Modified;
5097 
5098       ResultPtr = AddrMode.BaseGV;
5099     }
5100 
5101     // If the real base value actually came from an inttoptr, then the matcher
5102     // will look through it and provide only the integer value. In that case,
5103     // use it here.
5104     if (!DL->isNonIntegralPointerType(Addr->getType())) {
5105       if (!ResultPtr && AddrMode.BaseReg) {
5106         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5107                                            "sunkaddr");
5108         AddrMode.BaseReg = nullptr;
5109       } else if (!ResultPtr && AddrMode.Scale == 1) {
5110         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5111                                            "sunkaddr");
5112         AddrMode.Scale = 0;
5113       }
5114     }
5115 
5116     if (!ResultPtr &&
5117         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
5118       SunkAddr = Constant::getNullValue(Addr->getType());
5119     } else if (!ResultPtr) {
5120       return Modified;
5121     } else {
5122       Type *I8PtrTy =
5123           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
5124       Type *I8Ty = Builder.getInt8Ty();
5125 
5126       // Start with the base register. Do this first so that subsequent address
5127       // matching finds it last, which will prevent it from trying to match it
5128       // as the scaled value in case it happens to be a mul. That would be
5129       // problematic if we've sunk a different mul for the scale, because then
5130       // we'd end up sinking both muls.
5131       if (AddrMode.BaseReg) {
5132         Value *V = AddrMode.BaseReg;
5133         if (V->getType() != IntPtrTy)
5134           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5135 
5136         ResultIndex = V;
5137       }
5138 
5139       // Add the scale value.
5140       if (AddrMode.Scale) {
5141         Value *V = AddrMode.ScaledReg;
5142         if (V->getType() == IntPtrTy) {
5143           // done.
5144         } else {
5145           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5146                  cast<IntegerType>(V->getType())->getBitWidth() &&
5147                  "We can't transform if ScaledReg is too narrow");
5148           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5149         }
5150 
5151         if (AddrMode.Scale != 1)
5152           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5153                                 "sunkaddr");
5154         if (ResultIndex)
5155           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5156         else
5157           ResultIndex = V;
5158       }
5159 
5160       // Add in the Base Offset if present.
5161       if (AddrMode.BaseOffs) {
5162         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5163         if (ResultIndex) {
5164           // We need to add this separately from the scale above to help with
5165           // SDAG consecutive load/store merging.
5166           if (ResultPtr->getType() != I8PtrTy)
5167             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5168           ResultPtr =
5169               AddrMode.InBounds
5170                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5171                                               "sunkaddr")
5172                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5173         }
5174 
5175         ResultIndex = V;
5176       }
5177 
5178       if (!ResultIndex) {
5179         SunkAddr = ResultPtr;
5180       } else {
5181         if (ResultPtr->getType() != I8PtrTy)
5182           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5183         SunkAddr =
5184             AddrMode.InBounds
5185                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5186                                             "sunkaddr")
5187                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5188       }
5189 
5190       if (SunkAddr->getType() != Addr->getType())
5191         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5192     }
5193   } else {
5194     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5195     // non-integral pointers, so in that case bail out now.
5196     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5197     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5198     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5199     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5200     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5201         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5202         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5203         (AddrMode.BaseGV &&
5204          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5205       return Modified;
5206 
5207     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5208                       << " for " << *MemoryInst << "\n");
5209     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5210     Value *Result = nullptr;
5211 
5212     // Start with the base register. Do this first so that subsequent address
5213     // matching finds it last, which will prevent it from trying to match it
5214     // as the scaled value in case it happens to be a mul. That would be
5215     // problematic if we've sunk a different mul for the scale, because then
5216     // we'd end up sinking both muls.
5217     if (AddrMode.BaseReg) {
5218       Value *V = AddrMode.BaseReg;
5219       if (V->getType()->isPointerTy())
5220         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5221       if (V->getType() != IntPtrTy)
5222         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5223       Result = V;
5224     }
5225 
5226     // Add the scale value.
5227     if (AddrMode.Scale) {
5228       Value *V = AddrMode.ScaledReg;
5229       if (V->getType() == IntPtrTy) {
5230         // done.
5231       } else if (V->getType()->isPointerTy()) {
5232         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5233       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5234                  cast<IntegerType>(V->getType())->getBitWidth()) {
5235         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5236       } else {
5237         // It is only safe to sign extend the BaseReg if we know that the math
5238         // required to create it did not overflow before we extend it. Since
5239         // the original IR value was tossed in favor of a constant back when
5240         // the AddrMode was created we need to bail out gracefully if widths
5241         // do not match instead of extending it.
5242         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5243         if (I && (Result != AddrMode.BaseReg))
5244           I->eraseFromParent();
5245         return Modified;
5246       }
5247       if (AddrMode.Scale != 1)
5248         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5249                               "sunkaddr");
5250       if (Result)
5251         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5252       else
5253         Result = V;
5254     }
5255 
5256     // Add in the BaseGV if present.
5257     if (AddrMode.BaseGV) {
5258       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5259       if (Result)
5260         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5261       else
5262         Result = V;
5263     }
5264 
5265     // Add in the Base Offset if present.
5266     if (AddrMode.BaseOffs) {
5267       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5268       if (Result)
5269         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5270       else
5271         Result = V;
5272     }
5273 
5274     if (!Result)
5275       SunkAddr = Constant::getNullValue(Addr->getType());
5276     else
5277       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5278   }
5279 
5280   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5281   // Store the newly computed address into the cache. In the case we reused a
5282   // value, this should be idempotent.
5283   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5284 
5285   // If we have no uses, recursively delete the value and all dead instructions
5286   // using it.
5287   if (Repl->use_empty()) {
5288     resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5289       RecursivelyDeleteTriviallyDeadInstructions(
5290           Repl, TLInfo, nullptr,
5291           [&](Value *V) { removeAllAssertingVHReferences(V); });
5292     });
5293   }
5294   ++NumMemoryInsts;
5295   return true;
5296 }
5297 
5298 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5299 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5300 /// only handle a 2 operand GEP in the same basic block or a splat constant
5301 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5302 /// index.
5303 ///
5304 /// If the existing GEP has a vector base pointer that is splat, we can look
5305 /// through the splat to find the scalar pointer. If we can't find a scalar
5306 /// pointer there's nothing we can do.
5307 ///
5308 /// If we have a GEP with more than 2 indices where the middle indices are all
5309 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5310 ///
5311 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5312 /// followed by a GEP with an all zeroes vector index. This will enable
5313 /// SelectionDAGBuilder to use a the scalar GEP as the uniform base and have a
5314 /// zero index.
optimizeGatherScatterInst(Instruction * MemoryInst,Value * Ptr)5315 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5316                                                Value *Ptr) {
5317   // FIXME: Support scalable vectors.
5318   if (isa<ScalableVectorType>(Ptr->getType()))
5319     return false;
5320 
5321   Value *NewAddr;
5322 
5323   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5324     // Don't optimize GEPs that don't have indices.
5325     if (!GEP->hasIndices())
5326       return false;
5327 
5328     // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5329     // FIXME: We should support this by sinking the GEP.
5330     if (MemoryInst->getParent() != GEP->getParent())
5331       return false;
5332 
5333     SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end());
5334 
5335     bool RewriteGEP = false;
5336 
5337     if (Ops[0]->getType()->isVectorTy()) {
5338       Ops[0] = getSplatValue(Ops[0]);
5339       if (!Ops[0])
5340         return false;
5341       RewriteGEP = true;
5342     }
5343 
5344     unsigned FinalIndex = Ops.size() - 1;
5345 
5346     // Ensure all but the last index is 0.
5347     // FIXME: This isn't strictly required. All that's required is that they are
5348     // all scalars or splats.
5349     for (unsigned i = 1; i < FinalIndex; ++i) {
5350       auto *C = dyn_cast<Constant>(Ops[i]);
5351       if (!C)
5352         return false;
5353       if (isa<VectorType>(C->getType()))
5354         C = C->getSplatValue();
5355       auto *CI = dyn_cast_or_null<ConstantInt>(C);
5356       if (!CI || !CI->isZero())
5357         return false;
5358       // Scalarize the index if needed.
5359       Ops[i] = CI;
5360     }
5361 
5362     // Try to scalarize the final index.
5363     if (Ops[FinalIndex]->getType()->isVectorTy()) {
5364       if (Value *V = getSplatValue(Ops[FinalIndex])) {
5365         auto *C = dyn_cast<ConstantInt>(V);
5366         // Don't scalarize all zeros vector.
5367         if (!C || !C->isZero()) {
5368           Ops[FinalIndex] = V;
5369           RewriteGEP = true;
5370         }
5371       }
5372     }
5373 
5374     // If we made any changes or the we have extra operands, we need to generate
5375     // new instructions.
5376     if (!RewriteGEP && Ops.size() == 2)
5377       return false;
5378 
5379     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
5380 
5381     IRBuilder<> Builder(MemoryInst);
5382 
5383     Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5384 
5385     // If the final index isn't a vector, emit a scalar GEP containing all ops
5386     // and a vector GEP with all zeroes final index.
5387     if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5388       NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front());
5389       auto *IndexTy = FixedVectorType::get(ScalarIndexTy, NumElts);
5390       NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy));
5391     } else {
5392       Value *Base = Ops[0];
5393       Value *Index = Ops[FinalIndex];
5394 
5395       // Create a scalar GEP if there are more than 2 operands.
5396       if (Ops.size() != 2) {
5397         // Replace the last index with 0.
5398         Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy);
5399         Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front());
5400       }
5401 
5402       // Now create the GEP with scalar pointer and vector index.
5403       NewAddr = Builder.CreateGEP(Base, Index);
5404     }
5405   } else if (!isa<Constant>(Ptr)) {
5406     // Not a GEP, maybe its a splat and we can create a GEP to enable
5407     // SelectionDAGBuilder to use it as a uniform base.
5408     Value *V = getSplatValue(Ptr);
5409     if (!V)
5410       return false;
5411 
5412     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
5413 
5414     IRBuilder<> Builder(MemoryInst);
5415 
5416     // Emit a vector GEP with a scalar pointer and all 0s vector index.
5417     Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5418     auto *IndexTy = FixedVectorType::get(ScalarIndexTy, NumElts);
5419     NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy));
5420   } else {
5421     // Constant, SelectionDAGBuilder knows to check if its a splat.
5422     return false;
5423   }
5424 
5425   MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5426 
5427   // If we have no uses, recursively delete the value and all dead instructions
5428   // using it.
5429   if (Ptr->use_empty())
5430     RecursivelyDeleteTriviallyDeadInstructions(
5431         Ptr, TLInfo, nullptr,
5432         [&](Value *V) { removeAllAssertingVHReferences(V); });
5433 
5434   return true;
5435 }
5436 
5437 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5438 /// address computing into the block when possible / profitable.
optimizeInlineAsmInst(CallInst * CS)5439 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5440   bool MadeChange = false;
5441 
5442   const TargetRegisterInfo *TRI =
5443       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5444   TargetLowering::AsmOperandInfoVector TargetConstraints =
5445       TLI->ParseConstraints(*DL, TRI, *CS);
5446   unsigned ArgNo = 0;
5447   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5448     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5449 
5450     // Compute the constraint code and ConstraintType to use.
5451     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5452 
5453     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5454         OpInfo.isIndirect) {
5455       Value *OpVal = CS->getArgOperand(ArgNo++);
5456       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5457     } else if (OpInfo.Type == InlineAsm::isInput)
5458       ArgNo++;
5459   }
5460 
5461   return MadeChange;
5462 }
5463 
5464 /// Check if all the uses of \p Val are equivalent (or free) zero or
5465 /// sign extensions.
hasSameExtUse(Value * Val,const TargetLowering & TLI)5466 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5467   assert(!Val->use_empty() && "Input must have at least one use");
5468   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5469   bool IsSExt = isa<SExtInst>(FirstUser);
5470   Type *ExtTy = FirstUser->getType();
5471   for (const User *U : Val->users()) {
5472     const Instruction *UI = cast<Instruction>(U);
5473     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5474       return false;
5475     Type *CurTy = UI->getType();
5476     // Same input and output types: Same instruction after CSE.
5477     if (CurTy == ExtTy)
5478       continue;
5479 
5480     // If IsSExt is true, we are in this situation:
5481     // a = Val
5482     // b = sext ty1 a to ty2
5483     // c = sext ty1 a to ty3
5484     // Assuming ty2 is shorter than ty3, this could be turned into:
5485     // a = Val
5486     // b = sext ty1 a to ty2
5487     // c = sext ty2 b to ty3
5488     // However, the last sext is not free.
