1 // Copyright (c) 2015-2016 The Khronos Group Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SOURCE_VAL_VALIDATION_STATE_H_
16 #define SOURCE_VAL_VALIDATION_STATE_H_
17 
18 #include <algorithm>
19 #include <map>
20 #include <set>
21 #include <string>
22 #include <tuple>
23 #include <unordered_map>
24 #include <unordered_set>
25 #include <vector>
26 
27 #include "source/assembly_grammar.h"
28 #include "source/diagnostic.h"
29 #include "source/disassemble.h"
30 #include "source/enum_set.h"
31 #include "source/latest_version_spirv_header.h"
32 #include "source/name_mapper.h"
33 #include "source/spirv_definition.h"
34 #include "source/spirv_validator_options.h"
35 #include "source/val/decoration.h"
36 #include "source/val/function.h"
37 #include "source/val/instruction.h"
38 #include "spirv-tools/libspirv.h"
39 
40 namespace spvtools {
41 namespace val {
42 
43 /// This enum represents the sections of a SPIRV module. See section 2.4
44 /// of the SPIRV spec for additional details of the order. The enumerant values
45 /// are in the same order as the vector returned by GetModuleOrder
46 enum ModuleLayoutSection {
47   kLayoutCapabilities,          /// < Section 2.4 #1
48   kLayoutExtensions,            /// < Section 2.4 #2
49   kLayoutExtInstImport,         /// < Section 2.4 #3
50   kLayoutMemoryModel,           /// < Section 2.4 #4
51   kLayoutEntryPoint,            /// < Section 2.4 #5
52   kLayoutExecutionMode,         /// < Section 2.4 #6
53   kLayoutDebug1,                /// < Section 2.4 #7 > 1
54   kLayoutDebug2,                /// < Section 2.4 #7 > 2
55   kLayoutDebug3,                /// < Section 2.4 #7 > 3
56   kLayoutAnnotations,           /// < Section 2.4 #8
57   kLayoutTypes,                 /// < Section 2.4 #9
58   kLayoutFunctionDeclarations,  /// < Section 2.4 #10
59   kLayoutFunctionDefinitions    /// < Section 2.4 #11
60 };
61 
62 /// This class manages the state of the SPIR-V validation as it is being parsed.
63 class ValidationState_t {
64  public:
65   // Features that can optionally be turned on by a capability or environment.
66   struct Feature {
67     bool declare_int16_type = false;     // Allow OpTypeInt with 16 bit width?
68     bool declare_float16_type = false;   // Allow OpTypeFloat with 16 bit width?
69     bool free_fp_rounding_mode = false;  // Allow the FPRoundingMode decoration
70                                          // and its vaules to be used without
71                                          // requiring any capability
72 
73     // Allow functionalities enabled by VariablePointers capability.
74     bool variable_pointers = false;
75     // Allow functionalities enabled by VariablePointersStorageBuffer
76     // capability.
77     bool variable_pointers_storage_buffer = false;
78 
79     // Permit group oerations Reduce, InclusiveScan, ExclusiveScan
80     bool group_ops_reduce_and_scans = false;
81 
82     // Allow OpTypeInt with 8 bit width?
83     bool declare_int8_type = false;
84 
85     // Target environment uses relaxed block layout.
86     // This is true for Vulkan 1.1 or later.
87     bool env_relaxed_block_layout = false;
88 
89     // Allow an OpTypeInt with 8 bit width to be used in more than just int
90     // conversion opcodes
91     bool use_int8_type = false;
92 
93     // Use scalar block layout. See VK_EXT_scalar_block_layout:
94     // Defines scalar alignment:
95     // - scalar alignment equals the scalar size in bytes
96     // - array alignment is same as its element alignment
97     // - array alignment is max alignment of any of its members
98     // - vector alignment is same as component alignment
99     // - matrix alignment is same as component alignment
100     // For struct in Uniform, StorageBuffer, PushConstant:
101     // - Offset of a member is multiple of scalar alignment of that member
102     // - ArrayStride and MatrixStride are multiples of scalar alignment
103     // Members need not be listed in offset order
104     bool scalar_block_layout = false;
105 
106     // SPIR-V 1.4 allows us to select between any two composite values
107     // of the same type.
108     bool select_between_composites = false;
109 
110     // SPIR-V 1.4 allows two memory access operands for OpCopyMemory and
111     // OpCopyMemorySized.
112     bool copy_memory_permits_two_memory_accesses = false;
113 
114     // SPIR-V 1.4 allows UConvert as a spec constant op in any environment.
115     // The Kernel capability already enables it, separately from this flag.
