1 // Copyright (c) 2019 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // This pass injects code in a graphics shader to implement guarantees
16 // satisfying Vulkan's robustBufferAcces rules.  Robust access rules permit
17 // an out-of-bounds access to be redirected to an access of the same type
18 // (load, store, etc.) but within the same root object.
19 //
20 // We assume baseline functionality in Vulkan, i.e. the module uses
21 // logical addressing mode, without VK_KHR_variable_pointers.
22 //
23 //    - Logical addressing mode implies:
24 //      - Each root pointer (a pointer that exists other than by the
25 //        execution of a shader instruction) is the result of an OpVariable.
26 //
27 //      - Instructions that result in pointers are:
28 //          OpVariable
29 //          OpAccessChain
30 //          OpInBoundsAccessChain
31 //          OpFunctionParameter
32 //          OpImageTexelPointer
33 //          OpCopyObject
34 //
35 //      - Instructions that use a pointer are:
36 //          OpLoad
37 //          OpStore
38 //          OpAccessChain
39 //          OpInBoundsAccessChain
40 //          OpFunctionCall
41 //          OpImageTexelPointer
42 //          OpCopyMemory
43 //          OpCopyObject
44 //          all OpAtomic* instructions
45 //
46 // We classify pointer-users into:
47 //  - Accesses:
48 //    - OpLoad
49 //    - OpStore
50 //    - OpAtomic*
51 //    - OpCopyMemory
52 //
53 //  - Address calculations:
54 //    - OpAccessChain
55 //    - OpInBoundsAccessChain
56 //
57 //  - Pass-through:
58 //    - OpFunctionCall
59 //    - OpFunctionParameter
60 //    - OpCopyObject
61 //
62 // The strategy is:
63 //
64 //  - Handle only logical addressing mode. In particular, don't handle a module
65 //    if it uses one of the variable-pointers capabilities.
66 //
67 //  - Don't handle modules using capability RuntimeDescriptorArrayEXT.  So the
68 //    only runtime arrays are those that are the last member in a
69 //    Block-decorated struct.  This allows us to feasibly/easily compute the
70 //    length of the runtime array. See below.
71 //
72 //  - The memory locations accessed by OpLoad, OpStore, OpCopyMemory, and
73 //    OpAtomic* are determined by their pointer parameter or parameters.
74 //    Pointers are always (correctly) typed and so the address and number of
75 //    consecutive locations are fully determined by the pointer.
76 //
77 //  - A pointer value orginates as one of few cases:
78 //
79 //    - OpVariable for an interface object or an array of them: image,
80 //      buffer (UBO or SSBO), sampler, sampled-image, push-constant, input
81 //      variable, output variable. The execution environment is responsible for
82 //      allocating the correct amount of storage for these, and for ensuring
83 //      each resource bound to such a variable is big enough to contain the
84 //      SPIR-V pointee type of the variable.
85 //
86 //    - OpVariable for a non-interface object.  These are variables in
87 //      Workgroup, Private, and Function storage classes.  The compiler ensures
88 //      the underlying allocation is big enough to store the entire SPIR-V
89 //      pointee type of the variable.
90 //
91 //    - An OpFunctionParameter. This always maps to a pointer parameter to an
92 //      OpFunctionCall.
93 //
94 //      - In logical addressing mode, these are severely limited:
95 //        "Any pointer operand to an OpFunctionCall must be:
96 //          - a memory object declaration, or
97 //          - a pointer to an element in an array that is a memory object
98 //          declaration, where the element type is OpTypeSampler or OpTypeImage"
99 //
100 //      - This has an important simplifying consequence:
101 //
102 //        - When looking for a pointer to the structure containing a runtime
103 //          array, you begin with a pointer to the runtime array and trace
104 //          backward in the function.  You never have to trace back beyond
105 //          your function call boundary.  So you can't take a partial access
106 //          chain into an SSBO, then pass that pointer into a function.  So
107 //          we don't resort to using fat pointers to compute array length.
108 //          We can trace back to a pointer to the containing structure,
109 //          and use that in an OpArrayLength instruction. (The structure type
110 //          gives us the member index of the runtime array.)
111 //
112 //        - Otherwise, the pointer type fully encodes the range of valid
113 //          addresses. In particular, the type of a pointer to an aggregate
114 //          value fully encodes the range of indices when indexing into
115 //          that aggregate.
116 //
117 //    - The pointer is the result of an access chain instruction.  We clamp
118 //      indices contributing to address calculations.  As noted above, the
119 //      valid ranges are either bound by the length of a runtime array, or
120 //      by the type of the base pointer.  The length of a runtime array is
121 //      the result of an OpArrayLength instruction acting on the pointer of
122 //      the containing structure as noted above.
123 //
124 //      - Access chain indices are always treated as signed, so:
125 //        - Clamp the upper bound at the signed integer maximum.
126 //        - Use SClamp for all clamping.
127 //
128 //    - TODO(dneto): OpImageTexelPointer:
129 //      - Clamp coordinate to the image size returned by OpImageQuerySize
130 //      - If multi-sampled, clamp the sample index to the count returned by
131 //        OpImageQuerySamples.
132 //      - If not multi-sampled, set the sample index to 0.
133 //
134 //  - Rely on the external validator to check that pointers are only
135 //    used by the instructions as above.
136 //
137 //  - Handles OpTypeRuntimeArray
138 //    Track pointer back to original resource (pointer to struct), so we can
139 //    query the runtime array size.
