1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Transforms/Utils/BuildLibCalls.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 static cl::opt<bool>
45     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46                          cl::init(false),
47                          cl::desc("Enable unsafe double to float "
48                                   "shrinking for math lib calls"));
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
ignoreCallingConv(LibFunc Func)54 static bool ignoreCallingConv(LibFunc Func) {
55   return Func == LibFunc_abs || Func == LibFunc_labs ||
56          Func == LibFunc_llabs || Func == LibFunc_strlen;
57 }
58 
isCallingConvCCompatible(CallInst * CI)59 static bool isCallingConvCCompatible(CallInst *CI) {
60   switch(CI->getCallingConv()) {
61   default:
62     return false;
63   case llvm::CallingConv::C:
64     return true;
65   case llvm::CallingConv::ARM_APCS:
66   case llvm::CallingConv::ARM_AAPCS:
67   case llvm::CallingConv::ARM_AAPCS_VFP: {
68 
69     // The iOS ABI diverges from the standard in some cases, so for now don't
70     // try to simplify those calls.
71     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
72       return false;
73 
74     auto *FuncTy = CI->getFunctionType();
75 
76     if (!FuncTy->getReturnType()->isPointerTy() &&
77         !FuncTy->getReturnType()->isIntegerTy() &&
78         !FuncTy->getReturnType()->isVoidTy())
79       return false;
80 
81     for (auto Param : FuncTy->params()) {
82       if (!Param->isPointerTy() && !Param->isIntegerTy())
83         return false;
84     }
85     return true;
86   }
87   }
88   return false;
89 }
90 
91 /// Return true if it is only used in equality comparisons with With.
isOnlyUsedInEqualityComparison(Value * V,Value * With)92 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
93   for (User *U : V->users()) {
94     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
95       if (IC->isEquality() && IC->getOperand(1) == With)
96         continue;
97     // Unknown instruction.
98     return false;
99   }
100   return true;
101 }
102 
callHasFloatingPointArgument(const CallInst * CI)103 static bool callHasFloatingPointArgument(const CallInst *CI) {
104   return any_of(CI->operands(), [](const Use &OI) {
105     return OI->getType()->isFloatingPointTy();
106   });
107 }
108 
callHasFP128Argument(const CallInst * CI)109 static bool callHasFP128Argument(const CallInst *CI) {
110   return any_of(CI->operands(), [](const Use &OI) {
111     return OI->getType()->isFP128Ty();
112   });
113 }
114 
convertStrToNumber(CallInst * CI,StringRef & Str,int64_t Base)115 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
116   if (Base < 2 || Base > 36)
117     // handle special zero base
118     if (Base != 0)
119       return nullptr;
120 
121   char *End;
122   std::string nptr = Str.str();
123   errno = 0;
124   long long int Result = strtoll(nptr.c_str(), &End, Base);
125   if (errno)
126     return nullptr;
127 
128   // if we assume all possible target locales are ASCII supersets,
129   // then if strtoll successfully parses a number on the host,
130   // it will also successfully parse the same way on the target
131   if (*End != '\0')
132     return nullptr;
133 
134   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
135     return nullptr;
136 
137   return ConstantInt::get(CI->getType(), Result);
138 }
139 
isOnlyUsedInComparisonWithZero(Value * V)140 static bool isOnlyUsedInComparisonWithZero(Value *V) {
141   for (User *U : V->users()) {
142     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
143       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
144         if (C->isNullValue())
145           continue;
146     // Unknown instruction.
147     return false;
148   }
149   return true;
150 }
151 
canTransformToMemCmp(CallInst * CI,Value * Str,uint64_t Len,const DataLayout & DL)152 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
153                                  const DataLayout &DL) {
154   if (!isOnlyUsedInComparisonWithZero(CI))
155     return false;
156 
157   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
158     return false;
159 
160   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
161     return false;
162 
163   return true;
164 }
165 
annotateDereferenceableBytes(CallInst * CI,ArrayRef<unsigned> ArgNos,uint64_t DereferenceableBytes)166 static void annotateDereferenceableBytes(CallInst *CI,
167                                          ArrayRef<unsigned> ArgNos,
168                                          uint64_t DereferenceableBytes) {
169   const Function *F = CI->getCaller();
170   if (!F)
171     return;
172   for (unsigned ArgNo : ArgNos) {
173     uint64_t DerefBytes = DereferenceableBytes;
174     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
175     if (!llvm::NullPointerIsDefined(F, AS) ||
176         CI->paramHasAttr(ArgNo, Attribute::NonNull))
177       DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
178                                 ArgNo + AttributeList::FirstArgIndex),
179                             DereferenceableBytes);
180 
181     if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
182         DerefBytes) {
183       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
184       if (!llvm::NullPointerIsDefined(F, AS) ||
185           CI->paramHasAttr(ArgNo, Attribute::NonNull))
186         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
187       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
188                                   CI->getContext(), DerefBytes));
189     }
190   }
191 }
192 
annotateNonNullBasedOnAccess(CallInst * CI,ArrayRef<unsigned> ArgNos)193 static void annotateNonNullBasedOnAccess(CallInst *CI,
194                                          ArrayRef<unsigned> ArgNos) {
195   Function *F = CI->getCaller();
196   if (!F)
197     return;
198 
199   for (unsigned ArgNo : ArgNos) {
200     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
201       continue;
202     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
203     if (llvm::NullPointerIsDefined(F, AS))
204       continue;
205 
206     CI->addParamAttr(ArgNo, Attribute::NonNull);
207     annotateDereferenceableBytes(CI, ArgNo, 1);
208   }
209 }
210 
annotateNonNullAndDereferenceable(CallInst * CI,ArrayRef<unsigned> ArgNos,Value * Size,const DataLayout & DL)211 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
212                                Value *Size, const DataLayout &DL) {
213   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
214     annotateNonNullBasedOnAccess(CI, ArgNos);
215     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
216   } else if (isKnownNonZero(Size, DL)) {
217     annotateNonNullBasedOnAccess(CI, ArgNos);
218     const APInt *X, *Y;
219     uint64_t DerefMin = 1;
220     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
221       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
222       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
223     }
224   }
225 }
226 
227 //===----------------------------------------------------------------------===//
228 // String and Memory Library Call Optimizations
229 //===----------------------------------------------------------------------===//
230 
optimizeStrCat(CallInst * CI,IRBuilderBase & B)231 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
232   // Extract some information from the instruction
233   Value *Dst = CI->getArgOperand(0);
234   Value *Src = CI->getArgOperand(1);
235   annotateNonNullBasedOnAccess(CI, {0, 1});
236 
237   // See if we can get the length of the input string.
238   uint64_t Len = GetStringLength(Src);
239   if (Len)
240     annotateDereferenceableBytes(CI, 1, Len);
241   else
242     return nullptr;
243   --Len; // Unbias length.
244 
245   // Handle the simple, do-nothing case: strcat(x, "") -> x
246   if (Len == 0)
247     return Dst;
248 
249   return emitStrLenMemCpy(Src, Dst, Len, B);
250 }
251 
emitStrLenMemCpy(Value * Src,Value * Dst,uint64_t Len,IRBuilderBase & B)252 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
253                                            IRBuilderBase &B) {
254   // We need to find the end of the destination string.  That's where the
255   // memory is to be moved to. We just generate a call to strlen.
256   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
257   if (!DstLen)
258     return nullptr;
259 
260   // Now that we have the destination's length, we must index into the
261   // destination's pointer to get the actual memcpy destination (end of
262   // the string .. we're concatenating).
263   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
264 
265   // We have enough information to now generate the memcpy call to do the
266   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
267   B.CreateMemCpy(
268       CpyDst, Align(1), Src, Align(1),
269       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
270   return Dst;
271 }
272 
optimizeStrNCat(CallInst * CI,IRBuilderBase & B)273 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
274   // Extract some information from the instruction.
275   Value *Dst = CI->getArgOperand(0);
276   Value *Src = CI->getArgOperand(1);
277   Value *Size = CI->getArgOperand(2);
278   uint64_t Len;
279   annotateNonNullBasedOnAccess(CI, 0);
280   if (isKnownNonZero(Size, DL))
281     annotateNonNullBasedOnAccess(CI, 1);
282 
283   // We don't do anything if length is not constant.
284   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
285   if (LengthArg) {
286     Len = LengthArg->getZExtValue();
287     // strncat(x, c, 0) -> x
288     if (!Len)
289       return Dst;
290   } else {
291     return nullptr;
292   }
293 
294   // See if we can get the length of the input string.
295   uint64_t SrcLen = GetStringLength(Src);
296   if (SrcLen) {
297     annotateDereferenceableBytes(CI, 1, SrcLen);
298     --SrcLen; // Unbias length.
299   } else {
300     return nullptr;
301   }
302 
303   // strncat(x, "", c) -> x
304   if (SrcLen == 0)
305     return Dst;
306 
307   // We don't optimize this case.
308   if (Len < SrcLen)
309     return nullptr;
310 
311   // strncat(x, s, c) -> strcat(x, s)
312   // s is constant so the strcat can be optimized further.
313   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
314 }
315 
optimizeStrChr(CallInst * CI,IRBuilderBase & B)316 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
317   Function *Callee = CI->getCalledFunction();
318   FunctionType *FT = Callee->getFunctionType();
319   Value *SrcStr = CI->getArgOperand(0);
320   annotateNonNullBasedOnAccess(CI, 0);
321 
322   // If the second operand is non-constant, see if we can compute the length
323   // of the input string and turn this into memchr.
324   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
325   if (!CharC) {
326     uint64_t Len = GetStringLength(SrcStr);
327     if (Len)
328       annotateDereferenceableBytes(CI, 0, Len);
329     else
330       return nullptr;
331     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
332       return nullptr;
333 
334     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
335                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
336                       B, DL, TLI);
337   }
338 
339   // Otherwise, the character is a constant, see if the first argument is
340   // a string literal.  If so, we can constant fold.
341   StringRef Str;
342   if (!getConstantStringInfo(SrcStr, Str)) {
343     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
344       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
345         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
346     return nullptr;
347   }
348 
349   // Compute the offset, make sure to handle the case when we're searching for
350   // zero (a weird way to spell strlen).
351   size_t I = (0xFF & CharC->getSExtValue()) == 0
352                  ? Str.size()
353                  : Str.find(CharC->getSExtValue());
354   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
355     return Constant::getNullValue(CI->getType());
356 
357   // strchr(s+n,c)  -> gep(s+n+i,c)
358   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
359 }
360 
optimizeStrRChr(CallInst * CI,IRBuilderBase & B)361 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
362   Value *SrcStr = CI->getArgOperand(0);
363   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
364   annotateNonNullBasedOnAccess(CI, 0);
365 
366   // Cannot fold anything if we're not looking for a constant.
367   if (!CharC)
368     return nullptr;
369 
370   StringRef Str;
371   if (!getConstantStringInfo(SrcStr, Str)) {
372     // strrchr(s, 0) -> strchr(s, 0)
373     if (CharC->isZero())
374       return emitStrChr(SrcStr, '\0', B, TLI);
375     return nullptr;
376   }
377 
378   // Compute the offset.
379   size_t I = (0xFF & CharC->getSExtValue()) == 0
380                  ? Str.size()
381                  : Str.rfind(CharC->getSExtValue());
382   if (I == StringRef::npos) // Didn't find the char. Return null.
383     return Constant::getNullValue(CI->getType());
384 
385   // strrchr(s+n,c) -> gep(s+n+i,c)
386   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
387 }
388 
optimizeStrCmp(CallInst * CI,IRBuilderBase & B)389 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
390   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
391   if (Str1P == Str2P) // strcmp(x,x)  -> 0
392     return ConstantInt::get(CI->getType(), 0);
393 
394   StringRef Str1, Str2;
395   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
396   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
397 
398   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
399   if (HasStr1 && HasStr2)
400     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
401 
402   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
403     return B.CreateNeg(B.CreateZExt(
404         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
405 
406   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
407     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
408                         CI->getType());
409 
410   // strcmp(P, "x") -> memcmp(P, "x", 2)
411   uint64_t Len1 = GetStringLength(Str1P);
412   if (Len1)
413     annotateDereferenceableBytes(CI, 0, Len1);
414   uint64_t Len2 = GetStringLength(Str2P);
415   if (Len2)
416     annotateDereferenceableBytes(CI, 1, Len2);
417 
418   if (Len1 && Len2) {
419     return emitMemCmp(Str1P, Str2P,
420                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
421                                        std::min(Len1, Len2)),
422                       B, DL, TLI);
423   }
424 
425   // strcmp to memcmp
426   if (!HasStr1 && HasStr2) {
427     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
428       return emitMemCmp(
429           Str1P, Str2P,
430           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
431           TLI);
432   } else if (HasStr1 && !HasStr2) {
433     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
434       return emitMemCmp(
435           Str1P, Str2P,
436           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
437           TLI);
438   }
439 
440   annotateNonNullBasedOnAccess(CI, {0, 1});
441   return nullptr;
442 }
443 
optimizeStrNCmp(CallInst * CI,IRBuilderBase & B)444 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
445   Value *Str1P = CI->getArgOperand(0);
446   Value *Str2P = CI->getArgOperand(1);
447   Value *Size = CI->getArgOperand(2);
448   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
449     return ConstantInt::get(CI->getType(), 0);
450 
451   if (isKnownNonZero(Size, DL))
452     annotateNonNullBasedOnAccess(CI, {0, 1});
453   // Get the length argument if it is constant.
454   uint64_t Length;
455   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
456     Length = LengthArg->getZExtValue();
457   else
458     return nullptr;
459 
460   if (Length == 0) // strncmp(x,y,0)   -> 0
461     return ConstantInt::get(CI->getType(), 0);
462 
463   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
464     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
465 
466   StringRef Str1, Str2;
467   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
468   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
469 
470   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
471   if (HasStr1 && HasStr2) {
472     StringRef SubStr1 = Str1.substr(0, Length);
473     StringRef SubStr2 = Str2.substr(0, Length);
474     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
475   }
476 
477   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
478     return B.CreateNeg(B.CreateZExt(
479         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
480 
481   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
482     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
483                         CI->getType());
484 
485   uint64_t Len1 = GetStringLength(Str1P);
486   if (Len1)
487     annotateDereferenceableBytes(CI, 0, Len1);
488   uint64_t Len2 = GetStringLength(Str2P);
489   if (Len2)
490     annotateDereferenceableBytes(CI, 1, Len2);
491 
492   // strncmp to memcmp
493   if (!HasStr1 && HasStr2) {
494     Len2 = std::min(Len2, Length);
495     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
496       return emitMemCmp(
497           Str1P, Str2P,
498           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
499           TLI);
500   } else if (HasStr1 && !HasStr2) {
501     Len1 = std::min(Len1, Length);
502     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
503       return emitMemCmp(
504           Str1P, Str2P,
505           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
506           TLI);
507   }
508 
509   return nullptr;
510 }
511 
optimizeStrNDup(CallInst * CI,IRBuilderBase & B)512 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
513   Value *Src = CI->getArgOperand(0);
514   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
515   uint64_t SrcLen = GetStringLength(Src);
516   if (SrcLen && Size) {
517     annotateDereferenceableBytes(CI, 0, SrcLen);
518     if (SrcLen <= Size->getZExtValue() + 1)
519       return emitStrDup(Src, B, TLI);
520   }
521 
522   return nullptr;
523 }
524 
optimizeStrCpy(CallInst * CI,IRBuilderBase & B)525 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
526   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
527   if (Dst == Src) // strcpy(x,x)  -> x
528     return Src;
529 
530   annotateNonNullBasedOnAccess(CI, {0, 1});
531   // See if we can get the length of the input string.