116     bool uconvert_spec_constant_op = false;
117 
118     // SPIR-V 1.4 allows Function and Private variables to be NonWritable
119     bool nonwritable_var_in_function_or_private = false;
120   };
121 
122   ValidationState_t(const spv_const_context context,
123                     const spv_const_validator_options opt,
124                     const uint32_t* words, const size_t num_words,
125                     const uint32_t max_warnings);
126 
127   /// Returns the context
context()128   spv_const_context context() const { return context_; }
129 
130   /// Returns the command line options
options()131   spv_const_validator_options options() const { return options_; }
132 
133   /// Sets the ID of the generator for this module.
setGenerator(uint32_t gen)134   void setGenerator(uint32_t gen) { generator_ = gen; }
135 
136   /// Returns the ID of the generator for this module.
generator()137   uint32_t generator() const { return generator_; }
138 
139   /// Sets the SPIR-V version of this module.
setVersion(uint32_t ver)140   void setVersion(uint32_t ver) { version_ = ver; }
141 
142   /// Gets the SPIR-V version of this module.
version()143   uint32_t version() const { return version_; }
144 
145   /// Forward declares the id in the module
146   spv_result_t ForwardDeclareId(uint32_t id);
147 
148   /// Removes a forward declared ID if it has been defined
149   spv_result_t RemoveIfForwardDeclared(uint32_t id);
150 
151   /// Registers an ID as a forward pointer
152   spv_result_t RegisterForwardPointer(uint32_t id);
153 
154   /// Returns whether or not an ID is a forward pointer
155   bool IsForwardPointer(uint32_t id) const;
156 
157   /// Assigns a name to an ID
158   void AssignNameToId(uint32_t id, std::string name);
159 
160   /// Returns a string representation of the ID in the format <id>[Name] where
161   /// the <id> is the numeric valid of the id and the Name is a name assigned by
162   /// the OpName instruction
163   std::string getIdName(uint32_t id) const;
164 
165   /// Accessor function for ID bound.
166   uint32_t getIdBound() const;
167 
168   /// Mutator function for ID bound.
169   void setIdBound(uint32_t bound);
170 
171   /// Returns the number of ID which have been forward referenced but not
172   /// defined
173   size_t unresolved_forward_id_count() const;
174 
175   /// Returns a vector of unresolved forward ids.
176   std::vector<uint32_t> UnresolvedForwardIds() const;
177 
178   /// Returns true if the id has been defined
179   bool IsDefinedId(uint32_t id) const;
180 
181   /// Increments the total number of instructions in the file.
increment_total_instructions()182   void increment_total_instructions() { total_instructions_++; }
183 
184   /// Increments the total number of functions in the file.
increment_total_functions()185   void increment_total_functions() { total_functions_++; }
186 
187   /// Allocates internal storage. Note, calling this will invalidate any
188   /// pointers to |ordered_instructions_| or |module_functions_| and, hence,
189   /// should only be called at the beginning of validation.
190   void preallocateStorage();
191 
192   /// Returns the current layout section which is being processed
193   ModuleLayoutSection current_layout_section() const;
194 
195   /// Increments the module_layout_order_section_
196   void ProgressToNextLayoutSectionOrder();
197 
198   /// Determines if the op instruction is in a previous layout section
199   bool IsOpcodeInPreviousLayoutSection(SpvOp op);
200 
201   /// Determines if the op instruction is part of the current section
202   bool IsOpcodeInCurrentLayoutSection(SpvOp op);
203 
204   DiagnosticStream diag(spv_result_t error_code, const Instruction* inst);
205 
206   /// Returns the function states
207   std::vector<Function>& functions();
208 
209   /// Returns the function states
210   Function& current_function();
211   const Function& current_function() const;
212 
213   /// Returns function state with the given id, or nullptr if no such function.
214   const Function* function(uint32_t id) const;
215   Function* function(uint32_t id);
216 
217   /// Returns true if the called after a function instruction but before the
218   /// function end instruction
219   bool in_function_body() const;
220 
221   /// Returns true if called after a label instruction but before a branch
222   /// instruction
223   bool in_block() const;
224 
225   struct EntryPointDescription {
226     std::string name;
227     std::vector<uint32_t> interfaces;
228   };
229 
230   /// Registers |id| as an entry point with |execution_model| and |interfaces|.
RegisterEntryPoint(const uint32_t id,SpvExecutionModel execution_model,EntryPointDescription && desc)231   void RegisterEntryPoint(const uint32_t id, SpvExecutionModel execution_model,
232                           EntryPointDescription&& desc) {
233     entry_points_.push_back(id);
234     entry_point_to_execution_models_[id].insert(execution_model);
235     entry_point_descriptions_[id].emplace_back(desc);
236   }
237 
238   /// Returns a list of entry point function ids
entry_points()239   const std::vector<uint32_t>& entry_points() const { return entry_points_; }
240 
241   /// Returns the set of entry points that root call graphs that contain
242   /// recursion.
recursive_entry_points()243   const std::set<uint32_t>& recursive_entry_points() const {
244     return recursive_entry_points_;
245   }
246 
247   /// Registers execution mode for the given entry point.
