1 /*
2 **
3 ** The author disclaims copyright to this source code.  In place of
4 ** a legal notice, here is a blessing:
5 **
6 **    May you do good and not evil.
7 **    May you find forgiveness for yourself and forgive others.
8 **    May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
13 */
14 #include "sqliteInt.h"
15 
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
18 
19 /*
20 ** Deferred and Immediate FKs
21 ** --------------------------
22 **
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
30 **
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
39 **
40 **   * When a commit fails due to a deferred foreign key constraint,
41 **     there is no way to tell which foreign constraint is not satisfied,
42 **     or which row it is not satisfied for.
43 **
44 **   * If the database contains foreign key violations when the
45 **     transaction is opened, this may cause the mechanism to malfunction.
46 **
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
49 **
50 ** INSERT operations:
51 **
52 **   I.1) For each FK for which the table is the child table, search
53 **        the parent table for a match. If none is found increment the
54 **        constraint counter.
55 **
56 **   I.2) For each FK for which the table is the parent table,
57 **        search the child table for rows that correspond to the new
58 **        row in the parent table. Decrement the counter for each row
59 **        found (as the constraint is now satisfied).
60 **
61 ** DELETE operations:
62 **
63 **   D.1) For each FK for which the table is the child table,
64 **        search the parent table for a row that corresponds to the
65 **        deleted row in the child table. If such a row is not found,
66 **        decrement the counter.
67 **
68 **   D.2) For each FK for which the table is the parent table, search
69 **        the child table for rows that correspond to the deleted row
70 **        in the parent table. For each found increment the counter.
71 **
72 ** UPDATE operations:
73 **
74 **   An UPDATE command requires that all 4 steps above are taken, but only
75 **   for FK constraints for which the affected columns are actually
76 **   modified (values must be compared at runtime).
77 **
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
80 **
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
85 ** row is inserted.
86 **
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
97 **
98 ** TODO: How should dropping a table be handled? How should renaming a
99 ** table be handled?
100 **
101 **
102 ** Query API Notes
103 ** ---------------
104 **
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
113 **
114 **   sqlite3FkRequired() - Test to see if FK processing is required.
115 **   sqlite3FkOldmask()  - Query for the set of required old.* columns.
116 **
117 **
118 ** Externally accessible module functions
119 ** --------------------------------------
120 **
121 **   sqlite3FkCheck()    - Check for foreign key violations.
122 **   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
123 **   sqlite3FkDelete()   - Delete an FKey structure.
124 */
125 
126 /*
127 ** VDBE Calling Convention
128 ** -----------------------
129 **
130 ** Example:
131 **
132 **   For the following INSERT statement:
133 **
134 **     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 **     INSERT INTO t1 VALUES(1, 2, 3.1);
136 **
137 **   Register (x):        2    (type integer)
138 **   Register (x+1):      1    (type integer)
139 **   Register (x+2):      NULL (type NULL)
140 **   Register (x+3):      3.1  (type real)
141 */
142 
143 /*
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
148 **
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
152 **
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
162 **
163 ** If the required index cannot be found, either because:
164 **
165 **   1) The named parent key columns do not exist, or
166 **
167 **   2) The named parent key columns do exist, but are not subject to a
168 **      UNIQUE or PRIMARY KEY constraint, or
169 **
170 **   3) No parent key columns were provided explicitly as part of the
171 **      foreign key definition, and the parent table does not have a
172 **      PRIMARY KEY, or
173 **
174 **   4) No parent key columns were provided explicitly as part of the
175 **      foreign key definition, and the PRIMARY KEY of the parent table
176 **      consists of a different number of columns to the child key in
177 **      the child table.
178 **
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
182 */
sqlite3FkLocateIndex(Parse * pParse,Table * pParent,FKey * pFKey,Index ** ppIdx,int ** paiCol)183 int sqlite3FkLocateIndex(
184   Parse *pParse,                  /* Parse context to store any error in */
185   Table *pParent,                 /* Parent table of FK constraint pFKey */
186   FKey *pFKey,                    /* Foreign key to find index for */
187   Index **ppIdx,                  /* OUT: Unique index on parent table */
188   int **paiCol                    /* OUT: Map of index columns in pFKey */
189 ){
190   Index *pIdx = 0;                    /* Value to return via *ppIdx */
191   int *aiCol = 0;                     /* Value to return via *paiCol */
192   int nCol = pFKey->nCol;             /* Number of columns in parent key */
193   char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
194 
195   /* The caller is responsible for zeroing output parameters. */
196   assert( ppIdx && *ppIdx==0 );
197   assert( !paiCol || *paiCol==0 );
198   assert( pParse );
199 
200   /* If this is a non-composite (single column) foreign key, check if it
201   ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202   ** and *paiCol set to zero and return early.
203   **
204   ** Otherwise, for a composite foreign key (more than one column), allocate
205   ** space for the aiCol array (returned via output parameter *paiCol).
206   ** Non-composite foreign keys do not require the aiCol array.
207   */
208   if( nCol==1 ){
209     /* The FK maps to the IPK if any of the following are true:
210     **
211     **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212     **      mapped to the primary key of table pParent, or
213     **   2) The FK is explicitly mapped to a column declared as INTEGER
214     **      PRIMARY KEY.
