1 //===- StackColoring.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the stack-coloring optimization that looks for
10 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
11 // which represent the possible lifetime of stack slots. It attempts to
12 // merge disjoint stack slots and reduce the used stack space.
13 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
14 //
15 // TODO: In the future we plan to improve stack coloring in the following ways:
16 // 1. Allow merging multiple small slots into a single larger slot at different
17 //    offsets.
18 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
19 //    spill slots.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/CodeGen/LiveInterval.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SlotIndexes.h"
41 #include "llvm/CodeGen/TargetOpcodes.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <limits>
61 #include <memory>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "stack-coloring"
67 
68 static cl::opt<bool>
69 DisableColoring("no-stack-coloring",
70         cl::init(false), cl::Hidden,
71         cl::desc("Disable stack coloring"));
72 
73 /// The user may write code that uses allocas outside of the declared lifetime
74 /// zone. This can happen when the user returns a reference to a local
75 /// data-structure. We can detect these cases and decide not to optimize the
76 /// code. If this flag is enabled, we try to save the user. This option
77 /// is treated as overriding LifetimeStartOnFirstUse below.
78 static cl::opt<bool>
79 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
80                           cl::init(false), cl::Hidden,
81                           cl::desc("Do not optimize lifetime zones that "
82                                    "are broken"));
83 
84 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
85 /// use of stack slot as start of slot lifetime, as opposed to looking
86 /// for LIFETIME_START marker). See "Implementation notes" below for
87 /// more info.
88 static cl::opt<bool>
89 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
90         cl::init(true), cl::Hidden,
91         cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
92 
93 
94 STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
95 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
96 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
97 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
98 
99 //===----------------------------------------------------------------------===//
100 //                           StackColoring Pass
101 //===----------------------------------------------------------------------===//
102 //
103 // Stack Coloring reduces stack usage by merging stack slots when they
104 // can't be used together. For example, consider the following C program:
105 //
106 //     void bar(char *, int);
107 //     void foo(bool var) {
108 //         A: {
109 //             char z[4096];
110 //             bar(z, 0);
111 //         }
112 //
113 //         char *p;
114 //         char x[4096];
115 //         char y[4096];
116 //         if (var) {
117 //             p = x;
118 //         } else {
119 //             bar(y, 1);
120 //             p = y + 1024;
121 //         }
122 //     B:
123 //         bar(p, 2);
124 //     }
125 //
126 // Naively-compiled, this program would use 12k of stack space. However, the
127 // stack slot corresponding to `z` is always destroyed before either of the
128 // stack slots for `x` or `y` are used, and then `x` is only used if `var`
129 // is true, while `y` is only used if `var` is false. So in no time are 2
130 // of the stack slots used together, and therefore we can merge them,
131 // compiling the function using only a single 4k alloca:
132 //
133 //     void foo(bool var) { // equivalent
134 //         char x[4096];
135 //         char *p;
136 //         bar(x, 0);
137 //         if (var) {
138 //             p = x;
139 //         } else {
140 //             bar(x, 1);
141 //             p = x + 1024;
142 //         }
143 //         bar(p, 2);
144 //     }
145 //
146 // This is an important optimization if we want stack space to be under
147 // control in large functions, both open-coded ones and ones created by
148 // inlining.
149 //
150 // Implementation Notes:
151 // ---------------------
152 //
153 // An important part of the above reasoning is that `z` can't be accessed
154 // while the latter 2 calls to `bar` are running. This is justified because
155 // `z`'s lifetime is over after we exit from block `A:`, so any further
156 // accesses to it would be UB. The way we represent this information
157 // in LLVM is by having frontends delimit blocks with `lifetime.start`
158 // and `lifetime.end` intrinsics.
159 //
160 // The effect of these intrinsics seems to be as follows (maybe I should
161 // specify this in the reference?):
162 //
163 //   L1) at start, each stack-slot is marked as *out-of-scope*, unless no
164 //   lifetime intrinsic refers to that stack slot, in which case
165 //   it is marked as *in-scope*.
166 //   L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
167 //   the stack slot is overwritten with `undef`.
168 //   L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
169 //   L4) on function exit, all stack slots are marked as *out-of-scope*.
170 //   L5) `lifetime.end` is a no-op when called on a slot that is already
171 //   *out-of-scope*.
172 //   L6) memory accesses to *out-of-scope* stack slots are UB.
173 //   L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
174 //   are invalidated, unless the slot is "degenerate". This is used to
175 //   justify not marking slots as in-use until the pointer to them is
176 //   used, but feels a bit hacky in the presence of things like LICM. See
177 //   the "Degenerate Slots" section for more details.
178 //
179 // Now, let's ground stack coloring on these rules. We'll define a slot
180 // as *in-use* at a (dynamic) point in execution if it either can be
181 // written to at that point, or if it has a live and non-undef content
182 // at that point.
183 //
184 // Obviously, slots that are never *in-use* together can be merged, and
185 // in our example `foo`, the slots for `x`, `y` and `z` are never
186 // in-use together (of course, sometimes slots that *are* in-use together
187 // might still be mergable, but we don't care about that here).
188 //
189 // In this implementation, we successively merge pairs of slots that are
190 // not *in-use* together. We could be smarter - for example, we could merge
191 // a single large slot with 2 small slots, or we could construct the
192 // interference graph and run a "smart" graph coloring algorithm, but with
193 // that aside, how do we find out whether a pair of slots might be *in-use*
194 // together?
195 //
196 // From our rules, we see that *out-of-scope* slots are never *in-use*,
197 // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
198 // until their address is taken. Therefore, we can approximate slot activity
199 // using dataflow.
200 //
201 // A subtle point: naively, we might try to figure out which pairs of
202 // stack-slots interfere by propagating `S in-use` through the CFG for every
203 // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
204 // which they are both *in-use*.
205 //
206 // That is sound, but overly conservative in some cases: in our (artificial)
207 // example `foo`, either `x` or `y` might be in use at the label `B:`, but
208 // as `x` is only in use if we came in from the `var` edge and `y` only
209 // if we came from the `!var` edge, they still can't be in use together.