532   uint64_t Len = GetStringLength(Src);
533   if (Len)
534     annotateDereferenceableBytes(CI, 1, Len);
535   else
536     return nullptr;
537 
538   // We have enough information to now generate the memcpy call to do the
539   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
540   CallInst *NewCI =
541       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
542                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
543   NewCI->setAttributes(CI->getAttributes());
544   return Dst;
545 }
546 
optimizeStpCpy(CallInst * CI,IRBuilderBase & B)547 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
548   Function *Callee = CI->getCalledFunction();
549   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
550   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
551     Value *StrLen = emitStrLen(Src, B, DL, TLI);
552     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
553   }
554 
555   // See if we can get the length of the input string.
556   uint64_t Len = GetStringLength(Src);
557   if (Len)
558     annotateDereferenceableBytes(CI, 1, Len);
559   else
560     return nullptr;
561 
562   Type *PT = Callee->getFunctionType()->getParamType(0);
563   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
564   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
565                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
566 
567   // We have enough information to now generate the memcpy call to do the
568   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
569   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
570   NewCI->setAttributes(CI->getAttributes());
571   return DstEnd;
572 }
573 
optimizeStrNCpy(CallInst * CI,IRBuilderBase & B)574 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
575   Function *Callee = CI->getCalledFunction();
576   Value *Dst = CI->getArgOperand(0);
577   Value *Src = CI->getArgOperand(1);
578   Value *Size = CI->getArgOperand(2);
579   annotateNonNullBasedOnAccess(CI, 0);
580   if (isKnownNonZero(Size, DL))
581     annotateNonNullBasedOnAccess(CI, 1);
582 
583   uint64_t Len;
584   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
585     Len = LengthArg->getZExtValue();
586   else
587     return nullptr;
588 
589   // strncpy(x, y, 0) -> x
590   if (Len == 0)
591     return Dst;
592 
593   // See if we can get the length of the input string.
594   uint64_t SrcLen = GetStringLength(Src);
595   if (SrcLen) {
596     annotateDereferenceableBytes(CI, 1, SrcLen);
597     --SrcLen; // Unbias length.
598   } else {
599     return nullptr;
600   }
601 
602   if (SrcLen == 0) {
603     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
604     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1));
605     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
606     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
607         CI->getContext(), 0, ArgAttrs));
608     return Dst;
609   }
610 
611   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
612   if (Len > SrcLen + 1) {
613     if (Len <= 128) {
614       StringRef Str;
615       if (!getConstantStringInfo(Src, Str))
616         return nullptr;
617       std::string SrcStr = Str.str();
618       SrcStr.resize(Len, '\0');
619       Src = B.CreateGlobalString(SrcStr, "str");
620     } else {
621       return nullptr;
622     }
623   }
624 
625   Type *PT = Callee->getFunctionType()->getParamType(0);
626   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
627   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
628                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
629   NewCI->setAttributes(CI->getAttributes());
630   return Dst;
631 }
632 
optimizeStringLength(CallInst * CI,IRBuilderBase & B,unsigned CharSize)633 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
634                                                unsigned CharSize) {
635   Value *Src = CI->getArgOperand(0);
636 
637   // Constant folding: strlen("xyz") -> 3
638   if (uint64_t Len = GetStringLength(Src, CharSize))
639     return ConstantInt::get(CI->getType(), Len - 1);
640 
641   // If s is a constant pointer pointing to a string literal, we can fold
642   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
643   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
644   // We only try to simplify strlen when the pointer s points to an array
645   // of i8. Otherwise, we would need to scale the offset x before doing the
646   // subtraction. This will make the optimization more complex, and it's not
647   // very useful because calling strlen for a pointer of other types is
648   // very uncommon.
649   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
650     if (!isGEPBasedOnPointerToString(GEP, CharSize))
651       return nullptr;
652 
653     ConstantDataArraySlice Slice;
654     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
655       uint64_t NullTermIdx;
656       if (Slice.Array == nullptr) {
657         NullTermIdx = 0;
658       } else {
659         NullTermIdx = ~((uint64_t)0);
660         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
661           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
662             NullTermIdx = I;
663             break;
664           }
665         }
666         // If the string does not have '\0', leave it to strlen to compute
667         // its length.
668         if (NullTermIdx == ~((uint64_t)0))
669           return nullptr;
670       }
671 
672       Value *Offset = GEP->getOperand(2);
673       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
674       Known.Zero.flipAllBits();
675       uint64_t ArrSize =
676              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
677 
678       // KnownZero's bits are flipped, so zeros in KnownZero now represent
679       // bits known to be zeros in Offset, and ones in KnowZero represent
680       // bits unknown in Offset. Therefore, Offset is known to be in range
681       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
682       // unsigned-less-than NullTermIdx.
683       //
684       // If Offset is not provably in the range [0, NullTermIdx], we can still
685       // optimize if we can prove that the program has undefined behavior when
686       // Offset is outside that range. That is the case when GEP->getOperand(0)
687       // is a pointer to an object whose memory extent is NullTermIdx+1.
688       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
689           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
690            NullTermIdx == ArrSize - 1)) {
691         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
692         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
693                            Offset);
694       }
695     }
696   }
697 
698   // strlen(x?"foo":"bars") --> x ? 3 : 4
699   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
700     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
701     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
702     if (LenTrue && LenFalse) {
703       ORE.emit([&]() {
704         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
705                << "folded strlen(select) to select of constants";
706       });
707       return B.CreateSelect(SI->getCondition(),
708                             ConstantInt::get(CI->getType(), LenTrue - 1),
709                             ConstantInt::get(CI->getType(), LenFalse - 1));
710     }
711   }
712 
713   // strlen(x) != 0 --> *x != 0
714   // strlen(x) == 0 --> *x == 0
715   if (isOnlyUsedInZeroEqualityComparison(CI))
716     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
717                         CI->getType());
718 
719   return nullptr;
720 }
721 
optimizeStrLen(CallInst * CI,IRBuilderBase & B)722 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
723   if (Value *V = optimizeStringLength(CI, B, 8))
724     return V;
725   annotateNonNullBasedOnAccess(CI, 0);
726   return nullptr;
727 }
728 
optimizeWcslen(CallInst * CI,IRBuilderBase & B)729 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
730   Module &M = *CI->getModule();
731   unsigned WCharSize = TLI->getWCharSize(M) * 8;
732   // We cannot perform this optimization without wchar_size metadata.
733   if (WCharSize == 0)
734     return nullptr;
735 
736   return optimizeStringLength(CI, B, WCharSize);
737 }
738 
optimizeStrPBrk(CallInst * CI,IRBuilderBase & B)739 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
740   StringRef S1, S2;
741   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
742   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
743 
744   // strpbrk(s, "") -> nullptr
745   // strpbrk("", s) -> nullptr
746   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
747     return Constant::getNullValue(CI->getType());
748 
749   // Constant folding.
750   if (HasS1 && HasS2) {
751     size_t I = S1.find_first_of(S2);
752     if (I == StringRef::npos) // No match.
753       return Constant::getNullValue(CI->getType());
754 
755     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
756                        "strpbrk");
757   }
758 
759   // strpbrk(s, "a") -> strchr(s, 'a')
760   if (HasS2 && S2.size() == 1)
761     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
762 
763   return nullptr;
764 }
765 
optimizeStrTo(CallInst * CI,IRBuilderBase & B)766 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
767   Value *EndPtr = CI->getArgOperand(1);
768   if (isa<ConstantPointerNull>(EndPtr)) {
769     // With a null EndPtr, this function won't capture the main argument.
770     // It would be readonly too, except that it still may write to errno.
771     CI->addParamAttr(0, Attribute::NoCapture);
772   }
773 
774   return nullptr;
775 }
776 
optimizeStrSpn(CallInst * CI,IRBuilderBase & B)777 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
778   StringRef S1, S2;
779   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
780   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
781 
782   // strspn(s, "") -> 0
783   // strspn("", s) -> 0
784   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
785     return Constant::getNullValue(CI->getType());
786 
787   // Constant folding.
788   if (HasS1 && HasS2) {
789     size_t Pos = S1.find_first_not_of(S2);
790     if (Pos == StringRef::npos)
791       Pos = S1.size();
792     return ConstantInt::get(CI->getType(), Pos);
793   }
794 
795   return nullptr;
796 }
797 
optimizeStrCSpn(CallInst * CI,IRBuilderBase & B)798 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
799   StringRef S1, S2;
800   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
801   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
802 
803   // strcspn("", s) -> 0
804   if (HasS1 && S1.empty())
805     return Constant::getNullValue(CI->getType());
806 
807   // Constant folding.
808   if (HasS1 && HasS2) {
809     size_t Pos = S1.find_first_of(S2);
810     if (Pos == StringRef::npos)
811       Pos = S1.size();
812     return ConstantInt::get(CI->getType(), Pos);
813   }
814 
815   // strcspn(s, "") -> strlen(s)
816   if (HasS2 && S2.empty())
817     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
818 
819   return nullptr;
820 }
821 
optimizeStrStr(CallInst * CI,IRBuilderBase & B)822 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
823   // fold strstr(x, x) -> x.
824   if (CI->getArgOperand(0) == CI->getArgOperand(1))
825     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
826 
827   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
828   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
829     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
830     if (!StrLen)
831       return nullptr;
832     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
833                                  StrLen, B, DL, TLI);
834     if (!StrNCmp)
835       return nullptr;
836     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
837       ICmpInst *Old = cast<ICmpInst>(*UI++);
838       Value *Cmp =
839           B.CreateICmp(Old->getPredicate(), StrNCmp,
840                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
841       replaceAllUsesWith(Old, Cmp);
842     }
843     return CI;
844   }
845 
846   // See if either input string is a constant string.
847   StringRef SearchStr, ToFindStr;
848   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
849   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
850 
851   // fold strstr(x, "") -> x.
852   if (HasStr2 && ToFindStr.empty())
853     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
854 
855   // If both strings are known, constant fold it.
856   if (HasStr1 && HasStr2) {
857     size_t Offset = SearchStr.find(ToFindStr);
858 
859     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
860       return Constant::getNullValue(CI->getType());
861 
862     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
863     Value *Result = castToCStr(CI->getArgOperand(0), B);
864     Result =
865         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
866     return B.CreateBitCast(Result, CI->getType());
867   }
868 
869   // fold strstr(x, "y") -> strchr(x, 'y').
870   if (HasStr2 && ToFindStr.size() == 1) {
871     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
872     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
873   }
874 
875   annotateNonNullBasedOnAccess(CI, {0, 1});
876   return nullptr;
877 }
878 
optimizeMemRChr(CallInst * CI,IRBuilderBase & B)879 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
880   if (isKnownNonZero(CI->getOperand(2), DL))
881     annotateNonNullBasedOnAccess(CI, 0);
882   return nullptr;
883 }
884 
optimizeMemChr(CallInst * CI,IRBuilderBase & B)885 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
886   Value *SrcStr = CI->getArgOperand(0);
887   Value *Size = CI->getArgOperand(2);
888   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
889   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
890   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
891 
892   // memchr(x, y, 0) -> null
893   if (LenC) {
894     if (LenC->isZero())
895       return Constant::getNullValue(CI->getType());
896   } else {
897     // From now on we need at least constant length and string.
898     return nullptr;
899   }
900 
901   StringRef Str;
902   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
903     return nullptr;
904 
905   // Truncate the string to LenC. If Str is smaller than LenC we will still only
906   // scan the string, as reading past the end of it is undefined and we can just
907   // return null if we don't find the char.
908   Str = Str.substr(0, LenC->getZExtValue());
909 
910   // If the char is variable but the input str and length are not we can turn
911   // this memchr call into a simple bit field test. Of course this only works
912   // when the return value is only checked against null.
913   //
914   // It would be really nice to reuse switch lowering here but we can't change
915   // the CFG at this point.
916   //
917   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
918   // != 0
919   //   after bounds check.
920   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
921     unsigned char Max =
922         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
923                           reinterpret_cast<const unsigned char *>(Str.end()));
924 
925     // Make sure the bit field we're about to create fits in a register on the
926     // target.
927     // FIXME: On a 64 bit architecture this prevents us from using the
928     // interesting range of alpha ascii chars. We could do better by emitting
929     // two bitfields or shifting the range by 64 if no lower chars are used.
930     if (!DL.fitsInLegalInteger(Max + 1))
931       return nullptr;
932 
933     // For the bit field use a power-of-2 type with at least 8 bits to avoid
934     // creating unnecessary illegal types.
935     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
936 
937     // Now build the bit field.
938     APInt Bitfield(Width, 0);
939     for (char C : Str)
940       Bitfield.setBit((unsigned char)C);
941     Value *BitfieldC = B.getInt(Bitfield);
942 
943     // Adjust width of "C" to the bitfield width, then mask off the high bits.
944     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
945     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
946 
947     // First check that the bit field access is within bounds.
948     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
949                                  "memchr.bounds");
950 
951     // Create code that checks if the given bit is set in the field.
952     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
953     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
954 
955     // Finally merge both checks and cast to pointer type. The inttoptr
956     // implicitly zexts the i1 to intptr type.
957     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
958   }
959 
960   // Check if all arguments are constants.  If so, we can constant fold.
961   if (!CharC)
962     return nullptr;
963 
964   // Compute the offset.
