1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
17 #include "llvm/Analysis/ProfileSummaryInfo.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Transforms/Utils/SizeOpts.h"
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "expandmemcmp"
31 
32 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
33 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
34 STATISTIC(NumMemCmpGreaterThanMax,
35           "Number of memcmp calls with size greater than max size");
36 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
37 
38 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
39     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
40     cl::desc("The number of loads per basic block for inline expansion of "
41              "memcmp that is only being compared against zero."));
42 
43 static cl::opt<unsigned> MaxLoadsPerMemcmp(
44     "max-loads-per-memcmp", cl::Hidden,
45     cl::desc("Set maximum number of loads used in expanded memcmp"));
46 
47 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
48     "max-loads-per-memcmp-opt-size", cl::Hidden,
49     cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
50 
51 namespace {
52 
53 
54 // This class provides helper functions to expand a memcmp library call into an
55 // inline expansion.
56 class MemCmpExpansion {
57   struct ResultBlock {
58     BasicBlock *BB = nullptr;
59     PHINode *PhiSrc1 = nullptr;
60     PHINode *PhiSrc2 = nullptr;
61 
62     ResultBlock() = default;
63   };
64 
65   CallInst *const CI;
66   ResultBlock ResBlock;
67   const uint64_t Size;
68   unsigned MaxLoadSize;
69   uint64_t NumLoadsNonOneByte;
70   const uint64_t NumLoadsPerBlockForZeroCmp;
71   std::vector<BasicBlock *> LoadCmpBlocks;
72   BasicBlock *EndBlock;
73   PHINode *PhiRes;
74   const bool IsUsedForZeroCmp;
75   const DataLayout &DL;
76   IRBuilder<> Builder;
77   // Represents the decomposition in blocks of the expansion. For example,
78   // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
79   // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
80   struct LoadEntry {
LoadEntry__anonb217b9c40111::MemCmpExpansion::LoadEntry81     LoadEntry(unsigned LoadSize, uint64_t Offset)
82         : LoadSize(LoadSize), Offset(Offset) {
83     }
84 
85     // The size of the load for this block, in bytes.
86     unsigned LoadSize;
87     // The offset of this load from the base pointer, in bytes.
88     uint64_t Offset;
89   };
90   using LoadEntryVector = SmallVector<LoadEntry, 8>;
91   LoadEntryVector LoadSequence;
92 
93   void createLoadCmpBlocks();
94   void createResultBlock();
95   void setupResultBlockPHINodes();
96   void setupEndBlockPHINodes();
97   Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
98   void emitLoadCompareBlock(unsigned BlockIndex);
99   void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
100                                          unsigned &LoadIndex);
101   void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
102   void emitMemCmpResultBlock();
103   Value *getMemCmpExpansionZeroCase();
104   Value *getMemCmpEqZeroOneBlock();
105   Value *getMemCmpOneBlock();
106   Value *getPtrToElementAtOffset(Value *Source, Type *LoadSizeType,
107                                  uint64_t OffsetBytes);
108 
109   static LoadEntryVector
110   computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
111                             unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
112   static LoadEntryVector
113   computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
114                                  unsigned MaxNumLoads,
115                                  unsigned &NumLoadsNonOneByte);
116 
117 public:
118   MemCmpExpansion(CallInst *CI, uint64_t Size,
119                   const TargetTransformInfo::MemCmpExpansionOptions &Options,
120                   const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout);
121 
122   unsigned getNumBlocks();
getNumLoads() const123   uint64_t getNumLoads() const { return LoadSequence.size(); }
124 
125   Value *getMemCmpExpansion();
126 };
127 
computeGreedyLoadSequence(uint64_t Size,llvm::ArrayRef<unsigned> LoadSizes,const unsigned MaxNumLoads,unsigned & NumLoadsNonOneByte)128 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
129     uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
130     const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
131   NumLoadsNonOneByte = 0;
132   LoadEntryVector LoadSequence;
133   uint64_t Offset = 0;
134   while (Size && !LoadSizes.empty()) {
135     const unsigned LoadSize = LoadSizes.front();
136     const uint64_t NumLoadsForThisSize = Size / LoadSize;
137     if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
138       // Do not expand if the total number of loads is larger than what the
139       // target allows. Note that it's important that we exit before completing
140       // the expansion to avoid using a ton of memory to store the expansion for
141       // large sizes.