RegisterExecutionModeForEntryPoint(uint32_t entry_point,SpvExecutionMode execution_mode)248   void RegisterExecutionModeForEntryPoint(uint32_t entry_point,
249                                           SpvExecutionMode execution_mode) {
250     entry_point_to_execution_modes_[entry_point].insert(execution_mode);
251   }
252 
253   /// Returns the interface descriptions of a given entry point.
entry_point_descriptions(uint32_t entry_point)254   const std::vector<EntryPointDescription>& entry_point_descriptions(
255       uint32_t entry_point) {
256     return entry_point_descriptions_.at(entry_point);
257   }
258 
259   /// Returns Execution Models for the given Entry Point.
260   /// Returns nullptr if none found (would trigger assertion).
GetExecutionModels(uint32_t entry_point)261   const std::set<SpvExecutionModel>* GetExecutionModels(
262       uint32_t entry_point) const {
263     const auto it = entry_point_to_execution_models_.find(entry_point);
264     if (it == entry_point_to_execution_models_.end()) {
265       assert(0);
266       return nullptr;
267     }
268     return &it->second;
269   }
270 
271   /// Returns Execution Modes for the given Entry Point.
272   /// Returns nullptr if none found.
GetExecutionModes(uint32_t entry_point)273   const std::set<SpvExecutionMode>* GetExecutionModes(
274       uint32_t entry_point) const {
275     const auto it = entry_point_to_execution_modes_.find(entry_point);
276     if (it == entry_point_to_execution_modes_.end()) {
277       return nullptr;
278     }
279     return &it->second;
280   }
281 
282   /// Traverses call tree and computes function_to_entry_points_.
283   /// Note: called after fully parsing the binary.
284   void ComputeFunctionToEntryPointMapping();
285 
286   /// Traverse call tree and computes recursive_entry_points_.
287   /// Note: called after fully parsing the binary and calling
288   /// ComputeFunctionToEntryPointMapping.
289   void ComputeRecursiveEntryPoints();
290 
291   /// Returns all the entry points that can call |func|.
292   const std::vector<uint32_t>& FunctionEntryPoints(uint32_t func) const;
293 
294   /// Returns all the entry points that statically use |id|.
295   ///
296   /// Note: requires ComputeFunctionToEntryPointMapping to have been called.
297   std::set<uint32_t> EntryPointReferences(uint32_t id) const;
298 
299   /// Inserts an <id> to the set of functions that are target of OpFunctionCall.
AddFunctionCallTarget(const uint32_t id)300   void AddFunctionCallTarget(const uint32_t id) {
301     function_call_targets_.insert(id);
302     current_function().AddFunctionCallTarget(id);
303   }
304 
305   /// Returns whether or not a function<id> is the target of OpFunctionCall.
IsFunctionCallTarget(const uint32_t id)306   bool IsFunctionCallTarget(const uint32_t id) {
307     return (function_call_targets_.find(id) != function_call_targets_.end());
308   }
309 
IsFunctionCallDefined(const uint32_t id)310   bool IsFunctionCallDefined(const uint32_t id) {
311     return (id_to_function_.find(id) != id_to_function_.end());
312   }
313   /// Registers the capability and its dependent capabilities
314   void RegisterCapability(SpvCapability cap);
315 
316   /// Registers the extension.
317   void RegisterExtension(Extension ext);
318 
319   /// Registers the function in the module. Subsequent instructions will be
320   /// called against this function
321   spv_result_t RegisterFunction(uint32_t id, uint32_t ret_type_id,
322                                 SpvFunctionControlMask function_control,
323                                 uint32_t function_type_id);
324 
325   /// Register a function end instruction
326   spv_result_t RegisterFunctionEnd();
327 
328   /// Returns true if the capability is enabled in the module.
HasCapability(SpvCapability cap)329   bool HasCapability(SpvCapability cap) const {
330     return module_capabilities_.Contains(cap);
331   }
332 
333   /// Returns a reference to the set of capabilities in the module.
334   /// This is provided for debuggability.
module_capabilities()335   const CapabilitySet& module_capabilities() const {
336     return module_capabilities_;
337   }
338 
339   /// Returns true if the extension is enabled in the module.
HasExtension(Extension ext)340   bool HasExtension(Extension ext) const {
341     return module_extensions_.Contains(ext);
342   }
343 
344   /// Returns true if any of the capabilities is enabled, or if |capabilities|
345   /// is an empty set.
346   bool HasAnyOfCapabilities(const CapabilitySet& capabilities) const;
347 
348   /// Returns true if any of the extensions is enabled, or if |extensions|
349   /// is an empty set.
350   bool HasAnyOfExtensions(const ExtensionSet& extensions) const;
351 
352   /// Sets the addressing model of this module (logical/physical).
353   void set_addressing_model(SpvAddressingModel am);
354 
355   /// Returns true if the OpMemoryModel was found.
has_memory_model_specified()356   bool has_memory_model_specified() const {
357     return addressing_model_ != SpvAddressingModelMax &&
358            memory_model_ != SpvMemoryModelMax;
359   }
360 
361   /// Returns the addressing model of this module, or Logical if uninitialized.
362   SpvAddressingModel addressing_model() const;
363 
364   /// Returns the addressing model of this module, or Logical if uninitialized.
pointer_size_and_alignment()365   uint32_t pointer_size_and_alignment() const {
366     return pointer_size_and_alignment_;
367   }
368 
369   /// Sets the memory model of this module.