965   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
966   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
967     return Constant::getNullValue(CI->getType());
968 
969   // memchr(s+n,c,l) -> gep(s+n+i,c)
970   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
971 }
972 
optimizeMemCmpConstantSize(CallInst * CI,Value * LHS,Value * RHS,uint64_t Len,IRBuilderBase & B,const DataLayout & DL)973 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
974                                          uint64_t Len, IRBuilderBase &B,
975                                          const DataLayout &DL) {
976   if (Len == 0) // memcmp(s1,s2,0) -> 0
977     return Constant::getNullValue(CI->getType());
978 
979   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
980   if (Len == 1) {
981     Value *LHSV =
982         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
983                      CI->getType(), "lhsv");
984     Value *RHSV =
985         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
986                      CI->getType(), "rhsv");
987     return B.CreateSub(LHSV, RHSV, "chardiff");
988   }
989 
990   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
991   // TODO: The case where both inputs are constants does not need to be limited
992   // to legal integers or equality comparison. See block below this.
993   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
994     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
995     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
996 
997     // First, see if we can fold either argument to a constant.
998     Value *LHSV = nullptr;
999     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1000       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1001       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1002     }
1003     Value *RHSV = nullptr;
1004     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1005       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1006       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1007     }
1008 
1009     // Don't generate unaligned loads. If either source is constant data,
1010     // alignment doesn't matter for that source because there is no load.
1011     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1012         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1013       if (!LHSV) {
1014         Type *LHSPtrTy =
1015             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1016         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1017       }
1018       if (!RHSV) {
1019         Type *RHSPtrTy =
1020             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1021         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1022       }
1023       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1024     }
1025   }
1026 
1027   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1028   // TODO: This is limited to i8 arrays.
1029   StringRef LHSStr, RHSStr;
1030   if (getConstantStringInfo(LHS, LHSStr) &&
1031       getConstantStringInfo(RHS, RHSStr)) {
1032     // Make sure we're not reading out-of-bounds memory.
1033     if (Len > LHSStr.size() || Len > RHSStr.size())
1034       return nullptr;
1035     // Fold the memcmp and normalize the result.  This way we get consistent
1036     // results across multiple platforms.
1037     uint64_t Ret = 0;
1038     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1039     if (Cmp < 0)
1040       Ret = -1;
1041     else if (Cmp > 0)
1042       Ret = 1;
1043     return ConstantInt::get(CI->getType(), Ret);
1044   }
1045 
1046   return nullptr;
1047 }
1048 
1049 // Most simplifications for memcmp also apply to bcmp.
optimizeMemCmpBCmpCommon(CallInst * CI,IRBuilderBase & B)1050 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1051                                                    IRBuilderBase &B) {
1052   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1053   Value *Size = CI->getArgOperand(2);
1054 
1055   if (LHS == RHS) // memcmp(s,s,x) -> 0
1056     return Constant::getNullValue(CI->getType());
1057 
1058   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1059   // Handle constant lengths.
1060   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1061   if (!LenC)
1062     return nullptr;
1063 
1064   // memcmp(d,s,0) -> 0
1065   if (LenC->getZExtValue() == 0)
1066     return Constant::getNullValue(CI->getType());
1067 
1068   if (Value *Res =
1069           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1070     return Res;
1071   return nullptr;
1072 }
1073 
optimizeMemCmp(CallInst * CI,IRBuilderBase & B)1074 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1075   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1076     return V;
1077 
1078   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1079   // bcmp can be more efficient than memcmp because it only has to know that
1080   // there is a difference, not how different one is to the other.
1081   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1082     Value *LHS = CI->getArgOperand(0);
1083     Value *RHS = CI->getArgOperand(1);
1084     Value *Size = CI->getArgOperand(2);
1085     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1086   }
1087 
1088   return nullptr;
1089 }
1090 
optimizeBCmp(CallInst * CI,IRBuilderBase & B)1091 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1092   return optimizeMemCmpBCmpCommon(CI, B);
1093 }
1094 
optimizeMemCpy(CallInst * CI,IRBuilderBase & B)1095 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1096   Value *Size = CI->getArgOperand(2);
1097   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1098   if (isa<IntrinsicInst>(CI))
1099     return nullptr;
1100 
1101   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1102   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1103                                    CI->getArgOperand(1), Align(1), Size);
1104   NewCI->setAttributes(CI->getAttributes());
1105   return CI->getArgOperand(0);
1106 }
1107 
optimizeMemCCpy(CallInst * CI,IRBuilderBase & B)1108 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1109   Value *Dst = CI->getArgOperand(0);
1110   Value *Src = CI->getArgOperand(1);
1111   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1112   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1113   StringRef SrcStr;
1114   if (CI->use_empty() && Dst == Src)
1115     return Dst;
1116   // memccpy(d, s, c, 0) -> nullptr
1117   if (N) {
1118     if (N->isNullValue())
1119       return Constant::getNullValue(CI->getType());
1120     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1121                                /*TrimAtNul=*/false) ||
1122         !StopChar)
1123       return nullptr;
1124   } else {
1125     return nullptr;
1126   }
1127 
1128   // Wrap arg 'c' of type int to char
1129   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1130   if (Pos == StringRef::npos) {
1131     if (N->getZExtValue() <= SrcStr.size()) {
1132       B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3));
1133       return Constant::getNullValue(CI->getType());
1134     }
1135     return nullptr;
1136   }
1137 
1138   Value *NewN =
1139       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1140   // memccpy -> llvm.memcpy
1141   B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN);
1142   return Pos + 1 <= N->getZExtValue()
1143              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1144              : Constant::getNullValue(CI->getType());
1145 }
1146 
optimizeMemPCpy(CallInst * CI,IRBuilderBase & B)1147 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1148   Value *Dst = CI->getArgOperand(0);
1149   Value *N = CI->getArgOperand(2);
1150   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1151   CallInst *NewCI =
1152       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1153   NewCI->setAttributes(CI->getAttributes());
1154   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1155 }
1156 
optimizeMemMove(CallInst * CI,IRBuilderBase & B)1157 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1158   Value *Size = CI->getArgOperand(2);
1159   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1160   if (isa<IntrinsicInst>(CI))
1161     return nullptr;
1162 
1163   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1164   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1165                                     CI->getArgOperand(1), Align(1), Size);
1166   NewCI->setAttributes(CI->getAttributes());
1167   return CI->getArgOperand(0);
1168 }
1169 
1170 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
foldMallocMemset(CallInst * Memset,IRBuilderBase & B)1171 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) {
1172   // This has to be a memset of zeros (bzero).
1173   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1174   if (!FillValue || FillValue->getZExtValue() != 0)
1175     return nullptr;
1176 
1177   // TODO: We should handle the case where the malloc has more than one use.
1178   // This is necessary to optimize common patterns such as when the result of
1179   // the malloc is checked against null or when a memset intrinsic is used in
1180   // place of a memset library call.
1181   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1182   if (!Malloc || !Malloc->hasOneUse())
1183     return nullptr;
1184 
1185   // Is the inner call really malloc()?
1186   Function *InnerCallee = Malloc->getCalledFunction();
1187   if (!InnerCallee)
1188     return nullptr;
1189 
1190   LibFunc Func;
1191   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1192       Func != LibFunc_malloc)
1193     return nullptr;
1194 
1195   // The memset must cover the same number of bytes that are malloc'd.
1196   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1197     return nullptr;
1198 
1199   // Replace the malloc with a calloc. We need the data layout to know what the
1200   // actual size of a 'size_t' parameter is.
1201   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1202   const DataLayout &DL = Malloc->getModule()->getDataLayout();
1203   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1204   if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1205                                  Malloc->getArgOperand(0),
1206                                  Malloc->getAttributes(), B, *TLI)) {
1207     substituteInParent(Malloc, Calloc);
1208     return Calloc;
1209   }
1210 
1211   return nullptr;
1212 }
1213 
optimizeMemSet(CallInst * CI,IRBuilderBase & B)1214 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1215   Value *Size = CI->getArgOperand(2);
1216   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1217   if (isa<IntrinsicInst>(CI))
1218     return nullptr;
1219 
1220   if (auto *Calloc = foldMallocMemset(CI, B))
1221     return Calloc;
1222 
1223   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1224   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1225   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1226   NewCI->setAttributes(CI->getAttributes());
1227   return CI->getArgOperand(0);
1228 }
1229 
optimizeRealloc(CallInst * CI,IRBuilderBase & B)1230 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1231   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1232     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1233 
1234   return nullptr;
1235 }
1236 
1237 //===----------------------------------------------------------------------===//
1238 // Math Library Optimizations
1239 //===----------------------------------------------------------------------===//
1240 
1241 // Replace a libcall \p CI with a call to intrinsic \p IID
replaceUnaryCall(CallInst * CI,IRBuilderBase & B,Intrinsic::ID IID)1242 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1243                                Intrinsic::ID IID) {
1244   // Propagate fast-math flags from the existing call to the new call.
1245   IRBuilderBase::FastMathFlagGuard Guard(B);
1246   B.setFastMathFlags(CI->getFastMathFlags());
1247 
1248   Module *M = CI->getModule();
1249   Value *V = CI->getArgOperand(0);
1250   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1251   CallInst *NewCall = B.CreateCall(F, V);
1252   NewCall->takeName(CI);
1253   return NewCall;
1254 }
1255 
1256 /// Return a variant of Val with float type.
1257 /// Currently this works in two cases: If Val is an FPExtension of a float
1258 /// value to something bigger, simply return the operand.
1259 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1260 /// loss of precision do so.
valueHasFloatPrecision(Value * Val)1261 static Value *valueHasFloatPrecision(Value *Val) {
1262   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1263     Value *Op = Cast->getOperand(0);
1264     if (Op->getType()->isFloatTy())
1265       return Op;
1266   }
1267   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1268     APFloat F = Const->getValueAPF();
1269     bool losesInfo;
1270     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1271                     &losesInfo);
1272     if (!losesInfo)
1273       return ConstantFP::get(Const->getContext(), F);
1274   }
1275   return nullptr;
1276 }
1277 
1278 /// Shrink double -> float functions.
optimizeDoubleFP(CallInst * CI,IRBuilderBase & B,bool isBinary,bool isPrecise=false)1279 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1280                                bool isBinary, bool isPrecise = false) {
1281   Function *CalleeFn = CI->getCalledFunction();
1282   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1283     return nullptr;
1284 
1285   // If not all the uses of the function are converted to float, then bail out.
1286   // This matters if the precision of the result is more important than the
1287   // precision of the arguments.
1288   if (isPrecise)
1289     for (User *U : CI->users()) {
1290       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1291       if (!Cast || !Cast->getType()->isFloatTy())
1292         return nullptr;
1293     }
1294 
1295   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1296   Value *V[2];
1297   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1298   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1299   if (!V[0] || (isBinary && !V[1]))
1300     return nullptr;
1301 
1302   // If call isn't an intrinsic, check that it isn't within a function with the
1303   // same name as the float version of this call, otherwise the result is an
1304   // infinite loop.  For example, from MinGW-w64:
1305   //
1306   // float expf(float val) { return (float) exp((double) val); }
1307   StringRef CalleeName = CalleeFn->getName();
1308   bool IsIntrinsic = CalleeFn->isIntrinsic();
1309   if (!IsIntrinsic) {
1310     StringRef CallerName = CI->getFunction()->getName();
1311     if (!CallerName.empty() && CallerName.back() == 'f' &&
1312         CallerName.size() == (CalleeName.size() + 1) &&
1313         CallerName.startswith(CalleeName))
1314       return nullptr;
1315   }
1316 
1317   // Propagate the math semantics from the current function to the new function.
1318   IRBuilderBase::FastMathFlagGuard Guard(B);
1319   B.setFastMathFlags(CI->getFastMathFlags());
1320 
1321   // g((double) float) -> (double) gf(float)
1322   Value *R;
1323   if (IsIntrinsic) {
1324     Module *M = CI->getModule();
1325     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1326     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1327     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1328   } else {
1329     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1330     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1331                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1332   }
1333   return B.CreateFPExt(R, B.getDoubleTy());
1334 }
1335 
1336 /// Shrink double -> float for unary functions.
optimizeUnaryDoubleFP(CallInst * CI,IRBuilderBase & B,bool isPrecise=false)1337 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1338                                     bool isPrecise = false) {
1339   return optimizeDoubleFP(CI, B, false, isPrecise);
1340 }
1341 
1342 /// Shrink double -> float for binary functions.
optimizeBinaryDoubleFP(CallInst * CI,IRBuilderBase & B,bool isPrecise=false)1343 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1344                                      bool isPrecise = false) {
1345   return optimizeDoubleFP(CI, B, true, isPrecise);
1346 }
1347 
1348 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
optimizeCAbs(CallInst * CI,IRBuilderBase & B)1349 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1350   if (!CI->isFast())
1351     return nullptr;
1352 
1353   // Propagate fast-math flags from the existing call to new instructions.
1354   IRBuilderBase::FastMathFlagGuard Guard(B);
1355   B.setFastMathFlags(CI->getFastMathFlags());
1356 
1357   Value *Real, *Imag;
1358   if (CI->getNumArgOperands() == 1) {
1359     Value *Op = CI->getArgOperand(0);
1360     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1361     Real = B.CreateExtractValue(Op, 0, "real");
1362     Imag = B.CreateExtractValue(Op, 1, "imag");
1363   } else {
1364     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1365     Real = CI->getArgOperand(0);
1366     Imag = CI->getArgOperand(1);
1367   }
1368 
1369   Value *RealReal = B.CreateFMul(Real, Real);
1370   Value *ImagImag = B.CreateFMul(Imag, Imag);
1371 
1372   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1373                                               CI->getType());
1374   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1375 }
1376 
optimizeTrigReflections(CallInst * Call,LibFunc Func,IRBuilderBase & B)1377 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1378                                       IRBuilderBase &B) {
1379   if (!isa<FPMathOperator>(Call))
1380     return nullptr;
1381 
1382   IRBuilderBase::FastMathFlagGuard Guard(B);
1383   B.setFastMathFlags(Call->getFastMathFlags());
1384 
1385   // TODO: Can this be shared to also handle LLVM intrinsics?
1386   Value *X;
1387   switch (Func) {
1388   case LibFunc_sin:
1389   case LibFunc_sinf:
1390   case LibFunc_sinl:
1391   case LibFunc_tan:
1392   case LibFunc_tanf:
1393   case LibFunc_tanl:
1394     // sin(-X) --> -sin(X)
1395     // tan(-X) --> -tan(X)
1396     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1397       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1398     break;
1399   case LibFunc_cos:
1400   case LibFunc_cosf:
1401   case LibFunc_cosl:
1402     // cos(-X) --> cos(X)
1403     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1404       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1405     break;
1406   default:
1407     break;
1408   }
1409   return nullptr;
1410 }
1411 
getPow(Value * InnerChain[33],unsigned Exp,IRBuilderBase & B)1412 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1413   // Multiplications calculated using Addition Chains.
1414   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1415 
1416   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1417 
1418   if (InnerChain[Exp])
1419     return InnerChain[Exp];
1420 
1421   static const unsigned AddChain[33][2] = {
1422       {0, 0}, // Unused.