210 // See PR32488 for an important real-life case.
211 //
212 // If we wanted to find all points of interference precisely, we could
213 // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
214 // would be precise, but requires propagating `O(n^2)` dataflow facts.
215 //
216 // However, we aren't interested in the *set* of points of interference
217 // between 2 stack slots, only *whether* there *is* such a point. So we
218 // can rely on a little trick: for `S` and `T` to be in-use together,
219 // one of them needs to become in-use while the other is in-use (or
220 // they might both become in use simultaneously). We can check this
221 // by also keeping track of the points at which a stack slot might *start*
222 // being in-use.
223 //
224 // Exact first use:
225 // ----------------
226 //
227 // Consider the following motivating example:
228 //
229 //     int foo() {
230 //       char b1[1024], b2[1024];
231 //       if (...) {
232 //         char b3[1024];
233 //         <uses of b1, b3>;
234 //         return x;
235 //       } else {
236 //         char b4[1024], b5[1024];
237 //         <uses of b2, b4, b5>;
238 //         return y;
239 //       }
240 //     }
241 //
242 // In the code above, "b3" and "b4" are declared in distinct lexical
243 // scopes, meaning that it is easy to prove that they can share the
244 // same stack slot. Variables "b1" and "b2" are declared in the same
245 // scope, meaning that from a lexical point of view, their lifetimes
246 // overlap. From a control flow pointer of view, however, the two
247 // variables are accessed in disjoint regions of the CFG, thus it
248 // should be possible for them to share the same stack slot. An ideal
249 // stack allocation for the function above would look like:
250 //
251 //     slot 0: b1, b2
252 //     slot 1: b3, b4
253 //     slot 2: b5
254 //
255 // Achieving this allocation is tricky, however, due to the way
256 // lifetime markers are inserted. Here is a simplified view of the
257 // control flow graph for the code above:
258 //
259 //                +------  block 0 -------+
260 //               0| LIFETIME_START b1, b2 |
261 //               1| <test 'if' condition> |
262 //                +-----------------------+
263 //                   ./              \.
264 //   +------  block 1 -------+   +------  block 2 -------+
265 //  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
266 //  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
267 //  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
268 //   +-----------------------+   +-----------------------+
269 //                   \.              /.
270 //                +------  block 3 -------+
271 //               8| <cleanupcode>         |
272 //               9| LIFETIME_END b1, b2   |
273 //              10| return                |
274 //                +-----------------------+
275 //
276 // If we create live intervals for the variables above strictly based
277 // on the lifetime markers, we'll get the set of intervals on the
278 // left. If we ignore the lifetime start markers and instead treat a
279 // variable's lifetime as beginning with the first reference to the
280 // var, then we get the intervals on the right.
281 //
282 //            LIFETIME_START      First Use
283 //     b1:    [0,9]               [3,4] [8,9]
284 //     b2:    [0,9]               [6,9]
285 //     b3:    [2,4]               [3,4]
286 //     b4:    [5,7]               [6,7]
287 //     b5:    [5,7]               [6,7]
288 //
289 // For the intervals on the left, the best we can do is overlap two
290 // variables (b3 and b4, for example); this gives us a stack size of
291 // 4*1024 bytes, not ideal. When treating first-use as the start of a
292 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
293 // byte stack (better).
294 //
295 // Degenerate Slots:
296 // -----------------
297 //
298 // Relying entirely on first-use of stack slots is problematic,
299 // however, due to the fact that optimizations can sometimes migrate
300 // uses of a variable outside of its lifetime start/end region. Here
301 // is an example:
302 //
303 //     int bar() {
304 //       char b1[1024], b2[1024];
305 //       if (...) {
306 //         <uses of b2>
307 //         return y;
308 //       } else {
309 //         <uses of b1>
310 //         while (...) {
311 //           char b3[1024];
312 //           <uses of b3>
313 //         }
314 //       }
315 //     }
316 //
317 // Before optimization, the control flow graph for the code above
318 // might look like the following:
319 //
320 //                +------  block 0 -------+
321 //               0| LIFETIME_START b1, b2 |
322 //               1| <test 'if' condition> |
323 //                +-----------------------+
324 //                   ./              \.
325 //   +------  block 1 -------+    +------- block 2 -------+
326 //  2| <uses of b2>          |   3| <uses of b1>          |
327 //   +-----------------------+    +-----------------------+
328 //              |                            |
329 //              |                 +------- block 3 -------+ <-\.
330 //              |                4| <while condition>     |    |
331 //              |                 +-----------------------+    |
332 //              |               /          |                   |
333 //              |              /  +------- block 4 -------+
334 //              \             /  5| LIFETIME_START b3     |    |
335 //               \           /   6| <uses of b3>          |    |
336 //                \         /    7| LIFETIME_END b3       |    |
337 //                 \        |    +------------------------+    |
338 //                  \       |                 \                /
339 //                +------  block 5 -----+      \---------------
340 //               8| <cleanupcode>       |
341 //               9| LIFETIME_END b1, b2 |
342 //              10| return              |
343 //                +---------------------+
344 //
345 // During optimization, however, it can happen that an instruction
346 // computing an address in "b3" (for example, a loop-invariant GEP) is
347 // hoisted up out of the loop from block 4 to block 2.  [Note that
348 // this is not an actual load from the stack, only an instruction that
349 // computes the address to be loaded]. If this happens, there is now a
350 // path leading from the first use of b3 to the return instruction
351 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
352 // now larger than if we were computing live intervals strictly based
353 // on lifetime markers. In the example above, this lengthened lifetime
354 // would mean that it would appear illegal to overlap b3 with b2.