5489     if (IsSExt)
5490       return false;
5491 
5492     // This is a ZExt, maybe this is free to extend from one type to another.
5493     // In that case, we would not account for a different use.
5494     Type *NarrowTy;
5495     Type *LargeTy;
5496     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5497         CurTy->getScalarType()->getIntegerBitWidth()) {
5498       NarrowTy = CurTy;
5499       LargeTy = ExtTy;
5500     } else {
5501       NarrowTy = ExtTy;
5502       LargeTy = CurTy;
5503     }
5504 
5505     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5506       return false;
5507   }
5508   // All uses are the same or can be derived from one another for free.
5509   return true;
5510 }
5511 
5512 /// Try to speculatively promote extensions in \p Exts and continue
5513 /// promoting through newly promoted operands recursively as far as doing so is
5514 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5515 /// When some promotion happened, \p TPT contains the proper state to revert
5516 /// them.
5517 ///
5518 /// \return true if some promotion happened, false otherwise.
tryToPromoteExts(TypePromotionTransaction & TPT,const SmallVectorImpl<Instruction * > & Exts,SmallVectorImpl<Instruction * > & ProfitablyMovedExts,unsigned CreatedInstsCost)5519 bool CodeGenPrepare::tryToPromoteExts(
5520     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5521     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5522     unsigned CreatedInstsCost) {
5523   bool Promoted = false;
5524 
5525   // Iterate over all the extensions to try to promote them.
5526   for (auto *I : Exts) {
5527     // Early check if we directly have ext(load).
5528     if (isa<LoadInst>(I->getOperand(0))) {
5529       ProfitablyMovedExts.push_back(I);
5530       continue;
5531     }
5532 
5533     // Check whether or not we want to do any promotion.  The reason we have
5534     // this check inside the for loop is to catch the case where an extension
5535     // is directly fed by a load because in such case the extension can be moved
5536     // up without any promotion on its operands.
5537     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5538       return false;
5539 
5540     // Get the action to perform the promotion.
5541     TypePromotionHelper::Action TPH =
5542         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5543     // Check if we can promote.
5544     if (!TPH) {
5545       // Save the current extension as we cannot move up through its operand.
5546       ProfitablyMovedExts.push_back(I);
5547       continue;
5548     }
5549 
5550     // Save the current state.
5551     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5552         TPT.getRestorationPoint();
5553     SmallVector<Instruction *, 4> NewExts;
5554     unsigned NewCreatedInstsCost = 0;
5555     unsigned ExtCost = !TLI->isExtFree(I);
5556     // Promote.
5557     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5558                              &NewExts, nullptr, *TLI);
5559     assert(PromotedVal &&
5560            "TypePromotionHelper should have filtered out those cases");
5561 
5562     // We would be able to merge only one extension in a load.
5563     // Therefore, if we have more than 1 new extension we heuristically
5564     // cut this search path, because it means we degrade the code quality.
5565     // With exactly 2, the transformation is neutral, because we will merge
5566     // one extension but leave one. However, we optimistically keep going,
5567     // because the new extension may be removed too.
5568     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5569     // FIXME: It would be possible to propagate a negative value instead of
5570     // conservatively ceiling it to 0.
5571     TotalCreatedInstsCost =
5572         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5573     if (!StressExtLdPromotion &&
5574         (TotalCreatedInstsCost > 1 ||
5575          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5576       // This promotion is not profitable, rollback to the previous state, and
5577       // save the current extension in ProfitablyMovedExts as the latest
5578       // speculative promotion turned out to be unprofitable.
5579       TPT.rollback(LastKnownGood);
5580       ProfitablyMovedExts.push_back(I);
5581       continue;
5582     }
5583     // Continue promoting NewExts as far as doing so is profitable.
5584     SmallVector<Instruction *, 2> NewlyMovedExts;
5585     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5586     bool NewPromoted = false;
5587     for (auto *ExtInst : NewlyMovedExts) {
5588       Instruction *MovedExt = cast<Instruction>(ExtInst);
5589       Value *ExtOperand = MovedExt->getOperand(0);
5590       // If we have reached to a load, we need this extra profitability check
5591       // as it could potentially be merged into an ext(load).
5592       if (isa<LoadInst>(ExtOperand) &&
5593           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5594             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5595         continue;
5596 
5597       ProfitablyMovedExts.push_back(MovedExt);
5598       NewPromoted = true;
5599     }
5600 
5601     // If none of speculative promotions for NewExts is profitable, rollback
5602     // and save the current extension (I) as the last profitable extension.
5603     if (!NewPromoted) {
5604       TPT.rollback(LastKnownGood);
5605       ProfitablyMovedExts.push_back(I);
5606       continue;
5607     }
5608     // The promotion is profitable.
5609     Promoted = true;
5610   }
5611   return Promoted;
5612 }
5613 
5614 /// Merging redundant sexts when one is dominating the other.
mergeSExts(Function & F)5615 bool CodeGenPrepare::mergeSExts(Function &F) {
5616   bool Changed = false;
5617   for (auto &Entry : ValToSExtendedUses) {
5618     SExts &Insts = Entry.second;
5619     SExts CurPts;
5620     for (Instruction *Inst : Insts) {
5621       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5622           Inst->getOperand(0) != Entry.first)
5623         continue;
5624       bool inserted = false;
5625       for (auto &Pt : CurPts) {
5626         if (getDT(F).dominates(Inst, Pt)) {
5627           Pt->replaceAllUsesWith(Inst);
5628           RemovedInsts.insert(Pt);
5629           Pt->removeFromParent();
5630           Pt = Inst;
5631           inserted = true;
5632           Changed = true;
5633           break;
5634         }
5635         if (!getDT(F).dominates(Pt, Inst))
5636           // Give up if we need to merge in a common dominator as the
5637           // experiments show it is not profitable.
5638           continue;
5639         Inst->replaceAllUsesWith(Pt);
5640         RemovedInsts.insert(Inst);
5641         Inst->removeFromParent();
5642         inserted = true;
5643         Changed = true;
5644         break;
5645       }
5646       if (!inserted)
5647         CurPts.push_back(Inst);
5648     }
5649   }
5650   return Changed;
5651 }
5652 
5653 // Splitting large data structures so that the GEPs accessing them can have
5654 // smaller offsets so that they can be sunk to the same blocks as their users.
5655 // For example, a large struct starting from %base is split into two parts
5656 // where the second part starts from %new_base.
5657 //
5658 // Before:
5659 // BB0:
5660 //   %base     =
5661 //
5662 // BB1:
5663 //   %gep0     = gep %base, off0
5664 //   %gep1     = gep %base, off1
5665 //   %gep2     = gep %base, off2
5666 //
5667 // BB2:
5668 //   %load1    = load %gep0
5669 //   %load2    = load %gep1
5670 //   %load3    = load %gep2
5671 //
5672 // After:
5673 // BB0:
5674 //   %base     =
5675 //   %new_base = gep %base, off0
5676 //
5677 // BB1:
5678 //   %new_gep0 = %new_base
5679 //   %new_gep1 = gep %new_base, off1 - off0
5680 //   %new_gep2 = gep %new_base, off2 - off0
5681 //
5682 // BB2:
5683 //   %load1    = load i32, i32* %new_gep0
5684 //   %load2    = load i32, i32* %new_gep1
5685 //   %load3    = load i32, i32* %new_gep2
5686 //
5687 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5688 // their offsets are smaller enough to fit into the addressing mode.
splitLargeGEPOffsets()5689 bool CodeGenPrepare::splitLargeGEPOffsets() {
5690   bool Changed = false;
5691   for (auto &Entry : LargeOffsetGEPMap) {
5692     Value *OldBase = Entry.first;
5693     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5694         &LargeOffsetGEPs = Entry.second;
5695     auto compareGEPOffset =
5696         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5697             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5698           if (LHS.first == RHS.first)
5699             return false;
5700           if (LHS.second != RHS.second)
5701             return LHS.second < RHS.second;
5702           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5703         };
5704     // Sorting all the GEPs of the same data structures based on the offsets.
5705     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5706     LargeOffsetGEPs.erase(
5707         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5708         LargeOffsetGEPs.end());
5709     // Skip if all the GEPs have the same offsets.
5710     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5711       continue;
5712     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5713     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5714     Value *NewBaseGEP = nullptr;
5715 
5716     auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
5717     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5718       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5719       int64_t Offset = LargeOffsetGEP->second;
5720       if (Offset != BaseOffset) {
5721         TargetLowering::AddrMode AddrMode;
5722         AddrMode.BaseOffs = Offset - BaseOffset;
5723         // The result type of the GEP might not be the type of the memory
5724         // access.
5725         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5726                                         GEP->getResultElementType(),
5727                                         GEP->getAddressSpace())) {
5728           // We need to create a new base if the offset to the current base is
5729           // too large to fit into the addressing mode. So, a very large struct
5730           // may be split into several parts.
5731           BaseGEP = GEP;
5732           BaseOffset = Offset;
5733           NewBaseGEP = nullptr;
5734         }
5735       }
5736 
5737       // Generate a new GEP to replace the current one.
5738       LLVMContext &Ctx = GEP->getContext();
5739       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5740       Type *I8PtrTy =
5741           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5742       Type *I8Ty = Type::getInt8Ty(Ctx);
5743 
5744       if (!NewBaseGEP) {
5745         // Create a new base if we don't have one yet.  Find the insertion
5746         // pointer for the new base first.
5747         BasicBlock::iterator NewBaseInsertPt;
5748         BasicBlock *NewBaseInsertBB;
5749         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5750           // If the base of the struct is an instruction, the new base will be
5751           // inserted close to it.
5752           NewBaseInsertBB = BaseI->getParent();
5753           if (isa<PHINode>(BaseI))
5754             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5755           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5756             NewBaseInsertBB =
5757                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5758             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5759           } else
5760             NewBaseInsertPt = std::next(BaseI->getIterator());
5761         } else {
5762           // If the current base is an argument or global value, the new base
5763           // will be inserted to the entry block.
5764           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5765           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5766         }
5767         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5768         // Create a new base.
5769         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5770         NewBaseGEP = OldBase;
5771         if (NewBaseGEP->getType() != I8PtrTy)
5772           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5773         NewBaseGEP =
5774             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5775         NewGEPBases.insert(NewBaseGEP);
5776       }
5777 
5778       IRBuilder<> Builder(GEP);
5779       Value *NewGEP = NewBaseGEP;
5780       if (Offset == BaseOffset) {
5781         if (GEP->getType() != I8PtrTy)
5782           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5783       } else {
5784         // Calculate the new offset for the new GEP.
5785         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5786         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5787 
5788         if (GEP->getType() != I8PtrTy)
5789           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5790       }
5791       GEP->replaceAllUsesWith(NewGEP);
5792       LargeOffsetGEPID.erase(GEP);
5793       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5794       GEP->eraseFromParent();
5795       Changed = true;
5796     }
5797   }
5798   return Changed;
5799 }
5800 
optimizePhiType(PHINode * I,SmallPtrSetImpl<PHINode * > & Visited,SmallPtrSetImpl<Instruction * > & DeletedInstrs)5801 bool CodeGenPrepare::optimizePhiType(
5802     PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
5803     SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
5804   // We are looking for a collection on interconnected phi nodes that together
5805   // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
5806   // are of the same type. Convert the whole set of nodes to the type of the
5807   // bitcast.
5808   Type *PhiTy = I->getType();
5809   Type *ConvertTy = nullptr;
5810   if (Visited.count(I) ||
5811       (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
5812     return false;
5813 
5814   SmallVector<Instruction *, 4> Worklist;
5815   Worklist.push_back(cast<Instruction>(I));
5816   SmallPtrSet<PHINode *, 4> PhiNodes;
5817   PhiNodes.insert(I);
5818   Visited.insert(I);
5819   SmallPtrSet<Instruction *, 4> Defs;
5820   SmallPtrSet<Instruction *, 4> Uses;
5821   // This works by adding extra bitcasts between load/stores and removing
5822   // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
5823   // we can get in the situation where we remove a bitcast in one iteration
5824   // just to add it again in the next. We need to ensure that at least one
5825   // bitcast we remove are anchored to something that will not change back.