1423       {0, 0}, // Unused (base case = pow1).
1424       {1, 1}, // Unused (pre-computed).
1425       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1426       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1427       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1428       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1429       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1430   };
1431 
1432   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1433                                  getPow(InnerChain, AddChain[Exp][1], B));
1434   return InnerChain[Exp];
1435 }
1436 
1437 // Return a properly extended 32-bit integer if the operation is an itofp.
getIntToFPVal(Value * I2F,IRBuilderBase & B)1438 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) {
1439   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1440     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1441     // Make sure that the exponent fits inside an int32_t,
1442     // thus avoiding any range issues that FP has not.
1443     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1444     if (BitWidth < 32 ||
1445         (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1446       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1447                                   : B.CreateZExt(Op, B.getInt32Ty());
1448   }
1449 
1450   return nullptr;
1451 }
1452 
1453 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1454 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1455 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
replacePowWithExp(CallInst * Pow,IRBuilderBase & B)1456 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1457   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1458   AttributeList Attrs; // Attributes are only meaningful on the original call
1459   Module *Mod = Pow->getModule();
1460   Type *Ty = Pow->getType();
1461   bool Ignored;
1462 
1463   // Evaluate special cases related to a nested function as the base.
1464 
1465   // pow(exp(x), y) -> exp(x * y)
1466   // pow(exp2(x), y) -> exp2(x * y)
1467   // If exp{,2}() is used only once, it is better to fold two transcendental
1468   // math functions into one.  If used again, exp{,2}() would still have to be
1469   // called with the original argument, then keep both original transcendental
1470   // functions.  However, this transformation is only safe with fully relaxed
1471   // math semantics, since, besides rounding differences, it changes overflow
1472   // and underflow behavior quite dramatically.  For example:
1473   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1474   // Whereas:
1475   //   exp(1000 * 0.001) = exp(1)
1476   // TODO: Loosen the requirement for fully relaxed math semantics.
1477   // TODO: Handle exp10() when more targets have it available.
1478   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1479   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1480     LibFunc LibFn;
1481 
1482     Function *CalleeFn = BaseFn->getCalledFunction();
1483     if (CalleeFn &&
1484         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1485       StringRef ExpName;
1486       Intrinsic::ID ID;
1487       Value *ExpFn;
1488       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1489 
1490       switch (LibFn) {
1491       default:
1492         return nullptr;
1493       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1494         ExpName = TLI->getName(LibFunc_exp);
1495         ID = Intrinsic::exp;
1496         LibFnFloat = LibFunc_expf;
1497         LibFnDouble = LibFunc_exp;
1498         LibFnLongDouble = LibFunc_expl;
1499         break;
1500       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1501         ExpName = TLI->getName(LibFunc_exp2);
1502         ID = Intrinsic::exp2;
1503         LibFnFloat = LibFunc_exp2f;
1504         LibFnDouble = LibFunc_exp2;
1505         LibFnLongDouble = LibFunc_exp2l;
1506         break;
1507       }
1508 
1509       // Create new exp{,2}() with the product as its argument.
1510       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1511       ExpFn = BaseFn->doesNotAccessMemory()
1512               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1513                              FMul, ExpName)
1514               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1515                                      LibFnLongDouble, B,
1516                                      BaseFn->getAttributes());
1517 
1518       // Since the new exp{,2}() is different from the original one, dead code
1519       // elimination cannot be trusted to remove it, since it may have side
1520       // effects (e.g., errno).  When the only consumer for the original
1521       // exp{,2}() is pow(), then it has to be explicitly erased.
1522       substituteInParent(BaseFn, ExpFn);
1523       return ExpFn;
1524     }
1525   }
1526 
1527   // Evaluate special cases related to a constant base.
1528 
1529   const APFloat *BaseF;
1530   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1531     return nullptr;
1532 
1533   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1534   if (match(Base, m_SpecificFP(2.0)) &&
1535       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1536       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1537     if (Value *ExpoI = getIntToFPVal(Expo, B))
1538       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1539                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1540                                    B, Attrs);
1541   }
1542 
1543   // pow(2.0 ** n, x) -> exp2(n * x)
1544   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1545     APFloat BaseR = APFloat(1.0);
1546     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1547     BaseR = BaseR / *BaseF;
1548     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1549     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1550     APSInt NI(64, false);
1551     if ((IsInteger || IsReciprocal) &&
1552         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1553             APFloat::opOK &&
1554         NI > 1 && NI.isPowerOf2()) {
1555       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1556       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1557       if (Pow->doesNotAccessMemory())
1558         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1559                             FMul, "exp2");
1560       else
1561         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1562                                     LibFunc_exp2l, B, Attrs);
1563     }
1564   }
1565 
1566   // pow(10.0, x) -> exp10(x)
1567   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1568   if (match(Base, m_SpecificFP(10.0)) &&
1569       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1570     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1571                                 LibFunc_exp10l, B, Attrs);
1572 
1573   // pow(x, y) -> exp2(log2(x) * y)
1574   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1575       !BaseF->isNegative()) {
1576     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1577     // Luckily optimizePow has already handled the x == 1 case.
1578     assert(!match(Base, m_FPOne()) &&
1579            "pow(1.0, y) should have been simplified earlier!");
1580 
1581     Value *Log = nullptr;
1582     if (Ty->isFloatTy())
1583       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1584     else if (Ty->isDoubleTy())
1585       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1586 
1587     if (Log) {
1588       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1589       if (Pow->doesNotAccessMemory())
1590         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1591                             FMul, "exp2");
1592       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1593         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1594                                     LibFunc_exp2l, B, Attrs);
1595     }
1596   }
1597 
1598   return nullptr;
1599 }
1600 
getSqrtCall(Value * V,AttributeList Attrs,bool NoErrno,Module * M,IRBuilderBase & B,const TargetLibraryInfo * TLI)1601 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1602                           Module *M, IRBuilderBase &B,
1603                           const TargetLibraryInfo *TLI) {
1604   // If errno is never set, then use the intrinsic for sqrt().
1605   if (NoErrno) {
1606     Function *SqrtFn =
1607         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1608     return B.CreateCall(SqrtFn, V, "sqrt");
1609   }
1610 
1611   // Otherwise, use the libcall for sqrt().
1612   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1613     // TODO: We also should check that the target can in fact lower the sqrt()
1614     // libcall. We currently have no way to ask this question, so we ask if
1615     // the target has a sqrt() libcall, which is not exactly the same.
1616     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1617                                 LibFunc_sqrtl, B, Attrs);
1618 
1619   return nullptr;
1620 }
1621 
1622 /// Use square root in place of pow(x, +/-0.5).
replacePowWithSqrt(CallInst * Pow,IRBuilderBase & B)1623 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1624   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1625   AttributeList Attrs; // Attributes are only meaningful on the original call
1626   Module *Mod = Pow->getModule();
1627   Type *Ty = Pow->getType();
1628 
1629   const APFloat *ExpoF;
1630   if (!match(Expo, m_APFloat(ExpoF)) ||
1631       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1632     return nullptr;
1633 
1634   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1635   // so that requires fast-math-flags (afn or reassoc).
1636   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1637     return nullptr;
1638 
1639   // If we have a pow() library call (accesses memory) and we can't guarantee
1640   // that the base is not an infinity, give up:
1641   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1642   // errno), but sqrt(-Inf) is required by various standards to set errno.
1643   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1644       !isKnownNeverInfinity(Base, TLI))
1645     return nullptr;
1646 
1647   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1648   if (!Sqrt)
1649     return nullptr;
1650 
1651   // Handle signed zero base by expanding to fabs(sqrt(x)).
1652   if (!Pow->hasNoSignedZeros()) {
1653     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1654     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1655   }
1656 
1657   // Handle non finite base by expanding to
1658   // (x == -infinity ? +infinity : sqrt(x)).
1659   if (!Pow->hasNoInfs()) {
1660     Value *PosInf = ConstantFP::getInfinity(Ty),
1661           *NegInf = ConstantFP::getInfinity(Ty, true);
1662     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1663     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1664   }
1665 
1666   // If the exponent is negative, then get the reciprocal.
1667   if (ExpoF->isNegative())
1668     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1669 
1670   return Sqrt;
1671 }
1672 
createPowWithIntegerExponent(Value * Base,Value * Expo,Module * M,IRBuilderBase & B)1673 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1674                                            IRBuilderBase &B) {
1675   Value *Args[] = {Base, Expo};
1676   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1677   return B.CreateCall(F, Args);
1678 }
1679 
optimizePow(CallInst * Pow,IRBuilderBase & B)1680 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1681   Value *Base = Pow->getArgOperand(0);
1682   Value *Expo = Pow->getArgOperand(1);
1683   Function *Callee = Pow->getCalledFunction();
1684   StringRef Name = Callee->getName();
1685   Type *Ty = Pow->getType();
1686   Module *M = Pow->getModule();
1687   Value *Shrunk = nullptr;
1688   bool AllowApprox = Pow->hasApproxFunc();
1689   bool Ignored;
1690 
1691   // Propagate the math semantics from the call to any created instructions.
1692   IRBuilderBase::FastMathFlagGuard Guard(B);
1693   B.setFastMathFlags(Pow->getFastMathFlags());
1694 
1695   // Shrink pow() to powf() if the arguments are single precision,
1696   // unless the result is expected to be double precision.
1697   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1698       hasFloatVersion(Name))
1699     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1700 
1701   // Evaluate special cases related to the base.
1702 
1703   // pow(1.0, x) -> 1.0
1704   if (match(Base, m_FPOne()))
1705     return Base;
1706 
1707   if (Value *Exp = replacePowWithExp(Pow, B))
1708     return Exp;
1709 
1710   // Evaluate special cases related to the exponent.
1711 
1712   // pow(x, -1.0) -> 1.0 / x
1713   if (match(Expo, m_SpecificFP(-1.0)))
1714     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1715 
1716   // pow(x, +/-0.0) -> 1.0
1717   if (match(Expo, m_AnyZeroFP()))
1718     return ConstantFP::get(Ty, 1.0);
1719 
1720   // pow(x, 1.0) -> x
1721   if (match(Expo, m_FPOne()))
1722     return Base;
1723 
1724   // pow(x, 2.0) -> x * x
1725   if (match(Expo, m_SpecificFP(2.0)))
1726     return B.CreateFMul(Base, Base, "square");
1727 
1728   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1729     return Sqrt;
1730 
1731   // pow(x, n) -> x * x * x * ...
1732   const APFloat *ExpoF;
1733   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1734       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1735     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1736     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1737     // additional fmul.
1738     // TODO: This whole transformation should be backend specific (e.g. some
1739     //       backends might prefer libcalls or the limit for the exponent might
1740     //       be different) and it should also consider optimizing for size.
1741     APFloat LimF(ExpoF->getSemantics(), 33),
1742             ExpoA(abs(*ExpoF));
1743     if (ExpoA < LimF) {
1744       // This transformation applies to integer or integer+0.5 exponents only.
1745       // For integer+0.5, we create a sqrt(Base) call.
1746       Value *Sqrt = nullptr;
1747       if (!ExpoA.isInteger()) {
1748         APFloat Expo2 = ExpoA;
1749         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1750         // is no floating point exception and the result is an integer, then
1751         // ExpoA == integer + 0.5
1752         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1753           return nullptr;
1754 
1755         if (!Expo2.isInteger())
1756           return nullptr;
1757 
1758         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1759                            Pow->doesNotAccessMemory(), M, B, TLI);
1760         if (!Sqrt)
1761           return nullptr;
1762       }
1763 
1764       // We will memoize intermediate products of the Addition Chain.
1765       Value *InnerChain[33] = {nullptr};
1766       InnerChain[1] = Base;
1767       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1768 
1769       // We cannot readily convert a non-double type (like float) to a double.
1770       // So we first convert it to something which could be converted to double.
1771       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1772       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1773 
1774       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1775       if (Sqrt)
1776         FMul = B.CreateFMul(FMul, Sqrt);
1777 
1778       // If the exponent is negative, then get the reciprocal.
1779       if (ExpoF->isNegative())
1780         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1781 
1782       return FMul;
1783     }
1784 
1785     APSInt IntExpo(32, /*isUnsigned=*/false);
1786     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1787     if (ExpoF->isInteger() &&
1788         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1789             APFloat::opOK) {
1790       return createPowWithIntegerExponent(
1791           Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1792     }
1793   }
1794 
1795   // powf(x, itofp(y)) -> powi(x, y)
1796   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1797     if (Value *ExpoI = getIntToFPVal(Expo, B))
1798       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1799   }
1800 
1801   return Shrunk;
1802 }
1803 
optimizeExp2(CallInst * CI,IRBuilderBase & B)1804 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1805   Function *Callee = CI->getCalledFunction();
1806   AttributeList Attrs; // Attributes are only meaningful on the original call
1807   StringRef Name = Callee->getName();
1808   Value *Ret = nullptr;
1809   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1810       hasFloatVersion(Name))
1811     Ret = optimizeUnaryDoubleFP(CI, B, true);
1812 
1813   Type *Ty = CI->getType();
1814   Value *Op = CI->getArgOperand(0);
1815 
1816   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1817   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1818   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1819       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1820     if (Value *Exp = getIntToFPVal(Op, B))
1821       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1822                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1823                                    B, Attrs);
1824   }
1825 
1826   return Ret;
1827 }
1828 
optimizeFMinFMax(CallInst * CI,IRBuilderBase & B)1829 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1830   // If we can shrink the call to a float function rather than a double
1831   // function, do that first.
1832   Function *Callee = CI->getCalledFunction();
1833   StringRef Name = Callee->getName();
1834   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1835     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1836       return Ret;
1837 
1838   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1839   // the intrinsics for improved optimization (for example, vectorization).
1840   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1841   // From the C standard draft WG14/N1256:
1842   // "Ideally, fmax would be sensitive to the sign of zero, for example
1843   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1844   // might be impractical."
1845   IRBuilderBase::FastMathFlagGuard Guard(B);
1846   FastMathFlags FMF = CI->getFastMathFlags();
1847   FMF.setNoSignedZeros();
1848   B.setFastMathFlags(FMF);
1849 
1850   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1851                                                            : Intrinsic::maxnum;
1852   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1853   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1854 }
1855 
optimizeLog(CallInst * Log,IRBuilderBase & B)1856 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1857   Function *LogFn = Log->getCalledFunction();
1858   AttributeList Attrs; // Attributes are only meaningful on the original call
1859   StringRef LogNm = LogFn->getName();
1860   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1861   Module *Mod = Log->getModule();
1862   Type *Ty = Log->getType();
1863   Value *Ret = nullptr;
1864 
1865   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1866     Ret = optimizeUnaryDoubleFP(Log, B, true);
1867 
1868   // The earlier call must also be 'fast' in order to do these transforms.