370   void set_memory_model(SpvMemoryModel mm);
371 
372   /// Returns the memory model of this module, or Simple if uninitialized.
373   SpvMemoryModel memory_model() const;
374 
grammar()375   const AssemblyGrammar& grammar() const { return grammar_; }
376 
377   /// Inserts the instruction into the list of ordered instructions in the file.
378   Instruction* AddOrderedInstruction(const spv_parsed_instruction_t* inst);
379 
380   /// Registers the instruction. This will add the instruction to the list of
381   /// definitions and register sampled image consumers.
382   void RegisterInstruction(Instruction* inst);
383 
384   /// Registers the debug instruction information.
385   void RegisterDebugInstruction(const Instruction* inst);
386 
387   /// Registers the decoration for the given <id>
RegisterDecorationForId(uint32_t id,const Decoration & dec)388   void RegisterDecorationForId(uint32_t id, const Decoration& dec) {
389     auto& dec_list = id_decorations_[id];
390     auto lb = std::find(dec_list.begin(), dec_list.end(), dec);
391     if (lb == dec_list.end()) {
392       dec_list.push_back(dec);
393     }
394   }
395 
396   /// Registers the list of decorations for the given <id>
397   template <class InputIt>
RegisterDecorationsForId(uint32_t id,InputIt begin,InputIt end)398   void RegisterDecorationsForId(uint32_t id, InputIt begin, InputIt end) {
399     std::vector<Decoration>& cur_decs = id_decorations_[id];
400     cur_decs.insert(cur_decs.end(), begin, end);
401   }
402 
403   /// Registers the list of decorations for the given member of the given
404   /// structure.
405   template <class InputIt>
RegisterDecorationsForStructMember(uint32_t struct_id,uint32_t member_index,InputIt begin,InputIt end)406   void RegisterDecorationsForStructMember(uint32_t struct_id,
407                                           uint32_t member_index, InputIt begin,
408                                           InputIt end) {
409     RegisterDecorationsForId(struct_id, begin, end);
410     for (auto& decoration : id_decorations_[struct_id]) {
411       decoration.set_struct_member_index(member_index);
412     }
413   }
414 
415   /// Returns all the decorations for the given <id>. If no decorations exist
416   /// for the <id>, it registers an empty vector for it in the map and
417   /// returns the empty vector.
id_decorations(uint32_t id)418   std::vector<Decoration>& id_decorations(uint32_t id) {
419     return id_decorations_[id];
420   }
421 
422   // Returns const pointer to the internal decoration container.
id_decorations()423   const std::map<uint32_t, std::vector<Decoration>>& id_decorations() const {
424     return id_decorations_;
425   }
426 
427   /// Returns true if the given id <id> has the given decoration <dec>,
428   /// otherwise returns false.
HasDecoration(uint32_t id,SpvDecoration dec)429   bool HasDecoration(uint32_t id, SpvDecoration dec) {
430     const auto& decorations = id_decorations_.find(id);
431     if (decorations == id_decorations_.end()) return false;
432 
433     return std::any_of(
434         decorations->second.begin(), decorations->second.end(),
435         [dec](const Decoration& d) { return dec == d.dec_type(); });
436   }
437 
438   /// Finds id's def, if it exists.  If found, returns the definition otherwise
439   /// nullptr
440   const Instruction* FindDef(uint32_t id) const;
441 
442   /// Finds id's def, if it exists.  If found, returns the definition otherwise
443   /// nullptr
444   Instruction* FindDef(uint32_t id);
445 
446   /// Returns the instructions in the order they appear in the binary
ordered_instructions()447   const std::vector<Instruction>& ordered_instructions() const {
448     return ordered_instructions_;
449   }
450 
451   /// Returns a map of instructions mapped by their result id
all_definitions()452   const std::unordered_map<uint32_t, Instruction*>& all_definitions() const {
453     return all_definitions_;
454   }
455 
456   /// Returns a vector containing the instructions that consume the given
457   /// SampledImage id.
458   std::vector<Instruction*> getSampledImageConsumers(uint32_t id) const;
459 
460   /// Records cons_id as a consumer of sampled_image_id.
461   void RegisterSampledImageConsumer(uint32_t sampled_image_id,
462                                     Instruction* consumer);
463 
464   /// Returns the set of Global Variables.
global_vars()465   std::unordered_set<uint32_t>& global_vars() { return global_vars_; }
466 
467   /// Returns the set of Local Variables.
local_vars()468   std::unordered_set<uint32_t>& local_vars() { return local_vars_; }
469 
470   /// Returns the number of Global Variables.
num_global_vars()471   size_t num_global_vars() { return global_vars_.size(); }
472 
473   /// Returns the number of Local Variables.
num_local_vars()474   size_t num_local_vars() { return local_vars_.size(); }
475 
476   /// Inserts a new <id> to the set of Global Variables.
registerGlobalVariable(const uint32_t id)477   void registerGlobalVariable(const uint32_t id) { global_vars_.insert(id); }
478 
479   /// Inserts a new <id> to the set of Local Variables.
registerLocalVariable(const uint32_t id)480   void registerLocalVariable(const uint32_t id) { local_vars_.insert(id); }
481 
482   // Returns true if using relaxed block layout, equivalent to
483   // VK_KHR_relaxed_block_layout.