355 //
356 // To deal with this such cases, the code in ::collectMarkers() below
357 // tries to identify "degenerate" slots -- those slots where on a single
358 // forward pass through the CFG we encounter a first reference to slot
359 // K before we hit the slot K lifetime start marker. For such slots,
360 // we fall back on using the lifetime start marker as the beginning of
361 // the variable's lifetime.  NB: with this implementation, slots can
362 // appear degenerate in cases where there is unstructured control flow:
363 //
364 //    if (q) goto mid;
365 //    if (x > 9) {
366 //         int b[100];
367 //         memcpy(&b[0], ...);
368 //    mid: b[k] = ...;
369 //         abc(&b);
370 //    }
371 //
372 // If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
373 // before visiting the memcpy block (which will contain the lifetime start
374 // for "b" then it will appear that 'b' has a degenerate lifetime.
375 //
376 // Handle Windows Exception with LifetimeStartOnFirstUse:
377 // -----------------
378 //
379 // There was a bug for using LifetimeStartOnFirstUse in win32.
380 // class Type1 {
381 // ...
382 // ~Type1(){ write memory;}
383 // }
384 // ...
385 // try{
386 // Type1 V
387 // ...
388 // } catch (Type2 X){
389 // ...
390 // }
391 // For variable X in catch(X), we put point pX=&(&X) into ConservativeSlots
392 // to prevent using LifetimeStartOnFirstUse. Because pX may merged with
393 // object V which may call destructor after implicitly writing pX. All these
394 // are done in C++ EH runtime libs (through CxxThrowException), and can't
395 // obviously check it in IR level.
396 //
397 // The loader of pX, without obvious writing IR, is usually the first LOAD MI
398 // in EHPad, Some like:
399 // bb.x.catch.i (landing-pad, ehfunclet-entry):
400 // ; predecessors: %bb...
401 //   successors: %bb...
402 //  %n:gr32 = MOV32rm %stack.pX ...
403 //  ...
404 // The Type2** %stack.pX will only be written in EH runtime libs, so we
405 // check the StoreSlots to screen it out.
406 
407 namespace {
408 
409 /// StackColoring - A machine pass for merging disjoint stack allocations,
410 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
411 class StackColoring : public MachineFunctionPass {
412   MachineFrameInfo *MFI;
413   MachineFunction *MF;
414 
415   /// A class representing liveness information for a single basic block.
416   /// Each bit in the BitVector represents the liveness property
417   /// for a different stack slot.
418   struct BlockLifetimeInfo {
419     /// Which slots BEGINs in each basic block.
420     BitVector Begin;
421 
422     /// Which slots ENDs in each basic block.
423     BitVector End;
424 
425     /// Which slots are marked as LIVE_IN, coming into each basic block.
426     BitVector LiveIn;
427 
428     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
429     BitVector LiveOut;
430   };
431 
432   /// Maps active slots (per bit) for each basic block.
433   using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
434   LivenessMap BlockLiveness;
435 
436   /// Maps serial numbers to basic blocks.
437   DenseMap<const MachineBasicBlock *, int> BasicBlocks;
438 
439   /// Maps basic blocks to a serial number.
440   SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
441 
442   /// Maps slots to their use interval. Outside of this interval, slots
443   /// values are either dead or `undef` and they will not be written to.
444   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
445 
446   /// Maps slots to the points where they can become in-use.
447   SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
448 
449   /// VNInfo is used for the construction of LiveIntervals.
450   VNInfo::Allocator VNInfoAllocator;
451 
452   /// SlotIndex analysis object.
453   SlotIndexes *Indexes;
454 
455   /// The list of lifetime markers found. These markers are to be removed
456   /// once the coloring is done.
457   SmallVector<MachineInstr*, 8> Markers;
458 
459   /// Record the FI slots for which we have seen some sort of
460   /// lifetime marker (either start or end).
461   BitVector InterestingSlots;
462 
463   /// FI slots that need to be handled conservatively (for these
464   /// slots lifetime-start-on-first-use is disabled).
465   BitVector ConservativeSlots;
466 
467   /// Record the FI slots referenced by a 'may write to memory'.
468   BitVector StoreSlots;
469 
470   /// Number of iterations taken during data flow analysis.
471   unsigned NumIterations;
472 
473 public:
474   static char ID;
475 
StackColoring()476   StackColoring() : MachineFunctionPass(ID) {
477     initializeStackColoringPass(*PassRegistry::getPassRegistry());
478   }
479 
480   void getAnalysisUsage(AnalysisUsage &AU) const override;
481   bool runOnMachineFunction(MachineFunction &Func) override;
482 
483 private:
484   /// Used in collectMarkers
485   using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
486 
487   /// Debug.
488   void dump() const;
489   void dumpIntervals() const;
490   void dumpBB(MachineBasicBlock *MBB) const;
491   void dumpBV(const char *tag, const BitVector &BV) const;
492 
493   /// Removes all of the lifetime marker instructions from the function.
494   /// \returns true if any markers were removed.
495   bool removeAllMarkers();
496 
497   /// Scan the machine function and find all of the lifetime markers.
498   /// Record the findings in the BEGIN and END vectors.
499   /// \returns the number of markers found.
500   unsigned collectMarkers(unsigned NumSlot);
501 
502   /// Perform the dataflow calculation and calculate the lifetime for each of
503   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
504   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
505   /// in and out blocks.
506   void calculateLocalLiveness();
507 
508   /// Returns TRUE if we're using the first-use-begins-lifetime method for
509   /// this slot (if FALSE, then the start marker is treated as start of lifetime).
applyFirstUse(int Slot)510   bool applyFirstUse(int Slot) {
511     if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
512       return false;
513     if (ConservativeSlots.test(Slot))
514       return false;
515     return true;
516   }
517 
518   /// Examines the specified instruction and returns TRUE if the instruction
519   /// represents the start or end of an interesting lifetime. The slot or slots
520   /// starting or ending are added to the vector "slots" and "isStart" is set
521   /// accordingly.
522   /// \returns True if inst contains a lifetime start or end
523   bool isLifetimeStartOrEnd(const MachineInstr &MI,
524                             SmallVector<int, 4> &slots,
525                             bool &isStart);
526 
527   /// Construct the LiveIntervals for the slots.
528   void calculateLiveIntervals(unsigned NumSlots);
529 
530   /// Go over the machine function and change instructions which use stack
531   /// slots to use the joint slots.