1869   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1870   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1871     return Ret;
1872 
1873   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1874 
1875   // This is only applicable to log(), log2(), log10().
1876   if (TLI->getLibFunc(LogNm, LogLb))
1877     switch (LogLb) {
1878     case LibFunc_logf:
1879       LogID = Intrinsic::log;
1880       ExpLb = LibFunc_expf;
1881       Exp2Lb = LibFunc_exp2f;
1882       Exp10Lb = LibFunc_exp10f;
1883       PowLb = LibFunc_powf;
1884       break;
1885     case LibFunc_log:
1886       LogID = Intrinsic::log;
1887       ExpLb = LibFunc_exp;
1888       Exp2Lb = LibFunc_exp2;
1889       Exp10Lb = LibFunc_exp10;
1890       PowLb = LibFunc_pow;
1891       break;
1892     case LibFunc_logl:
1893       LogID = Intrinsic::log;
1894       ExpLb = LibFunc_expl;
1895       Exp2Lb = LibFunc_exp2l;
1896       Exp10Lb = LibFunc_exp10l;
1897       PowLb = LibFunc_powl;
1898       break;
1899     case LibFunc_log2f:
1900       LogID = Intrinsic::log2;
1901       ExpLb = LibFunc_expf;
1902       Exp2Lb = LibFunc_exp2f;
1903       Exp10Lb = LibFunc_exp10f;
1904       PowLb = LibFunc_powf;
1905       break;
1906     case LibFunc_log2:
1907       LogID = Intrinsic::log2;
1908       ExpLb = LibFunc_exp;
1909       Exp2Lb = LibFunc_exp2;
1910       Exp10Lb = LibFunc_exp10;
1911       PowLb = LibFunc_pow;
1912       break;
1913     case LibFunc_log2l:
1914       LogID = Intrinsic::log2;
1915       ExpLb = LibFunc_expl;
1916       Exp2Lb = LibFunc_exp2l;
1917       Exp10Lb = LibFunc_exp10l;
1918       PowLb = LibFunc_powl;
1919       break;
1920     case LibFunc_log10f:
1921       LogID = Intrinsic::log10;
1922       ExpLb = LibFunc_expf;
1923       Exp2Lb = LibFunc_exp2f;
1924       Exp10Lb = LibFunc_exp10f;
1925       PowLb = LibFunc_powf;
1926       break;
1927     case LibFunc_log10:
1928       LogID = Intrinsic::log10;
1929       ExpLb = LibFunc_exp;
1930       Exp2Lb = LibFunc_exp2;
1931       Exp10Lb = LibFunc_exp10;
1932       PowLb = LibFunc_pow;
1933       break;
1934     case LibFunc_log10l:
1935       LogID = Intrinsic::log10;
1936       ExpLb = LibFunc_expl;
1937       Exp2Lb = LibFunc_exp2l;
1938       Exp10Lb = LibFunc_exp10l;
1939       PowLb = LibFunc_powl;
1940       break;
1941     default:
1942       return Ret;
1943     }
1944   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1945            LogID == Intrinsic::log10) {
1946     if (Ty->getScalarType()->isFloatTy()) {
1947       ExpLb = LibFunc_expf;
1948       Exp2Lb = LibFunc_exp2f;
1949       Exp10Lb = LibFunc_exp10f;
1950       PowLb = LibFunc_powf;
1951     } else if (Ty->getScalarType()->isDoubleTy()) {
1952       ExpLb = LibFunc_exp;
1953       Exp2Lb = LibFunc_exp2;
1954       Exp10Lb = LibFunc_exp10;
1955       PowLb = LibFunc_pow;
1956     } else
1957       return Ret;
1958   } else
1959     return Ret;
1960 
1961   IRBuilderBase::FastMathFlagGuard Guard(B);
1962   B.setFastMathFlags(FastMathFlags::getFast());
1963 
1964   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1965   LibFunc ArgLb = NotLibFunc;
1966   TLI->getLibFunc(*Arg, ArgLb);
1967 
1968   // log(pow(x,y)) -> y*log(x)
1969   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1970     Value *LogX =
1971         Log->doesNotAccessMemory()
1972             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1973                            Arg->getOperand(0), "log")
1974             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1975     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1976     // Since pow() may have side effects, e.g. errno,
1977     // dead code elimination may not be trusted to remove it.
1978     substituteInParent(Arg, MulY);
1979     return MulY;
1980   }
1981 
1982   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1983   // TODO: There is no exp10() intrinsic yet.
1984   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1985            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1986     Constant *Eul;
1987     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1988       // FIXME: Add more precise value of e for long double.
1989       Eul = ConstantFP::get(Log->getType(), numbers::e);
1990     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1991       Eul = ConstantFP::get(Log->getType(), 2.0);
1992     else
1993       Eul = ConstantFP::get(Log->getType(), 10.0);
1994     Value *LogE = Log->doesNotAccessMemory()
1995                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1996                                      Eul, "log")
1997                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1998     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1999     // Since exp() may have side effects, e.g. errno,
2000     // dead code elimination may not be trusted to remove it.
2001     substituteInParent(Arg, MulY);
2002     return MulY;
2003   }
2004 
2005   return Ret;
2006 }
2007 
optimizeSqrt(CallInst * CI,IRBuilderBase & B)2008 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2009   Function *Callee = CI->getCalledFunction();
2010   Value *Ret = nullptr;
2011   // TODO: Once we have a way (other than checking for the existince of the
2012   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2013   // condition below.
2014   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2015                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
2016     Ret = optimizeUnaryDoubleFP(CI, B, true);
2017 
2018   if (!CI->isFast())
2019     return Ret;
2020 
2021   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2022   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2023     return Ret;
2024 
2025   // We're looking for a repeated factor in a multiplication tree,
2026   // so we can do this fold: sqrt(x * x) -> fabs(x);
2027   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2028   Value *Op0 = I->getOperand(0);
2029   Value *Op1 = I->getOperand(1);
2030   Value *RepeatOp = nullptr;
2031   Value *OtherOp = nullptr;
2032   if (Op0 == Op1) {
2033     // Simple match: the operands of the multiply are identical.
2034     RepeatOp = Op0;
2035   } else {
2036     // Look for a more complicated pattern: one of the operands is itself
2037     // a multiply, so search for a common factor in that multiply.
2038     // Note: We don't bother looking any deeper than this first level or for
2039     // variations of this pattern because instcombine's visitFMUL and/or the
2040     // reassociation pass should give us this form.
2041     Value *OtherMul0, *OtherMul1;
2042     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2043       // Pattern: sqrt((x * y) * z)
2044       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2045         // Matched: sqrt((x * x) * z)
2046         RepeatOp = OtherMul0;
2047         OtherOp = Op1;
2048       }
2049     }
2050   }
2051   if (!RepeatOp)
2052     return Ret;
2053 
2054   // Fast math flags for any created instructions should match the sqrt
2055   // and multiply.
2056   IRBuilderBase::FastMathFlagGuard Guard(B);
2057   B.setFastMathFlags(I->getFastMathFlags());
2058 
2059   // If we found a repeated factor, hoist it out of the square root and
2060   // replace it with the fabs of that factor.
2061   Module *M = Callee->getParent();
2062   Type *ArgType = I->getType();
2063   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2064   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2065   if (OtherOp) {
2066     // If we found a non-repeated factor, we still need to get its square
2067     // root. We then multiply that by the value that was simplified out
2068     // of the square root calculation.
2069     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2070     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2071     return B.CreateFMul(FabsCall, SqrtCall);
2072   }
2073   return FabsCall;
2074 }
2075 
2076 // TODO: Generalize to handle any trig function and its inverse.
optimizeTan(CallInst * CI,IRBuilderBase & B)2077 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2078   Function *Callee = CI->getCalledFunction();
2079   Value *Ret = nullptr;
2080   StringRef Name = Callee->getName();
2081   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2082     Ret = optimizeUnaryDoubleFP(CI, B, true);
2083 
2084   Value *Op1 = CI->getArgOperand(0);
2085   auto *OpC = dyn_cast<CallInst>(Op1);
2086   if (!OpC)
2087     return Ret;
2088 
2089   // Both calls must be 'fast' in order to remove them.
2090   if (!CI->isFast() || !OpC->isFast())
2091     return Ret;
2092 
2093   // tan(atan(x)) -> x
2094   // tanf(atanf(x)) -> x
2095   // tanl(atanl(x)) -> x
2096   LibFunc Func;
2097   Function *F = OpC->getCalledFunction();
2098   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2099       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2100        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2101        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2102     Ret = OpC->getArgOperand(0);
2103   return Ret;
2104 }
2105 
isTrigLibCall(CallInst * CI)2106 static bool isTrigLibCall(CallInst *CI) {
2107   // We can only hope to do anything useful if we can ignore things like errno
2108   // and floating-point exceptions.
2109   // We already checked the prototype.
2110   return CI->hasFnAttr(Attribute::NoUnwind) &&
2111          CI->hasFnAttr(Attribute::ReadNone);
2112 }
2113 
insertSinCosCall(IRBuilderBase & B,Function * OrigCallee,Value * Arg,bool UseFloat,Value * & Sin,Value * & Cos,Value * & SinCos)2114 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2115                              bool UseFloat, Value *&Sin, Value *&Cos,
2116                              Value *&SinCos) {
2117   Type *ArgTy = Arg->getType();
2118   Type *ResTy;
2119   StringRef Name;
2120 
2121   Triple T(OrigCallee->getParent()->getTargetTriple());
2122   if (UseFloat) {
2123     Name = "__sincospif_stret";
2124 
2125     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2126     // x86_64 can't use {float, float} since that would be returned in both
2127     // xmm0 and xmm1, which isn't what a real struct would do.
2128     ResTy = T.getArch() == Triple::x86_64
2129                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2130                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2131   } else {
2132     Name = "__sincospi_stret";
2133     ResTy = StructType::get(ArgTy, ArgTy);
2134   }
2135 
2136   Module *M = OrigCallee->getParent();
2137   FunctionCallee Callee =
2138       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2139 
2140   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2141     // If the argument is an instruction, it must dominate all uses so put our
2142     // sincos call there.
2143     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2144   } else {
2145     // Otherwise (e.g. for a constant) the beginning of the function is as
2146     // good a place as any.
2147     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2148     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2149   }
2150 
2151   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2152 
2153   if (SinCos->getType()->isStructTy()) {
2154     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2155     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2156   } else {
2157     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2158                                  "sinpi");
2159     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2160                                  "cospi");
2161   }
2162 }
2163 
optimizeSinCosPi(CallInst * CI,IRBuilderBase & B)2164 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2165   // Make sure the prototype is as expected, otherwise the rest of the
2166   // function is probably invalid and likely to abort.
2167   if (!isTrigLibCall(CI))
2168     return nullptr;
2169 
2170   Value *Arg = CI->getArgOperand(0);
2171   SmallVector<CallInst *, 1> SinCalls;
2172   SmallVector<CallInst *, 1> CosCalls;
2173   SmallVector<CallInst *, 1> SinCosCalls;
2174 
2175   bool IsFloat = Arg->getType()->isFloatTy();
2176 
2177   // Look for all compatible sinpi, cospi and sincospi calls with the same
2178   // argument. If there are enough (in some sense) we can make the
2179   // substitution.
2180   Function *F = CI->getFunction();
2181   for (User *U : Arg->users())
2182     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2183 
2184   // It's only worthwhile if both sinpi and cospi are actually used.
2185   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2186     return nullptr;
2187 
2188   Value *Sin, *Cos, *SinCos;
2189   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2190 
2191   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2192                                  Value *Res) {
2193     for (CallInst *C : Calls)
2194       replaceAllUsesWith(C, Res);
2195   };
2196 
2197   replaceTrigInsts(SinCalls, Sin);
2198   replaceTrigInsts(CosCalls, Cos);
2199   replaceTrigInsts(SinCosCalls, SinCos);
2200 
2201   return nullptr;
2202 }
2203 
classifyArgUse(Value * Val,Function * F,bool IsFloat,SmallVectorImpl<CallInst * > & SinCalls,SmallVectorImpl<CallInst * > & CosCalls,SmallVectorImpl<CallInst * > & SinCosCalls)2204 void LibCallSimplifier::classifyArgUse(
2205     Value *Val, Function *F, bool IsFloat,
2206     SmallVectorImpl<CallInst *> &SinCalls,
2207     SmallVectorImpl<CallInst *> &CosCalls,
2208     SmallVectorImpl<CallInst *> &SinCosCalls) {
2209   CallInst *CI = dyn_cast<CallInst>(Val);
2210 
2211   if (!CI)
2212     return;
2213 
2214   // Don't consider calls in other functions.
2215   if (CI->getFunction() != F)
2216     return;
2217 
2218   Function *Callee = CI->getCalledFunction();
2219   LibFunc Func;
2220   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2221       !isTrigLibCall(CI))
2222     return;
2223 
2224   if (IsFloat) {
2225     if (Func == LibFunc_sinpif)
2226       SinCalls.push_back(CI);
2227     else if (Func == LibFunc_cospif)
2228       CosCalls.push_back(CI);
2229     else if (Func == LibFunc_sincospif_stret)
2230       SinCosCalls.push_back(CI);
2231   } else {
2232     if (Func == LibFunc_sinpi)
2233       SinCalls.push_back(CI);
2234     else if (Func == LibFunc_cospi)
2235       CosCalls.push_back(CI);
2236     else if (Func == LibFunc_sincospi_stret)
2237       SinCosCalls.push_back(CI);
2238   }
2239 }
2240 
2241 //===----------------------------------------------------------------------===//
2242 // Integer Library Call Optimizations
2243 //===----------------------------------------------------------------------===//
2244 
optimizeFFS(CallInst * CI,IRBuilderBase & B)2245 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2246   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2247   Value *Op = CI->getArgOperand(0);
2248   Type *ArgType = Op->getType();
2249   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2250                                           Intrinsic::cttz, ArgType);
2251   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2252   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2253   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2254 
2255   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2256   return B.CreateSelect(Cond, V, B.getInt32(0));
2257 }
2258 
optimizeFls(CallInst * CI,IRBuilderBase & B)2259 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2260   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2261   Value *Op = CI->getArgOperand(0);
2262   Type *ArgType = Op->getType();
2263   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2264                                           Intrinsic::ctlz, ArgType);
2265   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2266   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2267                   V);
2268   return B.CreateIntCast(V, CI->getType(), false);
2269 }
2270 
optimizeAbs(CallInst * CI,IRBuilderBase & B)2271 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2272   // abs(x) -> x <s 0 ? -x : x
2273   // The negation has 'nsw' because abs of INT_MIN is undefined.