IsRelaxedBlockLayout()484   bool IsRelaxedBlockLayout() const {
485     return features_.env_relaxed_block_layout || options()->relax_block_layout;
486   }
487 
488   /// Sets the struct nesting depth for a given struct ID
set_struct_nesting_depth(uint32_t id,uint32_t depth)489   void set_struct_nesting_depth(uint32_t id, uint32_t depth) {
490     struct_nesting_depth_[id] = depth;
491   }
492 
493   /// Returns the nesting depth of a given structure ID
struct_nesting_depth(uint32_t id)494   uint32_t struct_nesting_depth(uint32_t id) {
495     return struct_nesting_depth_[id];
496   }
497 
498   /// Records the has a nested block/bufferblock decorated struct for a given
499   /// struct ID
SetHasNestedBlockOrBufferBlockStruct(uint32_t id,bool has)500   void SetHasNestedBlockOrBufferBlockStruct(uint32_t id, bool has) {
501     struct_has_nested_blockorbufferblock_struct_[id] = has;
502   }
503 
504   /// For a given struct ID returns true if it has a nested block/bufferblock
505   /// decorated struct
GetHasNestedBlockOrBufferBlockStruct(uint32_t id)506   bool GetHasNestedBlockOrBufferBlockStruct(uint32_t id) {
507     return struct_has_nested_blockorbufferblock_struct_[id];
508   }
509 
510   /// Records that the structure type has a member decorated with a built-in.
RegisterStructTypeWithBuiltInMember(uint32_t id)511   void RegisterStructTypeWithBuiltInMember(uint32_t id) {
512     builtin_structs_.insert(id);
513   }
514 
515   /// Returns true if the struct type with the given Id has a BuiltIn member.
IsStructTypeWithBuiltInMember(uint32_t id)516   bool IsStructTypeWithBuiltInMember(uint32_t id) const {
517     return (builtin_structs_.find(id) != builtin_structs_.end());
518   }
519 
520   // Returns the state of optional features.
features()521   const Feature& features() const { return features_; }
522 
523   /// Adds the instruction data to unique_type_declarations_.
524   /// Returns false if an identical type declaration already exists.
525   bool RegisterUniqueTypeDeclaration(const Instruction* inst);
526 
527   // Returns type_id of the scalar component of |id|.
528   // |id| can be either
529   // - scalar, vector or matrix type
530   // - object of either scalar, vector or matrix type
531   uint32_t GetComponentType(uint32_t id) const;
532 
533   // Returns
534   // - 1 for scalar types or objects
535   // - vector size for vector types or objects
536   // - num columns for matrix types or objects
537   // Should not be called with any other arguments (will return zero and invoke
538   // assertion).
539   uint32_t GetDimension(uint32_t id) const;
540 
541   // Returns bit width of scalar or component.
542   // |id| can be
543   // - scalar, vector or matrix type
544   // - object of either scalar, vector or matrix type
545   // Will invoke assertion and return 0 if |id| is none of the above.
546   uint32_t GetBitWidth(uint32_t id) const;
547 
548   // Provides detailed information on matrix type.
549   // Returns false iff |id| is not matrix type.
550   bool GetMatrixTypeInfo(uint32_t id, uint32_t* num_rows, uint32_t* num_cols,
551                          uint32_t* column_type, uint32_t* component_type) const;
552 
553   // Collects struct member types into |member_types|.
554   // Returns false iff not struct type or has no members.
555   // Deletes prior contents of |member_types|.
556   bool GetStructMemberTypes(uint32_t struct_type_id,
557                             std::vector<uint32_t>* member_types) const;
558 
559   // Returns true iff |id| is a type corresponding to the name of the function.
560   // Only works for types not for objects.
561   bool IsVoidType(uint32_t id) const;
562   bool IsFloatScalarType(uint32_t id) const;
563   bool IsFloatVectorType(uint32_t id) const;
564   bool IsFloatScalarOrVectorType(uint32_t id) const;
565   bool IsFloatMatrixType(uint32_t id) const;
566   bool IsIntScalarType(uint32_t id) const;
567   bool IsIntVectorType(uint32_t id) const;
568   bool IsIntScalarOrVectorType(uint32_t id) const;
569   bool IsUnsignedIntScalarType(uint32_t id) const;
570   bool IsUnsignedIntVectorType(uint32_t id) const;
571   bool IsSignedIntScalarType(uint32_t id) const;
572   bool IsSignedIntVectorType(uint32_t id) const;
573   bool IsBoolScalarType(uint32_t id) const;
574   bool IsBoolVectorType(uint32_t id) const;
575   bool IsBoolScalarOrVectorType(uint32_t id) const;
576   bool IsPointerType(uint32_t id) const;
577   bool IsCooperativeMatrixType(uint32_t id) const;
578   bool IsFloatCooperativeMatrixType(uint32_t id) const;
579   bool IsIntCooperativeMatrixType(uint32_t id) const;
580   bool IsUnsignedIntCooperativeMatrixType(uint32_t id) const;
581 
582   // Returns true if |id| is a type id that contains |type| (or integer or
583   // floating point type) of |width| bits.