140 //
141 
142 #include "graphics_robust_access_pass.h"
143 
144 #include <algorithm>
145 #include <cstring>
146 #include <functional>
147 #include <initializer_list>
148 #include <limits>
149 #include <utility>
150 
151 #include "constants.h"
152 #include "def_use_manager.h"
153 #include "function.h"
154 #include "ir_context.h"
155 #include "module.h"
156 #include "pass.h"
157 #include "source/diagnostic.h"
158 #include "source/util/make_unique.h"
159 #include "spirv-tools/libspirv.h"
160 #include "spirv/unified1/GLSL.std.450.h"
161 #include "spirv/unified1/spirv.h"
162 #include "type_manager.h"
163 #include "types.h"
164 
165 namespace spvtools {
166 namespace opt {
167 
168 using opt::Instruction;
169 using opt::Operand;
170 using spvtools::MakeUnique;
171 
GraphicsRobustAccessPass()172 GraphicsRobustAccessPass::GraphicsRobustAccessPass() : module_status_() {}
173 
Process()174 Pass::Status GraphicsRobustAccessPass::Process() {
175   module_status_ = PerModuleState();
176 
177   ProcessCurrentModule();
178 
179   auto result = module_status_.failed
180                     ? Status::Failure
181                     : (module_status_.modified ? Status::SuccessWithChange
182                                                : Status::SuccessWithoutChange);
183 
184   return result;
185 }
186 
Fail()187 spvtools::DiagnosticStream GraphicsRobustAccessPass::Fail() {
188   module_status_.failed = true;
189   // We don't really have a position, and we'll ignore the result.
190   return std::move(
191       spvtools::DiagnosticStream({}, consumer(), "", SPV_ERROR_INVALID_BINARY)
192       << name() << ": ");
193 }
194 
IsCompatibleModule()195 spv_result_t GraphicsRobustAccessPass::IsCompatibleModule() {
196   auto* feature_mgr = context()->get_feature_mgr();
197   if (!feature_mgr->HasCapability(SpvCapabilityShader))
198     return Fail() << "Can only process Shader modules";
199   if (feature_mgr->HasCapability(SpvCapabilityVariablePointers))
200     return Fail() << "Can't process modules with VariablePointers capability";
201   if (feature_mgr->HasCapability(SpvCapabilityVariablePointersStorageBuffer))
202     return Fail() << "Can't process modules with VariablePointersStorageBuffer "
203                      "capability";
204   if (feature_mgr->HasCapability(SpvCapabilityRuntimeDescriptorArrayEXT)) {
205     // These have a RuntimeArray outside of Block-decorated struct.  There
206     // is no way to compute the array length from within SPIR-V.
207     return Fail() << "Can't process modules with RuntimeDescriptorArrayEXT "
208                      "capability";
209   }
210 
211   {
212     auto* inst = context()->module()->GetMemoryModel();
213     const auto addressing_model = inst->GetSingleWordOperand(0);
214     if (addressing_model != SpvAddressingModelLogical)
215       return Fail() << "Addressing model must be Logical.  Found "
216                     << inst->PrettyPrint();
217   }
218   return SPV_SUCCESS;
219 }
220 
ProcessCurrentModule()221 spv_result_t GraphicsRobustAccessPass::ProcessCurrentModule() {
222   auto err = IsCompatibleModule();
223   if (err != SPV_SUCCESS) return err;
224 
225   ProcessFunction fn = [this](opt::Function* f) { return ProcessAFunction(f); };
226   module_status_.modified |= context()->ProcessReachableCallTree(fn);
227 
228   // Need something here.  It's the price we pay for easier failure paths.
229   return SPV_SUCCESS;
230 }
231 
ProcessAFunction(opt::Function * function)232 bool GraphicsRobustAccessPass::ProcessAFunction(opt::Function* function) {
233   // Ensure that all pointers computed inside a function are within bounds.
234   // Find the access chains in this block before trying to modify them.
235   std::vector<Instruction*> access_chains;
236   std::vector<Instruction*> image_texel_pointers;
237   for (auto& block : *function) {
238     for (auto& inst : block) {
239       switch (inst.opcode()) {
240         case SpvOpAccessChain:
241         case SpvOpInBoundsAccessChain:
242           access_chains.push_back(&inst);
243           break;
244         case SpvOpImageTexelPointer:
245           image_texel_pointers.push_back(&inst);
246           break;
247         default:
248           break;
249       }
250     }
251   }
252   for (auto* inst : access_chains) {
253     ClampIndicesForAccessChain(inst);
254     if (module_status_.failed) return module_status_.modified;
255   }
256 
257   for (auto* inst : image_texel_pointers) {
258     if (SPV_SUCCESS != ClampCoordinateForImageTexelPointer(inst)) break;
259   }
260   return module_status_.modified;
261 }
262 
ClampIndicesForAccessChain(Instruction * access_chain)263 void GraphicsRobustAccessPass::ClampIndicesForAccessChain(
264     Instruction* access_chain) {
265   Instruction& inst = *access_chain;
266 
267   auto* constant_mgr = context()->get_constant_mgr();
268   auto* def_use_mgr = context()->get_def_use_mgr();
269   auto* type_mgr = context()->get_type_mgr();
270   const bool have_int64_cap =
271       context()->get_feature_mgr()->HasCapability(SpvCapabilityInt64);
272 
273   // Replaces one of the OpAccessChain index operands with a new value.
274   // Updates def-use analysis.
275   auto replace_index = [&inst, def_use_mgr](uint32_t operand_index,
276                                             Instruction* new_value) {
277     inst.SetOperand(operand_index, {new_value->result_id()});
278     def_use_mgr->AnalyzeInstUse(&inst);
279     return SPV_SUCCESS;
280   };
281 
282   // Replaces one of the OpAccesssChain index operands with a clamped value.
283   // Replace the operand at |operand_index| with the value computed from
284   // signed_clamp(%old_value, %min_value, %max_value).  It also analyzes
285   // the new instruction and records that them module is modified.
286   // Assumes %min_value is signed-less-or-equal than %max_value. (All callees
287   // use 0 for %min_value).
288   auto clamp_index = [&inst, type_mgr, this, &replace_index](
289                          uint32_t operand_index, Instruction* old_value,
290                          Instruction* min_value, Instruction* max_value) {
291     auto* clamp_inst =
292         MakeSClampInst(*type_mgr, old_value, min_value, max_value, &inst);
293     return replace_index(operand_index, clamp_inst);
294   };
295 
296   // Ensures the specified index of access chain |inst| has a value that is
297   // at most |count| - 1.  If the index is already a constant value less than
298   // |count| then no change is made.