215     */
216     if( pParent->iPKey>=0 ){
217       if( !zKey ) return 0;
218       if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
219     }
220   }else if( paiCol ){
221     assert( nCol>1 );
222     aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int));
223     if( !aiCol ) return 1;
224     *paiCol = aiCol;
225   }
226 
227   for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
228     if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){
229       /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
230       ** of columns. If each indexed column corresponds to a foreign key
231       ** column of pFKey, then this index is a winner.  */
232 
233       if( zKey==0 ){
234         /* If zKey is NULL, then this foreign key is implicitly mapped to
235         ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
236         ** identified by the test.  */
237         if( IsPrimaryKeyIndex(pIdx) ){
238           if( aiCol ){
239             int i;
240             for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
241           }
242           break;
243         }
244       }else{
245         /* If zKey is non-NULL, then this foreign key was declared to
246         ** map to an explicit list of columns in table pParent. Check if this
247         ** index matches those columns. Also, check that the index uses
248         ** the default collation sequences for each column. */
249         int i, j;
250         for(i=0; i<nCol; i++){
251           i16 iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
252           const char *zDfltColl;            /* Def. collation for column */
253           char *zIdxCol;                    /* Name of indexed column */
254 
255           if( iCol<0 ) break; /* No foreign keys against expression indexes */
256 
257           /* If the index uses a collation sequence that is different from
258           ** the default collation sequence for the column, this index is
259           ** unusable. Bail out early in this case.  */
260           zDfltColl = pParent->aCol[iCol].zColl;
261           if( !zDfltColl ) zDfltColl = sqlite3StrBINARY;
262           if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
263 
264           zIdxCol = pParent->aCol[iCol].zName;
265           for(j=0; j<nCol; j++){
266             if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
267               if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
268               break;
269             }
270           }
271           if( j==nCol ) break;
272         }
273         if( i==nCol ) break;      /* pIdx is usable */
274       }
275     }
276   }
277 
278   if( !pIdx ){
279     if( !pParse->disableTriggers ){
280       sqlite3ErrorMsg(pParse,
281            "foreign key mismatch - \"%w\" referencing \"%w\"",
282            pFKey->pFrom->zName, pFKey->zTo);
283     }
284     sqlite3DbFree(pParse->db, aiCol);
285     return 1;
286   }
287 
288   *ppIdx = pIdx;
289   return 0;
290 }
291 
292 /*
293 ** This function is called when a row is inserted into or deleted from the
294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
295 ** on the child table of pFKey, this function is invoked twice for each row
296 ** affected - once to "delete" the old row, and then again to "insert" the
297 ** new row.
298 **
299 ** Each time it is called, this function generates VDBE code to locate the
300 ** row in the parent table that corresponds to the row being inserted into
301 ** or deleted from the child table. If the parent row can be found, no
302 ** special action is taken. Otherwise, if the parent row can *not* be
303 ** found in the parent table:
304 **
305 **   Operation | FK type   | Action taken
306 **   --------------------------------------------------------------------------
307 **   INSERT      immediate   Increment the "immediate constraint counter".
308 **
309 **   DELETE      immediate   Decrement the "immediate constraint counter".
310 **
311 **   INSERT      deferred    Increment the "deferred constraint counter".
312 **
313 **   DELETE      deferred    Decrement the "deferred constraint counter".
314 **
315 ** These operations are identified in the comment at the top of this file
316 ** (fkey.c) as "I.1" and "D.1".
317 */
fkLookupParent(Parse * pParse,int iDb,Table * pTab,Index * pIdx,FKey * pFKey,int * aiCol,int regData,int nIncr,int isIgnore)318 static void fkLookupParent(
319   Parse *pParse,        /* Parse context */
320   int iDb,              /* Index of database housing pTab */
321   Table *pTab,          /* Parent table of FK pFKey */
322   Index *pIdx,          /* Unique index on parent key columns in pTab */
323   FKey *pFKey,          /* Foreign key constraint */
324   int *aiCol,           /* Map from parent key columns to child table columns */
325   int regData,          /* Address of array containing child table row */
326   int nIncr,            /* Increment constraint counter by this */
327   int isIgnore          /* If true, pretend pTab contains all NULL values */
328 ){
329   int i;                                    /* Iterator variable */
330   Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
331   int iCur = pParse->nTab - 1;              /* Cursor number to use */
332   int iOk = sqlite3VdbeMakeLabel(pParse);   /* jump here if parent key found */
333 
334   sqlite3VdbeVerifyAbortable(v,
335     (!pFKey->isDeferred
336       && !(pParse->db->flags & SQLITE_DeferFKs)
337       && !pParse->pToplevel
338       && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore);
339 
340   /* If nIncr is less than zero, then check at runtime if there are any
341   ** outstanding constraints to resolve. If there are not, there is no need
342   ** to check if deleting this row resolves any outstanding violations.
343   **
344   ** Check if any of the key columns in the child table row are NULL. If
345   ** any are, then the constraint is considered satisfied. No need to
346   ** search for a matching row in the parent table.  */
347   if( nIncr<0 ){
348     sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
349     VdbeCoverage(v);
350   }
351   for(i=0; i<pFKey->nCol; i++){
352     int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1;
353     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
354   }
355 
356   if( isIgnore==0 ){
357     if( pIdx==0 ){
358       /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
359       ** column of the parent table (table pTab).  */
360       int iMustBeInt;               /* Address of MustBeInt instruction */
361       int regTemp = sqlite3GetTempReg(pParse);
362 
363       /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
364       ** apply the affinity of the parent key). If this fails, then there
365       ** is no matching parent key. Before using MustBeInt, make a copy of
366       ** the value. Otherwise, the value inserted into the child key column
367       ** will have INTEGER affinity applied to it, which may not be correct.  */
368       sqlite3VdbeAddOp2(v, OP_SCopy,
369         sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp);
370       iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
371       VdbeCoverage(v);
372 
373       /* If the parent table is the same as the child table, and we are about
374       ** to increment the constraint-counter (i.e. this is an INSERT operation),
375       ** then check if the row being inserted matches itself. If so, do not
376       ** increment the constraint-counter.  */
377       if( pTab==pFKey->pFrom && nIncr==1 ){
378         sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
379         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
380       }
381 
382       sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
383       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
384       sqlite3VdbeGoto(v, iOk);
385       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
386       sqlite3VdbeJumpHere(v, iMustBeInt);
387       sqlite3ReleaseTempReg(pParse, regTemp);
388     }else{
389       int nCol = pFKey->nCol;
390       int regTemp = sqlite3GetTempRange(pParse, nCol);
391       int regRec = sqlite3GetTempReg(pParse);
392 
393       sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
394       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
395       for(i=0; i<nCol; i++){
396         sqlite3VdbeAddOp2(v, OP_Copy,
397                sqlite3TableColumnToStorage(pFKey->pFrom, aiCol[i])+1+regData,
398                regTemp+i);
399       }
400 
401       /* If the parent table is the same as the child table, and we are about
402       ** to increment the constraint-counter (i.e. this is an INSERT operation),
403       ** then check if the row being inserted matches itself. If so, do not
404       ** increment the constraint-counter.
405       **
406       ** If any of the parent-key values are NULL, then the row cannot match
407       ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
408       ** of the parent-key values are NULL (at this point it is known that
409       ** none of the child key values are).