5826   bool AnyAnchored = false;
5827 
5828   while (!Worklist.empty()) {
5829     Instruction *II = Worklist.pop_back_val();
5830 
5831     if (auto *Phi = dyn_cast<PHINode>(II)) {
5832       // Handle Defs, which might also be PHI's
5833       for (Value *V : Phi->incoming_values()) {
5834         if (auto *OpPhi = dyn_cast<PHINode>(V)) {
5835           if (!PhiNodes.count(OpPhi)) {
5836             if (Visited.count(OpPhi))
5837               return false;
5838             PhiNodes.insert(OpPhi);
5839             Visited.insert(OpPhi);
5840             Worklist.push_back(OpPhi);
5841           }
5842         } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
5843           if (!OpLoad->isSimple())
5844             return false;
5845           if (!Defs.count(OpLoad)) {
5846             Defs.insert(OpLoad);
5847             Worklist.push_back(OpLoad);
5848           }
5849         } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
5850           if (!Defs.count(OpEx)) {
5851             Defs.insert(OpEx);
5852             Worklist.push_back(OpEx);
5853           }
5854         } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
5855           if (!ConvertTy)
5856             ConvertTy = OpBC->getOperand(0)->getType();
5857           if (OpBC->getOperand(0)->getType() != ConvertTy)
5858             return false;
5859           if (!Defs.count(OpBC)) {
5860             Defs.insert(OpBC);
5861             Worklist.push_back(OpBC);
5862             AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
5863                            !isa<ExtractElementInst>(OpBC->getOperand(0));
5864           }
5865         } else if (!isa<UndefValue>(V)) {
5866           return false;
5867         }
5868       }
5869     }
5870 
5871     // Handle uses which might also be phi's
5872     for (User *V : II->users()) {
5873       if (auto *OpPhi = dyn_cast<PHINode>(V)) {
5874         if (!PhiNodes.count(OpPhi)) {
5875           if (Visited.count(OpPhi))
5876             return false;
5877           PhiNodes.insert(OpPhi);
5878           Visited.insert(OpPhi);
5879           Worklist.push_back(OpPhi);
5880         }
5881       } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
5882         if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
5883           return false;
5884         Uses.insert(OpStore);
5885       } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
5886         if (!ConvertTy)
5887           ConvertTy = OpBC->getType();
5888         if (OpBC->getType() != ConvertTy)
5889           return false;
5890         Uses.insert(OpBC);
5891         AnyAnchored |=
5892             any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
5893       } else {
5894         return false;
5895       }
5896     }
5897   }
5898 
5899   if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
5900     return false;
5901 
5902   LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
5903                     << *ConvertTy << "\n");
5904 
5905   // Create all the new phi nodes of the new type, and bitcast any loads to the
5906   // correct type.
5907   ValueToValueMap ValMap;
5908   ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy);
5909   for (Instruction *D : Defs) {
5910     if (isa<BitCastInst>(D)) {
5911       ValMap[D] = D->getOperand(0);
5912       DeletedInstrs.insert(D);
5913     } else {
5914       ValMap[D] =
5915           new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
5916     }
5917   }
5918   for (PHINode *Phi : PhiNodes)
5919     ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
5920                                   Phi->getName() + ".tc", Phi);
5921   // Pipe together all the PhiNodes.
5922   for (PHINode *Phi : PhiNodes) {
5923     PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
5924     for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
5925       NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
5926                           Phi->getIncomingBlock(i));
5927     Visited.insert(NewPhi);
5928   }
5929   // And finally pipe up the stores and bitcasts
5930   for (Instruction *U : Uses) {
5931     if (isa<BitCastInst>(U)) {
5932       DeletedInstrs.insert(U);
5933       U->replaceAllUsesWith(ValMap[U->getOperand(0)]);
5934     } else {
5935       U->setOperand(0,
5936                     new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
5937     }
5938   }
5939 
5940   // Save the removed phis to be deleted later.
5941   for (PHINode *Phi : PhiNodes)
5942     DeletedInstrs.insert(Phi);
5943   return true;
5944 }
5945 
optimizePhiTypes(Function & F)5946 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
5947   if (!OptimizePhiTypes)
5948     return false;
5949 
5950   bool Changed = false;
5951   SmallPtrSet<PHINode *, 4> Visited;
5952   SmallPtrSet<Instruction *, 4> DeletedInstrs;
5953 
5954   // Attempt to optimize all the phis in the functions to the correct type.
5955   for (auto &BB : F)
5956     for (auto &Phi : BB.phis())
5957       Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
5958 
5959   // Remove any old phi's that have been converted.
5960   for (auto *I : DeletedInstrs) {
5961     I->replaceAllUsesWith(UndefValue::get(I->getType()));
5962     I->eraseFromParent();
5963   }
5964 
5965   return Changed;
5966 }
5967 
5968 /// Return true, if an ext(load) can be formed from an extension in
5969 /// \p MovedExts.
canFormExtLd(const SmallVectorImpl<Instruction * > & MovedExts,LoadInst * & LI,Instruction * & Inst,bool HasPromoted)5970 bool CodeGenPrepare::canFormExtLd(
5971     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5972     Instruction *&Inst, bool HasPromoted) {
5973   for (auto *MovedExtInst : MovedExts) {
5974     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5975       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5976       Inst = MovedExtInst;
5977       break;
5978     }
5979   }
5980   if (!LI)
5981     return false;
5982 
5983   // If they're already in the same block, there's nothing to do.
5984   // Make the cheap checks first if we did not promote.
5985   // If we promoted, we need to check if it is indeed profitable.
5986   if (!HasPromoted && LI->getParent() == Inst->getParent())
5987     return false;
5988 
5989   return TLI->isExtLoad(LI, Inst, *DL);
5990 }
5991 
5992 /// Move a zext or sext fed by a load into the same basic block as the load,
5993 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5994 /// extend into the load.
5995 ///
5996 /// E.g.,
5997 /// \code
5998 /// %ld = load i32* %addr
5999 /// %add = add nuw i32 %ld, 4
6000 /// %zext = zext i32 %add to i64
6001 // \endcode
6002 /// =>
6003 /// \code
6004 /// %ld = load i32* %addr
6005 /// %zext = zext i32 %ld to i64
6006 /// %add = add nuw i64 %zext, 4
6007 /// \encode
6008 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6009 /// allow us to match zext(load i32*) to i64.
6010 ///
6011 /// Also, try to promote the computations used to obtain a sign extended
6012 /// value used into memory accesses.
6013 /// E.g.,
6014 /// \code
6015 /// a = add nsw i32 b, 3
6016 /// d = sext i32 a to i64
6017 /// e = getelementptr ..., i64 d
6018 /// \endcode
6019 /// =>
6020 /// \code
6021 /// f = sext i32 b to i64
6022 /// a = add nsw i64 f, 3
6023 /// e = getelementptr ..., i64 a
6024 /// \endcode
6025 ///
6026 /// \p Inst[in/out] the extension may be modified during the process if some
6027 /// promotions apply.
optimizeExt(Instruction * & Inst)6028 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6029   bool AllowPromotionWithoutCommonHeader = false;
6030   /// See if it is an interesting sext operations for the address type
6031   /// promotion before trying to promote it, e.g., the ones with the right
6032   /// type and used in memory accesses.
6033   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6034       *Inst, AllowPromotionWithoutCommonHeader);
6035   TypePromotionTransaction TPT(RemovedInsts);
6036   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6037       TPT.getRestorationPoint();
6038   SmallVector<Instruction *, 1> Exts;
6039   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6040   Exts.push_back(Inst);
6041 
6042   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6043 
6044   // Look for a load being extended.
6045   LoadInst *LI = nullptr;
6046   Instruction *ExtFedByLoad;
6047 
6048   // Try to promote a chain of computation if it allows to form an extended
6049   // load.
6050   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6051     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6052     TPT.commit();
6053     // Move the extend into the same block as the load.
6054     ExtFedByLoad->moveAfter(LI);
6055     ++NumExtsMoved;
6056     Inst = ExtFedByLoad;
6057     return true;
6058   }
6059 
6060   // Continue promoting SExts if known as considerable depending on targets.
6061   if (ATPConsiderable &&
6062       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6063                                   HasPromoted, TPT, SpeculativelyMovedExts))
6064     return true;
6065 
6066   TPT.rollback(LastKnownGood);
6067   return false;
6068 }
6069 
6070 // Perform address type promotion if doing so is profitable.
6071 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6072 // instructions that sign extended the same initial value. However, if
6073 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6074 // extension is just profitable.
performAddressTypePromotion(Instruction * & Inst,bool AllowPromotionWithoutCommonHeader,bool HasPromoted,TypePromotionTransaction & TPT,SmallVectorImpl<Instruction * > & SpeculativelyMovedExts)6075 bool CodeGenPrepare::performAddressTypePromotion(
6076     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6077     bool HasPromoted, TypePromotionTransaction &TPT,
6078     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6079   bool Promoted = false;
6080   SmallPtrSet<Instruction *, 1> UnhandledExts;
6081   bool AllSeenFirst = true;
6082   for (auto *I : SpeculativelyMovedExts) {
6083     Value *HeadOfChain = I->getOperand(0);
6084     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6085         SeenChainsForSExt.find(HeadOfChain);
6086     // If there is an unhandled SExt which has the same header, try to promote
6087     // it as well.
6088     if (AlreadySeen != SeenChainsForSExt.end()) {
6089       if (AlreadySeen->second != nullptr)
6090         UnhandledExts.insert(AlreadySeen->second);
6091       AllSeenFirst = false;
6092     }
6093   }
6094 
6095   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6096                         SpeculativelyMovedExts.size() == 1)) {
6097     TPT.commit();
6098     if (HasPromoted)
6099       Promoted = true;
6100     for (auto *I : SpeculativelyMovedExts) {
6101       Value *HeadOfChain = I->getOperand(0);
6102       SeenChainsForSExt[HeadOfChain] = nullptr;
6103       ValToSExtendedUses[HeadOfChain].push_back(I);
6104     }
6105     // Update Inst as promotion happen.
6106     Inst = SpeculativelyMovedExts.pop_back_val();
6107   } else {
6108     // This is the first chain visited from the header, keep the current chain
6109     // as unhandled. Defer to promote this until we encounter another SExt
6110     // chain derived from the same header.
6111     for (auto *I : SpeculativelyMovedExts) {
6112       Value *HeadOfChain = I->getOperand(0);
6113       SeenChainsForSExt[HeadOfChain] = Inst;
6114     }
6115     return false;
6116   }
6117 
6118   if (!AllSeenFirst && !UnhandledExts.empty())
6119     for (auto *VisitedSExt : UnhandledExts) {
6120       if (RemovedInsts.count(VisitedSExt))
6121         continue;
6122       TypePromotionTransaction TPT(RemovedInsts);
6123       SmallVector<Instruction *, 1> Exts;
6124       SmallVector<Instruction *, 2> Chains;
6125       Exts.push_back(VisitedSExt);
6126       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6127       TPT.commit();
6128       if (HasPromoted)
6129         Promoted = true;
6130       for (auto *I : Chains) {
6131         Value *HeadOfChain = I->getOperand(0);
6132         // Mark this as handled.
6133         SeenChainsForSExt[HeadOfChain] = nullptr;
6134         ValToSExtendedUses[HeadOfChain].push_back(I);
6135       }
6136     }
6137   return Promoted;
6138 }
6139 
optimizeExtUses(Instruction * I)6140 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6141   BasicBlock *DefBB = I->getParent();
6142 
6143   // If the result of a {s|z}ext and its source are both live out, rewrite all
6144   // other uses of the source with result of extension.
6145   Value *Src = I->getOperand(0);
6146   if (Src->hasOneUse())
6147     return false;
6148 
6149   // Only do this xform if truncating is free.
6150   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6151     return false;
6152 
6153   // Only safe to perform the optimization if the source is also defined in
6154   // this block.
6155   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6156     return false;
6157 
6158   bool DefIsLiveOut = false;
6159   for (User *U : I->users()) {
6160     Instruction *UI = cast<Instruction>(U);
6161 
6162     // Figure out which BB this ext is used in.
6163     BasicBlock *UserBB = UI->getParent();
6164     if (UserBB == DefBB) continue;
6165     DefIsLiveOut = true;
6166     break;
6167   }
6168   if (!DefIsLiveOut)
6169     return false;
6170 
6171   // Make sure none of the uses are PHI nodes.
6172   for (User *U : Src->users()) {
6173     Instruction *UI = cast<Instruction>(U);
6174     BasicBlock *UserBB = UI->getParent();
6175     if (UserBB == DefBB) continue;
6176     // Be conservative. We don't want this xform to end up introducing
6177     // reloads just before load / store instructions.
6178     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6179       return false;
6180   }
6181 
6182   // InsertedTruncs - Only insert one trunc in each block once.
6183   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
6184 
6185   bool MadeChange = false;
6186   for (Use &U : Src->uses()) {
6187     Instruction *User = cast<Instruction>(U.getUser());
6188 
6189     // Figure out which BB this ext is used in.
6190     BasicBlock *UserBB = User->getParent();
6191     if (UserBB == DefBB) continue;
6192 
6193     // Both src and def are live in this block. Rewrite the use.