299   auto clamp_to_literal_count =
300       [&inst, this, &constant_mgr, &type_mgr, have_int64_cap, &replace_index,
301        &clamp_index](uint32_t operand_index, uint64_t count) -> spv_result_t {
302     Instruction* index_inst =
303         this->GetDef(inst.GetSingleWordOperand(operand_index));
304     const auto* index_type =
305         type_mgr->GetType(index_inst->type_id())->AsInteger();
306     assert(index_type);
307     const auto index_width = index_type->width();
308 
309     if (count <= 1) {
310       // Replace the index with 0.
311       return replace_index(operand_index, GetValueForType(0, index_type));
312     }
313 
314     uint64_t maxval = count - 1;
315 
316     // Compute the bit width of a viable type to hold |maxval|.
317     // Look for a bit width, up to 64 bits wide, to fit maxval.
318     uint32_t maxval_width = index_width;
319     while ((maxval_width < 64) && (0 != (maxval >> maxval_width))) {
320       maxval_width *= 2;
321     }
322     // Determine the type for |maxval|.
323     uint32_t next_id = context()->module()->IdBound();
324     analysis::Integer signed_type_for_query(maxval_width, true);
325     auto* maxval_type =
326         type_mgr->GetRegisteredType(&signed_type_for_query)->AsInteger();
327     if (next_id != context()->module()->IdBound()) {
328       module_status_.modified = true;
329     }
330     // Access chain indices are treated as signed, so limit the maximum value
331     // of the index so it will always be positive for a signed clamp operation.
332     maxval = std::min(maxval, ((uint64_t(1) << (maxval_width - 1)) - 1));
333 
334     if (index_width > 64) {
335       return this->Fail() << "Can't handle indices wider than 64 bits, found "
336                              "constant index with "
337                           << index_width << " bits as index number "
338                           << operand_index << " of access chain "
339                           << inst.PrettyPrint();
340     }
341 
342     // Split into two cases: the current index is a constant, or not.
343 
344     // If the index is a constant then |index_constant| will not be a null
345     // pointer.  (If index is an |OpConstantNull| then it |index_constant| will
346     // not be a null pointer.)  Since access chain indices must be scalar
347     // integers, this can't be a spec constant.
348     if (auto* index_constant = constant_mgr->GetConstantFromInst(index_inst)) {
349       auto* int_index_constant = index_constant->AsIntConstant();
350       int64_t value = 0;
351       // OpAccessChain indices are treated as signed.  So get the signed
352       // constant value here.
353       if (index_width <= 32) {
354         value = int64_t(int_index_constant->GetS32BitValue());
355       } else if (index_width <= 64) {
356         value = int_index_constant->GetS64BitValue();
357       }
358       if (value < 0) {
359         return replace_index(operand_index, GetValueForType(0, index_type));
360       } else if (uint64_t(value) <= maxval) {
361         // Nothing to do.
362         return SPV_SUCCESS;
363       } else {
364         // Replace with maxval.
365         assert(count > 0);  // Already took care of this case above.
366         return replace_index(operand_index,
367                              GetValueForType(maxval, maxval_type));
368       }
369     } else {
370       // Generate a clamp instruction.
371       assert(maxval >= 1);
372       assert(index_width <= 64);  // Otherwise, already returned above.
373       if (index_width >= 64 && !have_int64_cap) {
374         // An inconsistent module.
375         return Fail() << "Access chain index is wider than 64 bits, but Int64 "
376                          "is not declared: "
377                       << index_inst->PrettyPrint();
378       }
379       // Widen the index value if necessary
380       if (maxval_width > index_width) {
381         // Find the wider type.  We only need this case if a constant array
382         // bound is too big.
383 
384         // From how we calculated maxval_width, widening won't require adding
385         // the Int64 capability.
386         assert(have_int64_cap || maxval_width <= 32);
387         if (!have_int64_cap && maxval_width >= 64) {
388           // Be defensive, but this shouldn't happen.
389           return this->Fail()
390                  << "Clamping index would require adding Int64 capability. "
391                  << "Can't clamp 32-bit index " << operand_index
392                  << " of access chain " << inst.PrettyPrint();
393         }
394         index_inst = WidenInteger(index_type->IsSigned(), maxval_width,
395                                   index_inst, &inst);
396       }
397 
398       // Finally, clamp the index.
399       return clamp_index(operand_index, index_inst,
400                          GetValueForType(0, maxval_type),
401                          GetValueForType(maxval, maxval_type));
402     }
403     return SPV_SUCCESS;
404   };
405 
406   // Ensures the specified index of access chain |inst| has a value that is at
407   // most the value of |count_inst| minus 1, where |count_inst| is treated as an
408   // unsigned integer. This can log a failure.
409   auto clamp_to_count = [&inst, this, &constant_mgr, &clamp_to_literal_count,
410                          &clamp_index,
411                          &type_mgr](uint32_t operand_index,
412                                     Instruction* count_inst) -> spv_result_t {
413     Instruction* index_inst =
414         this->GetDef(inst.GetSingleWordOperand(operand_index));
415     const auto* index_type =
416         type_mgr->GetType(index_inst->type_id())->AsInteger();
417     const auto* count_type =
418         type_mgr->GetType(count_inst->type_id())->AsInteger();
419     assert(index_type);
420     if (const auto* count_constant =
421             constant_mgr->GetConstantFromInst(count_inst)) {
422       uint64_t value = 0;
423       const auto width = count_constant->type()->AsInteger()->width();
424       if (width <= 32) {
425         value = count_constant->AsIntConstant()->GetU32BitValue();
426       } else if (width <= 64) {
427         value = count_constant->AsIntConstant()->GetU64BitValue();
428       } else {
429         return this->Fail() << "Can't handle indices wider than 64 bits, found "
430                                "constant index with "
431                             << index_type->width() << "bits";
432       }
433       return clamp_to_literal_count(operand_index, value);
434     } else {
435       // Widen them to the same width.