2274   Value *X = CI->getArgOperand(0);
2275   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2276   Value *NegX = B.CreateNSWNeg(X, "neg");
2277   return B.CreateSelect(IsNeg, NegX, X);
2278 }
2279 
optimizeIsDigit(CallInst * CI,IRBuilderBase & B)2280 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2281   // isdigit(c) -> (c-'0') <u 10
2282   Value *Op = CI->getArgOperand(0);
2283   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2284   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2285   return B.CreateZExt(Op, CI->getType());
2286 }
2287 
optimizeIsAscii(CallInst * CI,IRBuilderBase & B)2288 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2289   // isascii(c) -> c <u 128
2290   Value *Op = CI->getArgOperand(0);
2291   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2292   return B.CreateZExt(Op, CI->getType());
2293 }
2294 
optimizeToAscii(CallInst * CI,IRBuilderBase & B)2295 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2296   // toascii(c) -> c & 0x7f
2297   return B.CreateAnd(CI->getArgOperand(0),
2298                      ConstantInt::get(CI->getType(), 0x7F));
2299 }
2300 
optimizeAtoi(CallInst * CI,IRBuilderBase & B)2301 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2302   StringRef Str;
2303   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2304     return nullptr;
2305 
2306   return convertStrToNumber(CI, Str, 10);
2307 }
2308 
optimizeStrtol(CallInst * CI,IRBuilderBase & B)2309 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2310   StringRef Str;
2311   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2312     return nullptr;
2313 
2314   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2315     return nullptr;
2316 
2317   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2318     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2319   }
2320 
2321   return nullptr;
2322 }
2323 
2324 //===----------------------------------------------------------------------===//
2325 // Formatting and IO Library Call Optimizations
2326 //===----------------------------------------------------------------------===//
2327 
2328 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2329 
optimizeErrorReporting(CallInst * CI,IRBuilderBase & B,int StreamArg)2330 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2331                                                  int StreamArg) {
2332   Function *Callee = CI->getCalledFunction();
2333   // Error reporting calls should be cold, mark them as such.
2334   // This applies even to non-builtin calls: it is only a hint and applies to
2335   // functions that the frontend might not understand as builtins.
2336 
2337   // This heuristic was suggested in:
2338   // Improving Static Branch Prediction in a Compiler
2339   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2340   // Proceedings of PACT'98, Oct. 1998, IEEE
2341   if (!CI->hasFnAttr(Attribute::Cold) &&
2342       isReportingError(Callee, CI, StreamArg)) {
2343     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2344   }
2345 
2346   return nullptr;
2347 }
2348 
isReportingError(Function * Callee,CallInst * CI,int StreamArg)2349 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2350   if (!Callee || !Callee->isDeclaration())
2351     return false;
2352 
2353   if (StreamArg < 0)
2354     return true;
2355 
2356   // These functions might be considered cold, but only if their stream
2357   // argument is stderr.
2358 
2359   if (StreamArg >= (int)CI->getNumArgOperands())
2360     return false;
2361   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2362   if (!LI)
2363     return false;
2364   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2365   if (!GV || !GV->isDeclaration())
2366     return false;
2367   return GV->getName() == "stderr";
2368 }
2369 
optimizePrintFString(CallInst * CI,IRBuilderBase & B)2370 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2371   // Check for a fixed format string.
2372   StringRef FormatStr;
2373   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2374     return nullptr;
2375 
2376   // Empty format string -> noop.
2377   if (FormatStr.empty()) // Tolerate printf's declared void.
2378     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2379 
2380   // Do not do any of the following transformations if the printf return value
2381   // is used, in general the printf return value is not compatible with either
2382   // putchar() or puts().
2383   if (!CI->use_empty())
2384     return nullptr;
2385 
2386   // printf("x") -> putchar('x'), even for "%" and "%%".
2387   if (FormatStr.size() == 1 || FormatStr == "%%")
2388     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2389 
2390   // printf("%s", "a") --> putchar('a')
2391   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2392     StringRef ChrStr;
2393     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2394       return nullptr;
2395     if (ChrStr.size() != 1)
2396       return nullptr;
2397     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2398   }
2399 
2400   // printf("foo\n") --> puts("foo")
2401   if (FormatStr[FormatStr.size() - 1] == '\n' &&
2402       FormatStr.find('%') == StringRef::npos) { // No format characters.
2403     // Create a string literal with no \n on it.  We expect the constant merge
2404     // pass to be run after this pass, to merge duplicate strings.
2405     FormatStr = FormatStr.drop_back();
2406     Value *GV = B.CreateGlobalString(FormatStr, "str");
2407     return emitPutS(GV, B, TLI);
2408   }
2409 
2410   // Optimize specific format strings.
2411   // printf("%c", chr) --> putchar(chr)
2412   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2413       CI->getArgOperand(1)->getType()->isIntegerTy())
2414     return emitPutChar(CI->getArgOperand(1), B, TLI);
2415 
2416   // printf("%s\n", str) --> puts(str)
2417   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2418       CI->getArgOperand(1)->getType()->isPointerTy())
2419     return emitPutS(CI->getArgOperand(1), B, TLI);
2420   return nullptr;
2421 }
2422 
optimizePrintF(CallInst * CI,IRBuilderBase & B)2423 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2424 
2425   Function *Callee = CI->getCalledFunction();
2426   FunctionType *FT = Callee->getFunctionType();
2427   if (Value *V = optimizePrintFString(CI, B)) {
2428     return V;
2429   }
2430 
2431   // printf(format, ...) -> iprintf(format, ...) if no floating point
2432   // arguments.
2433   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2434     Module *M = B.GetInsertBlock()->getParent()->getParent();
2435     FunctionCallee IPrintFFn =
2436         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2437     CallInst *New = cast<CallInst>(CI->clone());
2438     New->setCalledFunction(IPrintFFn);
2439     B.Insert(New);
2440     return New;
2441   }
2442 
2443   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2444   // arguments.
2445   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2446     Module *M = B.GetInsertBlock()->getParent()->getParent();
2447     auto SmallPrintFFn =
2448         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2449                                FT, Callee->getAttributes());
2450     CallInst *New = cast<CallInst>(CI->clone());
2451     New->setCalledFunction(SmallPrintFFn);
2452     B.Insert(New);
2453     return New;
2454   }
2455 
2456   annotateNonNullBasedOnAccess(CI, 0);
2457   return nullptr;
2458 }
2459 
optimizeSPrintFString(CallInst * CI,IRBuilderBase & B)2460 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2461                                                 IRBuilderBase &B) {
2462   // Check for a fixed format string.
2463   StringRef FormatStr;
2464   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2465     return nullptr;
2466 
2467   // If we just have a format string (nothing else crazy) transform it.
2468   if (CI->getNumArgOperands() == 2) {
2469     // Make sure there's no % in the constant array.  We could try to handle
2470     // %% -> % in the future if we cared.
2471     if (FormatStr.find('%') != StringRef::npos)
2472       return nullptr; // we found a format specifier, bail out.
2473 
2474     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2475     B.CreateMemCpy(
2476         CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1),
2477         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2478                          FormatStr.size() + 1)); // Copy the null byte.
2479     return ConstantInt::get(CI->getType(), FormatStr.size());
2480   }
2481 
2482   // The remaining optimizations require the format string to be "%s" or "%c"
2483   // and have an extra operand.
2484   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2485       CI->getNumArgOperands() < 3)
2486     return nullptr;
2487 
2488   // Decode the second character of the format string.
2489   if (FormatStr[1] == 'c') {
2490     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2491     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2492       return nullptr;
2493     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2494     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2495     B.CreateStore(V, Ptr);
2496     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2497     B.CreateStore(B.getInt8(0), Ptr);
2498 
2499     return ConstantInt::get(CI->getType(), 1);
2500   }
2501 
2502   if (FormatStr[1] == 's') {
2503     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2504     // strlen(str)+1)
2505     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2506       return nullptr;
2507 
2508     if (CI->use_empty())
2509       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2510       return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI);
2511 
2512     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2513     if (SrcLen) {
2514       B.CreateMemCpy(
2515           CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2516           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2517       // Returns total number of characters written without null-character.
2518       return ConstantInt::get(CI->getType(), SrcLen - 1);
2519     } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2),
2520                                      B, TLI)) {
2521       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2522       Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0));
2523       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2524     }
2525 
2526     bool OptForSize = CI->getFunction()->hasOptSize() ||
2527                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2528                                                   PGSOQueryType::IRPass);
2529     if (OptForSize)
2530       return nullptr;
2531 
2532     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2533     if (!Len)
2534       return nullptr;
2535     Value *IncLen =
2536         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2537     B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2),
2538                    Align(1), IncLen);
2539 
2540     // The sprintf result is the unincremented number of bytes in the string.
2541     return B.CreateIntCast(Len, CI->getType(), false);
2542   }
2543   return nullptr;
2544 }
2545 
optimizeSPrintF(CallInst * CI,IRBuilderBase & B)2546 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2547   Function *Callee = CI->getCalledFunction();
2548   FunctionType *FT = Callee->getFunctionType();
2549   if (Value *V = optimizeSPrintFString(CI, B)) {
2550     return V;
2551   }
2552 
2553   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2554   // point arguments.
2555   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2556     Module *M = B.GetInsertBlock()->getParent()->getParent();
2557     FunctionCallee SIPrintFFn =
2558         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2559     CallInst *New = cast<CallInst>(CI->clone());
2560     New->setCalledFunction(SIPrintFFn);
2561     B.Insert(New);
2562     return New;
2563   }
2564 
2565   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2566   // floating point arguments.
2567   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2568     Module *M = B.GetInsertBlock()->getParent()->getParent();
2569     auto SmallSPrintFFn =
2570         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2571                                FT, Callee->getAttributes());
2572     CallInst *New = cast<CallInst>(CI->clone());
2573     New->setCalledFunction(SmallSPrintFFn);
2574     B.Insert(New);
2575     return New;
2576   }
2577 
2578   annotateNonNullBasedOnAccess(CI, {0, 1});
2579   return nullptr;
2580 }
2581 
optimizeSnPrintFString(CallInst * CI,IRBuilderBase & B)2582 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2583                                                  IRBuilderBase &B) {
2584   // Check for size
2585   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2586   if (!Size)
2587     return nullptr;
2588 
2589   uint64_t N = Size->getZExtValue();
2590   // Check for a fixed format string.
2591   StringRef FormatStr;
2592   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2593     return nullptr;
2594 
2595   // If we just have a format string (nothing else crazy) transform it.
2596   if (CI->getNumArgOperands() == 3) {
2597     // Make sure there's no % in the constant array.  We could try to handle
2598     // %% -> % in the future if we cared.
2599     if (FormatStr.find('%') != StringRef::npos)
2600       return nullptr; // we found a format specifier, bail out.
2601 
2602     if (N == 0)
2603       return ConstantInt::get(CI->getType(), FormatStr.size());
2604     else if (N < FormatStr.size() + 1)
2605       return nullptr;
2606 
2607     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2608     // strlen(fmt)+1)
2609     B.CreateMemCpy(
2610         CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2611         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2612                          FormatStr.size() + 1)); // Copy the null byte.
2613     return ConstantInt::get(CI->getType(), FormatStr.size());
2614   }
2615 
2616   // The remaining optimizations require the format string to be "%s" or "%c"
2617   // and have an extra operand.
2618   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2619       CI->getNumArgOperands() == 4) {
2620 
2621     // Decode the second character of the format string.
2622     if (FormatStr[1] == 'c') {
2623       if (N == 0)
2624         return ConstantInt::get(CI->getType(), 1);
2625       else if (N == 1)
2626         return nullptr;
2627 
2628       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2629       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2630         return nullptr;
2631       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2632       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2633       B.CreateStore(V, Ptr);
2634       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2635       B.CreateStore(B.getInt8(0), Ptr);
2636 
2637       return ConstantInt::get(CI->getType(), 1);
2638     }
2639 
2640     if (FormatStr[1] == 's') {
2641       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2642       StringRef Str;
2643       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2644         return nullptr;
2645 
2646       if (N == 0)
2647         return ConstantInt::get(CI->getType(), Str.size());
2648       else if (N < Str.size() + 1)
2649         return nullptr;
2650 
2651       B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3),
2652                      Align(1), ConstantInt::get(CI->getType(), Str.size() + 1));
2653 
2654       // The snprintf result is the unincremented number of bytes in the string.
2655       return ConstantInt::get(CI->getType(), Str.size());
2656     }
2657   }
2658   return nullptr;
2659 }
2660 
optimizeSnPrintF(CallInst * CI,IRBuilderBase & B)2661 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2662   if (Value *V = optimizeSnPrintFString(CI, B)) {
2663     return V;
2664   }
2665 
2666   if (isKnownNonZero(CI->getOperand(1), DL))
2667     annotateNonNullBasedOnAccess(CI, 0);
2668   return nullptr;
2669 }
2670 
optimizeFPrintFString(CallInst * CI,IRBuilderBase & B)2671 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2672                                                 IRBuilderBase &B) {
2673   optimizeErrorReporting(CI, B, 0);
2674 
2675   // All the optimizations depend on the format string.
2676   StringRef FormatStr;
2677   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2678     return nullptr;
2679 
2680   // Do not do any of the following transformations if the fprintf return
2681   // value is used, in general the fprintf return value is not compatible
2682   // with fwrite(), fputc() or fputs().
2683   if (!CI->use_empty())
2684     return nullptr;
2685 
2686   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2687   if (CI->getNumArgOperands() == 2) {
2688     // Could handle %% -> % if we cared.
2689     if (FormatStr.find('%') != StringRef::npos)
2690       return nullptr; // We found a format specifier.
2691 
2692     return emitFWrite(
2693         CI->getArgOperand(1),
2694         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2695         CI->getArgOperand(0), B, DL, TLI);
2696   }
2697 
2698   // The remaining optimizations require the format string to be "%s" or "%c"
2699   // and have an extra operand.
2700   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2701       CI->getNumArgOperands() < 3)
2702     return nullptr;
2703 
2704   // Decode the second character of the format string.
2705   if (FormatStr[1] == 'c') {
2706     // fprintf(F, "%c", chr) --> fputc(chr, F)
2707     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2708       return nullptr;
2709     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2710   }
2711 
2712   if (FormatStr[1] == 's') {
2713     // fprintf(F, "%s", str) --> fputs(str, F)
2714     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2715       return nullptr;
2716     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2717   }
2718   return nullptr;
2719 }
2720 
optimizeFPrintF(CallInst * CI,IRBuilderBase & B)2721 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2722   Function *Callee = CI->getCalledFunction();
2723   FunctionType *FT = Callee->getFunctionType();
2724   if (Value *V = optimizeFPrintFString(CI, B)) {
2725     return V;
2726   }
2727 
2728   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2729   // floating point arguments.