6194     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6195 
6196     if (!InsertedTrunc) {
6197       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6198       assert(InsertPt != UserBB->end());
6199       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
6200       InsertedInsts.insert(InsertedTrunc);
6201     }
6202 
6203     // Replace a use of the {s|z}ext source with a use of the result.
6204     U = InsertedTrunc;
6205     ++NumExtUses;
6206     MadeChange = true;
6207   }
6208 
6209   return MadeChange;
6210 }
6211 
6212 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
6213 // just after the load if the target can fold this into one extload instruction,
6214 // with the hope of eliminating some of the other later "and" instructions using
6215 // the loaded value.  "and"s that are made trivially redundant by the insertion
6216 // of the new "and" are removed by this function, while others (e.g. those whose
6217 // path from the load goes through a phi) are left for isel to potentially
6218 // remove.
6219 //
6220 // For example:
6221 //
6222 // b0:
6223 //   x = load i32
6224 //   ...
6225 // b1:
6226 //   y = and x, 0xff
6227 //   z = use y
6228 //
6229 // becomes:
6230 //
6231 // b0:
6232 //   x = load i32
6233 //   x' = and x, 0xff
6234 //   ...
6235 // b1:
6236 //   z = use x'
6237 //
6238 // whereas:
6239 //
6240 // b0:
6241 //   x1 = load i32
6242 //   ...
6243 // b1:
6244 //   x2 = load i32
6245 //   ...
6246 // b2:
6247 //   x = phi x1, x2
6248 //   y = and x, 0xff
6249 //
6250 // becomes (after a call to optimizeLoadExt for each load):
6251 //
6252 // b0:
6253 //   x1 = load i32
6254 //   x1' = and x1, 0xff
6255 //   ...
6256 // b1:
6257 //   x2 = load i32
6258 //   x2' = and x2, 0xff
6259 //   ...
6260 // b2:
6261 //   x = phi x1', x2'
6262 //   y = and x, 0xff
optimizeLoadExt(LoadInst * Load)6263 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6264   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6265     return false;
6266 
6267   // Skip loads we've already transformed.
6268   if (Load->hasOneUse() &&
6269       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6270     return false;
6271 
6272   // Look at all uses of Load, looking through phis, to determine how many bits
6273   // of the loaded value are needed.
6274   SmallVector<Instruction *, 8> WorkList;
6275   SmallPtrSet<Instruction *, 16> Visited;
6276   SmallVector<Instruction *, 8> AndsToMaybeRemove;
6277   for (auto *U : Load->users())
6278     WorkList.push_back(cast<Instruction>(U));
6279 
6280   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6281   unsigned BitWidth = LoadResultVT.getSizeInBits();
6282   APInt DemandBits(BitWidth, 0);
6283   APInt WidestAndBits(BitWidth, 0);
6284 
6285   while (!WorkList.empty()) {
6286     Instruction *I = WorkList.back();
6287     WorkList.pop_back();
6288 
6289     // Break use-def graph loops.
6290     if (!Visited.insert(I).second)
6291       continue;
6292 
6293     // For a PHI node, push all of its users.
6294     if (auto *Phi = dyn_cast<PHINode>(I)) {
6295       for (auto *U : Phi->users())
6296         WorkList.push_back(cast<Instruction>(U));
6297       continue;
6298     }
6299 
6300     switch (I->getOpcode()) {
6301     case Instruction::And: {
6302       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6303       if (!AndC)
6304         return false;
6305       APInt AndBits = AndC->getValue();
6306       DemandBits |= AndBits;
6307       // Keep track of the widest and mask we see.
6308       if (AndBits.ugt(WidestAndBits))
6309         WidestAndBits = AndBits;
6310       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6311         AndsToMaybeRemove.push_back(I);
6312       break;
6313     }
6314 
6315     case Instruction::Shl: {
6316       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6317       if (!ShlC)
6318         return false;
6319       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6320       DemandBits.setLowBits(BitWidth - ShiftAmt);
6321       break;
6322     }
6323 
6324     case Instruction::Trunc: {
6325       EVT TruncVT = TLI->getValueType(*DL, I->getType());
6326       unsigned TruncBitWidth = TruncVT.getSizeInBits();
6327       DemandBits.setLowBits(TruncBitWidth);
6328       break;
6329     }
6330 
6331     default:
6332       return false;
6333     }
6334   }
6335 
6336   uint32_t ActiveBits = DemandBits.getActiveBits();
6337   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6338   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
6339   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6340   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6341   // followed by an AND.
6342   // TODO: Look into removing this restriction by fixing backends to either
6343   // return false for isLoadExtLegal for i1 or have them select this pattern to
6344   // a single instruction.
6345   //
6346   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6347   // mask, since these are the only ands that will be removed by isel.
6348   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6349       WidestAndBits != DemandBits)
6350     return false;
6351 
6352   LLVMContext &Ctx = Load->getType()->getContext();
6353   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6354   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6355 
6356   // Reject cases that won't be matched as extloads.
6357   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6358       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6359     return false;
6360 
6361   IRBuilder<> Builder(Load->getNextNode());
6362   auto *NewAnd = cast<Instruction>(
6363       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6364   // Mark this instruction as "inserted by CGP", so that other
6365   // optimizations don't touch it.
6366   InsertedInsts.insert(NewAnd);
6367 
6368   // Replace all uses of load with new and (except for the use of load in the
6369   // new and itself).
6370   Load->replaceAllUsesWith(NewAnd);
6371   NewAnd->setOperand(0, Load);
6372 
6373   // Remove any and instructions that are now redundant.
6374   for (auto *And : AndsToMaybeRemove)
6375     // Check that the and mask is the same as the one we decided to put on the
6376     // new and.
6377     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6378       And->replaceAllUsesWith(NewAnd);
6379       if (&*CurInstIterator == And)
6380         CurInstIterator = std::next(And->getIterator());
6381       And->eraseFromParent();
6382       ++NumAndUses;
6383     }
6384 
6385   ++NumAndsAdded;
6386   return true;
6387 }
6388 
6389 /// Check if V (an operand of a select instruction) is an expensive instruction
6390 /// that is only used once.
sinkSelectOperand(const TargetTransformInfo * TTI,Value * V)6391 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6392   auto *I = dyn_cast<Instruction>(V);
6393   // If it's safe to speculatively execute, then it should not have side
6394   // effects; therefore, it's safe to sink and possibly *not* execute.
6395   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6396          TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >=
6397          TargetTransformInfo::TCC_Expensive;
6398 }
6399 
6400 /// Returns true if a SelectInst should be turned into an explicit branch.
isFormingBranchFromSelectProfitable(const TargetTransformInfo * TTI,const TargetLowering * TLI,SelectInst * SI)6401 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6402                                                 const TargetLowering *TLI,
6403                                                 SelectInst *SI) {
6404   // If even a predictable select is cheap, then a branch can't be cheaper.
6405   if (!TLI->isPredictableSelectExpensive())
6406     return false;
6407 
6408   // FIXME: This should use the same heuristics as IfConversion to determine
6409   // whether a select is better represented as a branch.
6410 
6411   // If metadata tells us that the select condition is obviously predictable,
6412   // then we want to replace the select with a branch.
6413   uint64_t TrueWeight, FalseWeight;
6414   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
6415     uint64_t Max = std::max(TrueWeight, FalseWeight);
6416     uint64_t Sum = TrueWeight + FalseWeight;
6417     if (Sum != 0) {
6418       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6419       if (Probability > TLI->getPredictableBranchThreshold())
6420         return true;
6421     }
6422   }
6423 
6424   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6425 
6426   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6427   // comparison condition. If the compare has more than one use, there's
6428   // probably another cmov or setcc around, so it's not worth emitting a branch.
6429   if (!Cmp || !Cmp->hasOneUse())
6430     return false;
6431 
6432   // If either operand of the select is expensive and only needed on one side
6433   // of the select, we should form a branch.
6434   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6435       sinkSelectOperand(TTI, SI->getFalseValue()))
6436     return true;
6437 
6438   return false;
6439 }
6440 
6441 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6442 /// false value of \p SI. If the true/false value of \p SI is defined by any
6443 /// select instructions in \p Selects, look through the defining select
6444 /// instruction until the true/false value is not defined in \p Selects.
getTrueOrFalseValue(SelectInst * SI,bool isTrue,const SmallPtrSet<const Instruction *,2> & Selects)6445 static Value *getTrueOrFalseValue(
6446     SelectInst *SI, bool isTrue,
6447     const SmallPtrSet<const Instruction *, 2> &Selects) {
6448   Value *V = nullptr;
6449 
6450   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6451        DefSI = dyn_cast<SelectInst>(V)) {
6452     assert(DefSI->getCondition() == SI->getCondition() &&
6453            "The condition of DefSI does not match with SI");
6454     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6455   }
6456 
6457   assert(V && "Failed to get select true/false value");
6458   return V;
6459 }
6460 
optimizeShiftInst(BinaryOperator * Shift)6461 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6462   assert(Shift->isShift() && "Expected a shift");
6463 
6464   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6465   // general vector shifts, and (3) the shift amount is a select-of-splatted
6466   // values, hoist the shifts before the select:
6467   //   shift Op0, (select Cond, TVal, FVal) -->
6468   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6469   //
6470   // This is inverting a generic IR transform when we know that the cost of a
6471   // general vector shift is more than the cost of 2 shift-by-scalars.
6472   // We can't do this effectively in SDAG because we may not be able to
6473   // determine if the select operands are splats from within a basic block.
6474   Type *Ty = Shift->getType();
6475   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6476     return false;
6477   Value *Cond, *TVal, *FVal;
6478   if (!match(Shift->getOperand(1),
6479              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6480     return false;
6481   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6482     return false;
6483 
6484   IRBuilder<> Builder(Shift);
6485   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6486   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6487   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6488   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6489   Shift->replaceAllUsesWith(NewSel);
6490   Shift->eraseFromParent();
6491   return true;
6492 }
6493 
optimizeFunnelShift(IntrinsicInst * Fsh)6494 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6495   Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6496   assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6497          "Expected a funnel shift");
6498 
6499   // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6500   // than general vector shifts, and (3) the shift amount is select-of-splatted
6501   // values, hoist the funnel shifts before the select:
6502   //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
6503   //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6504   //
6505   // This is inverting a generic IR transform when we know that the cost of a
6506   // general vector shift is more than the cost of 2 shift-by-scalars.
6507   // We can't do this effectively in SDAG because we may not be able to
6508   // determine if the select operands are splats from within a basic block.
6509   Type *Ty = Fsh->getType();
6510   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6511     return false;
6512   Value *Cond, *TVal, *FVal;
6513   if (!match(Fsh->getOperand(2),
6514              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6515     return false;
6516   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6517     return false;
6518 
6519   IRBuilder<> Builder(Fsh);
6520   Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6521   Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal });
6522   Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal });
6523   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6524   Fsh->replaceAllUsesWith(NewSel);
6525   Fsh->eraseFromParent();
6526   return true;
6527 }
6528 
6529 /// If we have a SelectInst that will likely profit from branch prediction,
6530 /// turn it into a branch.
optimizeSelectInst(SelectInst * SI)6531 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6532   if (DisableSelectToBranch)
6533     return false;
6534 
6535   // Find all consecutive select instructions that share the same condition.
6536   SmallVector<SelectInst *, 2> ASI;
6537   ASI.push_back(SI);
6538   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6539        It != SI->getParent()->end(); ++It) {
6540     SelectInst *I = dyn_cast<SelectInst>(&*It);
6541     if (I && SI->getCondition() == I->getCondition()) {
6542       ASI.push_back(I);
6543     } else {
6544       break;
6545     }
6546   }
6547 
6548   SelectInst *LastSI = ASI.back();
6549   // Increment the current iterator to skip all the rest of select instructions
6550   // because they will be either "not lowered" or "all lowered" to branch.
6551   CurInstIterator = std::next(LastSI->getIterator());
6552 
6553   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6554 
6555   // Can we convert the 'select' to CF ?
6556   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6557     return false;
6558 
6559   TargetLowering::SelectSupportKind SelectKind;
6560   if (VectorCond)
6561     SelectKind = TargetLowering::VectorMaskSelect;
6562   else if (SI->getType()->isVectorTy())
6563     SelectKind = TargetLowering::ScalarCondVectorVal;
6564   else
6565     SelectKind = TargetLowering::ScalarValSelect;
6566 
6567   if (TLI->isSelectSupported(SelectKind) &&
6568       (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
6569        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
6570     return false;
6571 
6572   // The DominatorTree needs to be rebuilt by any consumers after this
6573   // transformation. We simply reset here rather than setting the ModifiedDT
6574   // flag to avoid restarting the function walk in runOnFunction for each
6575   // select optimized.