436       const auto index_width = index_type->width();
437       const auto count_width = count_type->width();
438       const auto target_width = std::max(index_width, count_width);
439       // UConvert requires the result type to have 0 signedness.  So enforce
440       // that here.
441       auto* wider_type = index_width < count_width ? count_type : index_type;
442       if (index_type->width() < target_width) {
443         // Access chain indices are treated as signed integers.
444         index_inst = WidenInteger(true, target_width, index_inst, &inst);
445       } else if (count_type->width() < target_width) {
446         // Assume type sizes are treated as unsigned.
447         count_inst = WidenInteger(false, target_width, count_inst, &inst);
448       }
449       // Compute count - 1.
450       // It doesn't matter if 1 is signed or unsigned.
451       auto* one = GetValueForType(1, wider_type);
452       auto* count_minus_1 = InsertInst(
453           &inst, SpvOpISub, type_mgr->GetId(wider_type), TakeNextId(),
454           {{SPV_OPERAND_TYPE_ID, {count_inst->result_id()}},
455            {SPV_OPERAND_TYPE_ID, {one->result_id()}}});
456       auto* zero = GetValueForType(0, wider_type);
457       // Make sure we clamp to an upper bound that is at most the signed max
458       // for the target type.
459       const uint64_t max_signed_value =
460           ((uint64_t(1) << (target_width - 1)) - 1);
461       // Use unsigned-min to ensure that the result is always non-negative.
462       // That ensures we satisfy the invariant for SClamp, where the "min"
463       // argument we give it (zero), is no larger than the third argument.
464       auto* upper_bound =
465           MakeUMinInst(*type_mgr, count_minus_1,
466                        GetValueForType(max_signed_value, wider_type), &inst);
467       // Now clamp the index to this upper bound.
468       return clamp_index(operand_index, index_inst, zero, upper_bound);
469     }
470     return SPV_SUCCESS;
471   };
472 
473   const Instruction* base_inst = GetDef(inst.GetSingleWordInOperand(0));
474   const Instruction* base_type = GetDef(base_inst->type_id());
475   Instruction* pointee_type = GetDef(base_type->GetSingleWordInOperand(1));
476 
477   // Walk the indices from earliest to latest, replacing indices with a
478   // clamped value, and updating the pointee_type.  The order matters for
479   // the case when we have to compute the length of a runtime array.  In
480   // that the algorithm relies on the fact that that the earlier indices
481   // have already been clamped.
482   const uint32_t num_operands = inst.NumOperands();
483   for (uint32_t idx = 3; !module_status_.failed && idx < num_operands; ++idx) {
484     const uint32_t index_id = inst.GetSingleWordOperand(idx);
485     Instruction* index_inst = GetDef(index_id);
486 
487     switch (pointee_type->opcode()) {
488       case SpvOpTypeMatrix:  // Use column count
489       case SpvOpTypeVector:  // Use component count
490       {
491         const uint32_t count = pointee_type->GetSingleWordOperand(2);
492         clamp_to_literal_count(idx, count);
493         pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
494       } break;
495 
496       case SpvOpTypeArray: {
497         // The array length can be a spec constant, so go through the general
498         // case.
499         Instruction* array_len = GetDef(pointee_type->GetSingleWordOperand(2));
500         clamp_to_count(idx, array_len);
501         pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
502       } break;
503 
504       case SpvOpTypeStruct: {
505         // SPIR-V requires the index to be an OpConstant.
506         // We need to know the index literal value so we can compute the next
507         // pointee type.
508         if (index_inst->opcode() != SpvOpConstant ||
509             !constant_mgr->GetConstantFromInst(index_inst)
510                  ->type()
511                  ->AsInteger()) {
512           Fail() << "Member index into struct is not a constant integer: "
513                  << index_inst->PrettyPrint(
514                         SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
515                  << "\nin access chain: "
516                  << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
517           return;
518         }
519         const auto num_members = pointee_type->NumInOperands();
520         const auto* index_constant =
521             constant_mgr->GetConstantFromInst(index_inst);
522         // Get the sign-extended value, since access index is always treated as
523         // signed.
524         const auto index_value = index_constant->GetSignExtendedValue();
525         if (index_value < 0 || index_value >= num_members) {
526           Fail() << "Member index " << index_value
527                  << " is out of bounds for struct type: "
528                  << pointee_type->PrettyPrint(
529                         SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
530                  << "\nin access chain: "
531                  << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
532           return;
533         }
534         pointee_type = GetDef(pointee_type->GetSingleWordInOperand(
535             static_cast<uint32_t>(index_value)));
536         // No need to clamp this index.  We just checked that it's valid.
537       } break;
538 
539       case SpvOpTypeRuntimeArray: {
540         auto* array_len = MakeRuntimeArrayLengthInst(&inst, idx);
541         if (!array_len) {  // We've already signaled an error.
542           return;
543         }
544         clamp_to_count(idx, array_len);
545         if (module_status_.failed) return;
546         pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
547       } break;
548 
549       default:
550         Fail() << " Unhandled pointee type for access chain "
551                << pointee_type->PrettyPrint(
552                       SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
553     }
554   }
555 }
556 
GetGlslInsts()557 uint32_t GraphicsRobustAccessPass::GetGlslInsts() {
558   if (module_status_.glsl_insts_id == 0) {
559     // This string serves double-duty as raw data for a string and for a vector
560     // of 32-bit words
561     const char glsl[] = "GLSL.std.450\0\0\0\0";
562     const size_t glsl_str_byte_len = 16;
563     // Use an existing import if we can.
564     for (auto& inst : context()->module()->ext_inst_imports()) {
565       const auto& name_words = inst.GetInOperand(0).words;
566       if (0 == std::strncmp(reinterpret_cast<const char*>(name_words.data()),
567                             glsl, glsl_str_byte_len)) {
568         module_status_.glsl_insts_id = inst.result_id();
569       }
570     }
571     if (module_status_.glsl_insts_id == 0) {
572       // Make a new import instruction.