410       */
411       if( pTab==pFKey->pFrom && nIncr==1 ){
412         int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
413         for(i=0; i<nCol; i++){
414           int iChild = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i])
415                               +1+regData;
416           int iParent = 1+regData;
417           iParent += sqlite3TableColumnToStorage(pIdx->pTable,
418                                                  pIdx->aiColumn[i]);
419           assert( pIdx->aiColumn[i]>=0 );
420           assert( aiCol[i]!=pTab->iPKey );
421           if( pIdx->aiColumn[i]==pTab->iPKey ){
422             /* The parent key is a composite key that includes the IPK column */
423             iParent = regData;
424           }
425           sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
426           sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
427         }
428         sqlite3VdbeGoto(v, iOk);
429       }
430 
431       sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec,
432                         sqlite3IndexAffinityStr(pParse->db,pIdx), nCol);
433       sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v);
434 
435       sqlite3ReleaseTempReg(pParse, regRec);
436       sqlite3ReleaseTempRange(pParse, regTemp, nCol);
437     }
438   }
439 
440   if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
441    && !pParse->pToplevel
442    && !pParse->isMultiWrite
443   ){
444     /* Special case: If this is an INSERT statement that will insert exactly
445     ** one row into the table, raise a constraint immediately instead of
446     ** incrementing a counter. This is necessary as the VM code is being
447     ** generated for will not open a statement transaction.  */
448     assert( nIncr==1 );
449     sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
450         OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
451   }else{
452     if( nIncr>0 && pFKey->isDeferred==0 ){
453       sqlite3MayAbort(pParse);
454     }
455     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
456   }
457 
458   sqlite3VdbeResolveLabel(v, iOk);
459   sqlite3VdbeAddOp1(v, OP_Close, iCur);
460 }
461 
462 
463 /*
464 ** Return an Expr object that refers to a memory register corresponding
465 ** to column iCol of table pTab.
466 **
467 ** regBase is the first of an array of register that contains the data
468 ** for pTab.  regBase itself holds the rowid.  regBase+1 holds the first
469 ** column.  regBase+2 holds the second column, and so forth.
470 */
exprTableRegister(Parse * pParse,Table * pTab,int regBase,i16 iCol)471 static Expr *exprTableRegister(
472   Parse *pParse,     /* Parsing and code generating context */
473   Table *pTab,       /* The table whose content is at r[regBase]... */
474   int regBase,       /* Contents of table pTab */
475   i16 iCol           /* Which column of pTab is desired */
476 ){
477   Expr *pExpr;
478   Column *pCol;
479   const char *zColl;
480   sqlite3 *db = pParse->db;
481 
482   pExpr = sqlite3Expr(db, TK_REGISTER, 0);
483   if( pExpr ){
484     if( iCol>=0 && iCol!=pTab->iPKey ){
485       pCol = &pTab->aCol[iCol];
486       pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1;
487       pExpr->affExpr = pCol->affinity;
488       zColl = pCol->zColl;
489       if( zColl==0 ) zColl = db->pDfltColl->zName;
490       pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
491     }else{
492       pExpr->iTable = regBase;
493       pExpr->affExpr = SQLITE_AFF_INTEGER;
494     }
495   }
496   return pExpr;
497 }
498 
499 /*
500 ** Return an Expr object that refers to column iCol of table pTab which
501 ** has cursor iCur.
502 */
exprTableColumn(sqlite3 * db,Table * pTab,int iCursor,i16 iCol)503 static Expr *exprTableColumn(
504   sqlite3 *db,      /* The database connection */
505   Table *pTab,      /* The table whose column is desired */
506   int iCursor,      /* The open cursor on the table */
507   i16 iCol          /* The column that is wanted */
508 ){
509   Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
510   if( pExpr ){
511     pExpr->y.pTab = pTab;
512     pExpr->iTable = iCursor;
513     pExpr->iColumn = iCol;
514   }
515   return pExpr;
516 }
517 
518 /*
519 ** This function is called to generate code executed when a row is deleted
520 ** from the parent table of foreign key constraint pFKey and, if pFKey is
521 ** deferred, when a row is inserted into the same table. When generating
522 ** code for an SQL UPDATE operation, this function may be called twice -
523 ** once to "delete" the old row and once to "insert" the new row.
524 **
525 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease
526 ** the number of FK violations in the db) or +1 when deleting one (as this
527 ** may increase the number of FK constraint problems).
528 **
529 ** The code generated by this function scans through the rows in the child
530 ** table that correspond to the parent table row being deleted or inserted.
531 ** For each child row found, one of the following actions is taken:
532 **
533 **   Operation | FK type   | Action taken
534 **   --------------------------------------------------------------------------
535 **   DELETE      immediate   Increment the "immediate constraint counter".
536 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
537 **                           throw a "FOREIGN KEY constraint failed" exception.
538 **
539 **   INSERT      immediate   Decrement the "immediate constraint counter".
540 **
541 **   DELETE      deferred    Increment the "deferred constraint counter".
542 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
543 **                           throw a "FOREIGN KEY constraint failed" exception.
544 **
545 **   INSERT      deferred    Decrement the "deferred constraint counter".
546 **
547 ** These operations are identified in the comment at the top of this file
548 ** (fkey.c) as "I.2" and "D.2".
549 */
fkScanChildren(Parse * pParse,SrcList * pSrc,Table * pTab,Index * pIdx,FKey * pFKey,int * aiCol,int regData,int nIncr)550 static void fkScanChildren(
551   Parse *pParse,                  /* Parse context */
552   SrcList *pSrc,                  /* The child table to be scanned */
553   Table *pTab,                    /* The parent table */
554   Index *pIdx,                    /* Index on parent covering the foreign key */
555   FKey *pFKey,                    /* The foreign key linking pSrc to pTab */
556   int *aiCol,                     /* Map from pIdx cols to child table cols */
557   int regData,                    /* Parent row data starts here */
558   int nIncr                       /* Amount to increment deferred counter by */
559 ){
560   sqlite3 *db = pParse->db;       /* Database handle */
561   int i;                          /* Iterator variable */
562   Expr *pWhere = 0;               /* WHERE clause to scan with */
563   NameContext sNameContext;       /* Context used to resolve WHERE clause */
564   WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
565   int iFkIfZero = 0;              /* Address of OP_FkIfZero */
566   Vdbe *v = sqlite3GetVdbe(pParse);
567 
568   assert( pIdx==0 || pIdx->pTable==pTab );
569   assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
570   assert( pIdx!=0 || pFKey->nCol==1 );
571   assert( pIdx!=0 || HasRowid(pTab) );
572 
573   if( nIncr<0 ){
574     iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
575     VdbeCoverage(v);
576   }
577 
578   /* Create an Expr object representing an SQL expression like:
579   **
580   **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
581   **
582   ** The collation sequence used for the comparison should be that of
583   ** the parent key columns. The affinity of the parent key column should
584   ** be applied to each child key value before the comparison takes place.