6576   DT.reset();
6577 
6578   // Transform a sequence like this:
6579   //    start:
6580   //       %cmp = cmp uge i32 %a, %b
6581   //       %sel = select i1 %cmp, i32 %c, i32 %d
6582   //
6583   // Into:
6584   //    start:
6585   //       %cmp = cmp uge i32 %a, %b
6586   //       %cmp.frozen = freeze %cmp
6587   //       br i1 %cmp.frozen, label %select.true, label %select.false
6588   //    select.true:
6589   //       br label %select.end
6590   //    select.false:
6591   //       br label %select.end
6592   //    select.end:
6593   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6594   //
6595   // %cmp should be frozen, otherwise it may introduce undefined behavior.
6596   // In addition, we may sink instructions that produce %c or %d from
6597   // the entry block into the destination(s) of the new branch.
6598   // If the true or false blocks do not contain a sunken instruction, that
6599   // block and its branch may be optimized away. In that case, one side of the
6600   // first branch will point directly to select.end, and the corresponding PHI
6601   // predecessor block will be the start block.
6602 
6603   // First, we split the block containing the select into 2 blocks.
6604   BasicBlock *StartBlock = SI->getParent();
6605   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6606   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6607   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6608 
6609   // Delete the unconditional branch that was just created by the split.
6610   StartBlock->getTerminator()->eraseFromParent();
6611 
6612   // These are the new basic blocks for the conditional branch.
6613   // At least one will become an actual new basic block.
6614   BasicBlock *TrueBlock = nullptr;
6615   BasicBlock *FalseBlock = nullptr;
6616   BranchInst *TrueBranch = nullptr;
6617   BranchInst *FalseBranch = nullptr;
6618 
6619   // Sink expensive instructions into the conditional blocks to avoid executing
6620   // them speculatively.
6621   for (SelectInst *SI : ASI) {
6622     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6623       if (TrueBlock == nullptr) {
6624         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6625                                        EndBlock->getParent(), EndBlock);
6626         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6627         TrueBranch->setDebugLoc(SI->getDebugLoc());
6628       }
6629       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6630       TrueInst->moveBefore(TrueBranch);
6631     }
6632     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6633       if (FalseBlock == nullptr) {
6634         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6635                                         EndBlock->getParent(), EndBlock);
6636         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6637         FalseBranch->setDebugLoc(SI->getDebugLoc());
6638       }
6639       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6640       FalseInst->moveBefore(FalseBranch);
6641     }
6642   }
6643 
6644   // If there was nothing to sink, then arbitrarily choose the 'false' side
6645   // for a new input value to the PHI.
6646   if (TrueBlock == FalseBlock) {
6647     assert(TrueBlock == nullptr &&
6648            "Unexpected basic block transform while optimizing select");
6649 
6650     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6651                                     EndBlock->getParent(), EndBlock);
6652     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6653     FalseBranch->setDebugLoc(SI->getDebugLoc());
6654   }
6655 
6656   // Insert the real conditional branch based on the original condition.
6657   // If we did not create a new block for one of the 'true' or 'false' paths
6658   // of the condition, it means that side of the branch goes to the end block
6659   // directly and the path originates from the start block from the point of
6660   // view of the new PHI.
6661   BasicBlock *TT, *FT;
6662   if (TrueBlock == nullptr) {
6663     TT = EndBlock;
6664     FT = FalseBlock;
6665     TrueBlock = StartBlock;
6666   } else if (FalseBlock == nullptr) {
6667     TT = TrueBlock;
6668     FT = EndBlock;
6669     FalseBlock = StartBlock;
6670   } else {
6671     TT = TrueBlock;
6672     FT = FalseBlock;
6673   }
6674   IRBuilder<> IB(SI);
6675   auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
6676   IB.CreateCondBr(CondFr, TT, FT, SI);
6677 
6678   SmallPtrSet<const Instruction *, 2> INS;
6679   INS.insert(ASI.begin(), ASI.end());
6680   // Use reverse iterator because later select may use the value of the
6681   // earlier select, and we need to propagate value through earlier select
6682   // to get the PHI operand.
6683   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6684     SelectInst *SI = *It;
6685     // The select itself is replaced with a PHI Node.
6686     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6687     PN->takeName(SI);
6688     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6689     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6690     PN->setDebugLoc(SI->getDebugLoc());
6691 
6692     SI->replaceAllUsesWith(PN);
6693     SI->eraseFromParent();
6694     INS.erase(SI);
6695     ++NumSelectsExpanded;
6696   }
6697 
6698   // Instruct OptimizeBlock to skip to the next block.
6699   CurInstIterator = StartBlock->end();
6700   return true;
6701 }
6702 
6703 /// Some targets only accept certain types for splat inputs. For example a VDUP
6704 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
6705 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
optimizeShuffleVectorInst(ShuffleVectorInst * SVI)6706 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6707   if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
6708                             m_Undef(), m_ZeroMask())))
6709     return false;
6710   Type *NewType = TLI->shouldConvertSplatType(SVI);
6711   if (!NewType)
6712     return false;
6713 
6714   auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
6715   assert(!NewType->isVectorTy() && "Expected a scalar type!");
6716   assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
6717          "Expected a type of the same size!");
6718   auto *NewVecType =
6719       FixedVectorType::get(NewType, SVIVecType->getNumElements());
6720 
6721   // Create a bitcast (shuffle (insert (bitcast(..))))
6722   IRBuilder<> Builder(SVI->getContext());
6723   Builder.SetInsertPoint(SVI);
6724   Value *BC1 = Builder.CreateBitCast(
6725       cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
6726   Value *Insert = Builder.CreateInsertElement(UndefValue::get(NewVecType), BC1,
6727                                               (uint64_t)0);
6728   Value *Shuffle = Builder.CreateShuffleVector(
6729       Insert, UndefValue::get(NewVecType), SVI->getShuffleMask());
6730   Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
6731 
6732   SVI->replaceAllUsesWith(BC2);
6733   RecursivelyDeleteTriviallyDeadInstructions(
6734       SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
6735 
6736   // Also hoist the bitcast up to its operand if it they are not in the same
6737   // block.
6738   if (auto *BCI = dyn_cast<Instruction>(BC1))
6739     if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
6740       if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
6741           !Op->isTerminator() && !Op->isEHPad())
6742         BCI->moveAfter(Op);
6743 
6744   return true;
6745 }
6746 
tryToSinkFreeOperands(Instruction * I)6747 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6748   // If the operands of I can be folded into a target instruction together with
6749   // I, duplicate and sink them.
6750   SmallVector<Use *, 4> OpsToSink;
6751   if (!TLI->shouldSinkOperands(I, OpsToSink))
6752     return false;
6753 
6754   // OpsToSink can contain multiple uses in a use chain (e.g.
6755   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6756   // uses must come first, so we process the ops in reverse order so as to not
6757   // create invalid IR.
6758   BasicBlock *TargetBB = I->getParent();
6759   bool Changed = false;
6760   SmallVector<Use *, 4> ToReplace;
6761   for (Use *U : reverse(OpsToSink)) {
6762     auto *UI = cast<Instruction>(U->get());
6763     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6764       continue;
6765     ToReplace.push_back(U);
6766   }
6767 
6768   SetVector<Instruction *> MaybeDead;
6769   DenseMap<Instruction *, Instruction *> NewInstructions;
6770   Instruction *InsertPoint = I;
6771   for (Use *U : ToReplace) {
6772     auto *UI = cast<Instruction>(U->get());
6773     Instruction *NI = UI->clone();
6774     NewInstructions[UI] = NI;
6775     MaybeDead.insert(UI);
6776     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6777     NI->insertBefore(InsertPoint);
6778     InsertPoint = NI;
6779     InsertedInsts.insert(NI);
6780 
6781     // Update the use for the new instruction, making sure that we update the
6782     // sunk instruction uses, if it is part of a chain that has already been
6783     // sunk.
6784     Instruction *OldI = cast<Instruction>(U->getUser());
6785     if (NewInstructions.count(OldI))
6786       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6787     else
6788       U->set(NI);
6789     Changed = true;
6790   }
6791 
6792   // Remove instructions that are dead after sinking.
6793   for (auto *I : MaybeDead) {
6794     if (!I->hasNUsesOrMore(1)) {
6795       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6796       I->eraseFromParent();
6797     }
6798   }
6799 
6800   return Changed;
6801 }
6802 
optimizeSwitchInst(SwitchInst * SI)6803 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6804   Value *Cond = SI->getCondition();
6805   Type *OldType = Cond->getType();
6806   LLVMContext &Context = Cond->getContext();
6807   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6808   unsigned RegWidth = RegType.getSizeInBits();
6809 
6810   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6811     return false;
6812 
6813   // If the register width is greater than the type width, expand the condition
6814   // of the switch instruction and each case constant to the width of the
6815   // register. By widening the type of the switch condition, subsequent
6816   // comparisons (for case comparisons) will not need to be extended to the
6817   // preferred register width, so we will potentially eliminate N-1 extends,
6818   // where N is the number of cases in the switch.
6819   auto *NewType = Type::getIntNTy(Context, RegWidth);
6820 
6821   // Zero-extend the switch condition and case constants unless the switch
6822   // condition is a function argument that is already being sign-extended.
6823   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6824   // everything instead.
6825   Instruction::CastOps ExtType = Instruction::ZExt;
6826   if (auto *Arg = dyn_cast<Argument>(Cond))
6827     if (Arg->hasSExtAttr())
6828       ExtType = Instruction::SExt;
6829 
6830   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6831   ExtInst->insertBefore(SI);
6832   ExtInst->setDebugLoc(SI->getDebugLoc());
6833   SI->setCondition(ExtInst);
6834   for (auto Case : SI->cases()) {
6835     APInt NarrowConst = Case.getCaseValue()->getValue();
6836     APInt WideConst = (ExtType == Instruction::ZExt) ?
6837                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6838     Case.setValue(ConstantInt::get(Context, WideConst));
6839   }
6840 
6841   return true;
6842 }
6843 
6844 
6845 namespace {
6846 
6847 /// Helper class to promote a scalar operation to a vector one.
6848 /// This class is used to move downward extractelement transition.
6849 /// E.g.,
6850 /// a = vector_op <2 x i32>
6851 /// b = extractelement <2 x i32> a, i32 0
6852 /// c = scalar_op b
6853 /// store c
6854 ///
6855 /// =>
6856 /// a = vector_op <2 x i32>
6857 /// c = vector_op a (equivalent to scalar_op on the related lane)
6858 /// * d = extractelement <2 x i32> c, i32 0
6859 /// * store d
6860 /// Assuming both extractelement and store can be combine, we get rid of the
6861 /// transition.
6862 class VectorPromoteHelper {
6863   /// DataLayout associated with the current module.
6864   const DataLayout &DL;
6865 
6866   /// Used to perform some checks on the legality of vector operations.
6867   const TargetLowering &TLI;
6868 
6869   /// Used to estimated the cost of the promoted chain.
6870   const TargetTransformInfo &TTI;
6871 
6872   /// The transition being moved downwards.
6873   Instruction *Transition;
6874 
6875   /// The sequence of instructions to be promoted.
6876   SmallVector<Instruction *, 4> InstsToBePromoted;
6877 
6878   /// Cost of combining a store and an extract.
6879   unsigned StoreExtractCombineCost;
6880 
6881   /// Instruction that will be combined with the transition.
6882   Instruction *CombineInst = nullptr;
6883 
6884   /// The instruction that represents the current end of the transition.
6885   /// Since we are faking the promotion until we reach the end of the chain
6886   /// of computation, we need a way to get the current end of the transition.
getEndOfTransition() const6887   Instruction *getEndOfTransition() const {
6888     if (InstsToBePromoted.empty())
6889       return Transition;
6890     return InstsToBePromoted.back();
6891   }
6892 
6893   /// Return the index of the original value in the transition.
6894   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6895   /// c, is at index 0.
getTransitionOriginalValueIdx() const6896   unsigned getTransitionOriginalValueIdx() const {
6897     assert(isa<ExtractElementInst>(Transition) &&
6898            "Other kind of transitions are not supported yet");
6899     return 0;
6900   }
6901 
6902   /// Return the index of the index in the transition.
6903   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6904   /// is at index 1.
getTransitionIdx() const6905   unsigned getTransitionIdx() const {
6906     assert(isa<ExtractElementInst>(Transition) &&
6907            "Other kind of transitions are not supported yet");
6908     return 1;
6909   }
6910 
6911   /// Get the type of the transition.
6912   /// This is the type of the original value.