2730   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2731     Module *M = B.GetInsertBlock()->getParent()->getParent();
2732     FunctionCallee FIPrintFFn =
2733         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2734     CallInst *New = cast<CallInst>(CI->clone());
2735     New->setCalledFunction(FIPrintFFn);
2736     B.Insert(New);
2737     return New;
2738   }
2739 
2740   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2741   // 128-bit floating point arguments.
2742   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2743     Module *M = B.GetInsertBlock()->getParent()->getParent();
2744     auto SmallFPrintFFn =
2745         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2746                                FT, Callee->getAttributes());
2747     CallInst *New = cast<CallInst>(CI->clone());
2748     New->setCalledFunction(SmallFPrintFFn);
2749     B.Insert(New);
2750     return New;
2751   }
2752 
2753   return nullptr;
2754 }
2755 
optimizeFWrite(CallInst * CI,IRBuilderBase & B)2756 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2757   optimizeErrorReporting(CI, B, 3);
2758 
2759   // Get the element size and count.
2760   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2761   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2762   if (SizeC && CountC) {
2763     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2764 
2765     // If this is writing zero records, remove the call (it's a noop).
2766     if (Bytes == 0)
2767       return ConstantInt::get(CI->getType(), 0);
2768 
2769     // If this is writing one byte, turn it into fputc.
2770     // This optimisation is only valid, if the return value is unused.
2771     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2772       Value *Char = B.CreateLoad(B.getInt8Ty(),
2773                                  castToCStr(CI->getArgOperand(0), B), "char");
2774       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2775       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2776     }
2777   }
2778 
2779   return nullptr;
2780 }
2781 
optimizeFPuts(CallInst * CI,IRBuilderBase & B)2782 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2783   optimizeErrorReporting(CI, B, 1);
2784 
2785   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2786   // requires more arguments and thus extra MOVs are required.
2787   bool OptForSize = CI->getFunction()->hasOptSize() ||
2788                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2789                                                 PGSOQueryType::IRPass);
2790   if (OptForSize)
2791     return nullptr;
2792 
2793   // We can't optimize if return value is used.
2794   if (!CI->use_empty())
2795     return nullptr;
2796 
2797   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2798   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2799   if (!Len)
2800     return nullptr;
2801 
2802   // Known to have no uses (see above).
2803   return emitFWrite(
2804       CI->getArgOperand(0),
2805       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2806       CI->getArgOperand(1), B, DL, TLI);
2807 }
2808 
optimizePuts(CallInst * CI,IRBuilderBase & B)2809 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2810   annotateNonNullBasedOnAccess(CI, 0);
2811   if (!CI->use_empty())
2812     return nullptr;
2813 
2814   // Check for a constant string.
2815   // puts("") -> putchar('\n')
2816   StringRef Str;
2817   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2818     return emitPutChar(B.getInt32('\n'), B, TLI);
2819 
2820   return nullptr;
2821 }
2822 
optimizeBCopy(CallInst * CI,IRBuilderBase & B)2823 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2824   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2825   return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0),
2826                          Align(1), CI->getArgOperand(2));
2827 }
2828 
hasFloatVersion(StringRef FuncName)2829 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2830   LibFunc Func;
2831   SmallString<20> FloatFuncName = FuncName;
2832   FloatFuncName += 'f';
2833   if (TLI->getLibFunc(FloatFuncName, Func))
2834     return TLI->has(Func);
2835   return false;
2836 }
2837 
optimizeStringMemoryLibCall(CallInst * CI,IRBuilderBase & Builder)2838 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2839                                                       IRBuilderBase &Builder) {
2840   LibFunc Func;
2841   Function *Callee = CI->getCalledFunction();
2842   // Check for string/memory library functions.
2843   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2844     // Make sure we never change the calling convention.
2845     assert((ignoreCallingConv(Func) ||
2846             isCallingConvCCompatible(CI)) &&
2847       "Optimizing string/memory libcall would change the calling convention");
2848     switch (Func) {
2849     case LibFunc_strcat:
2850       return optimizeStrCat(CI, Builder);
2851     case LibFunc_strncat:
2852       return optimizeStrNCat(CI, Builder);
2853     case LibFunc_strchr:
2854       return optimizeStrChr(CI, Builder);
2855     case LibFunc_strrchr:
2856       return optimizeStrRChr(CI, Builder);
2857     case LibFunc_strcmp:
2858       return optimizeStrCmp(CI, Builder);
2859     case LibFunc_strncmp:
2860       return optimizeStrNCmp(CI, Builder);
2861     case LibFunc_strcpy:
2862       return optimizeStrCpy(CI, Builder);
2863     case LibFunc_stpcpy:
2864       return optimizeStpCpy(CI, Builder);
2865     case LibFunc_strncpy:
2866       return optimizeStrNCpy(CI, Builder);
2867     case LibFunc_strlen:
2868       return optimizeStrLen(CI, Builder);
2869     case LibFunc_strpbrk:
2870       return optimizeStrPBrk(CI, Builder);
2871     case LibFunc_strndup:
2872       return optimizeStrNDup(CI, Builder);
2873     case LibFunc_strtol:
2874     case LibFunc_strtod:
2875     case LibFunc_strtof:
2876     case LibFunc_strtoul:
2877     case LibFunc_strtoll:
2878     case LibFunc_strtold:
2879     case LibFunc_strtoull:
2880       return optimizeStrTo(CI, Builder);
2881     case LibFunc_strspn:
2882       return optimizeStrSpn(CI, Builder);
2883     case LibFunc_strcspn:
2884       return optimizeStrCSpn(CI, Builder);
2885     case LibFunc_strstr:
2886       return optimizeStrStr(CI, Builder);
2887     case LibFunc_memchr:
2888       return optimizeMemChr(CI, Builder);
2889     case LibFunc_memrchr:
2890       return optimizeMemRChr(CI, Builder);
2891     case LibFunc_bcmp:
2892       return optimizeBCmp(CI, Builder);
2893     case LibFunc_memcmp:
2894       return optimizeMemCmp(CI, Builder);
2895     case LibFunc_memcpy:
2896       return optimizeMemCpy(CI, Builder);
2897     case LibFunc_memccpy:
2898       return optimizeMemCCpy(CI, Builder);
2899     case LibFunc_mempcpy:
2900       return optimizeMemPCpy(CI, Builder);
2901     case LibFunc_memmove:
2902       return optimizeMemMove(CI, Builder);
2903     case LibFunc_memset:
2904       return optimizeMemSet(CI, Builder);
2905     case LibFunc_realloc:
2906       return optimizeRealloc(CI, Builder);
2907     case LibFunc_wcslen:
2908       return optimizeWcslen(CI, Builder);
2909     case LibFunc_bcopy:
2910       return optimizeBCopy(CI, Builder);
2911     default:
2912       break;
2913     }
2914   }
2915   return nullptr;
2916 }
2917 
optimizeFloatingPointLibCall(CallInst * CI,LibFunc Func,IRBuilderBase & Builder)2918 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2919                                                        LibFunc Func,
2920                                                        IRBuilderBase &Builder) {
2921   // Don't optimize calls that require strict floating point semantics.
2922   if (CI->isStrictFP())
2923     return nullptr;
2924 
2925   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2926     return V;
2927 
2928   switch (Func) {
2929   case LibFunc_sinpif:
2930   case LibFunc_sinpi:
2931   case LibFunc_cospif:
2932   case LibFunc_cospi:
2933     return optimizeSinCosPi(CI, Builder);
2934   case LibFunc_powf:
2935   case LibFunc_pow:
2936   case LibFunc_powl:
2937     return optimizePow(CI, Builder);
2938   case LibFunc_exp2l:
2939   case LibFunc_exp2:
2940   case LibFunc_exp2f:
2941     return optimizeExp2(CI, Builder);
2942   case LibFunc_fabsf:
2943   case LibFunc_fabs:
2944   case LibFunc_fabsl:
2945     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2946   case LibFunc_sqrtf:
2947   case LibFunc_sqrt:
2948   case LibFunc_sqrtl:
2949     return optimizeSqrt(CI, Builder);
2950   case LibFunc_logf:
2951   case LibFunc_log:
2952   case LibFunc_logl:
2953   case LibFunc_log10f:
2954   case LibFunc_log10:
2955   case LibFunc_log10l:
2956   case LibFunc_log1pf:
2957   case LibFunc_log1p:
2958   case LibFunc_log1pl:
2959   case LibFunc_log2f:
2960   case LibFunc_log2:
2961   case LibFunc_log2l:
2962   case LibFunc_logbf:
2963   case LibFunc_logb:
2964   case LibFunc_logbl:
2965     return optimizeLog(CI, Builder);
2966   case LibFunc_tan:
2967   case LibFunc_tanf:
2968   case LibFunc_tanl:
2969     return optimizeTan(CI, Builder);
2970   case LibFunc_ceil:
2971     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2972   case LibFunc_floor:
2973     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2974   case LibFunc_round:
2975     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2976   case LibFunc_roundeven:
2977     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
2978   case LibFunc_nearbyint:
2979     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2980   case LibFunc_rint:
2981     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2982   case LibFunc_trunc:
2983     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2984   case LibFunc_acos:
2985   case LibFunc_acosh:
2986   case LibFunc_asin:
2987   case LibFunc_asinh:
2988   case LibFunc_atan:
2989   case LibFunc_atanh:
2990   case LibFunc_cbrt:
2991   case LibFunc_cosh:
2992   case LibFunc_exp:
2993   case LibFunc_exp10:
2994   case LibFunc_expm1:
2995   case LibFunc_cos:
2996   case LibFunc_sin:
2997   case LibFunc_sinh:
2998   case LibFunc_tanh:
2999     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3000       return optimizeUnaryDoubleFP(CI, Builder, true);
3001     return nullptr;
3002   case LibFunc_copysign:
3003     if (hasFloatVersion(CI->getCalledFunction()->getName()))
3004       return optimizeBinaryDoubleFP(CI, Builder);
3005     return nullptr;
3006   case LibFunc_fminf:
3007   case LibFunc_fmin:
3008   case LibFunc_fminl:
3009   case LibFunc_fmaxf:
3010   case LibFunc_fmax:
3011   case LibFunc_fmaxl:
3012     return optimizeFMinFMax(CI, Builder);
3013   case LibFunc_cabs:
3014   case LibFunc_cabsf:
3015   case LibFunc_cabsl:
3016     return optimizeCAbs(CI, Builder);
3017   default:
3018     return nullptr;
3019   }
3020 }
3021 
optimizeCall(CallInst * CI,IRBuilderBase & Builder)3022 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3023   // TODO: Split out the code below that operates on FP calls so that
3024   //       we can all non-FP calls with the StrictFP attribute to be
3025   //       optimized.
3026   if (CI->isNoBuiltin())
3027     return nullptr;
3028 
3029   LibFunc Func;
3030   Function *Callee = CI->getCalledFunction();
3031   bool isCallingConvC = isCallingConvCCompatible(CI);
3032 
3033   SmallVector<OperandBundleDef, 2> OpBundles;
3034   CI->getOperandBundlesAsDefs(OpBundles);
3035 
3036   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3037   Builder.setDefaultOperandBundles(OpBundles);
3038 
3039   // Command-line parameter overrides instruction attribute.
3040   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3041   // used by the intrinsic optimizations.
3042   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3043     UnsafeFPShrink = EnableUnsafeFPShrink;
3044   else if (isa<FPMathOperator>(CI) && CI->isFast())
3045     UnsafeFPShrink = true;
3046 
3047   // First, check for intrinsics.
3048   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3049     if (!isCallingConvC)
3050       return nullptr;
3051     // The FP intrinsics have corresponding constrained versions so we don't
3052     // need to check for the StrictFP attribute here.
3053     switch (II->getIntrinsicID()) {
3054     case Intrinsic::pow:
3055       return optimizePow(CI, Builder);
3056     case Intrinsic::exp2:
3057       return optimizeExp2(CI, Builder);
3058     case Intrinsic::log:
3059     case Intrinsic::log2:
3060     case Intrinsic::log10:
3061       return optimizeLog(CI, Builder);
3062     case Intrinsic::sqrt:
3063       return optimizeSqrt(CI, Builder);
3064     // TODO: Use foldMallocMemset() with memset intrinsic.
3065     case Intrinsic::memset:
3066       return optimizeMemSet(CI, Builder);
3067     case Intrinsic::memcpy:
3068       return optimizeMemCpy(CI, Builder);
3069     case Intrinsic::memmove:
3070       return optimizeMemMove(CI, Builder);
3071     default:
3072       return nullptr;
3073     }
3074   }
3075 
3076   // Also try to simplify calls to fortified library functions.
3077   if (Value *SimplifiedFortifiedCI =
3078           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3079     // Try to further simplify the result.
3080     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3081     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3082       // Ensure that SimplifiedCI's uses are complete, since some calls have
3083       // their uses analyzed.
3084       replaceAllUsesWith(CI, SimplifiedCI);
3085 
3086       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3087       // we might replace later on.
3088       IRBuilderBase::InsertPointGuard Guard(Builder);
3089       Builder.SetInsertPoint(SimplifiedCI);
3090       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3091         // If we were able to further simplify, remove the now redundant call.
3092         substituteInParent(SimplifiedCI, V);
3093         return V;
3094       }
3095     }
3096     return SimplifiedFortifiedCI;
3097   }
3098 
3099   // Then check for known library functions.
3100   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3101     // We never change the calling convention.