585   */
586   for(i=0; i<pFKey->nCol; i++){
587     Expr *pLeft;                  /* Value from parent table row */
588     Expr *pRight;                 /* Column ref to child table */
589     Expr *pEq;                    /* Expression (pLeft = pRight) */
590     i16 iCol;                     /* Index of column in child table */
591     const char *zCol;             /* Name of column in child table */
592 
593     iCol = pIdx ? pIdx->aiColumn[i] : -1;
594     pLeft = exprTableRegister(pParse, pTab, regData, iCol);
595     iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
596     assert( iCol>=0 );
597     zCol = pFKey->pFrom->aCol[iCol].zName;
598     pRight = sqlite3Expr(db, TK_ID, zCol);
599     pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight);
600     pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
601   }
602 
603   /* If the child table is the same as the parent table, then add terms
604   ** to the WHERE clause that prevent this entry from being scanned.
605   ** The added WHERE clause terms are like this:
606   **
607   **     $current_rowid!=rowid
608   **     NOT( $current_a==a AND $current_b==b AND ... )
609   **
610   ** The first form is used for rowid tables.  The second form is used
611   ** for WITHOUT ROWID tables. In the second form, the *parent* key is
612   ** (a,b,...). Either the parent or primary key could be used to
613   ** uniquely identify the current row, but the parent key is more convenient
614   ** as the required values have already been loaded into registers
615   ** by the caller.
616   */
617   if( pTab==pFKey->pFrom && nIncr>0 ){
618     Expr *pNe;                    /* Expression (pLeft != pRight) */
619     Expr *pLeft;                  /* Value from parent table row */
620     Expr *pRight;                 /* Column ref to child table */
621     if( HasRowid(pTab) ){
622       pLeft = exprTableRegister(pParse, pTab, regData, -1);
623       pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
624       pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight);
625     }else{
626       Expr *pEq, *pAll = 0;
627       assert( pIdx!=0 );
628       for(i=0; i<pIdx->nKeyCol; i++){
629         i16 iCol = pIdx->aiColumn[i];
630         assert( iCol>=0 );
631         pLeft = exprTableRegister(pParse, pTab, regData, iCol);
632         pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zName);
633         pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight);
634         pAll = sqlite3ExprAnd(pParse, pAll, pEq);
635       }
636       pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0);
637     }
638     pWhere = sqlite3ExprAnd(pParse, pWhere, pNe);
639   }
640 
641   /* Resolve the references in the WHERE clause. */
642   memset(&sNameContext, 0, sizeof(NameContext));
643   sNameContext.pSrcList = pSrc;
644   sNameContext.pParse = pParse;
645   sqlite3ResolveExprNames(&sNameContext, pWhere);
646 
647   /* Create VDBE to loop through the entries in pSrc that match the WHERE
648   ** clause. For each row found, increment either the deferred or immediate
649   ** foreign key constraint counter. */
650   if( pParse->nErr==0 ){
651     pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
652     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
653     if( pWInfo ){
654       sqlite3WhereEnd(pWInfo);
655     }
656   }
657 
658   /* Clean up the WHERE clause constructed above. */
659   sqlite3ExprDelete(db, pWhere);
660   if( iFkIfZero ){
661     sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero);
662   }
663 }
664 
665 /*
666 ** This function returns a linked list of FKey objects (connected by
667 ** FKey.pNextTo) holding all children of table pTab.  For example,
668 ** given the following schema:
669 **
670 **   CREATE TABLE t1(a PRIMARY KEY);
671 **   CREATE TABLE t2(b REFERENCES t1(a);
672 **
673 ** Calling this function with table "t1" as an argument returns a pointer
674 ** to the FKey structure representing the foreign key constraint on table
675 ** "t2". Calling this function with "t2" as the argument would return a
676 ** NULL pointer (as there are no FK constraints for which t2 is the parent
677 ** table).
678 */
sqlite3FkReferences(Table * pTab)679 FKey *sqlite3FkReferences(Table *pTab){
680   return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName);
681 }
682 
683 /*
684 ** The second argument is a Trigger structure allocated by the
685 ** fkActionTrigger() routine. This function deletes the Trigger structure
686 ** and all of its sub-components.
687 **
688 ** The Trigger structure or any of its sub-components may be allocated from
689 ** the lookaside buffer belonging to database handle dbMem.
690 */
fkTriggerDelete(sqlite3 * dbMem,Trigger * p)691 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
692   if( p ){
693     TriggerStep *pStep = p->step_list;
694     sqlite3ExprDelete(dbMem, pStep->pWhere);
695     sqlite3ExprListDelete(dbMem, pStep->pExprList);
696     sqlite3SelectDelete(dbMem, pStep->pSelect);
697     sqlite3ExprDelete(dbMem, p->pWhen);
698     sqlite3DbFree(dbMem, p);
699   }
700 }
701 
702 /*
703 ** This function is called to generate code that runs when table pTab is
704 ** being dropped from the database. The SrcList passed as the second argument
705 ** to this function contains a single entry guaranteed to resolve to
706 ** table pTab.
707 **
708 ** Normally, no code is required. However, if either
709 **
710 **   (a) The table is the parent table of a FK constraint, or
711 **   (b) The table is the child table of a deferred FK constraint and it is
712 **       determined at runtime that there are outstanding deferred FK
713 **       constraint violations in the database,
714 **
715 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
716 ** the table from the database. Triggers are disabled while running this
717 ** DELETE, but foreign key actions are not.
718 */
sqlite3FkDropTable(Parse * pParse,SrcList * pName,Table * pTab)719 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
720   sqlite3 *db = pParse->db;
721   if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) ){
722     int iSkip = 0;
723     Vdbe *v = sqlite3GetVdbe(pParse);
724 
725     assert( v );                  /* VDBE has already been allocated */
726     assert( pTab->pSelect==0 );   /* Not a view */
727     if( sqlite3FkReferences(pTab)==0 ){
728       /* Search for a deferred foreign key constraint for which this table
729       ** is the child table. If one cannot be found, return without
730       ** generating any VDBE code. If one can be found, then jump over
731       ** the entire DELETE if there are no outstanding deferred constraints
732       ** when this statement is run.  */
733       FKey *p;
734       for(p=pTab->pFKey; p; p=p->pNextFrom){
735         if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
736       }
737       if( !p ) return;
738       iSkip = sqlite3VdbeMakeLabel(pParse);
739       sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
740     }
741 
742     pParse->disableTriggers = 1;
743     sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0);
744     pParse->disableTriggers = 0;
745 
746     /* If the DELETE has generated immediate foreign key constraint
747     ** violations, halt the VDBE and return an error at this point, before
748     ** any modifications to the schema are made. This is because statement
749     ** transactions are not able to rollback schema changes.