584   bool ContainsSizedIntOrFloatType(uint32_t id, SpvOp type,
585                                    uint32_t width) const;
586   // Returns true if |id| is a type id that contains a 8- or 16-bit int or
587   // 16-bit float that is not generally enabled for use.
588   bool ContainsLimitedUseIntOrFloatType(uint32_t id) const;
589 
590   // Gets value from OpConstant and OpSpecConstant as uint64.
591   // Returns false on failure (no instruction, wrong instruction, not int).
592   bool GetConstantValUint64(uint32_t id, uint64_t* val) const;
593 
594   // Returns type_id if id has type or zero otherwise.
595   uint32_t GetTypeId(uint32_t id) const;
596 
597   // Returns opcode of the instruction which issued the id or OpNop if the
598   // instruction is not registered.
599   SpvOp GetIdOpcode(uint32_t id) const;
600 
601   // Returns type_id for given id operand if it has a type or zero otherwise.
602   // |operand_index| is expected to be pointing towards an operand which is an
603   // id.
604   uint32_t GetOperandTypeId(const Instruction* inst,
605                             size_t operand_index) const;
606 
607   // Provides information on pointer type. Returns false iff not pointer type.
608   bool GetPointerTypeInfo(uint32_t id, uint32_t* data_type,
609                           uint32_t* storage_class) const;
610 
611   // Is the ID the type of a pointer to a uniform block: Block-decorated struct
612   // in uniform storage class? The result is only valid after internal method
613   // CheckDecorationsOfBuffers has been called.
IsPointerToUniformBlock(uint32_t type_id)614   bool IsPointerToUniformBlock(uint32_t type_id) const {
615     return pointer_to_uniform_block_.find(type_id) !=
616            pointer_to_uniform_block_.cend();
617   }
618   // Save the ID of a pointer to uniform block.
RegisterPointerToUniformBlock(uint32_t type_id)619   void RegisterPointerToUniformBlock(uint32_t type_id) {
620     pointer_to_uniform_block_.insert(type_id);
621   }
622   // Is the ID the type of a struct used as a uniform block?
623   // The result is only valid after internal method CheckDecorationsOfBuffers
624   // has been called.
IsStructForUniformBlock(uint32_t type_id)625   bool IsStructForUniformBlock(uint32_t type_id) const {
626     return struct_for_uniform_block_.find(type_id) !=
627            struct_for_uniform_block_.cend();
628   }
629   // Save the ID of a struct of a uniform block.
RegisterStructForUniformBlock(uint32_t type_id)630   void RegisterStructForUniformBlock(uint32_t type_id) {
631     struct_for_uniform_block_.insert(type_id);
632   }
633   // Is the ID the type of a pointer to a storage buffer: BufferBlock-decorated
634   // struct in uniform storage class, or Block-decorated struct in StorageBuffer
635   // storage class? The result is only valid after internal method
636   // CheckDecorationsOfBuffers has been called.
IsPointerToStorageBuffer(uint32_t type_id)637   bool IsPointerToStorageBuffer(uint32_t type_id) const {
638     return pointer_to_storage_buffer_.find(type_id) !=
639            pointer_to_storage_buffer_.cend();
640   }
641   // Save the ID of a pointer to a storage buffer.
RegisterPointerToStorageBuffer(uint32_t type_id)642   void RegisterPointerToStorageBuffer(uint32_t type_id) {
643     pointer_to_storage_buffer_.insert(type_id);
644   }
645   // Is the ID the type of a struct for storage buffer?
646   // The result is only valid after internal method CheckDecorationsOfBuffers
647   // has been called.
IsStructForStorageBuffer(uint32_t type_id)648   bool IsStructForStorageBuffer(uint32_t type_id) const {
649     return struct_for_storage_buffer_.find(type_id) !=
650            struct_for_storage_buffer_.cend();
651   }
652   // Save the ID of a struct of a storage buffer.
RegisterStructForStorageBuffer(uint32_t type_id)653   void RegisterStructForStorageBuffer(uint32_t type_id) {
654     struct_for_storage_buffer_.insert(type_id);
655   }
656 
657   // Is the ID the type of a pointer to a storage image?  That is, the pointee
658   // type is an image type which is known to not use a sampler.
IsPointerToStorageImage(uint32_t type_id)659   bool IsPointerToStorageImage(uint32_t type_id) const {
660     return pointer_to_storage_image_.find(type_id) !=
661            pointer_to_storage_image_.cend();
662   }
663   // Save the ID of a pointer to a storage image.