573       module_status_.glsl_insts_id = TakeNextId();
574       std::vector<uint32_t> words(glsl_str_byte_len / sizeof(uint32_t));
575       std::memcpy(words.data(), glsl, glsl_str_byte_len);
576       auto import_inst = MakeUnique<Instruction>(
577           context(), SpvOpExtInstImport, 0, module_status_.glsl_insts_id,
578           std::initializer_list<Operand>{
579               Operand{SPV_OPERAND_TYPE_LITERAL_STRING, std::move(words)}});
580       Instruction* inst = import_inst.get();
581       context()->module()->AddExtInstImport(std::move(import_inst));
582       module_status_.modified = true;
583       context()->AnalyzeDefUse(inst);
584       // Reanalyze the feature list, since we added an extended instruction
585       // set improt.
586       context()->get_feature_mgr()->Analyze(context()->module());
587     }
588   }
589   return module_status_.glsl_insts_id;
590 }
591 
GetValueForType(uint64_t value,const analysis::Integer * type)592 opt::Instruction* opt::GraphicsRobustAccessPass::GetValueForType(
593     uint64_t value, const analysis::Integer* type) {
594   auto* mgr = context()->get_constant_mgr();
595   assert(type->width() <= 64);
596   std::vector<uint32_t> words;
597   words.push_back(uint32_t(value));
598   if (type->width() > 32) {
599     words.push_back(uint32_t(value >> 32u));
600   }
601   const auto* constant = mgr->GetConstant(type, words);
602   return mgr->GetDefiningInstruction(
603       constant, context()->get_type_mgr()->GetTypeInstruction(type));
604 }
605 
WidenInteger(bool sign_extend,uint32_t bit_width,Instruction * value,Instruction * before_inst)606 opt::Instruction* opt::GraphicsRobustAccessPass::WidenInteger(
607     bool sign_extend, uint32_t bit_width, Instruction* value,
608     Instruction* before_inst) {
609   analysis::Integer unsigned_type_for_query(bit_width, false);
610   auto* type_mgr = context()->get_type_mgr();
611   auto* unsigned_type = type_mgr->GetRegisteredType(&unsigned_type_for_query);
612   auto type_id = context()->get_type_mgr()->GetId(unsigned_type);
613   auto conversion_id = TakeNextId();
614   auto* conversion = InsertInst(
615       before_inst, (sign_extend ? SpvOpSConvert : SpvOpUConvert), type_id,
616       conversion_id, {{SPV_OPERAND_TYPE_ID, {value->result_id()}}});
617   return conversion;
618 }
619 
MakeUMinInst(const analysis::TypeManager & tm,Instruction * x,Instruction * y,Instruction * where)620 Instruction* GraphicsRobustAccessPass::MakeUMinInst(
621     const analysis::TypeManager& tm, Instruction* x, Instruction* y,
622     Instruction* where) {
623   // Get IDs of instructions we'll be referencing. Evaluate them before calling
624   // the function so we force a deterministic ordering in case both of them need
625   // to take a new ID.
626   const uint32_t glsl_insts_id = GetGlslInsts();
627   uint32_t smin_id = TakeNextId();
628   const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
629   const auto ywidth = tm.GetType(y->type_id())->AsInteger()->width();
630   assert(xwidth == ywidth);
631   (void)xwidth;
632   (void)ywidth;
633   auto* smin_inst = InsertInst(
634       where, SpvOpExtInst, x->type_id(), smin_id,
635       {
636           {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
637           {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450UMin}},
638           {SPV_OPERAND_TYPE_ID, {x->result_id()}},
639           {SPV_OPERAND_TYPE_ID, {y->result_id()}},
640       });
641   return smin_inst;
642 }
643 
MakeSClampInst(const analysis::TypeManager & tm,Instruction * x,Instruction * min,Instruction * max,Instruction * where)644 Instruction* GraphicsRobustAccessPass::MakeSClampInst(
645     const analysis::TypeManager& tm, Instruction* x, Instruction* min,
646     Instruction* max, Instruction* where) {
647   // Get IDs of instructions we'll be referencing. Evaluate them before calling
648   // the function so we force a deterministic ordering in case both of them need
649   // to take a new ID.
650   const uint32_t glsl_insts_id = GetGlslInsts();
651   uint32_t clamp_id = TakeNextId();
652   const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
653   const auto minwidth = tm.GetType(min->type_id())->AsInteger()->width();
654   const auto maxwidth = tm.GetType(max->type_id())->AsInteger()->width();
655   assert(xwidth == minwidth);
656   assert(xwidth == maxwidth);
657   (void)xwidth;
658   (void)minwidth;
659   (void)maxwidth;
660   auto* clamp_inst = InsertInst(
661       where, SpvOpExtInst, x->type_id(), clamp_id,
662       {
663           {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
664           {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450SClamp}},
665           {SPV_OPERAND_TYPE_ID, {x->result_id()}},
666           {SPV_OPERAND_TYPE_ID, {min->result_id()}},
667           {SPV_OPERAND_TYPE_ID, {max->result_id()}},
668       });
669   return clamp_inst;
670 }
671 
MakeRuntimeArrayLengthInst(Instruction * access_chain,uint32_t operand_index)672 Instruction* GraphicsRobustAccessPass::MakeRuntimeArrayLengthInst(
673     Instruction* access_chain, uint32_t operand_index) {
674   // The Index parameter to the access chain at |operand_index| is indexing
675   // *into* the runtime-array.  To get the number of elements in the runtime
676   // array we need a pointer to the Block-decorated struct that contains the
677   // runtime array. So conceptually we have to go 2 steps backward in the
678   // access chain.  The two steps backward might forces us to traverse backward
679   // across multiple dominating instructions.
680   auto* type_mgr = context()->get_type_mgr();
681 
682   // How many access chain indices do we have to unwind to find the pointer
683   // to the struct containing the runtime array?