750     **
751     ** If the SQLITE_DeferFKs flag is set, then this is not required, as
752     ** the statement transaction will not be rolled back even if FK
753     ** constraints are violated.
754     */
755     if( (db->flags & SQLITE_DeferFKs)==0 ){
756       sqlite3VdbeVerifyAbortable(v, OE_Abort);
757       sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
758       VdbeCoverage(v);
759       sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
760           OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
761     }
762 
763     if( iSkip ){
764       sqlite3VdbeResolveLabel(v, iSkip);
765     }
766   }
767 }
768 
769 
770 /*
771 ** The second argument points to an FKey object representing a foreign key
772 ** for which pTab is the child table. An UPDATE statement against pTab
773 ** is currently being processed. For each column of the table that is
774 ** actually updated, the corresponding element in the aChange[] array
775 ** is zero or greater (if a column is unmodified the corresponding element
776 ** is set to -1). If the rowid column is modified by the UPDATE statement
777 ** the bChngRowid argument is non-zero.
778 **
779 ** This function returns true if any of the columns that are part of the
780 ** child key for FK constraint *p are modified.
781 */
fkChildIsModified(Table * pTab,FKey * p,int * aChange,int bChngRowid)782 static int fkChildIsModified(
783   Table *pTab,                    /* Table being updated */
784   FKey *p,                        /* Foreign key for which pTab is the child */
785   int *aChange,                   /* Array indicating modified columns */
786   int bChngRowid                  /* True if rowid is modified by this update */
787 ){
788   int i;
789   for(i=0; i<p->nCol; i++){
790     int iChildKey = p->aCol[i].iFrom;
791     if( aChange[iChildKey]>=0 ) return 1;
792     if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
793   }
794   return 0;
795 }
796 
797 /*
798 ** The second argument points to an FKey object representing a foreign key
799 ** for which pTab is the parent table. An UPDATE statement against pTab
800 ** is currently being processed. For each column of the table that is
801 ** actually updated, the corresponding element in the aChange[] array
802 ** is zero or greater (if a column is unmodified the corresponding element
803 ** is set to -1). If the rowid column is modified by the UPDATE statement
804 ** the bChngRowid argument is non-zero.
805 **
806 ** This function returns true if any of the columns that are part of the
807 ** parent key for FK constraint *p are modified.
808 */
fkParentIsModified(Table * pTab,FKey * p,int * aChange,int bChngRowid)809 static int fkParentIsModified(
810   Table *pTab,
811   FKey *p,
812   int *aChange,
813   int bChngRowid
814 ){
815   int i;
816   for(i=0; i<p->nCol; i++){
817     char *zKey = p->aCol[i].zCol;
818     int iKey;
819     for(iKey=0; iKey<pTab->nCol; iKey++){
820       if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
821         Column *pCol = &pTab->aCol[iKey];
822         if( zKey ){
823           if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1;
824         }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
825           return 1;
826         }
827       }
828     }
829   }
830   return 0;
831 }
832 
833 /*
834 ** Return true if the parser passed as the first argument is being
835 ** used to code a trigger that is really a "SET NULL" action belonging
836 ** to trigger pFKey.
837 */
isSetNullAction(Parse * pParse,FKey * pFKey)838 static int isSetNullAction(Parse *pParse, FKey *pFKey){
839   Parse *pTop = sqlite3ParseToplevel(pParse);
840   if( pTop->pTriggerPrg ){
841     Trigger *p = pTop->pTriggerPrg->pTrigger;
842     if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull)
843      || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull)
844     ){
845       return 1;
846     }
847   }
848   return 0;
849 }
850 
851 /*
852 ** This function is called when inserting, deleting or updating a row of
853 ** table pTab to generate VDBE code to perform foreign key constraint
854 ** processing for the operation.
855 **
856 ** For a DELETE operation, parameter regOld is passed the index of the
857 ** first register in an array of (pTab->nCol+1) registers containing the
858 ** rowid of the row being deleted, followed by each of the column values
859 ** of the row being deleted, from left to right. Parameter regNew is passed
860 ** zero in this case.
861 **
862 ** For an INSERT operation, regOld is passed zero and regNew is passed the
863 ** first register of an array of (pTab->nCol+1) registers containing the new
864 ** row data.
865 **
866 ** For an UPDATE operation, this function is called twice. Once before
867 ** the original record is deleted from the table using the calling convention
868 ** described for DELETE. Then again after the original record is deleted
869 ** but before the new record is inserted using the INSERT convention.
870 */
sqlite3FkCheck(Parse * pParse,Table * pTab,int regOld,int regNew,int * aChange,int bChngRowid)871 void sqlite3FkCheck(
872   Parse *pParse,                  /* Parse context */
873   Table *pTab,                    /* Row is being deleted from this table */
874   int regOld,                     /* Previous row data is stored here */
875   int regNew,                     /* New row data is stored here */
876   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
877   int bChngRowid                  /* True if rowid is UPDATEd */
878 ){
879   sqlite3 *db = pParse->db;       /* Database handle */
880   FKey *pFKey;                    /* Used to iterate through FKs */
881   int iDb;                        /* Index of database containing pTab */
882   const char *zDb;                /* Name of database containing pTab */
883   int isIgnoreErrors = pParse->disableTriggers;
884 
885   /* Exactly one of regOld and regNew should be non-zero. */
886   assert( (regOld==0)!=(regNew==0) );
887 
888   /* If foreign-keys are disabled, this function is a no-op. */
889   if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
890 
891   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
892   zDb = db->aDb[iDb].zDbSName;
893 
894   /* Loop through all the foreign key constraints for which pTab is the
895   ** child table (the table that the foreign key definition is part of).  */
896   for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
897     Table *pTo;                   /* Parent table of foreign key pFKey */
898     Index *pIdx = 0;              /* Index on key columns in pTo */
899     int *aiFree = 0;
900     int *aiCol;
901     int iCol;
902     int i;
903     int bIgnore = 0;
904 
905     if( aChange
906      && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
907      && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
908     ){
909       continue;
910     }
911 
912     /* Find the parent table of this foreign key. Also find a unique index
913     ** on the parent key columns in the parent table. If either of these
914     ** schema items cannot be located, set an error in pParse and return
915     ** early.  */
916     if( pParse->disableTriggers ){
917       pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
918     }else{
919       pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
920     }
921     if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
922       assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
923       if( !isIgnoreErrors || db->mallocFailed ) return;
924       if( pTo==0 ){
925         /* If isIgnoreErrors is true, then a table is being dropped. In this
926         ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
927         ** before actually dropping it in order to check FK constraints.