6913   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6914   /// transition is <2 x i32>.
getTransitionType() const6915   Type *getTransitionType() const {
6916     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6917   }
6918 
6919   /// Promote \p ToBePromoted by moving \p Def downward through.
6920   /// I.e., we have the following sequence:
6921   /// Def = Transition <ty1> a to <ty2>
6922   /// b = ToBePromoted <ty2> Def, ...
6923   /// =>
6924   /// b = ToBePromoted <ty1> a, ...
6925   /// Def = Transition <ty1> ToBePromoted to <ty2>
6926   void promoteImpl(Instruction *ToBePromoted);
6927 
6928   /// Check whether or not it is profitable to promote all the
6929   /// instructions enqueued to be promoted.
isProfitableToPromote()6930   bool isProfitableToPromote() {
6931     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6932     unsigned Index = isa<ConstantInt>(ValIdx)
6933                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6934                          : -1;
6935     Type *PromotedType = getTransitionType();
6936 
6937     StoreInst *ST = cast<StoreInst>(CombineInst);
6938     unsigned AS = ST->getPointerAddressSpace();
6939     unsigned Align = ST->getAlignment();
6940     // Check if this store is supported.
6941     if (!TLI.allowsMisalignedMemoryAccesses(
6942             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6943             Align)) {
6944       // If this is not supported, there is no way we can combine
6945       // the extract with the store.
6946       return false;
6947     }
6948 
6949     // The scalar chain of computation has to pay for the transition
6950     // scalar to vector.
6951     // The vector chain has to account for the combining cost.
6952     uint64_t ScalarCost =
6953         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6954     uint64_t VectorCost = StoreExtractCombineCost;
6955     enum TargetTransformInfo::TargetCostKind CostKind =
6956       TargetTransformInfo::TCK_RecipThroughput;
6957     for (const auto &Inst : InstsToBePromoted) {
6958       // Compute the cost.
6959       // By construction, all instructions being promoted are arithmetic ones.
6960       // Moreover, one argument is a constant that can be viewed as a splat
6961       // constant.
6962       Value *Arg0 = Inst->getOperand(0);
6963       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6964                             isa<ConstantFP>(Arg0);
6965       TargetTransformInfo::OperandValueKind Arg0OVK =
6966           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6967                          : TargetTransformInfo::OK_AnyValue;
6968       TargetTransformInfo::OperandValueKind Arg1OVK =
6969           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6970                           : TargetTransformInfo::OK_AnyValue;
6971       ScalarCost += TTI.getArithmeticInstrCost(
6972           Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK);
6973       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6974                                                CostKind,
6975                                                Arg0OVK, Arg1OVK);
6976     }
6977     LLVM_DEBUG(
6978         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6979                << ScalarCost << "\nVector: " << VectorCost << '\n');
6980     return ScalarCost > VectorCost;
6981   }
6982 
6983   /// Generate a constant vector with \p Val with the same
6984   /// number of elements as the transition.
6985   /// \p UseSplat defines whether or not \p Val should be replicated
6986   /// across the whole vector.
6987   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6988   /// otherwise we generate a vector with as many undef as possible:
6989   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6990   /// used at the index of the extract.
getConstantVector(Constant * Val,bool UseSplat) const6991   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6992     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6993     if (!UseSplat) {
6994       // If we cannot determine where the constant must be, we have to
6995       // use a splat constant.
6996       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6997       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6998         ExtractIdx = CstVal->getSExtValue();
6999       else
7000         UseSplat = true;
7001     }
7002 
7003     ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7004     if (UseSplat)
7005       return ConstantVector::getSplat(EC, Val);
7006 
7007     if (!EC.isScalable()) {
7008       SmallVector<Constant *, 4> ConstVec;
7009       UndefValue *UndefVal = UndefValue::get(Val->getType());
7010       for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7011         if (Idx == ExtractIdx)
7012           ConstVec.push_back(Val);
7013         else
7014           ConstVec.push_back(UndefVal);
7015       }
7016       return ConstantVector::get(ConstVec);
7017     } else
7018       llvm_unreachable(
7019           "Generate scalable vector for non-splat is unimplemented");
7020   }
7021 
7022   /// Check if promoting to a vector type an operand at \p OperandIdx
7023   /// in \p Use can trigger undefined behavior.
canCauseUndefinedBehavior(const Instruction * Use,unsigned OperandIdx)7024   static bool canCauseUndefinedBehavior(const Instruction *Use,
7025                                         unsigned OperandIdx) {
7026     // This is not safe to introduce undef when the operand is on
7027     // the right hand side of a division-like instruction.
7028     if (OperandIdx != 1)
7029       return false;
7030     switch (Use->getOpcode()) {
7031     default:
7032       return false;
7033     case Instruction::SDiv:
7034     case Instruction::UDiv:
7035     case Instruction::SRem:
7036     case Instruction::URem:
7037       return true;
7038     case Instruction::FDiv:
7039     case Instruction::FRem:
7040       return !Use->hasNoNaNs();
7041     }
7042     llvm_unreachable(nullptr);
7043   }
7044 
7045 public:
VectorPromoteHelper(const DataLayout & DL,const TargetLowering & TLI,const TargetTransformInfo & TTI,Instruction * Transition,unsigned CombineCost)7046   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7047                       const TargetTransformInfo &TTI, Instruction *Transition,
7048                       unsigned CombineCost)
7049       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7050         StoreExtractCombineCost(CombineCost) {
7051     assert(Transition && "Do not know how to promote null");
7052   }
7053 
7054   /// Check if we can promote \p ToBePromoted to \p Type.
canPromote(const Instruction * ToBePromoted) const7055   bool canPromote(const Instruction *ToBePromoted) const {
7056     // We could support CastInst too.
7057     return isa<BinaryOperator>(ToBePromoted);
7058   }
7059 
7060   /// Check if it is profitable to promote \p ToBePromoted
7061   /// by moving downward the transition through.
shouldPromote(const Instruction * ToBePromoted) const7062   bool shouldPromote(const Instruction *ToBePromoted) const {
7063     // Promote only if all the operands can be statically expanded.
7064     // Indeed, we do not want to introduce any new kind of transitions.
7065     for (const Use &U : ToBePromoted->operands()) {
7066       const Value *Val = U.get();
7067       if (Val == getEndOfTransition()) {
7068         // If the use is a division and the transition is on the rhs,
7069         // we cannot promote the operation, otherwise we may create a
7070         // division by zero.
7071         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7072           return false;
7073         continue;
7074       }
7075       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7076           !isa<ConstantFP>(Val))
7077         return false;
7078     }
7079     // Check that the resulting operation is legal.
7080     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7081     if (!ISDOpcode)
7082       return false;
7083     return StressStoreExtract ||
7084            TLI.isOperationLegalOrCustom(
7085                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7086   }
7087 
7088   /// Check whether or not \p Use can be combined
7089   /// with the transition.
7090   /// I.e., is it possible to do Use(Transition) => AnotherUse?
canCombine(const Instruction * Use)7091   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7092 
7093   /// Record \p ToBePromoted as part of the chain to be promoted.
enqueueForPromotion(Instruction * ToBePromoted)7094   void enqueueForPromotion(Instruction *ToBePromoted) {
7095     InstsToBePromoted.push_back(ToBePromoted);
7096   }
7097 
7098   /// Set the instruction that will be combined with the transition.
recordCombineInstruction(Instruction * ToBeCombined)7099   void recordCombineInstruction(Instruction *ToBeCombined) {
7100     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7101     CombineInst = ToBeCombined;
7102   }
7103 
7104   /// Promote all the instructions enqueued for promotion if it is
7105   /// is profitable.
7106   /// \return True if the promotion happened, false otherwise.
promote()7107   bool promote() {
7108     // Check if there is something to promote.
7109     // Right now, if we do not have anything to combine with,
7110     // we assume the promotion is not profitable.
7111     if (InstsToBePromoted.empty() || !CombineInst)
7112       return false;
7113 
7114     // Check cost.
7115     if (!StressStoreExtract && !isProfitableToPromote())
7116       return false;
7117 
7118     // Promote.
7119     for (auto &ToBePromoted : InstsToBePromoted)
7120       promoteImpl(ToBePromoted);
7121     InstsToBePromoted.clear();
7122     return true;
7123   }
7124 };
7125 
7126 } // end anonymous namespace
7127 
promoteImpl(Instruction * ToBePromoted)7128 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7129   // At this point, we know that all the operands of ToBePromoted but Def
7130   // can be statically promoted.
7131   // For Def, we need to use its parameter in ToBePromoted:
7132   // b = ToBePromoted ty1 a
7133   // Def = Transition ty1 b to ty2
7134   // Move the transition down.
7135   // 1. Replace all uses of the promoted operation by the transition.
7136   // = ... b => = ... Def.
7137   assert(ToBePromoted->getType() == Transition->getType() &&
7138          "The type of the result of the transition does not match "
7139          "the final type");
7140   ToBePromoted->replaceAllUsesWith(Transition);
7141   // 2. Update the type of the uses.
7142   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7143   Type *TransitionTy = getTransitionType();
7144   ToBePromoted->mutateType(TransitionTy);
7145   // 3. Update all the operands of the promoted operation with promoted
7146   // operands.
7147   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7148   for (Use &U : ToBePromoted->operands()) {
7149     Value *Val = U.get();
7150     Value *NewVal = nullptr;
7151     if (Val == Transition)
7152       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7153     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7154              isa<ConstantFP>(Val)) {
7155       // Use a splat constant if it is not safe to use undef.
7156       NewVal = getConstantVector(
7157           cast<Constant>(Val),
7158           isa<UndefValue>(Val) ||
7159               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7160     } else
7161       llvm_unreachable("Did you modified shouldPromote and forgot to update "
7162                        "this?");
7163     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7164   }
7165   Transition->moveAfter(ToBePromoted);
7166   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7167 }
7168 
7169 /// Some targets can do store(extractelement) with one instruction.
7170 /// Try to push the extractelement towards the stores when the target
7171 /// has this feature and this is profitable.
optimizeExtractElementInst(Instruction * Inst)7172 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7173   unsigned CombineCost = std::numeric_limits<unsigned>::max();
7174   if (DisableStoreExtract ||
7175       (!StressStoreExtract &&
7176        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7177                                        Inst->getOperand(1), CombineCost)))
7178     return false;
7179 
7180   // At this point we know that Inst is a vector to scalar transition.
7181   // Try to move it down the def-use chain, until:
7182   // - We can combine the transition with its single use
7183   //   => we got rid of the transition.
7184   // - We escape the current basic block
7185   //   => we would need to check that we are moving it at a cheaper place and
7186   //      we do not do that for now.
7187   BasicBlock *Parent = Inst->getParent();
7188   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7189   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7190   // If the transition has more than one use, assume this is not going to be
7191   // beneficial.
7192   while (Inst->hasOneUse()) {
7193     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7194     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7195 
7196     if (ToBePromoted->getParent() != Parent) {
7197       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7198                         << ToBePromoted->getParent()->getName()
7199                         << ") than the transition (" << Parent->getName()
7200                         << ").\n");
7201       return false;
7202     }
7203 
7204     if (VPH.canCombine(ToBePromoted)) {
7205       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7206                         << "will be combined with: " << *ToBePromoted << '\n');
7207       VPH.recordCombineInstruction(ToBePromoted);
7208       bool Changed = VPH.promote();
7209       NumStoreExtractExposed += Changed;
7210       return Changed;
7211     }
7212 
7213     LLVM_DEBUG(dbgs() << "Try promoting.\n");
7214     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7215       return false;
7216 
7217     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7218 
7219     VPH.enqueueForPromotion(ToBePromoted);
7220     Inst = ToBePromoted;
7221   }
7222   return false;
7223 }
7224 
7225 /// For the instruction sequence of store below, F and I values
7226 /// are bundled together as an i64 value before being stored into memory.
7227 /// Sometimes it is more efficient to generate separate stores for F and I,
7228 /// which can remove the bitwise instructions or sink them to colder places.
7229 ///
7230 ///   (store (or (zext (bitcast F to i32) to i64),
7231 ///              (shl (zext I to i64), 32)), addr)  -->
7232 ///   (store F, addr) and (store I, addr+4)
7233 ///
7234 /// Similarly, splitting for other merged store can also be beneficial, like:
7235 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7236 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7237 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7238 /// For pair of {i16, i8},  i32 store --> two i16 stores.
7239 /// For pair of {i8, i8},   i16 store --> two i8 stores.
7240 ///
7241 /// We allow each target to determine specifically which kind of splitting is
7242 /// supported.
7243 ///
7244 /// The store patterns are commonly seen from the simple code snippet below
7245 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7246 ///   void goo(const std::pair<int, float> &);
7247 ///   hoo() {
7248 ///     ...