684   uint32_t steps_remaining = 2;
685   // Find or create an instruction computing the pointer to the structure
686   // containing the runtime array.
687   // Walk backward through pointer address calculations until we either get
688   // to exactly the right base pointer, or to an access chain instruction
689   // that we can replicate but truncate to compute the address of the right
690   // struct.
691   Instruction* current_access_chain = access_chain;
692   Instruction* pointer_to_containing_struct = nullptr;
693   while (steps_remaining > 0) {
694     switch (current_access_chain->opcode()) {
695       case SpvOpCopyObject:
696         // Whoops. Walk right through this one.
697         current_access_chain =
698             GetDef(current_access_chain->GetSingleWordInOperand(0));
699         break;
700       case SpvOpAccessChain:
701       case SpvOpInBoundsAccessChain: {
702         const int first_index_operand = 3;
703         // How many indices in this access chain contribute to getting us
704         // to an element in the runtime array?
705         const auto num_contributing_indices =
706             current_access_chain == access_chain
707                 ? operand_index - (first_index_operand - 1)
708                 : current_access_chain->NumInOperands() - 1 /* skip the base */;
709         Instruction* base =
710             GetDef(current_access_chain->GetSingleWordInOperand(0));
711         if (num_contributing_indices == steps_remaining) {
712           // The base pointer points to the structure.
713           pointer_to_containing_struct = base;
714           steps_remaining = 0;
715           break;
716         } else if (num_contributing_indices < steps_remaining) {
717           // Peel off the index and keep going backward.
718           steps_remaining -= num_contributing_indices;
719           current_access_chain = base;
720         } else {
721           // This access chain has more indices than needed.  Generate a new
722           // access chain instruction, but truncating the list of indices.
723           const int base_operand = 2;
724           // We'll use the base pointer and the indices up to but not including
725           // the one indexing into the runtime array.
726           Instruction::OperandList ops;
727           // Use the base pointer
728           ops.push_back(current_access_chain->GetOperand(base_operand));
729           const uint32_t num_indices_to_keep =
730               num_contributing_indices - steps_remaining - 1;
731           for (uint32_t i = 0; i <= num_indices_to_keep; i++) {
732             ops.push_back(
733                 current_access_chain->GetOperand(first_index_operand + i));
734           }
735           // Compute the type of the result of the new access chain.  Start at
736           // the base and walk the indices in a forward direction.
737           auto* constant_mgr = context()->get_constant_mgr();
738           std::vector<uint32_t> indices_for_type;
739           for (uint32_t i = 0; i < ops.size() - 1; i++) {
740             uint32_t index_for_type_calculation = 0;
741             Instruction* index =
742                 GetDef(current_access_chain->GetSingleWordOperand(
743                     first_index_operand + i));
744             if (auto* index_constant =
745                     constant_mgr->GetConstantFromInst(index)) {
746               // We only need 32 bits. For the type calculation, it's sufficient
747               // to take the zero-extended value. It only matters for the struct
748               // case, and struct member indices are unsigned.
749               index_for_type_calculation =
750                   uint32_t(index_constant->GetZeroExtendedValue());
751             } else {
752               // Indexing into a variably-sized thing like an array.  Use 0.
753               index_for_type_calculation = 0;
754             }
755             indices_for_type.push_back(index_for_type_calculation);
756           }
757           auto* base_ptr_type = type_mgr->GetType(base->type_id())->AsPointer();
758           auto* base_pointee_type = base_ptr_type->pointee_type();
759           auto* new_access_chain_result_pointee_type =
760               type_mgr->GetMemberType(base_pointee_type, indices_for_type);
761           const uint32_t new_access_chain_type_id = type_mgr->FindPointerToType(
762               type_mgr->GetId(new_access_chain_result_pointee_type),
763               base_ptr_type->storage_class());
764 
765           // Create the instruction and insert it.
766           const auto new_access_chain_id = TakeNextId();
767           auto* new_access_chain =
768               InsertInst(current_access_chain, current_access_chain->opcode(),
769                          new_access_chain_type_id, new_access_chain_id, ops);
770           pointer_to_containing_struct = new_access_chain;
771           steps_remaining = 0;
772           break;
773         }
774       } break;
775       default:
776         Fail() << "Unhandled access chain in logical addressing mode passes "
777                   "through "
778                << current_access_chain->PrettyPrint(
779                       SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET |
780                       SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
781         return nullptr;
782     }
783   }
784   assert(pointer_to_containing_struct);
785   auto* pointee_type =
786       type_mgr->GetType(pointer_to_containing_struct->type_id())
787           ->AsPointer()
788           ->pointee_type();
789 
790   auto* struct_type = pointee_type->AsStruct();
791   const uint32_t member_index_of_runtime_array =
792       uint32_t(struct_type->element_types().size() - 1);
793   // Create the length-of-array instruction before the original access chain,
794   // but after the generation of the pointer to the struct.
795   const auto array_len_id = TakeNextId();
796   analysis::Integer uint_type_for_query(32, false);
797   auto* uint_type = type_mgr->GetRegisteredType(&uint_type_for_query);
798   auto* array_len = InsertInst(
799       access_chain, SpvOpArrayLength, type_mgr->GetId(uint_type), array_len_id,
800       {{SPV_OPERAND_TYPE_ID, {pointer_to_containing_struct->result_id()}},
801        {SPV_OPERAND_TYPE_LITERAL_INTEGER, {member_index_of_runtime_array}}});
802   return array_len;
803 }
804 
ClampCoordinateForImageTexelPointer(opt::Instruction * image_texel_pointer)805 spv_result_t GraphicsRobustAccessPass::ClampCoordinateForImageTexelPointer(
806     opt::Instruction* image_texel_pointer) {
807   // TODO(dneto): Write tests for this code.
808   // TODO(dneto): Use signed-clamp
809   (void)(image_texel_pointer);
810   return SPV_SUCCESS;
811 
812   // Do not compile this code until it is ready to be used.