928         ** If the parent table of an FK constraint on the current table is
929         ** missing, behave as if it is empty. i.e. decrement the relevant
930         ** FK counter for each row of the current table with non-NULL keys.
931         */
932         Vdbe *v = sqlite3GetVdbe(pParse);
933         int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
934         for(i=0; i<pFKey->nCol; i++){
935           int iFromCol, iReg;
936           iFromCol = pFKey->aCol[i].iFrom;
937           iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1;
938           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
939         }
940         sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
941       }
942       continue;
943     }
944     assert( pFKey->nCol==1 || (aiFree && pIdx) );
945 
946     if( aiFree ){
947       aiCol = aiFree;
948     }else{
949       iCol = pFKey->aCol[0].iFrom;
950       aiCol = &iCol;
951     }
952     for(i=0; i<pFKey->nCol; i++){
953       if( aiCol[i]==pTab->iPKey ){
954         aiCol[i] = -1;
955       }
956       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
957 #ifndef SQLITE_OMIT_AUTHORIZATION
958       /* Request permission to read the parent key columns. If the
959       ** authorization callback returns SQLITE_IGNORE, behave as if any
960       ** values read from the parent table are NULL. */
961       if( db->xAuth ){
962         int rcauth;
963         char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
964         rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
965         bIgnore = (rcauth==SQLITE_IGNORE);
966       }
967 #endif
968     }
969 
970     /* Take a shared-cache advisory read-lock on the parent table. Allocate
971     ** a cursor to use to search the unique index on the parent key columns
972     ** in the parent table.  */
973     sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
974     pParse->nTab++;
975 
976     if( regOld!=0 ){
977       /* A row is being removed from the child table. Search for the parent.
978       ** If the parent does not exist, removing the child row resolves an
979       ** outstanding foreign key constraint violation. */
980       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore);
981     }
982     if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){
983       /* A row is being added to the child table. If a parent row cannot
984       ** be found, adding the child row has violated the FK constraint.
985       **
986       ** If this operation is being performed as part of a trigger program
987       ** that is actually a "SET NULL" action belonging to this very
988       ** foreign key, then omit this scan altogether. As all child key
989       ** values are guaranteed to be NULL, it is not possible for adding
990       ** this row to cause an FK violation.  */
991       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore);
992     }
993 
994     sqlite3DbFree(db, aiFree);
995   }
996 
997   /* Loop through all the foreign key constraints that refer to this table.
998   ** (the "child" constraints) */
999   for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1000     Index *pIdx = 0;              /* Foreign key index for pFKey */
1001     SrcList *pSrc;
1002     int *aiCol = 0;
1003 
1004     if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
1005       continue;
1006     }
1007 
1008     if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
1009      && !pParse->pToplevel && !pParse->isMultiWrite
1010     ){
1011       assert( regOld==0 && regNew!=0 );
1012       /* Inserting a single row into a parent table cannot cause (or fix)
1013       ** an immediate foreign key violation. So do nothing in this case.  */
1014       continue;
1015     }
1016 
1017     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
1018       if( !isIgnoreErrors || db->mallocFailed ) return;
1019       continue;
1020     }
1021     assert( aiCol || pFKey->nCol==1 );
1022 
1023     /* Create a SrcList structure containing the child table.  We need the
1024     ** child table as a SrcList for sqlite3WhereBegin() */
1025     pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1026     if( pSrc ){
1027       struct SrcList_item *pItem = pSrc->a;
1028       pItem->pTab = pFKey->pFrom;
1029       pItem->zName = pFKey->pFrom->zName;
1030       pItem->pTab->nTabRef++;
1031       pItem->iCursor = pParse->nTab++;
1032 
1033       if( regNew!=0 ){
1034         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
1035       }
1036       if( regOld!=0 ){
1037         int eAction = pFKey->aAction[aChange!=0];
1038         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
1039         /* If this is a deferred FK constraint, or a CASCADE or SET NULL
1040         ** action applies, then any foreign key violations caused by
1041         ** removing the parent key will be rectified by the action trigger.
1042         ** So do not set the "may-abort" flag in this case.
1043         **
1044         ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
1045         ** may-abort flag will eventually be set on this statement anyway
1046         ** (when this function is called as part of processing the UPDATE
1047         ** within the action trigger).
1048         **
1049         ** Note 2: At first glance it may seem like SQLite could simply omit
1050         ** all OP_FkCounter related scans when either CASCADE or SET NULL
1051         ** applies. The trouble starts if the CASCADE or SET NULL action
1052         ** trigger causes other triggers or action rules attached to the
1053         ** child table to fire. In these cases the fk constraint counters
1054         ** might be set incorrectly if any OP_FkCounter related scans are
1055         ** omitted.  */
1056         if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){
1057           sqlite3MayAbort(pParse);
1058         }
1059       }
1060       pItem->zName = 0;
1061       sqlite3SrcListDelete(db, pSrc);
1062     }
1063     sqlite3DbFree(db, aiCol);
1064   }
1065 }
1066 
1067 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1068 
1069 /*
1070 ** This function is called before generating code to update or delete a
1071 ** row contained in table pTab.
1072 */
sqlite3FkOldmask(Parse * pParse,Table * pTab)1073 u32 sqlite3FkOldmask(
1074   Parse *pParse,                  /* Parse context */
1075   Table *pTab                     /* Table being modified */
1076 ){
1077   u32 mask = 0;
1078   if( pParse->db->flags&SQLITE_ForeignKeys ){
1079     FKey *p;
1080     int i;
1081     for(p=pTab->pFKey; p; p=p->pNextFrom){
1082       for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
1083     }
1084     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1085       Index *pIdx = 0;
1086       sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
1087       if( pIdx ){
1088         for(i=0; i<pIdx->nKeyCol; i++){
1089           assert( pIdx->aiColumn[i]>=0 );
1090           mask |= COLUMN_MASK(pIdx->aiColumn[i]);
1091         }
1092       }
1093     }
1094   }
1095   return mask;
1096 }
1097 
1098 
1099 /*
1100 ** This function is called before generating code to update or delete a
1101 ** row contained in table pTab. If the operation is a DELETE, then
1102 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1103 ** to an array of size N, where N is the number of columns in table pTab.