RegisterPointerToStorageImage(uint32_t type_id)664   void RegisterPointerToStorageImage(uint32_t type_id) {
665     pointer_to_storage_image_.insert(type_id);
666   }
667 
668   // Tries to evaluate a 32-bit signed or unsigned scalar integer constant.
669   // Returns tuple <is_int32, is_const_int32, value>.
670   // OpSpecConstant* return |is_const_int32| as false since their values cannot
671   // be relied upon during validation.
672   std::tuple<bool, bool, uint32_t> EvalInt32IfConst(uint32_t id) const;
673 
674   // Returns the disassembly string for the given instruction.
675   std::string Disassemble(const Instruction& inst) const;
676 
677   // Returns the disassembly string for the given instruction.
678   std::string Disassemble(const uint32_t* words, uint16_t num_words) const;
679 
680   // Returns whether type m1 and type m2 are cooperative matrices with
681   // the same "shape" (matching scope, rows, cols). If any are specialization
682   // constants, we assume they can match because we can't prove they don't.
683   spv_result_t CooperativeMatrixShapesMatch(const Instruction* inst,
684                                             uint32_t m1, uint32_t m2);
685 
686   // Returns true if |lhs| and |rhs| logically match and, if the decorations of
687   // |rhs| are a subset of |lhs|.
688   //
689   // 1. Must both be either OpTypeArray or OpTypeStruct
690   // 2. If OpTypeArray, then
691   //  * Length must be the same
692   //  * Element type must match or logically match
693   // 3. If OpTypeStruct, then
694   //  * Both have same number of elements
695   //  * Element N for both structs must match or logically match
696   //
697   // If |check_decorations| is false, then the decorations are not checked.
698   bool LogicallyMatch(const Instruction* lhs, const Instruction* rhs,
699                       bool check_decorations);
700 
701   // Traces |inst| to find a single base pointer. Returns the base pointer.
702   // Will trace through the following instructions:
703   // * OpAccessChain
704   // * OpInBoundsAccessChain
705   // * OpPtrAccessChain
706   // * OpInBoundsPtrAccessChain
707   // * OpCopyObject
708   const Instruction* TracePointer(const Instruction* inst) const;
709 
710   // Validates the storage class for the target environment.
711   bool IsValidStorageClass(SpvStorageClass storage_class) const;
712 
713   // Takes a Vulkan Valid Usage ID (VUID) as |id| and optional |reference| and
714   // will return a non-empty string only if ID is known and targeting Vulkan.
715   // VUIDs are found in the Vulkan-Docs repo in the form "[[VUID-ref-ref-id]]"
716   // where "id" is always an 5 char long number (with zeros padding) and matches
717   // to |id|. |reference| is used if there is a "common validity" and the VUID
718   // shares the same |id| value.
719   //
720   // More details about Vulkan validation can be found in Vulkan Guide:
721   // https://github.com/KhronosGroup/Vulkan-Guide/blob/master/chapters/validation_overview.md
722   std::string VkErrorID(uint32_t id, const char* reference = nullptr) const;
723 
724   // Testing method to allow setting the current layout section.
SetCurrentLayoutSectionForTesting(ModuleLayoutSection section)725   void SetCurrentLayoutSectionForTesting(ModuleLayoutSection section) {
726     current_layout_section_ = section;
727   }
728 
729  private:
730   ValidationState_t(const ValidationState_t&);
731 
732   const spv_const_context context_;
733 
734   /// Stores the Validator command line options. Must be a valid options object.
735   const spv_const_validator_options options_;
736 
737   /// The SPIR-V binary module we're validating.
738   const uint32_t* words_;
739   const size_t num_words_;
740 
741   /// The generator of the SPIR-V.
742   uint32_t generator_ = 0;
743 
744   /// The version of the SPIR-V.
745   uint32_t version_ = 0;
746 
747   /// The total number of instructions in the binary.
748   size_t total_instructions_ = 0;
749   /// The total number of functions in the binary.
750   size_t total_functions_ = 0;
751 
752   /// IDs which have been forward declared but have not been defined
753   std::unordered_set<uint32_t> unresolved_forward_ids_;
754 
755   /// IDs that have been declared as forward pointers.
756   std::unordered_set<uint32_t> forward_pointer_ids_;
757 
758   /// Stores a vector of instructions that use the result of a given
759   /// OpSampledImage instruction.
760   std::unordered_map<uint32_t, std::vector<Instruction*>>
761       sampled_image_consumers_;
762 
763   /// A map of operand IDs and their names defined by the OpName instruction
764   std::unordered_map<uint32_t, std::string> operand_names_;
765 
766   /// The section of the code being processed
767   ModuleLayoutSection current_layout_section_;
768 
769   /// A list of functions in the module.
770   /// Pointers to objects in this container are guaranteed to be stable and
771   /// valid until the end of lifetime of the validation state.