142       return {};
143     }
144     if (NumLoadsForThisSize > 0) {
145       for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
146         LoadSequence.push_back({LoadSize, Offset});
147         Offset += LoadSize;
148       }
149       if (LoadSize > 1)
150         ++NumLoadsNonOneByte;
151       Size = Size % LoadSize;
152     }
153     LoadSizes = LoadSizes.drop_front();
154   }
155   return LoadSequence;
156 }
157 
158 MemCmpExpansion::LoadEntryVector
computeOverlappingLoadSequence(uint64_t Size,const unsigned MaxLoadSize,const unsigned MaxNumLoads,unsigned & NumLoadsNonOneByte)159 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
160                                                 const unsigned MaxLoadSize,
161                                                 const unsigned MaxNumLoads,
162                                                 unsigned &NumLoadsNonOneByte) {
163   // These are already handled by the greedy approach.
164   if (Size < 2 || MaxLoadSize < 2)
165     return {};
166 
167   // We try to do as many non-overlapping loads as possible starting from the
168   // beginning.
169   const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
170   assert(NumNonOverlappingLoads && "there must be at least one load");
171   // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
172   // an overlapping load.
173   Size = Size - NumNonOverlappingLoads * MaxLoadSize;
174   // Bail if we do not need an overloapping store, this is already handled by
175   // the greedy approach.
176   if (Size == 0)
177     return {};
178   // Bail if the number of loads (non-overlapping + potential overlapping one)
179   // is larger than the max allowed.
180   if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
181     return {};
182 
183   // Add non-overlapping loads.
184   LoadEntryVector LoadSequence;
185   uint64_t Offset = 0;
186   for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
187     LoadSequence.push_back({MaxLoadSize, Offset});
188     Offset += MaxLoadSize;
189   }
190 
191   // Add the last overlapping load.
192   assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
193   LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
194   NumLoadsNonOneByte = 1;
195   return LoadSequence;
196 }
197 
198 // Initialize the basic block structure required for expansion of memcmp call
199 // with given maximum load size and memcmp size parameter.
200 // This structure includes:
201 // 1. A list of load compare blocks - LoadCmpBlocks.
202 // 2. An EndBlock, split from original instruction point, which is the block to
203 // return from.
204 // 3. ResultBlock, block to branch to for early exit when a
205 // LoadCmpBlock finds a difference.
MemCmpExpansion(CallInst * const CI,uint64_t Size,const TargetTransformInfo::MemCmpExpansionOptions & Options,const bool IsUsedForZeroCmp,const DataLayout & TheDataLayout)206 MemCmpExpansion::MemCmpExpansion(
207     CallInst *const CI, uint64_t Size,
208     const TargetTransformInfo::MemCmpExpansionOptions &Options,
209     const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout)
210     : CI(CI), Size(Size), MaxLoadSize(0), NumLoadsNonOneByte(0),
211       NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
212       IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), Builder(CI) {
213   assert(Size > 0 && "zero blocks");
214   // Scale the max size down if the target can load more bytes than we need.
215   llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
216   while (!LoadSizes.empty() && LoadSizes.front() > Size) {
217     LoadSizes = LoadSizes.drop_front();
218   }
219   assert(!LoadSizes.empty() && "cannot load Size bytes");
220   MaxLoadSize = LoadSizes.front();
221   // Compute the decomposition.
222   unsigned GreedyNumLoadsNonOneByte = 0;
223   LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
224                                            GreedyNumLoadsNonOneByte);
225   NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
226   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
227   // If we allow overlapping loads and the load sequence is not already optimal,
228   // use overlapping loads.
229   if (Options.AllowOverlappingLoads &&
230       (LoadSequence.empty() || LoadSequence.size() > 2)) {
231     unsigned OverlappingNumLoadsNonOneByte = 0;
232     auto OverlappingLoads = computeOverlappingLoadSequence(
233         Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
234     if (!OverlappingLoads.empty() &&
235         (LoadSequence.empty() ||
236          OverlappingLoads.size() < LoadSequence.size())) {
237       LoadSequence = OverlappingLoads;
238       NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
239     }
240   }
241   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
242 }
243 
getNumBlocks()244 unsigned MemCmpExpansion::getNumBlocks() {
245   if (IsUsedForZeroCmp)
246     return getNumLoads() / NumLoadsPerBlockForZeroCmp +
247            (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
248   return getNumLoads();
249 }
250 
createLoadCmpBlocks()251 void MemCmpExpansion::createLoadCmpBlocks() {
252   for (unsigned i = 0; i < getNumBlocks(); i++) {
253     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
254                                         EndBlock->getParent(), EndBlock);
255     LoadCmpBlocks.push_back(BB);
256   }
257 }
258 
createResultBlock()259 void MemCmpExpansion::createResultBlock() {
260   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
261                                    EndBlock->getParent(), EndBlock);
262 }
263 
264 /// Return a pointer to an element of type `LoadSizeType` at offset
265 /// `OffsetBytes`.