1104 ** If the i'th column is not modified by the UPDATE, then the corresponding
1105 ** entry in the aChange[] array is set to -1. If the column is modified,
1106 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1107 ** UPDATE statement modifies the rowid fields of the table.
1108 **
1109 ** If any foreign key processing will be required, this function returns
1110 ** non-zero. If there is no foreign key related processing, this function
1111 ** returns zero.
1112 **
1113 ** For an UPDATE, this function returns 2 if:
1114 **
1115 **   * There are any FKs for which pTab is the child and the parent table, or
1116 **   * the UPDATE modifies one or more parent keys for which the action is
1117 **     not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
1118 **
1119 ** Or, assuming some other foreign key processing is required, 1.
1120 */
sqlite3FkRequired(Parse * pParse,Table * pTab,int * aChange,int chngRowid)1121 int sqlite3FkRequired(
1122   Parse *pParse,                  /* Parse context */
1123   Table *pTab,                    /* Table being modified */
1124   int *aChange,                   /* Non-NULL for UPDATE operations */
1125   int chngRowid                   /* True for UPDATE that affects rowid */
1126 ){
1127   int eRet = 0;
1128   if( pParse->db->flags&SQLITE_ForeignKeys ){
1129     if( !aChange ){
1130       /* A DELETE operation. Foreign key processing is required if the
1131       ** table in question is either the child or parent table for any
1132       ** foreign key constraint.  */
1133       eRet = (sqlite3FkReferences(pTab) || pTab->pFKey);
1134     }else{
1135       /* This is an UPDATE. Foreign key processing is only required if the
1136       ** operation modifies one or more child or parent key columns. */
1137       FKey *p;
1138 
1139       /* Check if any child key columns are being modified. */
1140       for(p=pTab->pFKey; p; p=p->pNextFrom){
1141         if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) return 2;
1142         if( fkChildIsModified(pTab, p, aChange, chngRowid) ){
1143           eRet = 1;
1144         }
1145       }
1146 
1147       /* Check if any parent key columns are being modified. */
1148       for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1149         if( fkParentIsModified(pTab, p, aChange, chngRowid) ){
1150           if( p->aAction[1]!=OE_None ) return 2;
1151           eRet = 1;
1152         }
1153       }
1154     }
1155   }
1156   return eRet;
1157 }
1158 
1159 /*
1160 ** This function is called when an UPDATE or DELETE operation is being
1161 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1162 ** If the current operation is an UPDATE, then the pChanges parameter is
1163 ** passed a pointer to the list of columns being modified. If it is a
1164 ** DELETE, pChanges is passed a NULL pointer.
1165 **
1166 ** It returns a pointer to a Trigger structure containing a trigger
1167 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1168 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
1169 ** returned (these actions require no special handling by the triggers
1170 ** sub-system, code for them is created by fkScanChildren()).
1171 **
1172 ** For example, if pFKey is the foreign key and pTab is table "p" in
1173 ** the following schema:
1174 **
1175 **   CREATE TABLE p(pk PRIMARY KEY);
1176 **   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1177 **
1178 ** then the returned trigger structure is equivalent to:
1179 **
1180 **   CREATE TRIGGER ... DELETE ON p BEGIN
1181 **     DELETE FROM c WHERE ck = old.pk;
1182 **   END;
1183 **
1184 ** The returned pointer is cached as part of the foreign key object. It
1185 ** is eventually freed along with the rest of the foreign key object by
1186 ** sqlite3FkDelete().
1187 */
fkActionTrigger(Parse * pParse,Table * pTab,FKey * pFKey,ExprList * pChanges)1188 static Trigger *fkActionTrigger(
1189   Parse *pParse,                  /* Parse context */
1190   Table *pTab,                    /* Table being updated or deleted from */
1191   FKey *pFKey,                    /* Foreign key to get action for */
1192   ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
1193 ){
1194   sqlite3 *db = pParse->db;       /* Database handle */
1195   int action;                     /* One of OE_None, OE_Cascade etc. */
1196   Trigger *pTrigger;              /* Trigger definition to return */
1197   int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
1198 
1199   action = pFKey->aAction[iAction];
1200   if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){
1201     return 0;
1202   }
1203   pTrigger = pFKey->apTrigger[iAction];
1204 
1205   if( action!=OE_None && !pTrigger ){
1206     char const *zFrom;            /* Name of child table */
1207     int nFrom;                    /* Length in bytes of zFrom */
1208     Index *pIdx = 0;              /* Parent key index for this FK */
1209     int *aiCol = 0;               /* child table cols -> parent key cols */
1210     TriggerStep *pStep = 0;        /* First (only) step of trigger program */
1211     Expr *pWhere = 0;             /* WHERE clause of trigger step */
1212     ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
1213     Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
1214     int i;                        /* Iterator variable */
1215     Expr *pWhen = 0;              /* WHEN clause for the trigger */
1216 
1217     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
1218     assert( aiCol || pFKey->nCol==1 );
1219 
1220     for(i=0; i<pFKey->nCol; i++){
1221       Token tOld = { "old", 3 };  /* Literal "old" token */
1222       Token tNew = { "new", 3 };  /* Literal "new" token */
1223       Token tFromCol;             /* Name of column in child table */
1224       Token tToCol;               /* Name of column in parent table */
1225       int iFromCol;               /* Idx of column in child table */
1226       Expr *pEq;                  /* tFromCol = OLD.tToCol */
1227 
1228       iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1229       assert( iFromCol>=0 );
1230       assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
1231       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
1232       sqlite3TokenInit(&tToCol,
1233                    pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName);
1234       sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName);
1235 
1236       /* Create the expression "OLD.zToCol = zFromCol". It is important
1237       ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1238       ** that the affinity and collation sequence associated with the
1239       ** parent table are used for the comparison. */
1240       pEq = sqlite3PExpr(pParse, TK_EQ,
1241           sqlite3PExpr(pParse, TK_DOT,
1242             sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1243             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1244           sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0)
1245       );
1246       pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
1247 
1248       /* For ON UPDATE, construct the next term of the WHEN clause.