813 #if 0
814   // Example:
815   //   %texel_ptr = OpImageTexelPointer %texel_ptr_type %image_ptr %coord
816   //   %sample
817   //
818   // We want to clamp %coord components between vector-0 and the result
819   // of OpImageQuerySize acting on the underlying image.  So insert:
820   //     %image = OpLoad %image_type %image_ptr
821   //     %query_size = OpImageQuerySize %query_size_type %image
822   //
823   // For a multi-sampled image, %sample is the sample index, and we need
824   // to clamp it between zero and the number of samples in the image.
825   //     %sample_count = OpImageQuerySamples %uint %image
826   //     %max_sample_index = OpISub %uint %sample_count %uint_1
827   // For non-multi-sampled images, the sample index must be constant zero.
828 
829   auto* def_use_mgr = context()->get_def_use_mgr();
830   auto* type_mgr = context()->get_type_mgr();
831   auto* constant_mgr = context()->get_constant_mgr();
832 
833   auto* image_ptr = GetDef(image_texel_pointer->GetSingleWordInOperand(0));
834   auto* image_ptr_type = GetDef(image_ptr->type_id());
835   auto image_type_id = image_ptr_type->GetSingleWordInOperand(1);
836   auto* image_type = GetDef(image_type_id);
837   auto* coord = GetDef(image_texel_pointer->GetSingleWordInOperand(1));
838   auto* samples = GetDef(image_texel_pointer->GetSingleWordInOperand(2));
839 
840   // We will modify the module, at least by adding image query instructions.
841   module_status_.modified = true;
842 
843   // Declare the ImageQuery capability if the module doesn't already have it.
844   auto* feature_mgr = context()->get_feature_mgr();
845   if (!feature_mgr->HasCapability(SpvCapabilityImageQuery)) {
846     auto cap = MakeUnique<Instruction>(
847         context(), SpvOpCapability, 0, 0,
848         std::initializer_list<Operand>{
849             {SPV_OPERAND_TYPE_CAPABILITY, {SpvCapabilityImageQuery}}});
850     def_use_mgr->AnalyzeInstDefUse(cap.get());
851     context()->AddCapability(std::move(cap));
852     feature_mgr->Analyze(context()->module());
853   }
854 
855   // OpImageTexelPointer is used to translate a coordinate and sample index
856   // into an address for use with an atomic operation.  That is, it may only
857   // used with what Vulkan calls a "storage image"
858   // (OpTypeImage parameter Sampled=2).
859   // Note: A storage image never has a level-of-detail associated with it.
860 
861   // Constraints on the sample id:
862   //  - Only 2D images can be multi-sampled: OpTypeImage parameter MS=1
863   //    only if Dim=2D.
864   //  - Non-multi-sampled images (OpTypeImage parameter MS=0) must use
865   //    sample ID to a constant 0.
866 
867   // The coordinate is treated as unsigned, and should be clamped against the
868   // image "size", returned by OpImageQuerySize. (Note: OpImageQuerySizeLod
869   // is only usable with a sampled image, i.e. its image type has Sampled=1).
870 
871   // Determine the result type for the OpImageQuerySize.
872   // For non-arrayed images:
873   //   non-Cube:
874   //     - Always the same as the coordinate type
875   //   Cube:
876   //     - Use all but the last component of the coordinate (which is the face
877   //       index from 0 to 5).
878   // For arrayed images (in Vulkan the Dim is 1D, 2D, or Cube):
879   //   non-Cube:
880   //     - A vector with the components in the coordinate, and one more for
881   //       the layer index.
882   //   Cube:
883   //     - The same as the coordinate type: 3-element integer vector.
884   //     - The third component from the size query is the layer count.
885   //     - The third component in the texel pointer calculation is
886   //       6 * layer + face, where 0 <= face < 6.
887   //   Cube: Use all but the last component of the coordinate (which is the face
888   //   index from 0 to 5).
889   const auto dim = SpvDim(image_type->GetSingleWordInOperand(1));
890   const bool arrayed = image_type->GetSingleWordInOperand(3) == 1;
891   const bool multisampled = image_type->GetSingleWordInOperand(4) != 0;
892   const auto query_num_components = [dim, arrayed, this]() -> int {
893     const int arrayness_bonus = arrayed ? 1 : 0;
894     int num_coords = 0;
895     switch (dim) {
896       case SpvDimBuffer:
897       case SpvDim1D:
898         num_coords = 1;
899         break;
900       case SpvDimCube:
901         // For cube, we need bounds for x, y, but not face.
902       case SpvDimRect:
903       case SpvDim2D:
904         num_coords = 2;
905         break;
906       case SpvDim3D:
907         num_coords = 3;
908         break;
909       case SpvDimSubpassData:
910       case SpvDimMax:
911         return Fail() << "Invalid image dimension for OpImageTexelPointer: "
912                       << int(dim);
913         break;
914     }
915     return num_coords + arrayness_bonus;
916   }();
917   const auto* coord_component_type = [type_mgr, coord]() {
918     const analysis::Type* coord_type = type_mgr->GetType(coord->type_id());
919     if (auto* vector_type = coord_type->AsVector()) {
920       return vector_type->element_type()->AsInteger();
921     }
922     return coord_type->AsInteger();
923   }();
924   // For now, only handle 32-bit case for coordinates.