532   void remapInstructions(DenseMap<int, int> &SlotRemap);
533 
534   /// The input program may contain instructions which are not inside lifetime
535   /// markers. This can happen due to a bug in the compiler or due to a bug in
536   /// user code (for example, returning a reference to a local variable).
537   /// This procedure checks all of the instructions in the function and
538   /// invalidates lifetime ranges which do not contain all of the instructions
539   /// which access that frame slot.
540   void removeInvalidSlotRanges();
541 
542   /// Map entries which point to other entries to their destination.
543   ///   A->B->C becomes A->C.
544   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
545 };
546 
547 } // end anonymous namespace
548 
549 char StackColoring::ID = 0;
550 
551 char &llvm::StackColoringID = StackColoring::ID;
552 
553 INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
554                       "Merge disjoint stack slots", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)555 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
556 INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
557                     "Merge disjoint stack slots", false, false)
558 
559 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
560   AU.addRequired<SlotIndexes>();
561   MachineFunctionPass::getAnalysisUsage(AU);
562 }
563 
564 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpBV(const char * tag,const BitVector & BV) const565 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
566                                             const BitVector &BV) const {
567   dbgs() << tag << " : { ";
568   for (unsigned I = 0, E = BV.size(); I != E; ++I)
569     dbgs() << BV.test(I) << " ";
570   dbgs() << "}\n";
571 }
572 
dumpBB(MachineBasicBlock * MBB) const573 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
574   LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
575   assert(BI != BlockLiveness.end() && "Block not found");
576   const BlockLifetimeInfo &BlockInfo = BI->second;
577 
578   dumpBV("BEGIN", BlockInfo.Begin);
579   dumpBV("END", BlockInfo.End);
580   dumpBV("LIVE_IN", BlockInfo.LiveIn);
581   dumpBV("LIVE_OUT", BlockInfo.LiveOut);
582 }
583 
dump() const584 LLVM_DUMP_METHOD void StackColoring::dump() const {
585   for (MachineBasicBlock *MBB : depth_first(MF)) {
586     dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
587            << MBB->getName() << "]\n";
588     dumpBB(MBB);
589   }
590 }
591 
dumpIntervals() const592 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
593   for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
594     dbgs() << "Interval[" << I << "]:\n";
595     Intervals[I]->dump();
596   }
597 }
598 #endif
599 
getStartOrEndSlot(const MachineInstr & MI)600 static inline int getStartOrEndSlot(const MachineInstr &MI)
601 {
602   assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
603           MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
604          "Expected LIFETIME_START or LIFETIME_END op");
605   const MachineOperand &MO = MI.getOperand(0);
606   int Slot = MO.getIndex();
607   if (Slot >= 0)
608     return Slot;
609   return -1;
610 }
611 
612 // At the moment the only way to end a variable lifetime is with
613 // a VARIABLE_LIFETIME op (which can't contain a start). If things
614 // change and the IR allows for a single inst that both begins
615 // and ends lifetime(s), this interface will need to be reworked.
isLifetimeStartOrEnd(const MachineInstr & MI,SmallVector<int,4> & slots,bool & isStart)616 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
617                                          SmallVector<int, 4> &slots,
618                                          bool &isStart) {
619   if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
620       MI.getOpcode() == TargetOpcode::LIFETIME_END) {
621     int Slot = getStartOrEndSlot(MI);
622     if (Slot < 0)
623       return false;
624     if (!InterestingSlots.test(Slot))
625       return false;
626     slots.push_back(Slot);
627     if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
628       isStart = false;
629       return true;
630     }
631     if (!applyFirstUse(Slot)) {
632       isStart = true;
633       return true;
634     }
635   } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
636     if (!MI.isDebugInstr()) {
637       bool found = false;
638       for (const MachineOperand &MO : MI.operands()) {
639         if (!MO.isFI())
640           continue;
641         int Slot = MO.getIndex();
642         if (Slot<0)
643           continue;
644         if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
645           slots.push_back(Slot);
646           found = true;
647         }
648       }
649       if (found) {
650         isStart = true;
651         return true;
652       }
653     }
654   }
655   return false;
656 }
657 
collectMarkers(unsigned NumSlot)658 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
659   unsigned MarkersFound = 0;
660   BlockBitVecMap SeenStartMap;
661   InterestingSlots.clear();
662   InterestingSlots.resize(NumSlot);
663   ConservativeSlots.clear();
664   ConservativeSlots.resize(NumSlot);
665   StoreSlots.clear();
666   StoreSlots.resize(NumSlot);
667 
668   // number of start and end lifetime ops for each slot
669   SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
670   SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
671   SmallVector<int, 8> NumLoadInCatchPad(NumSlot, 0);
672 
673   // Step 1: collect markers and populate the "InterestingSlots"
674   // and "ConservativeSlots" sets.
675   for (MachineBasicBlock *MBB : depth_first(MF)) {
676     // Compute the set of slots for which we've seen a START marker but have
677     // not yet seen an END marker at this point in the walk (e.g. on entry
678     // to this bb).
679     BitVector BetweenStartEnd;
680     BetweenStartEnd.resize(NumSlot);
681     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
682              PE = MBB->pred_end(); PI != PE; ++PI) {
683       BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
684       if (I != SeenStartMap.end()) {
685         BetweenStartEnd |= I->second;
686       }
687     }
688 
689     // Walk the instructions in the block to look for start/end ops.
690     for (MachineInstr &MI : *MBB) {
691       if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
692           MI.getOpcode() == TargetOpcode::LIFETIME_END) {
693         int Slot = getStartOrEndSlot(MI);
694         if (Slot < 0)
695           continue;
696         InterestingSlots.set(Slot);
697         if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
698           BetweenStartEnd.set(Slot);
699           NumStartLifetimes[Slot] += 1;
700         } else {
701           BetweenStartEnd.reset(Slot);
702           NumEndLifetimes[Slot] += 1;
703         }
704         const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
705         if (Allocation) {
706           LLVM_DEBUG(dbgs() << "Found a lifetime ");
707           LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
708                                     ? "start"
709                                     : "end"));
710           LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
711           LLVM_DEBUG(dbgs()
712                      << " with allocation: " << Allocation->getName() << "\n");
713         }
714         Markers.push_back(&MI);
715         MarkersFound += 1;
716       } else {
717         for (const MachineOperand &MO : MI.operands()) {
718           if (!MO.isFI())
719             continue;
720           int Slot = MO.getIndex();
721           if (Slot < 0)
722             continue;
723           if (! BetweenStartEnd.test(Slot)) {
724             ConservativeSlots.set(Slot);
725           }
726           // Here we check the StoreSlots to screen catch point out. For more
727           // information, please refer "Handle Windows Exception with
728           // LifetimeStartOnFirstUse" at the head of this file.