772   std::vector<Function> module_functions_;
773 
774   /// Capabilities declared in the module
775   CapabilitySet module_capabilities_;
776 
777   /// Extensions declared in the module
778   ExtensionSet module_extensions_;
779 
780   /// List of all instructions in the order they appear in the binary
781   std::vector<Instruction> ordered_instructions_;
782 
783   /// Instructions that can be referenced by Ids
784   std::unordered_map<uint32_t, Instruction*> all_definitions_;
785 
786   /// IDs that are entry points, ie, arguments to OpEntryPoint.
787   std::vector<uint32_t> entry_points_;
788 
789   /// Maps an entry point id to its desciptions.
790   std::unordered_map<uint32_t, std::vector<EntryPointDescription>>
791       entry_point_descriptions_;
792 
793   /// IDs that are entry points, ie, arguments to OpEntryPoint, and root a call
794   /// graph that recurses.
795   std::set<uint32_t> recursive_entry_points_;
796 
797   /// Functions IDs that are target of OpFunctionCall.
798   std::unordered_set<uint32_t> function_call_targets_;
799 
800   /// ID Bound from the Header
801   uint32_t id_bound_;
802 
803   /// Set of Global Variable IDs (Storage Class other than 'Function')
804   std::unordered_set<uint32_t> global_vars_;
805 
806   /// Set of Local Variable IDs ('Function' Storage Class)
807   std::unordered_set<uint32_t> local_vars_;
808 
809   /// Set of struct types that have members with a BuiltIn decoration.
810   std::unordered_set<uint32_t> builtin_structs_;
811 
812   /// Structure Nesting Depth
813   std::unordered_map<uint32_t, uint32_t> struct_nesting_depth_;
814 
815   /// Structure has nested blockorbufferblock struct
816   std::unordered_map<uint32_t, bool>
817       struct_has_nested_blockorbufferblock_struct_;
818 
819   /// Stores the list of decorations for a given <id>
820   std::map<uint32_t, std::vector<Decoration>> id_decorations_;
821 
822   /// Stores type declarations which need to be unique (i.e. non-aggregates),
823   /// in the form [opcode, operand words], result_id is not stored.
824   /// Using ordered set to avoid the need for a vector hash function.
825   /// The size of this container is expected not to exceed double-digits.
826   std::set<std::vector<uint32_t>> unique_type_declarations_;
827 
828   AssemblyGrammar grammar_;
829 
830   SpvAddressingModel addressing_model_;
831   SpvMemoryModel memory_model_;
832   // pointer size derived from addressing model. Assumes all storage classes
833   // have the same pointer size (for physical pointer types).
834   uint32_t pointer_size_and_alignment_;
835 
836   /// NOTE: See correspoding getter functions
837   bool in_function_;
838 
839   /// The state of optional features.  These are determined by capabilities
840   /// declared by the module and the environment.
841   Feature features_;
842 
843   /// Maps function ids to function stat objects.
844   std::unordered_map<uint32_t, Function*> id_to_function_;
845 
846   /// Mapping entry point -> execution models. It is presumed that the same
847   /// function could theoretically be used as 'main' by multiple OpEntryPoint
848   /// instructions.
849   std::unordered_map<uint32_t, std::set<SpvExecutionModel>>
850       entry_point_to_execution_models_;
851 
852   /// Mapping entry point -> execution modes.
853   std::unordered_map<uint32_t, std::set<SpvExecutionMode>>
854       entry_point_to_execution_modes_;
855 
856   /// Mapping function -> array of entry points inside this
857   /// module which can (indirectly) call the function.
858   std::unordered_map<uint32_t, std::vector<uint32_t>> function_to_entry_points_;
859   const std::vector<uint32_t> empty_ids_;
860 
861   // The IDs of types of pointers to Block-decorated structs in Uniform storage
862   // class. This is populated at the start of ValidateDecorations.
863   std::unordered_set<uint32_t> pointer_to_uniform_block_;
864   // The IDs of struct types for uniform blocks.
865   // This is populated at the start of ValidateDecorations.
866   std::unordered_set<uint32_t> struct_for_uniform_block_;
867   // The IDs of types of pointers to BufferBlock-decorated structs in Uniform
868   // storage class, or Block-decorated structs in StorageBuffer storage class.
869   // This is populated at the start of ValidateDecorations.
870   std::unordered_set<uint32_t> pointer_to_storage_buffer_;
871   // The IDs of struct types for storage buffers.
872   // This is populated at the start of ValidateDecorations.
873   std::unordered_set<uint32_t> struct_for_storage_buffer_;
874   // The IDs of types of pointers to storage images.  This is populated in the
875   // TypePass.
876   std::unordered_set<uint32_t> pointer_to_storage_image_;
877 
878   /// Maps ids to friendly names.
879   std::unique_ptr<spvtools::FriendlyNameMapper> friendly_mapper_;
880   spvtools::NameMapper name_mapper_;
881 
882   /// Variables used to reduce the number of diagnostic messages.
883   uint32_t num_of_warnings_;
884   uint32_t max_num_of_warnings_;
885 };
886 
887 }  // namespace val
888 }  // namespace spvtools
889 
890 #endif  // SOURCE_VAL_VALIDATION_STATE_H_
891