925   if (!coord_component_type) {
926     return Fail() << " Coordinates for OpImageTexelPointer are not integral: "
927                   << image_texel_pointer->PrettyPrint(
928                          SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
929   }
930   if (coord_component_type->width() != 32) {
931     return Fail() << " Expected OpImageTexelPointer coordinate components to "
932                      "be 32-bits wide. They are "
933                   << coord_component_type->width() << " bits. "
934                   << image_texel_pointer->PrettyPrint(
935                          SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
936   }
937   const auto* query_size_type =
938       [type_mgr, coord_component_type,
939        query_num_components]() -> const analysis::Type* {
940     if (query_num_components == 1) return coord_component_type;
941     analysis::Vector proposed(coord_component_type, query_num_components);
942     return type_mgr->GetRegisteredType(&proposed);
943   }();
944 
945   const uint32_t image_id = TakeNextId();
946   auto* image =
947       InsertInst(image_texel_pointer, SpvOpLoad, image_type_id, image_id,
948                  {{SPV_OPERAND_TYPE_ID, {image_ptr->result_id()}}});
949 
950   const uint32_t query_size_id = TakeNextId();
951   auto* query_size =
952       InsertInst(image_texel_pointer, SpvOpImageQuerySize,
953                  type_mgr->GetTypeInstruction(query_size_type), query_size_id,
954                  {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});
955 
956   auto* component_1 = constant_mgr->GetConstant(coord_component_type, {1});
957   const uint32_t component_1_id =
958       constant_mgr->GetDefiningInstruction(component_1)->result_id();
959   auto* component_0 = constant_mgr->GetConstant(coord_component_type, {0});
960   const uint32_t component_0_id =
961       constant_mgr->GetDefiningInstruction(component_0)->result_id();
962 
963   // If the image is a cube array, then the last component of the queried
964   // size is the layer count.  In the query, we have to accomodate folding
965   // in the face index ranging from 0 through 5. The inclusive upper bound
966   // on the third coordinate therefore is multiplied by 6.
967   auto* query_size_including_faces = query_size;
968   if (arrayed && (dim == SpvDimCube)) {
969     // Multiply the last coordinate by 6.
970     auto* component_6 = constant_mgr->GetConstant(coord_component_type, {6});
971     const uint32_t component_6_id =
972         constant_mgr->GetDefiningInstruction(component_6)->result_id();
973     assert(query_num_components == 3);
974     auto* multiplicand = constant_mgr->GetConstant(
975         query_size_type, {component_1_id, component_1_id, component_6_id});
976     auto* multiplicand_inst =
977         constant_mgr->GetDefiningInstruction(multiplicand);
978     const auto query_size_including_faces_id = TakeNextId();
979     query_size_including_faces = InsertInst(
980         image_texel_pointer, SpvOpIMul,
981         type_mgr->GetTypeInstruction(query_size_type),
982         query_size_including_faces_id,
983         {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
984          {SPV_OPERAND_TYPE_ID, {multiplicand_inst->result_id()}}});
985   }
986 
987   // Make a coordinate-type with all 1 components.
988   auto* coordinate_1 =
989       query_num_components == 1
990           ? component_1
991           : constant_mgr->GetConstant(
992                 query_size_type,
993                 std::vector<uint32_t>(query_num_components, component_1_id));
994   // Make a coordinate-type with all 1 components.
995   auto* coordinate_0 =
996       query_num_components == 0
997           ? component_0
998           : constant_mgr->GetConstant(
999                 query_size_type,
1000                 std::vector<uint32_t>(query_num_components, component_0_id));
1001 
1002   const uint32_t query_max_including_faces_id = TakeNextId();
1003   auto* query_max_including_faces = InsertInst(
1004       image_texel_pointer, SpvOpISub,
1005       type_mgr->GetTypeInstruction(query_size_type),
1006       query_max_including_faces_id,
1007       {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
1008        {SPV_OPERAND_TYPE_ID,
1009         {constant_mgr->GetDefiningInstruction(coordinate_1)->result_id()}}});
1010 
1011   // Clamp the coordinate
1012   auto* clamp_coord = MakeSClampInst(
1013       *type_mgr, coord, constant_mgr->GetDefiningInstruction(coordinate_0),
1014       query_max_including_faces, image_texel_pointer);
1015   image_texel_pointer->SetInOperand(1, {clamp_coord->result_id()});
1016 
1017   // Clamp the sample index
1018   if (multisampled) {
1019     // Get the sample count via OpImageQuerySamples
1020     const auto query_samples_id = TakeNextId();
1021     auto* query_samples = InsertInst(
1022         image_texel_pointer, SpvOpImageQuerySamples,
1023         constant_mgr->GetDefiningInstruction(component_0)->type_id(),
1024         query_samples_id, {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});
1025 
1026     const auto max_samples_id = TakeNextId();
1027     auto* max_samples = InsertInst(image_texel_pointer, SpvOpImageQuerySamples,
1028                                    query_samples->type_id(), max_samples_id,
1029                                    {{SPV_OPERAND_TYPE_ID, {query_samples_id}},
1030                                     {SPV_OPERAND_TYPE_ID, {component_1_id}}});
1031 
1032     auto* clamp_samples = MakeSClampInst(
1033         *type_mgr, samples, constant_mgr->GetDefiningInstruction(coordinate_0),
1034         max_samples, image_texel_pointer);
1035     image_texel_pointer->SetInOperand(2, {clamp_samples->result_id()});
1036 
1037   } else {
1038     // Just replace it with 0.  Don't even check what was there before.
1039     image_texel_pointer->SetInOperand(2, {component_0_id});
1040   }
1041 
1042   def_use_mgr->AnalyzeInstUse(image_texel_pointer);
1043 
1044   return SPV_SUCCESS;
1045 #endif
1046 }
1047 
InsertInst(opt::Instruction * where_inst,SpvOp opcode,uint32_t type_id,uint32_t result_id,const Instruction::OperandList & operands)1048 opt::Instruction* GraphicsRobustAccessPass::InsertInst(
1049     opt::Instruction* where_inst, SpvOp opcode, uint32_t type_id,
1050     uint32_t result_id, const Instruction::OperandList& operands) {
1051   module_status_.modified = true;
1052   auto* result = where_inst->InsertBefore(
1053       MakeUnique<Instruction>(context(), opcode, type_id, result_id, operands));
1054   context()->get_def_use_mgr()->AnalyzeInstDefUse(result);
1055   auto* basic_block = context()->get_instr_block(where_inst);
1056   context()->set_instr_block(result, basic_block);
1057   return result;
1058 }
1059 
1060 }  // namespace opt
1061 }  // namespace spvtools
1062