729           if (MI.mayStore())
730             StoreSlots.set(Slot);
731           if (MF->getWinEHFuncInfo() && MBB->isEHPad() && MI.mayLoad())
732             NumLoadInCatchPad[Slot] += 1;
733         }
734       }
735     }
736     BitVector &SeenStart = SeenStartMap[MBB];
737     SeenStart |= BetweenStartEnd;
738   }
739   if (!MarkersFound) {
740     return 0;
741   }
742 
743   // 1) PR27903: slots with multiple start or end lifetime ops are not
744   // safe to enable for "lifetime-start-on-first-use".
745   // 2) And also not safe for variable X in catch(X) in windows.
746   for (unsigned slot = 0; slot < NumSlot; ++slot) {
747     if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1 ||
748         (NumLoadInCatchPad[slot] > 1 && !StoreSlots.test(slot)))
749       ConservativeSlots.set(slot);
750   }
751   LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
752 
753   // Step 2: compute begin/end sets for each block
754 
755   // NOTE: We use a depth-first iteration to ensure that we obtain a
756   // deterministic numbering.
757   for (MachineBasicBlock *MBB : depth_first(MF)) {
758     // Assign a serial number to this basic block.
759     BasicBlocks[MBB] = BasicBlockNumbering.size();
760     BasicBlockNumbering.push_back(MBB);
761 
762     // Keep a reference to avoid repeated lookups.
763     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
764 
765     BlockInfo.Begin.resize(NumSlot);
766     BlockInfo.End.resize(NumSlot);
767 
768     SmallVector<int, 4> slots;
769     for (MachineInstr &MI : *MBB) {
770       bool isStart = false;
771       slots.clear();
772       if (isLifetimeStartOrEnd(MI, slots, isStart)) {
773         if (!isStart) {
774           assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
775           int Slot = slots[0];
776           if (BlockInfo.Begin.test(Slot)) {
777             BlockInfo.Begin.reset(Slot);
778           }
779           BlockInfo.End.set(Slot);
780         } else {
781           for (auto Slot : slots) {
782             LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
783             LLVM_DEBUG(dbgs()
784                        << " at " << printMBBReference(*MBB) << " index ");
785             LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
786             const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
787             if (Allocation) {
788               LLVM_DEBUG(dbgs()
789                          << " with allocation: " << Allocation->getName());
790             }
791             LLVM_DEBUG(dbgs() << "\n");
792             if (BlockInfo.End.test(Slot)) {
793               BlockInfo.End.reset(Slot);
794             }
795             BlockInfo.Begin.set(Slot);
796           }
797         }
798       }
799     }
800   }
801 
802   // Update statistics.
803   NumMarkerSeen += MarkersFound;
804   return MarkersFound;
805 }
806 
calculateLocalLiveness()807 void StackColoring::calculateLocalLiveness() {
808   unsigned NumIters = 0;
809   bool changed = true;
810   while (changed) {
811     changed = false;
812     ++NumIters;
813 
814     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
815       // Use an iterator to avoid repeated lookups.
816       LivenessMap::iterator BI = BlockLiveness.find(BB);
817       assert(BI != BlockLiveness.end() && "Block not found");
818       BlockLifetimeInfo &BlockInfo = BI->second;
819 
820       // Compute LiveIn by unioning together the LiveOut sets of all preds.
821       BitVector LocalLiveIn;
822       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
823            PE = BB->pred_end(); PI != PE; ++PI) {
824         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
825         // PR37130: transformations prior to stack coloring can
826         // sometimes leave behind statically unreachable blocks; these
827         // can be safely skipped here.
828         if (I != BlockLiveness.end())
829           LocalLiveIn |= I->second.LiveOut;
830       }
831 
832       // Compute LiveOut by subtracting out lifetimes that end in this
833       // block, then adding in lifetimes that begin in this block.  If
834       // we have both BEGIN and END markers in the same basic block
835       // then we know that the BEGIN marker comes after the END,
836       // because we already handle the case where the BEGIN comes
837       // before the END when collecting the markers (and building the
838       // BEGIN/END vectors).
839       BitVector LocalLiveOut = LocalLiveIn;
840       LocalLiveOut.reset(BlockInfo.End);
841       LocalLiveOut |= BlockInfo.Begin;
842 
843       // Update block LiveIn set, noting whether it has changed.
844       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
845         changed = true;
846         BlockInfo.LiveIn |= LocalLiveIn;
847       }
848 
849       // Update block LiveOut set, noting whether it has changed.
850       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
851         changed = true;
852         BlockInfo.LiveOut |= LocalLiveOut;
853       }
854     }
855   } // while changed.
856 
857   NumIterations = NumIters;
858 }
859 
calculateLiveIntervals(unsigned NumSlots)860 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
861   SmallVector<SlotIndex, 16> Starts;
862   SmallVector<bool, 16> DefinitelyInUse;
863 
864   // For each block, find which slots are active within this block
865   // and update the live intervals.
866   for (const MachineBasicBlock &MBB : *MF) {
867     Starts.clear();
868     Starts.resize(NumSlots);
869     DefinitelyInUse.clear();
870     DefinitelyInUse.resize(NumSlots);
871 
872     // Start the interval of the slots that we previously found to be 'in-use'.
873     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
874     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
875          pos = MBBLiveness.LiveIn.find_next(pos)) {
876       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
877     }
878 
879     // Create the interval for the basic blocks containing lifetime begin/end.