7249 ///     goo(std::make_pair(tmp, ftmp));
7250 ///     ...
7251 ///   }
7252 ///
7253 /// Although we already have similar splitting in DAG Combine, we duplicate
7254 /// it in CodeGenPrepare to catch the case in which pattern is across
7255 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7256 /// during code expansion.
splitMergedValStore(StoreInst & SI,const DataLayout & DL,const TargetLowering & TLI)7257 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7258                                 const TargetLowering &TLI) {
7259   // Handle simple but common cases only.
7260   Type *StoreType = SI.getValueOperand()->getType();
7261 
7262   // The code below assumes shifting a value by <number of bits>,
7263   // whereas scalable vectors would have to be shifted by
7264   // <2log(vscale) + number of bits> in order to store the
7265   // low/high parts. Bailing out for now.
7266   if (isa<ScalableVectorType>(StoreType))
7267     return false;
7268 
7269   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7270       DL.getTypeSizeInBits(StoreType) == 0)
7271     return false;
7272 
7273   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7274   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7275   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7276     return false;
7277 
7278   // Don't split the store if it is volatile.
7279   if (SI.isVolatile())
7280     return false;
7281 
7282   // Match the following patterns:
7283   // (store (or (zext LValue to i64),
7284   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
7285   //  or
7286   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7287   //            (zext LValue to i64),
7288   // Expect both operands of OR and the first operand of SHL have only
7289   // one use.
7290   Value *LValue, *HValue;
7291   if (!match(SI.getValueOperand(),
7292              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7293                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7294                                    m_SpecificInt(HalfValBitSize))))))
7295     return false;
7296 
7297   // Check LValue and HValue are int with size less or equal than 32.
7298   if (!LValue->getType()->isIntegerTy() ||
7299       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7300       !HValue->getType()->isIntegerTy() ||
7301       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7302     return false;
7303 
7304   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7305   // as the input of target query.
7306   auto *LBC = dyn_cast<BitCastInst>(LValue);
7307   auto *HBC = dyn_cast<BitCastInst>(HValue);
7308   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7309                   : EVT::getEVT(LValue->getType());
7310   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7311                    : EVT::getEVT(HValue->getType());
7312   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7313     return false;
7314 
7315   // Start to split store.
7316   IRBuilder<> Builder(SI.getContext());
7317   Builder.SetInsertPoint(&SI);
7318 
7319   // If LValue/HValue is a bitcast in another BB, create a new one in current
7320   // BB so it may be merged with the splitted stores by dag combiner.
7321   if (LBC && LBC->getParent() != SI.getParent())
7322     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7323   if (HBC && HBC->getParent() != SI.getParent())
7324     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7325 
7326   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7327   auto CreateSplitStore = [&](Value *V, bool Upper) {
7328     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7329     Value *Addr = Builder.CreateBitCast(
7330         SI.getOperand(1),
7331         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
7332     Align Alignment = SI.getAlign();
7333     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7334     if (IsOffsetStore) {
7335       Addr = Builder.CreateGEP(
7336           SplitStoreType, Addr,
7337           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7338 
7339       // When splitting the store in half, naturally one half will retain the
7340       // alignment of the original wider store, regardless of whether it was
7341       // over-aligned or not, while the other will require adjustment.
7342       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7343     }
7344     Builder.CreateAlignedStore(V, Addr, Alignment);
7345   };
7346 
7347   CreateSplitStore(LValue, false);
7348   CreateSplitStore(HValue, true);
7349 
7350   // Delete the old store.
7351   SI.eraseFromParent();
7352   return true;
7353 }
7354 
7355 // Return true if the GEP has two operands, the first operand is of a sequential
7356 // type, and the second operand is a constant.
GEPSequentialConstIndexed(GetElementPtrInst * GEP)7357 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7358   gep_type_iterator I = gep_type_begin(*GEP);
7359   return GEP->getNumOperands() == 2 &&
7360       I.isSequential() &&
7361       isa<ConstantInt>(GEP->getOperand(1));
7362 }
7363 
7364 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7365 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7366 // reducing liveness interference across those edges benefits global register
7367 // allocation. Currently handles only certain cases.
7368 //
7369 // For example, unmerge %GEPI and %UGEPI as below.
7370 //
7371 // ---------- BEFORE ----------
7372 // SrcBlock:
7373 //   ...
7374 //   %GEPIOp = ...
7375 //   ...
7376 //   %GEPI = gep %GEPIOp, Idx
7377 //   ...
7378 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7379 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7380 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7381 //   %UGEPI)
7382 //
7383 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7384 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7385 // ...
7386 //
7387 // DstBi:
7388 //   ...
7389 //   %UGEPI = gep %GEPIOp, UIdx
7390 // ...
7391 // ---------------------------
7392 //
7393 // ---------- AFTER ----------
7394 // SrcBlock:
7395 //   ... (same as above)
7396 //    (* %GEPI is still alive on the indirectbr edges)
7397 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7398 //    unmerging)
7399 // ...
7400 //
7401 // DstBi:
7402 //   ...
7403 //   %UGEPI = gep %GEPI, (UIdx-Idx)
7404 //   ...
7405 // ---------------------------
7406 //
7407 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7408 // no longer alive on them.
7409 //
7410 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7411 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7412 // not to disable further simplications and optimizations as a result of GEP
7413 // merging.
7414 //
7415 // Note this unmerging may increase the length of the data flow critical path
7416 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7417 // between the register pressure and the length of data-flow critical
7418 // path. Restricting this to the uncommon IndirectBr case would minimize the
7419 // impact of potentially longer critical path, if any, and the impact on compile
7420 // time.
tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst * GEPI,const TargetTransformInfo * TTI)7421 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
7422                                              const TargetTransformInfo *TTI) {
7423   BasicBlock *SrcBlock = GEPI->getParent();
7424   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7425   // (non-IndirectBr) cases exit early here.
7426   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
7427     return false;
7428   // Check that GEPI is a simple gep with a single constant index.
7429   if (!GEPSequentialConstIndexed(GEPI))
7430     return false;
7431   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
7432   // Check that GEPI is a cheap one.
7433   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
7434                          TargetTransformInfo::TCK_SizeAndLatency)
7435       > TargetTransformInfo::TCC_Basic)
7436     return false;
7437   Value *GEPIOp = GEPI->getOperand(0);
7438   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7439   if (!isa<Instruction>(GEPIOp))
7440     return false;
7441   auto *GEPIOpI = cast<Instruction>(GEPIOp);
7442   if (GEPIOpI->getParent() != SrcBlock)
7443     return false;
7444   // Check that GEP is used outside the block, meaning it's alive on the
7445   // IndirectBr edge(s).
7446   if (find_if(GEPI->users(), [&](User *Usr) {
7447         if (auto *I = dyn_cast<Instruction>(Usr)) {
7448           if (I->getParent() != SrcBlock) {
7449             return true;
7450           }
7451         }
7452         return false;
7453       }) == GEPI->users().end())
7454     return false;
7455   // The second elements of the GEP chains to be unmerged.
7456   std::vector<GetElementPtrInst *> UGEPIs;
7457   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7458   // on IndirectBr edges.
7459   for (User *Usr : GEPIOp->users()) {
7460     if (Usr == GEPI) continue;
7461     // Check if Usr is an Instruction. If not, give up.
7462     if (!isa<Instruction>(Usr))
7463       return false;
7464     auto *UI = cast<Instruction>(Usr);
7465     // Check if Usr in the same block as GEPIOp, which is fine, skip.
7466     if (UI->getParent() == SrcBlock)
7467       continue;
7468     // Check if Usr is a GEP. If not, give up.
7469     if (!isa<GetElementPtrInst>(Usr))
7470       return false;
7471     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7472     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7473     // the pointer operand to it. If so, record it in the vector. If not, give
7474     // up.
7475     if (!GEPSequentialConstIndexed(UGEPI))
7476       return false;
7477     if (UGEPI->getOperand(0) != GEPIOp)
7478       return false;
7479     if (GEPIIdx->getType() !=
7480         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7481       return false;
7482     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7483     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
7484                            TargetTransformInfo::TCK_SizeAndLatency)
7485         > TargetTransformInfo::TCC_Basic)
7486       return false;
7487     UGEPIs.push_back(UGEPI);
7488   }
7489   if (UGEPIs.size() == 0)
7490     return false;
7491   // Check the materializing cost of (Uidx-Idx).
7492   for (GetElementPtrInst *UGEPI : UGEPIs) {
7493     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7494     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7495     unsigned ImmCost =
7496       TTI->getIntImmCost(NewIdx, GEPIIdx->getType(),
7497                          TargetTransformInfo::TCK_SizeAndLatency);
7498     if (ImmCost > TargetTransformInfo::TCC_Basic)
7499       return false;
7500   }
7501   // Now unmerge between GEPI and UGEPIs.
7502   for (GetElementPtrInst *UGEPI : UGEPIs) {
7503     UGEPI->setOperand(0, GEPI);
7504     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7505     Constant *NewUGEPIIdx =
7506         ConstantInt::get(GEPIIdx->getType(),
7507                          UGEPIIdx->getValue() - GEPIIdx->getValue());
7508     UGEPI->setOperand(1, NewUGEPIIdx);
7509     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7510     // inbounds to avoid UB.
7511     if (!GEPI->isInBounds()) {
7512       UGEPI->setIsInBounds(false);
7513     }
7514   }
7515   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7516   // alive on IndirectBr edges).
7517   assert(find_if(GEPIOp->users(), [&](User *Usr) {
7518         return cast<Instruction>(Usr)->getParent() != SrcBlock;
7519       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7520   return true;
7521 }
7522 
optimizeInst(Instruction * I,bool & ModifiedDT)7523 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7524   // Bail out if we inserted the instruction to prevent optimizations from
7525   // stepping on each other's toes.
7526   if (InsertedInsts.count(I))
7527     return false;
7528 
7529   // TODO: Move into the switch on opcode below here.
7530   if (PHINode *P = dyn_cast<PHINode>(I)) {
7531     // It is possible for very late stage optimizations (such as SimplifyCFG)
7532     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7533     // trivial PHI, go ahead and zap it here.
7534     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7535       LargeOffsetGEPMap.erase(P);
7536       P->replaceAllUsesWith(V);
7537       P->eraseFromParent();
7538       ++NumPHIsElim;
7539       return true;
7540     }
7541     return false;
7542   }
7543 
7544   if (CastInst *CI = dyn_cast<CastInst>(I)) {
7545     // If the source of the cast is a constant, then this should have
7546     // already been constant folded.  The only reason NOT to constant fold
7547     // it is if something (e.g. LSR) was careful to place the constant
7548     // evaluation in a block other than then one that uses it (e.g. to hoist
7549     // the address of globals out of a loop).  If this is the case, we don't
7550     // want to forward-subst the cast.
7551     if (isa<Constant>(CI->getOperand(0)))
7552       return false;
7553 
7554     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7555       return true;
7556 
7557     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7558       /// Sink a zext or sext into its user blocks if the target type doesn't
7559       /// fit in one register
7560       if (TLI->getTypeAction(CI->getContext(),
7561                              TLI->getValueType(*DL, CI->getType())) ==
7562           TargetLowering::TypeExpandInteger) {
7563         return SinkCast(CI);
7564       } else {
7565         bool MadeChange = optimizeExt(I);
7566         return MadeChange | optimizeExtUses(I);
7567       }
7568     }
7569     return false;
7570   }
7571 
7572   if (auto *Cmp = dyn_cast<CmpInst>(I))
7573     if (optimizeCmp(Cmp, ModifiedDT))
7574       return true;
7575 
7576   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7577     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7578     bool Modified = optimizeLoadExt(LI);
7579     unsigned AS = LI->getPointerAddressSpace();
7580     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7581     return Modified;
7582   }
7583 
7584   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7585     if (splitMergedValStore(*SI, *DL, *TLI))
7586       return true;
7587     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7588     unsigned AS = SI->getPointerAddressSpace();
7589     return optimizeMemoryInst(I, SI->getOperand(1),
7590                               SI->getOperand(0)->getType(), AS);
7591   }
7592 
7593   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7594       unsigned AS = RMW->getPointerAddressSpace();
7595       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7596                                 RMW->getType(), AS);
7597   }
7598 
7599   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7600       unsigned AS = CmpX->getPointerAddressSpace();
7601       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7602                                 CmpX->getCompareOperand()->getType(), AS);
7603   }
7604 
7605   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7606 
7607   if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking)
7608     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7609 
7610   // TODO: Move this into the switch on opcode - it handles shifts already.