3102     if (!ignoreCallingConv(Func) && !isCallingConvC)
3103       return nullptr;
3104     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3105       return V;
3106     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3107       return V;
3108     switch (Func) {
3109     case LibFunc_ffs:
3110     case LibFunc_ffsl:
3111     case LibFunc_ffsll:
3112       return optimizeFFS(CI, Builder);
3113     case LibFunc_fls:
3114     case LibFunc_flsl:
3115     case LibFunc_flsll:
3116       return optimizeFls(CI, Builder);
3117     case LibFunc_abs:
3118     case LibFunc_labs:
3119     case LibFunc_llabs:
3120       return optimizeAbs(CI, Builder);
3121     case LibFunc_isdigit:
3122       return optimizeIsDigit(CI, Builder);
3123     case LibFunc_isascii:
3124       return optimizeIsAscii(CI, Builder);
3125     case LibFunc_toascii:
3126       return optimizeToAscii(CI, Builder);
3127     case LibFunc_atoi:
3128     case LibFunc_atol:
3129     case LibFunc_atoll:
3130       return optimizeAtoi(CI, Builder);
3131     case LibFunc_strtol:
3132     case LibFunc_strtoll:
3133       return optimizeStrtol(CI, Builder);
3134     case LibFunc_printf:
3135       return optimizePrintF(CI, Builder);
3136     case LibFunc_sprintf:
3137       return optimizeSPrintF(CI, Builder);
3138     case LibFunc_snprintf:
3139       return optimizeSnPrintF(CI, Builder);
3140     case LibFunc_fprintf:
3141       return optimizeFPrintF(CI, Builder);
3142     case LibFunc_fwrite:
3143       return optimizeFWrite(CI, Builder);
3144     case LibFunc_fputs:
3145       return optimizeFPuts(CI, Builder);
3146     case LibFunc_puts:
3147       return optimizePuts(CI, Builder);
3148     case LibFunc_perror:
3149       return optimizeErrorReporting(CI, Builder);
3150     case LibFunc_vfprintf:
3151     case LibFunc_fiprintf:
3152       return optimizeErrorReporting(CI, Builder, 0);
3153     default:
3154       return nullptr;
3155     }
3156   }
3157   return nullptr;
3158 }
3159 
LibCallSimplifier(const DataLayout & DL,const TargetLibraryInfo * TLI,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,function_ref<void (Instruction *,Value *)> Replacer,function_ref<void (Instruction *)> Eraser)3160 LibCallSimplifier::LibCallSimplifier(
3161     const DataLayout &DL, const TargetLibraryInfo *TLI,
3162     OptimizationRemarkEmitter &ORE,
3163     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3164     function_ref<void(Instruction *, Value *)> Replacer,
3165     function_ref<void(Instruction *)> Eraser)
3166     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3167       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3168 
replaceAllUsesWith(Instruction * I,Value * With)3169 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3170   // Indirect through the replacer used in this instance.
3171   Replacer(I, With);
3172 }
3173 
eraseFromParent(Instruction * I)3174 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3175   Eraser(I);
3176 }
3177 
3178 // TODO:
3179 //   Additional cases that we need to add to this file:
3180 //
3181 // cbrt:
3182 //   * cbrt(expN(X))  -> expN(x/3)
3183 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3184 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3185 //
3186 // exp, expf, expl:
3187 //   * exp(log(x))  -> x
3188 //
3189 // log, logf, logl:
3190 //   * log(exp(x))   -> x
3191 //   * log(exp(y))   -> y*log(e)
3192 //   * log(exp10(y)) -> y*log(10)
3193 //   * log(sqrt(x))  -> 0.5*log(x)
3194 //
3195 // pow, powf, powl:
3196 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3197 //   * pow(pow(x,y),z)-> pow(x,y*z)
3198 //
3199 // signbit:
3200 //   * signbit(cnst) -> cnst'
3201 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3202 //
3203 // sqrt, sqrtf, sqrtl:
3204 //   * sqrt(expN(x))  -> expN(x*0.5)
3205 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3206 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3207 //
3208 
3209 //===----------------------------------------------------------------------===//
3210 // Fortified Library Call Optimizations
3211 //===----------------------------------------------------------------------===//
3212 
3213 bool
isFortifiedCallFoldable(CallInst * CI,unsigned ObjSizeOp,Optional<unsigned> SizeOp,Optional<unsigned> StrOp,Optional<unsigned> FlagOp)3214 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3215                                                     unsigned ObjSizeOp,
3216                                                     Optional<unsigned> SizeOp,
3217                                                     Optional<unsigned> StrOp,
3218                                                     Optional<unsigned> FlagOp) {
3219   // If this function takes a flag argument, the implementation may use it to
3220   // perform extra checks. Don't fold into the non-checking variant.
3221   if (FlagOp) {
3222     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3223     if (!Flag || !Flag->isZero())
3224       return false;
3225   }
3226 
3227   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3228     return true;
3229 
3230   if (ConstantInt *ObjSizeCI =
3231           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3232     if (ObjSizeCI->isMinusOne())
3233       return true;
3234     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3235     if (OnlyLowerUnknownSize)
3236       return false;
3237     if (StrOp) {
3238       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3239       // If the length is 0 we don't know how long it is and so we can't
3240       // remove the check.
3241       if (Len)
3242         annotateDereferenceableBytes(CI, *StrOp, Len);
3243       else
3244         return false;
3245       return ObjSizeCI->getZExtValue() >= Len;
3246     }
3247 
3248     if (SizeOp) {
3249       if (ConstantInt *SizeCI =
3250               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3251         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3252     }
3253   }
3254   return false;
3255 }
3256 
optimizeMemCpyChk(CallInst * CI,IRBuilderBase & B)3257 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3258                                                      IRBuilderBase &B) {
3259   if (isFortifiedCallFoldable(CI, 3, 2)) {
3260     CallInst *NewCI =
3261         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3262                        Align(1), CI->getArgOperand(2));
3263     NewCI->setAttributes(CI->getAttributes());
3264     return CI->getArgOperand(0);
3265   }
3266   return nullptr;
3267 }
3268 
optimizeMemMoveChk(CallInst * CI,IRBuilderBase & B)3269 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3270                                                       IRBuilderBase &B) {
3271   if (isFortifiedCallFoldable(CI, 3, 2)) {
3272     CallInst *NewCI =
3273         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3274                         Align(1), CI->getArgOperand(2));
3275     NewCI->setAttributes(CI->getAttributes());
3276     return CI->getArgOperand(0);
3277   }
3278   return nullptr;
3279 }
3280 
optimizeMemSetChk(CallInst * CI,IRBuilderBase & B)3281 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3282                                                      IRBuilderBase &B) {
3283   // TODO: Try foldMallocMemset() here.
3284 
3285   if (isFortifiedCallFoldable(CI, 3, 2)) {
3286     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3287     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3288                                      CI->getArgOperand(2), Align(1));
3289     NewCI->setAttributes(CI->getAttributes());
3290     return CI->getArgOperand(0);
3291   }
3292   return nullptr;
3293 }
3294 
optimizeMemPCpyChk(CallInst * CI,IRBuilderBase & B)3295 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3296                                                       IRBuilderBase &B) {
3297   const DataLayout &DL = CI->getModule()->getDataLayout();
3298   if (isFortifiedCallFoldable(CI, 3, 2))
3299     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3300                                   CI->getArgOperand(2), B, DL, TLI)) {
3301       CallInst *NewCI = cast<CallInst>(Call);
3302       NewCI->setAttributes(CI->getAttributes());
3303       return NewCI;
3304     }
3305   return nullptr;
3306 }
3307 
optimizeStrpCpyChk(CallInst * CI,IRBuilderBase & B,LibFunc Func)3308 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3309                                                       IRBuilderBase &B,
3310                                                       LibFunc Func) {
3311   const DataLayout &DL = CI->getModule()->getDataLayout();
3312   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3313         *ObjSize = CI->getArgOperand(2);
3314 
3315   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3316   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3317     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3318     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3319   }
3320 
3321   // If a) we don't have any length information, or b) we know this will
3322   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3323   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3324   // TODO: It might be nice to get a maximum length out of the possible
3325   // string lengths for varying.
3326   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3327     if (Func == LibFunc_strcpy_chk)
3328       return emitStrCpy(Dst, Src, B, TLI);
3329     else
3330       return emitStpCpy(Dst, Src, B, TLI);
3331   }
3332 
3333   if (OnlyLowerUnknownSize)
3334     return nullptr;
3335 
3336   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3337   uint64_t Len = GetStringLength(Src);
3338   if (Len)
3339     annotateDereferenceableBytes(CI, 1, Len);
3340   else
3341     return nullptr;
3342 
3343   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3344   Value *LenV = ConstantInt::get(SizeTTy, Len);
3345   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3346   // If the function was an __stpcpy_chk, and we were able to fold it into
3347   // a __memcpy_chk, we still need to return the correct end pointer.
3348   if (Ret && Func == LibFunc_stpcpy_chk)
3349     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3350   return Ret;
3351 }
3352 
optimizeStrLenChk(CallInst * CI,IRBuilderBase & B)3353 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3354                                                      IRBuilderBase &B) {
3355   if (isFortifiedCallFoldable(CI, 1, None, 0))
3356     return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(),
3357                       TLI);
3358   return nullptr;
3359 }
3360 
optimizeStrpNCpyChk(CallInst * CI,IRBuilderBase & B,LibFunc Func)3361 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3362                                                        IRBuilderBase &B,
3363                                                        LibFunc Func) {
3364   if (isFortifiedCallFoldable(CI, 3, 2)) {
3365     if (Func == LibFunc_strncpy_chk)
3366       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3367                                CI->getArgOperand(2), B, TLI);
3368     else
3369       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3370                          CI->getArgOperand(2), B, TLI);
3371   }
3372 
3373   return nullptr;
3374 }
3375 
optimizeMemCCpyChk(CallInst * CI,IRBuilderBase & B)3376 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3377                                                       IRBuilderBase &B) {
3378   if (isFortifiedCallFoldable(CI, 4, 3))
3379     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3380                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3381 
3382   return nullptr;
3383 }
3384 
optimizeSNPrintfChk(CallInst * CI,IRBuilderBase & B)3385 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3386                                                        IRBuilderBase &B) {
3387   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3388     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3389     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3390                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3391   }
3392 
3393   return nullptr;
3394 }
3395 
optimizeSPrintfChk(CallInst * CI,IRBuilderBase & B)3396 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3397                                                       IRBuilderBase &B) {
3398   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3399     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3400     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3401                        B, TLI);
3402   }
3403 
3404   return nullptr;
3405 }
3406 
optimizeStrCatChk(CallInst * CI,IRBuilderBase & B)3407 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3408                                                      IRBuilderBase &B) {
3409   if (isFortifiedCallFoldable(CI, 2))
3410     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3411 
3412   return nullptr;
3413 }
3414 
optimizeStrLCat(CallInst * CI,IRBuilderBase & B)3415 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3416                                                    IRBuilderBase &B) {
3417   if (isFortifiedCallFoldable(CI, 3))
3418     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3419                        CI->getArgOperand(2), B, TLI);
3420 
3421   return nullptr;
3422 }
3423 
optimizeStrNCatChk(CallInst * CI,IRBuilderBase & B)3424 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3425                                                       IRBuilderBase &B) {
3426   if (isFortifiedCallFoldable(CI, 3))
3427     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3428                        CI->getArgOperand(2), B, TLI);
3429 
3430   return nullptr;
3431 }
3432 
optimizeStrLCpyChk(CallInst * CI,IRBuilderBase & B)3433 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3434                                                       IRBuilderBase &B) {
3435   if (isFortifiedCallFoldable(CI, 3))
3436     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3437                        CI->getArgOperand(2), B, TLI);
3438 
3439   return nullptr;
3440 }
3441 
optimizeVSNPrintfChk(CallInst * CI,IRBuilderBase & B)3442 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3443                                                         IRBuilderBase &B) {
3444   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3445     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3446                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3447 
3448   return nullptr;
3449 }
3450 
optimizeVSPrintfChk(CallInst * CI,IRBuilderBase & B)3451 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3452                                                        IRBuilderBase &B) {
3453   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3454     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3455                         CI->getArgOperand(4), B, TLI);
3456 
3457   return nullptr;
3458 }
3459 
optimizeCall(CallInst * CI,IRBuilderBase & Builder)3460 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3461                                                 IRBuilderBase &Builder) {
3462   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3463   // Some clang users checked for _chk libcall availability using:
3464   //   __has_builtin(__builtin___memcpy_chk)
3465   // When compiling with -fno-builtin, this is always true.
3466   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3467   // end up with fortified libcalls, which isn't acceptable in a freestanding
3468   // environment which only provides their non-fortified counterparts.
3469   //
3470   // Until we change clang and/or teach external users to check for availability
3471   // differently, disregard the "nobuiltin" attribute and TLI::has.
3472   //
3473   // PR23093.
3474 
3475   LibFunc Func;
3476   Function *Callee = CI->getCalledFunction();
3477   bool isCallingConvC = isCallingConvCCompatible(CI);
3478 
3479   SmallVector<OperandBundleDef, 2> OpBundles;
3480   CI->getOperandBundlesAsDefs(OpBundles);
3481 
3482   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3483   Builder.setDefaultOperandBundles(OpBundles);
3484 
3485   // First, check that this is a known library functions and that the prototype
3486   // is correct.
3487   if (!TLI->getLibFunc(*Callee, Func))
3488     return nullptr;
3489 
3490   // We never change the calling convention.
3491   if (!ignoreCallingConv(Func) && !isCallingConvC)
3492     return nullptr;
3493 
3494   switch (Func) {
3495   case LibFunc_memcpy_chk:
3496     return optimizeMemCpyChk(CI, Builder);
3497   case LibFunc_mempcpy_chk:
3498     return optimizeMemPCpyChk(CI, Builder);
3499   case LibFunc_memmove_chk:
3500     return optimizeMemMoveChk(CI, Builder);
3501   case LibFunc_memset_chk:
3502     return optimizeMemSetChk(CI, Builder);
3503   case LibFunc_stpcpy_chk:
3504   case LibFunc_strcpy_chk:
3505     return optimizeStrpCpyChk(CI, Builder, Func);
3506   case LibFunc_strlen_chk:
3507     return optimizeStrLenChk(CI, Builder);
3508   case LibFunc_stpncpy_chk:
3509   case LibFunc_strncpy_chk:
3510     return optimizeStrpNCpyChk(CI, Builder, Func);
3511   case LibFunc_memccpy_chk:
3512     return optimizeMemCCpyChk(CI, Builder);
3513   case LibFunc_snprintf_chk:
3514     return optimizeSNPrintfChk(CI, Builder);
3515   case LibFunc_sprintf_chk:
3516     return optimizeSPrintfChk(CI, Builder);
3517   case LibFunc_strcat_chk:
3518     return optimizeStrCatChk(CI, Builder);
3519   case LibFunc_strlcat_chk:
3520     return optimizeStrLCat(CI, Builder);
3521   case LibFunc_strncat_chk:
3522     return optimizeStrNCatChk(CI, Builder);
3523   case LibFunc_strlcpy_chk:
3524     return optimizeStrLCpyChk(CI, Builder);
3525   case LibFunc_vsnprintf_chk:
3526     return optimizeVSNPrintfChk(CI, Builder);
3527   case LibFunc_vsprintf_chk:
3528     return optimizeVSPrintfChk(CI, Builder);
3529   default:
3530     break;
3531   }
3532   return nullptr;
3533 }
3534 
FortifiedLibCallSimplifier(const TargetLibraryInfo * TLI,bool OnlyLowerUnknownSize)3535 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3536     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3537     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3538