880     for (const MachineInstr &MI : MBB) {
881       SmallVector<int, 4> slots;
882       bool IsStart = false;
883       if (!isLifetimeStartOrEnd(MI, slots, IsStart))
884         continue;
885       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
886       for (auto Slot : slots) {
887         if (IsStart) {
888           // If a slot is already definitely in use, we don't have to emit
889           // a new start marker because there is already a pre-existing
890           // one.
891           if (!DefinitelyInUse[Slot]) {
892             LiveStarts[Slot].push_back(ThisIndex);
893             DefinitelyInUse[Slot] = true;
894           }
895           if (!Starts[Slot].isValid())
896             Starts[Slot] = ThisIndex;
897         } else {
898           if (Starts[Slot].isValid()) {
899             VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
900             Intervals[Slot]->addSegment(
901                 LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
902             Starts[Slot] = SlotIndex(); // Invalidate the start index
903             DefinitelyInUse[Slot] = false;
904           }
905         }
906       }
907     }
908 
909     // Finish up started segments
910     for (unsigned i = 0; i < NumSlots; ++i) {
911       if (!Starts[i].isValid())
912         continue;
913 
914       SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
915       VNInfo *VNI = Intervals[i]->getValNumInfo(0);
916       Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
917     }
918   }
919 }
920 
removeAllMarkers()921 bool StackColoring::removeAllMarkers() {
922   unsigned Count = 0;
923   for (MachineInstr *MI : Markers) {
924     MI->eraseFromParent();
925     Count++;
926   }
927   Markers.clear();
928 
929   LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
930   return Count;
931 }
932 
remapInstructions(DenseMap<int,int> & SlotRemap)933 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
934   unsigned FixedInstr = 0;
935   unsigned FixedMemOp = 0;
936   unsigned FixedDbg = 0;
937 
938   // Remap debug information that refers to stack slots.
939   for (auto &VI : MF->getVariableDbgInfo()) {
940     if (!VI.Var)
941       continue;
942     if (SlotRemap.count(VI.Slot)) {
943       LLVM_DEBUG(dbgs() << "Remapping debug info for ["
944                         << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
945       VI.Slot = SlotRemap[VI.Slot];
946       FixedDbg++;
947     }
948   }
949 
950   // Keep a list of *allocas* which need to be remapped.
951   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
952 
953   // Keep a list of allocas which has been affected by the remap.
954   SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
955 
956   for (const std::pair<int, int> &SI : SlotRemap) {
957     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
958     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
959     assert(To && From && "Invalid allocation object");
960     Allocas[From] = To;
961 
962     // If From is before wo, its possible that there is a use of From between
963     // them.
964     if (From->comesBefore(To))
965       const_cast<AllocaInst*>(To)->moveBefore(const_cast<AllocaInst*>(From));
966 
967     // AA might be used later for instruction scheduling, and we need it to be
968     // able to deduce the correct aliasing releationships between pointers
969     // derived from the alloca being remapped and the target of that remapping.
970     // The only safe way, without directly informing AA about the remapping
971     // somehow, is to directly update the IR to reflect the change being made
972     // here.
973     Instruction *Inst = const_cast<AllocaInst *>(To);
974     if (From->getType() != To->getType()) {
975       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
976       Cast->insertAfter(Inst);
977       Inst = Cast;
978     }
979 
980     // We keep both slots to maintain AliasAnalysis metadata later.
981     MergedAllocas.insert(From);
982     MergedAllocas.insert(To);
983 
984     // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
985     // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
986     // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
987     MachineFrameInfo::SSPLayoutKind FromKind
988         = MFI->getObjectSSPLayout(SI.first);
989     MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
990     if (FromKind != MachineFrameInfo::SSPLK_None &&
991         (ToKind == MachineFrameInfo::SSPLK_None ||
992          (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
993           FromKind != MachineFrameInfo::SSPLK_AddrOf)))
994       MFI->setObjectSSPLayout(SI.second, FromKind);
995 
996     // The new alloca might not be valid in a llvm.dbg.declare for this
997     // variable, so undef out the use to make the verifier happy.
998     AllocaInst *FromAI = const_cast<AllocaInst *>(From);
999     if (FromAI->isUsedByMetadata())
1000       ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
1001     for (auto &Use : FromAI->uses()) {
1002       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
1003         if (BCI->isUsedByMetadata())
1004           ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
1005     }
1006 
1007     // Note that this will not replace uses in MMOs (which we'll update below),
1008     // or anywhere else (which is why we won't delete the original
1009     // instruction).
1010     FromAI->replaceAllUsesWith(Inst);
1011   }
1012 
1013   // Remap all instructions to the new stack slots.
1014   std::vector<std::vector<MachineMemOperand *>> SSRefs(
1015       MFI->getObjectIndexEnd());
1016   for (MachineBasicBlock &BB : *MF)
1017     for (MachineInstr &I : BB) {
1018       // Skip lifetime markers. We'll remove them soon.
1019       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
1020           I.getOpcode() == TargetOpcode::LIFETIME_END)
1021         continue;
1022 
1023       // Update the MachineMemOperand to use the new alloca.
1024       for (MachineMemOperand *MMO : I.memoperands()) {
1025         // We've replaced IR-level uses of the remapped allocas, so we only
1026         // need to replace direct uses here.
1027         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
1028         if (!AI)
1029           continue;
1030 
1031         if (!Allocas.count(AI))
1032           continue;
1033 
1034         MMO->setValue(Allocas[AI]);
1035         FixedMemOp++;
1036       }
1037 
1038       // Update all of the machine instruction operands.
1039       for (MachineOperand &MO : I.operands()) {
1040         if (!MO.isFI())
1041           continue;
1042         int FromSlot = MO.getIndex();
1043 
1044         // Don't touch arguments.
1045         if (FromSlot<0)
1046           continue;
1047 
1048         // Only look at mapped slots.