1249       ** The final WHEN clause will be like this:
1250       **
1251       **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1252       */
1253       if( pChanges ){
1254         pEq = sqlite3PExpr(pParse, TK_IS,
1255             sqlite3PExpr(pParse, TK_DOT,
1256               sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1257               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1258             sqlite3PExpr(pParse, TK_DOT,
1259               sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1260               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0))
1261             );
1262         pWhen = sqlite3ExprAnd(pParse, pWhen, pEq);
1263       }
1264 
1265       if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1266         Expr *pNew;
1267         if( action==OE_Cascade ){
1268           pNew = sqlite3PExpr(pParse, TK_DOT,
1269             sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1270             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0));
1271         }else if( action==OE_SetDflt ){
1272           Column *pCol = pFKey->pFrom->aCol + iFromCol;
1273           Expr *pDflt;
1274           if( pCol->colFlags & COLFLAG_GENERATED ){
1275             testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1276             testcase( pCol->colFlags & COLFLAG_STORED );
1277             pDflt = 0;
1278           }else{
1279             pDflt = pCol->pDflt;
1280           }
1281           if( pDflt ){
1282             pNew = sqlite3ExprDup(db, pDflt, 0);
1283           }else{
1284             pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1285           }
1286         }else{
1287           pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1288         }
1289         pList = sqlite3ExprListAppend(pParse, pList, pNew);
1290         sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1291       }
1292     }
1293     sqlite3DbFree(db, aiCol);
1294 
1295     zFrom = pFKey->pFrom->zName;
1296     nFrom = sqlite3Strlen30(zFrom);
1297 
1298     if( action==OE_Restrict ){
1299       Token tFrom;
1300       Expr *pRaise;
1301 
1302       tFrom.z = zFrom;
1303       tFrom.n = nFrom;
1304       pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
1305       if( pRaise ){
1306         pRaise->affExpr = OE_Abort;
1307       }
1308       pSelect = sqlite3SelectNew(pParse,
1309           sqlite3ExprListAppend(pParse, 0, pRaise),
1310           sqlite3SrcListAppend(pParse, 0, &tFrom, 0),
1311           pWhere,
1312           0, 0, 0, 0, 0
1313       );
1314       pWhere = 0;
1315     }
1316 
1317     /* Disable lookaside memory allocation */
1318     DisableLookaside;
1319 
1320     pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1321         sizeof(Trigger) +         /* struct Trigger */
1322         sizeof(TriggerStep) +     /* Single step in trigger program */
1323         nFrom + 1                 /* Space for pStep->zTarget */
1324     );
1325     if( pTrigger ){
1326       pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1327       pStep->zTarget = (char *)&pStep[1];
1328       memcpy((char *)pStep->zTarget, zFrom, nFrom);
1329 
1330       pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1331       pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1332       pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1333       if( pWhen ){
1334         pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0);
1335         pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1336       }
1337     }
1338 
1339     /* Re-enable the lookaside buffer, if it was disabled earlier. */
1340     EnableLookaside;
1341 
1342     sqlite3ExprDelete(db, pWhere);
1343     sqlite3ExprDelete(db, pWhen);
1344     sqlite3ExprListDelete(db, pList);
1345     sqlite3SelectDelete(db, pSelect);
1346     if( db->mallocFailed==1 ){
1347       fkTriggerDelete(db, pTrigger);
1348       return 0;
1349     }
1350     assert( pStep!=0 );
1351     assert( pTrigger!=0 );
1352 
1353     switch( action ){
1354       case OE_Restrict:
1355         pStep->op = TK_SELECT;
1356         break;
1357       case OE_Cascade:
1358         if( !pChanges ){
1359           pStep->op = TK_DELETE;
1360           break;
1361         }
1362         /* no break */ deliberate_fall_through
1363       default:
1364         pStep->op = TK_UPDATE;
1365     }
1366     pStep->pTrig = pTrigger;
1367     pTrigger->pSchema = pTab->pSchema;
1368     pTrigger->pTabSchema = pTab->pSchema;
1369     pFKey->apTrigger[iAction] = pTrigger;
1370     pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1371   }
1372 
1373   return pTrigger;
1374 }
1375 
1376 /*
1377 ** This function is called when deleting or updating a row to implement
1378 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1379 */
sqlite3FkActions(Parse * pParse,Table * pTab,ExprList * pChanges,int regOld,int * aChange,int bChngRowid)1380 void sqlite3FkActions(
1381   Parse *pParse,                  /* Parse context */
1382   Table *pTab,                    /* Table being updated or deleted from */
1383   ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
1384   int regOld,                     /* Address of array containing old row */
1385   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
1386   int bChngRowid                  /* True if rowid is UPDATEd */
1387 ){
1388   /* If foreign-key support is enabled, iterate through all FKs that
1389   ** refer to table pTab. If there is an action associated with the FK
1390   ** for this operation (either update or delete), invoke the associated
1391   ** trigger sub-program.  */
1392   if( pParse->db->flags&SQLITE_ForeignKeys ){
1393     FKey *pFKey;                  /* Iterator variable */
1394     for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1395       if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
1396         Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1397         if( pAct ){
1398           sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
1399         }
1400       }
1401     }
1402   }
1403 }
1404 
1405 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1406 
1407 /*
1408 ** Free all memory associated with foreign key definitions attached to
1409 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1410 ** hash table.
1411 */
sqlite3FkDelete(sqlite3 * db,Table * pTab)1412 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1413   FKey *pFKey;                    /* Iterator variable */
1414   FKey *pNext;                    /* Copy of pFKey->pNextFrom */
1415 
1416   assert( db==0 || IsVirtual(pTab)
1417          || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1418   for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1419 
1420     /* Remove the FK from the fkeyHash hash table. */
1421     if( !db || db->pnBytesFreed==0 ){
1422       if( pFKey->pPrevTo ){
1423         pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1424       }else{
1425         void *p = (void *)pFKey->pNextTo;
1426         const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1427         sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p);
1428       }
1429       if( pFKey->pNextTo ){
1430         pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1431       }
1432     }
1433 
1434     /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1435     ** classified as either immediate or deferred.
1436     */
1437     assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1438 
1439     /* Delete any triggers created to implement actions for this FK. */
1440 #ifndef SQLITE_OMIT_TRIGGER
1441     fkTriggerDelete(db, pFKey->apTrigger[0]);
1442     fkTriggerDelete(db, pFKey->apTrigger[1]);
1443 #endif
1444 
1445     pNext = pFKey->pNextFrom;
1446     sqlite3DbFree(db, pFKey);
1447   }
1448 }
1449 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
1450