7611   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7612                 BinOp->getOpcode() == Instruction::LShr)) {
7613     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7614     if (CI && TLI->hasExtractBitsInsn())
7615       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7616         return true;
7617   }
7618 
7619   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7620     if (GEPI->hasAllZeroIndices()) {
7621       /// The GEP operand must be a pointer, so must its result -> BitCast
7622       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7623                                         GEPI->getName(), GEPI);
7624       NC->setDebugLoc(GEPI->getDebugLoc());
7625       GEPI->replaceAllUsesWith(NC);
7626       GEPI->eraseFromParent();
7627       ++NumGEPsElim;
7628       optimizeInst(NC, ModifiedDT);
7629       return true;
7630     }
7631     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7632       return true;
7633     }
7634     return false;
7635   }
7636 
7637   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
7638     // freeze(icmp a, const)) -> icmp (freeze a), const
7639     // This helps generate efficient conditional jumps.
7640     Instruction *CmpI = nullptr;
7641     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
7642       CmpI = II;
7643     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
7644       CmpI = F->getFastMathFlags().none() ? F : nullptr;
7645 
7646     if (CmpI && CmpI->hasOneUse()) {
7647       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
7648       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
7649                     isa<ConstantPointerNull>(Op0);
7650       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
7651                     isa<ConstantPointerNull>(Op1);
7652       if (Const0 || Const1) {
7653         if (!Const0 || !Const1) {
7654           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
7655           F->takeName(FI);
7656           CmpI->setOperand(Const0 ? 1 : 0, F);
7657         }
7658         FI->replaceAllUsesWith(CmpI);
7659         FI->eraseFromParent();
7660         return true;
7661       }
7662     }
7663     return false;
7664   }
7665 
7666   if (tryToSinkFreeOperands(I))
7667     return true;
7668 
7669   switch (I->getOpcode()) {
7670   case Instruction::Shl:
7671   case Instruction::LShr:
7672   case Instruction::AShr:
7673     return optimizeShiftInst(cast<BinaryOperator>(I));
7674   case Instruction::Call:
7675     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7676   case Instruction::Select:
7677     return optimizeSelectInst(cast<SelectInst>(I));
7678   case Instruction::ShuffleVector:
7679     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7680   case Instruction::Switch:
7681     return optimizeSwitchInst(cast<SwitchInst>(I));
7682   case Instruction::ExtractElement:
7683     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7684   }
7685 
7686   return false;
7687 }
7688 
7689 /// Given an OR instruction, check to see if this is a bitreverse
7690 /// idiom. If so, insert the new intrinsic and return true.
makeBitReverse(Instruction & I)7691 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
7692   if (!I.getType()->isIntegerTy() ||
7693       !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
7694                                      TLI->getValueType(*DL, I.getType(), true)))
7695     return false;
7696 
7697   SmallVector<Instruction*, 4> Insts;
7698   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7699     return false;
7700   Instruction *LastInst = Insts.back();
7701   I.replaceAllUsesWith(LastInst);
7702   RecursivelyDeleteTriviallyDeadInstructions(
7703       &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
7704   return true;
7705 }
7706 
7707 // In this pass we look for GEP and cast instructions that are used
7708 // across basic blocks and rewrite them to improve basic-block-at-a-time
7709 // selection.
optimizeBlock(BasicBlock & BB,bool & ModifiedDT)7710 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7711   SunkAddrs.clear();
7712   bool MadeChange = false;
7713 
7714   CurInstIterator = BB.begin();
7715   while (CurInstIterator != BB.end()) {
7716     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7717     if (ModifiedDT)
7718       return true;
7719   }
7720 
7721   bool MadeBitReverse = true;
7722   while (MadeBitReverse) {
7723     MadeBitReverse = false;
7724     for (auto &I : reverse(BB)) {
7725       if (makeBitReverse(I)) {
7726         MadeBitReverse = MadeChange = true;
7727         break;
7728       }
7729     }
7730   }
7731   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7732 
7733   return MadeChange;
7734 }
7735 
7736 // Some CGP optimizations may move or alter what's computed in a block. Check
7737 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
fixupDbgValue(Instruction * I)7738 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
7739   assert(isa<DbgValueInst>(I));
7740   DbgValueInst &DVI = *cast<DbgValueInst>(I);
7741 
7742   // Does this dbg.value refer to a sunk address calculation?
7743   Value *Location = DVI.getVariableLocation();
7744   WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
7745   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
7746   if (SunkAddr) {
7747     // Point dbg.value at locally computed address, which should give the best
7748     // opportunity to be accurately lowered. This update may change the type of
7749     // pointer being referred to; however this makes no difference to debugging
7750     // information, and we can't generate bitcasts that may affect codegen.
7751     DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(),
7752                                            ValueAsMetadata::get(SunkAddr)));
7753     return true;
7754   }
7755   return false;
7756 }
7757 
7758 // A llvm.dbg.value may be using a value before its definition, due to
7759 // optimizations in this pass and others. Scan for such dbg.values, and rescue
7760 // them by moving the dbg.value to immediately after the value definition.
7761 // FIXME: Ideally this should never be necessary, and this has the potential
7762 // to re-order dbg.value intrinsics.
placeDbgValues(Function & F)7763 bool CodeGenPrepare::placeDbgValues(Function &F) {
7764   bool MadeChange = false;
7765   DominatorTree DT(F);
7766 
7767   for (BasicBlock &BB : F) {
7768     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7769       Instruction *Insn = &*BI++;
7770       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7771       if (!DVI)
7772         continue;
7773 
7774       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7775 
7776       if (!VI || VI->isTerminator())
7777         continue;
7778 
7779       // If VI is a phi in a block with an EHPad terminator, we can't insert
7780       // after it.
7781       if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7782         continue;
7783 
7784       // If the defining instruction dominates the dbg.value, we do not need
7785       // to move the dbg.value.
7786       if (DT.dominates(VI, DVI))
7787         continue;
7788 
7789       LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7790                         << *DVI << ' ' << *VI);
7791       DVI->removeFromParent();
7792       if (isa<PHINode>(VI))
7793         DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7794       else
7795         DVI->insertAfter(VI);
7796       MadeChange = true;
7797       ++NumDbgValueMoved;
7798     }
7799   }
7800   return MadeChange;
7801 }
7802 
7803 /// Scale down both weights to fit into uint32_t.
scaleWeights(uint64_t & NewTrue,uint64_t & NewFalse)7804 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7805   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7806   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7807   NewTrue = NewTrue / Scale;
7808   NewFalse = NewFalse / Scale;
7809 }
7810 
7811 /// Some targets prefer to split a conditional branch like:
7812 /// \code
7813 ///   %0 = icmp ne i32 %a, 0
7814 ///   %1 = icmp ne i32 %b, 0
7815 ///   %or.cond = or i1 %0, %1
7816 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7817 /// \endcode
7818 /// into multiple branch instructions like:
7819 /// \code
7820 ///   bb1:
7821 ///     %0 = icmp ne i32 %a, 0
7822 ///     br i1 %0, label %TrueBB, label %bb2
7823 ///   bb2:
7824 ///     %1 = icmp ne i32 %b, 0
7825 ///     br i1 %1, label %TrueBB, label %FalseBB
7826 /// \endcode
7827 /// This usually allows instruction selection to do even further optimizations
7828 /// and combine the compare with the branch instruction. Currently this is
7829 /// applied for targets which have "cheap" jump instructions.
7830 ///
7831 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7832 ///
splitBranchCondition(Function & F,bool & ModifiedDT)7833 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7834   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
7835     return false;
7836 
7837   bool MadeChange = false;
7838   for (auto &BB : F) {
7839     // Does this BB end with the following?
7840     //   %cond1 = icmp|fcmp|binary instruction ...
7841     //   %cond2 = icmp|fcmp|binary instruction ...
7842     //   %cond.or = or|and i1 %cond1, cond2
7843     //   br i1 %cond.or label %dest1, label %dest2"
7844     BinaryOperator *LogicOp;
7845     BasicBlock *TBB, *FBB;
7846     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7847       continue;
7848 
7849     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7850     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7851       continue;
7852 
7853     // The merging of mostly empty BB can cause a degenerate branch.
7854     if (TBB == FBB)
7855       continue;
7856 
7857     unsigned Opc;
7858     Value *Cond1, *Cond2;
7859     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7860                              m_OneUse(m_Value(Cond2)))))
7861       Opc = Instruction::And;
7862     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7863                                  m_OneUse(m_Value(Cond2)))))
7864       Opc = Instruction::Or;
7865     else
7866       continue;
7867 
7868     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7869         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
7870       continue;
7871 
7872     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7873 
7874     // Create a new BB.
7875     auto *TmpBB =
7876         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7877                            BB.getParent(), BB.getNextNode());
7878 
7879     // Update original basic block by using the first condition directly by the
7880     // branch instruction and removing the no longer needed and/or instruction.
7881     Br1->setCondition(Cond1);
7882     LogicOp->eraseFromParent();
7883 
7884     // Depending on the condition we have to either replace the true or the
7885     // false successor of the original branch instruction.
7886     if (Opc == Instruction::And)
7887       Br1->setSuccessor(0, TmpBB);
7888     else
7889       Br1->setSuccessor(1, TmpBB);
7890 
7891     // Fill in the new basic block.
7892     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7893     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7894       I->removeFromParent();
7895       I->insertBefore(Br2);
7896     }
7897 
7898     // Update PHI nodes in both successors. The original BB needs to be
7899     // replaced in one successor's PHI nodes, because the branch comes now from
7900     // the newly generated BB (NewBB). In the other successor we need to add one
7901     // incoming edge to the PHI nodes, because both branch instructions target
7902     // now the same successor. Depending on the original branch condition
7903     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7904     // we perform the correct update for the PHI nodes.
7905     // This doesn't change the successor order of the just created branch
7906     // instruction (or any other instruction).
7907     if (Opc == Instruction::Or)
7908       std::swap(TBB, FBB);
7909 
7910     // Replace the old BB with the new BB.
7911     TBB->replacePhiUsesWith(&BB, TmpBB);
7912 
7913     // Add another incoming edge form the new BB.
7914     for (PHINode &PN : FBB->phis()) {
7915       auto *Val = PN.getIncomingValueForBlock(&BB);
7916       PN.addIncoming(Val, TmpBB);
7917     }
7918 
7919     // Update the branch weights (from SelectionDAGBuilder::
7920     // FindMergedConditions).
7921     if (Opc == Instruction::Or) {
7922       // Codegen X | Y as:
7923       // BB1:
7924       //   jmp_if_X TBB
7925       //   jmp TmpBB
7926       // TmpBB:
7927       //   jmp_if_Y TBB
7928       //   jmp FBB
7929       //
7930 
7931       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7932       // The requirement is that
7933       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7934       //     = TrueProb for original BB.
7935       // Assuming the original weights are A and B, one choice is to set BB1's
7936       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7937       // assumes that
7938       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7939       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7940       // TmpBB, but the math is more complicated.
7941       uint64_t TrueWeight, FalseWeight;
7942       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7943         uint64_t NewTrueWeight = TrueWeight;
7944         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7945         scaleWeights(NewTrueWeight, NewFalseWeight);
7946         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7947                          .createBranchWeights(TrueWeight, FalseWeight));
7948 
7949         NewTrueWeight = TrueWeight;
7950         NewFalseWeight = 2 * FalseWeight;
7951         scaleWeights(NewTrueWeight, NewFalseWeight);
7952         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7953                          .createBranchWeights(TrueWeight, FalseWeight));
7954       }
7955     } else {
7956       // Codegen X & Y as:
7957       // BB1:
7958       //   jmp_if_X TmpBB
7959       //   jmp FBB
7960       // TmpBB:
7961       //   jmp_if_Y TBB
7962       //   jmp FBB
7963       //
7964       //  This requires creation of TmpBB after CurBB.
7965 
7966       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7967       // The requirement is that
7968       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7969       //     = FalseProb for original BB.
7970       // Assuming the original weights are A and B, one choice is to set BB1's
7971       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7972       // assumes that
7973       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7974       uint64_t TrueWeight, FalseWeight;
7975       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7976         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7977         uint64_t NewFalseWeight = FalseWeight;
7978         scaleWeights(NewTrueWeight, NewFalseWeight);
7979         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7980                          .createBranchWeights(TrueWeight, FalseWeight));
7981 
7982         NewTrueWeight = 2 * TrueWeight;
7983         NewFalseWeight = FalseWeight;
7984         scaleWeights(NewTrueWeight, NewFalseWeight);
7985         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7986                          .createBranchWeights(TrueWeight, FalseWeight));
7987       }
7988     }
7989 
7990     ModifiedDT = true;
7991     MadeChange = true;
7992 
7993     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7994                TmpBB->dump());
7995   }
7996   return MadeChange;
7997 }
7998