1049         if (!SlotRemap.count(FromSlot))
1050           continue;
1051 
1052         // In a debug build, check that the instruction that we are modifying is
1053         // inside the expected live range. If the instruction is not inside
1054         // the calculated range then it means that the alloca usage moved
1055         // outside of the lifetime markers, or that the user has a bug.
1056         // NOTE: Alloca address calculations which happen outside the lifetime
1057         // zone are okay, despite the fact that we don't have a good way
1058         // for validating all of the usages of the calculation.
1059 #ifndef NDEBUG
1060         bool TouchesMemory = I.mayLoadOrStore();
1061         // If we *don't* protect the user from escaped allocas, don't bother
1062         // validating the instructions.
1063         if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
1064           SlotIndex Index = Indexes->getInstructionIndex(I);
1065           const LiveInterval *Interval = &*Intervals[FromSlot];
1066           assert(Interval->find(Index) != Interval->end() &&
1067                  "Found instruction usage outside of live range.");
1068         }
1069 #endif
1070 
1071         // Fix the machine instructions.
1072         int ToSlot = SlotRemap[FromSlot];
1073         MO.setIndex(ToSlot);
1074         FixedInstr++;
1075       }
1076 
1077       // We adjust AliasAnalysis information for merged stack slots.
1078       SmallVector<MachineMemOperand *, 2> NewMMOs;
1079       bool ReplaceMemOps = false;
1080       for (MachineMemOperand *MMO : I.memoperands()) {
1081         // Collect MachineMemOperands which reference
1082         // FixedStackPseudoSourceValues with old frame indices.
1083         if (const auto *FSV = dyn_cast_or_null<FixedStackPseudoSourceValue>(
1084                 MMO->getPseudoValue())) {
1085           int FI = FSV->getFrameIndex();
1086           auto To = SlotRemap.find(FI);
1087           if (To != SlotRemap.end())
1088             SSRefs[FI].push_back(MMO);
1089         }
1090 
1091         // If this memory location can be a slot remapped here,
1092         // we remove AA information.
1093         bool MayHaveConflictingAAMD = false;
1094         if (MMO->getAAInfo()) {
1095           if (const Value *MMOV = MMO->getValue()) {
1096             SmallVector<Value *, 4> Objs;
1097             getUnderlyingObjectsForCodeGen(MMOV, Objs);
1098 
1099             if (Objs.empty())
1100               MayHaveConflictingAAMD = true;
1101             else
1102               for (Value *V : Objs) {
1103                 // If this memory location comes from a known stack slot
1104                 // that is not remapped, we continue checking.
1105                 // Otherwise, we need to invalidate AA infomation.
1106                 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
1107                 if (AI && MergedAllocas.count(AI)) {
1108                   MayHaveConflictingAAMD = true;
1109                   break;
1110                 }
1111               }
1112           }
1113         }
1114         if (MayHaveConflictingAAMD) {
1115           NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
1116           ReplaceMemOps = true;
1117         } else {
1118           NewMMOs.push_back(MMO);
1119         }
1120       }
1121 
1122       // If any memory operand is updated, set memory references of
1123       // this instruction.
1124       if (ReplaceMemOps)
1125         I.setMemRefs(*MF, NewMMOs);
1126     }
1127 
1128   // Rewrite MachineMemOperands that reference old frame indices.
1129   for (auto E : enumerate(SSRefs))
1130     if (!E.value().empty()) {
1131       const PseudoSourceValue *NewSV =
1132           MF->getPSVManager().getFixedStack(SlotRemap.find(E.index())->second);
1133       for (MachineMemOperand *Ref : E.value())
1134         Ref->setValue(NewSV);
1135     }
1136 
1137   // Update the location of C++ catch objects for the MSVC personality routine.
1138   if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
1139     for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
1140       for (WinEHHandlerType &H : TBME.HandlerArray)
1141         if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
1142             SlotRemap.count(H.CatchObj.FrameIndex))
1143           H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
1144 
1145   LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
1146   LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
1147   LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
1148 }
1149 
removeInvalidSlotRanges()1150 void StackColoring::removeInvalidSlotRanges() {
1151   for (MachineBasicBlock &BB : *MF)
1152     for (MachineInstr &I : BB) {
1153       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
1154           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
1155         continue;
1156 
1157       // Some intervals are suspicious! In some cases we find address
1158       // calculations outside of the lifetime zone, but not actual memory
1159       // read or write. Memory accesses outside of the lifetime zone are a clear
1160       // violation, but address calculations are okay. This can happen when
1161       // GEPs are hoisted outside of the lifetime zone.
1162       // So, in here we only check instructions which can read or write memory.
1163       if (!I.mayLoad() && !I.mayStore())
1164         continue;
1165 
1166       // Check all of the machine operands.
1167       for (const MachineOperand &MO : I.operands()) {
1168         if (!MO.isFI())
1169           continue;
1170 
1171         int Slot = MO.getIndex();
1172 
1173         if (Slot<0)
1174           continue;
1175 
1176         if (Intervals[Slot]->empty())
1177           continue;
1178 
1179         // Check that the used slot is inside the calculated lifetime range.
1180         // If it is not, warn about it and invalidate the range.
1181         LiveInterval *Interval = &*Intervals[Slot];
1182         SlotIndex Index = Indexes->getInstructionIndex(I);
1183         if (Interval->find(Index) == Interval->end()) {
1184           Interval->clear();
1185           LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
1186           EscapedAllocas++;
1187         }
1188       }
1189     }
1190 }
1191 
expungeSlotMap(DenseMap<int,int> & SlotRemap,unsigned NumSlots)1192 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
1193                                    unsigned NumSlots) {
1194   // Expunge slot remap map.
1195   for (unsigned i=0; i < NumSlots; ++i) {
1196     // If we are remapping i
1197     if (SlotRemap.count(i)) {
1198       int Target = SlotRemap[i];
1199       // As long as our target is mapped to something else, follow it.
1200       while (SlotRemap.count(Target)) {
1201         Target = SlotRemap[Target];
1202         SlotRemap[i] = Target;
1203       }
1204     }
1205   }
1206 }
1207 
runOnMachineFunction(MachineFunction & Func)1208 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
1209   LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
1210                     << "********** Function: " << Func.getName() << '\n');
1211   MF = &Func;
1212   MFI = &MF->getFrameInfo();
1213   Indexes = &getAnalysis<SlotIndexes>();
1214   BlockLiveness.clear();
1215   BasicBlocks.clear();
1216   BasicBlockNumbering.clear();
1217   Markers.clear();
1218   Intervals.clear();
1219   LiveStarts.clear();
1220   VNInfoAllocator.Reset();
1221 
1222   unsigned NumSlots = MFI->getObjectIndexEnd();
1223 
1224   // If there are no stack slots then there are no markers to remove.
1225   if (!NumSlots)
1226     return false;
1227 
1228   SmallVector<int, 8> SortedSlots;
1229   SortedSlots.reserve(NumSlots);
1230   Intervals.reserve(NumSlots);
1231   LiveStarts.resize(NumSlots);
1232 
1233   unsigned NumMarkers = collectMarkers(NumSlots);
1234 
1235   unsigned TotalSize = 0;
1236   LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
1237                     << " slots\n");
1238   LLVM_DEBUG(dbgs() << "Slot structure:\n");
1239 
1240   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1241     LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
1242                       << " bytes.\n");
1243     TotalSize += MFI->getObjectSize(i);
1244   }
1245 
1246   LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
1247 
1248   // Don't continue because there are not enough lifetime markers, or the
1249   // stack is too small, or we are told not to optimize the slots.
1250   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
1251       skipFunction(Func.getFunction())) {
1252     LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
1253     return removeAllMarkers();
1254   }
1255 
1256   for (unsigned i=0; i < NumSlots; ++i) {
1257     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1258     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1259     Intervals.push_back(std::move(LI));
1260     SortedSlots.push_back(i);
1261   }
1262 
1263   // Calculate the liveness of each block.
1264   calculateLocalLiveness();
1265   LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1266   LLVM_DEBUG(dump());
1267 
1268   // Propagate the liveness information.
1269   calculateLiveIntervals(NumSlots);
1270   LLVM_DEBUG(dumpIntervals());
1271 
1272   // Search for allocas which are used outside of the declared lifetime
1273   // markers.
1274   if (ProtectFromEscapedAllocas)
1275     removeInvalidSlotRanges();
1276 
1277   // Maps old slots to new slots.
1278   DenseMap<int, int> SlotRemap;
1279   unsigned RemovedSlots = 0;
1280   unsigned ReducedSize = 0;
1281 
1282   // Do not bother looking at empty intervals.
1283   for (unsigned I = 0; I < NumSlots; ++I) {
1284     if (Intervals[SortedSlots[I]]->empty())
1285       SortedSlots[I] = -1;
1286   }
1287 
1288   // This is a simple greedy algorithm for merging allocas. First, sort the
1289   // slots, placing the largest slots first. Next, perform an n^2 scan and look
1290   // for disjoint slots. When you find disjoint slots, merge the smaller one
1291   // into the bigger one and update the live interval. Remove the small alloca
1292   // and continue.
1293 
1294   // Sort the slots according to their size. Place unused slots at the end.
1295   // Use stable sort to guarantee deterministic code generation.
1296   llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
1297     // We use -1 to denote a uninteresting slot. Place these slots at the end.
1298     if (LHS == -1)
1299       return false;
1300     if (RHS == -1)
1301       return true;
1302     // Sort according to size.
1303     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1304   });
1305 
1306   for (auto &s : LiveStarts)
1307     llvm::sort(s);
1308 
1309   bool Changed = true;
1310   while (Changed) {
1311     Changed = false;
1312     for (unsigned I = 0; I < NumSlots; ++I) {
1313       if (SortedSlots[I] == -1)
1314         continue;
1315 
1316       for (unsigned J=I+1; J < NumSlots; ++J) {
1317         if (SortedSlots[J] == -1)
1318           continue;
1319 
1320         int FirstSlot = SortedSlots[I];
1321         int SecondSlot = SortedSlots[J];
1322         LiveInterval *First = &*Intervals[FirstSlot];
1323         LiveInterval *Second = &*Intervals[SecondSlot];
1324         auto &FirstS = LiveStarts[FirstSlot];
1325         auto &SecondS = LiveStarts[SecondSlot];
1326         assert(!First->empty() && !Second->empty() && "Found an empty range");
1327 
1328         // Merge disjoint slots. This is a little bit tricky - see the
1329         // Implementation Notes section for an explanation.
1330         if (!First->isLiveAtIndexes(SecondS) &&
1331             !Second->isLiveAtIndexes(FirstS)) {
1332           Changed = true;
1333           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1334 
1335           int OldSize = FirstS.size();
1336           FirstS.append(SecondS.begin(), SecondS.end());
1337           auto Mid = FirstS.begin() + OldSize;
1338           std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
1339 
1340           SlotRemap[SecondSlot] = FirstSlot;
1341           SortedSlots[J] = -1;
1342           LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
1343                             << SecondSlot << " together.\n");
1344           Align MaxAlignment = std::max(MFI->getObjectAlign(FirstSlot),
1345                                         MFI->getObjectAlign(SecondSlot));
1346 
1347           assert(MFI->getObjectSize(FirstSlot) >=
1348                  MFI->getObjectSize(SecondSlot) &&
1349                  "Merging a small object into a larger one");
1350 
1351           RemovedSlots+=1;
1352           ReducedSize += MFI->getObjectSize(SecondSlot);
1353           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1354           MFI->RemoveStackObject(SecondSlot);
1355         }
1356       }
1357     }
1358   }// While changed.
1359 
1360   // Record statistics.
1361   StackSpaceSaved += ReducedSize;
1362   StackSlotMerged += RemovedSlots;
1363   LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
1364                     << ReducedSize << " bytes\n");
1365 
1366   // Scan the entire function and update all machine operands that use frame
1367   // indices to use the remapped frame index.
1368   expungeSlotMap(SlotRemap, NumSlots);
1369   remapInstructions(SlotRemap);
1370 
1371   return removeAllMarkers();
1372 }
1373