getPtrToElementAtOffset(Value * Source,Type * LoadSizeType,uint64_t OffsetBytes)266 Value *MemCmpExpansion::getPtrToElementAtOffset(Value *Source,
267                                                 Type *LoadSizeType,
268                                                 uint64_t OffsetBytes) {
269   if (OffsetBytes > 0) {
270     auto *ByteType = Type::getInt8Ty(CI->getContext());
271     Source = Builder.CreateConstGEP1_64(
272         ByteType, Builder.CreateBitCast(Source, ByteType->getPointerTo()),
273         OffsetBytes);
274   }
275   return Builder.CreateBitCast(Source, LoadSizeType->getPointerTo());
276 }
277 
278 // This function creates the IR instructions for loading and comparing 1 byte.
279 // It loads 1 byte from each source of the memcmp parameters with the given
280 // GEPIndex. It then subtracts the two loaded values and adds this result to the
281 // final phi node for selecting the memcmp result.
emitLoadCompareByteBlock(unsigned BlockIndex,unsigned OffsetBytes)282 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
283                                                unsigned OffsetBytes) {
284   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
285   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
286   Value *Source1 =
287       getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, OffsetBytes);
288   Value *Source2 =
289       getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, OffsetBytes);
290 
291   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
292   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
293 
294   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
295   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
296   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
297 
298   PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
299 
300   if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
301     // Early exit branch if difference found to EndBlock. Otherwise, continue to
302     // next LoadCmpBlock,
303     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
304                                     ConstantInt::get(Diff->getType(), 0));
305     BranchInst *CmpBr =
306         BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
307     Builder.Insert(CmpBr);
308   } else {
309     // The last block has an unconditional branch to EndBlock.
310     BranchInst *CmpBr = BranchInst::Create(EndBlock);
311     Builder.Insert(CmpBr);
312   }
313 }
314 
315 /// Generate an equality comparison for one or more pairs of loaded values.
316 /// This is used in the case where the memcmp() call is compared equal or not
317 /// equal to zero.
getCompareLoadPairs(unsigned BlockIndex,unsigned & LoadIndex)318 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
319                                             unsigned &LoadIndex) {
320   assert(LoadIndex < getNumLoads() &&
321          "getCompareLoadPairs() called with no remaining loads");
322   std::vector<Value *> XorList, OrList;
323   Value *Diff = nullptr;
324 
325   const unsigned NumLoads =
326       std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
327 
328   // For a single-block expansion, start inserting before the memcmp call.
329   if (LoadCmpBlocks.empty())
330     Builder.SetInsertPoint(CI);
331   else
332     Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
333 
334   Value *Cmp = nullptr;
335   // If we have multiple loads per block, we need to generate a composite
336   // comparison using xor+or. The type for the combinations is the largest load
337   // type.
338   IntegerType *const MaxLoadType =
339       NumLoads == 1 ? nullptr
340                     : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
341   for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
342     const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
343 
344     IntegerType *LoadSizeType =
345         IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
346 
347     Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
348                                              CurLoadEntry.Offset);
349     Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
350                                              CurLoadEntry.Offset);
351 
352     // Get a constant or load a value for each source address.
353     Value *LoadSrc1 = nullptr;
354     if (auto *Source1C = dyn_cast<Constant>(Source1))
355       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
356     if (!LoadSrc1)
357       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
358 
359     Value *LoadSrc2 = nullptr;
360     if (auto *Source2C = dyn_cast<Constant>(Source2))
361       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
362     if (!LoadSrc2)
363       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
364 
365     if (NumLoads != 1) {
366       if (LoadSizeType != MaxLoadType) {
367         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
368         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
369       }
370       // If we have multiple loads per block, we need to generate a composite
371       // comparison using xor+or.
372       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
373       Diff = Builder.CreateZExt(Diff, MaxLoadType);
374       XorList.push_back(Diff);
375     } else {
376       // If there's only one load per block, we just compare the loaded values.
377       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
378     }
379   }
380 
381   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
382     std::vector<Value *> OutList;
383     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
384       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
385       OutList.push_back(Or);
386     }
387     if (InList.size() % 2 != 0)
388       OutList.push_back(InList.back());
389     return OutList;
390   };
391 
392   if (!Cmp) {
393     // Pairwise OR the XOR results.
394     OrList = pairWiseOr(XorList);
395 
396     // Pairwise OR the OR results until one result left.
397     while (OrList.size() != 1) {
398       OrList = pairWiseOr(OrList);
399     }
400 
401     assert(Diff && "Failed to find comparison diff");
402     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
403   }
404 
405   return Cmp;
406 }
407 
emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,unsigned & LoadIndex)408 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
409                                                         unsigned &LoadIndex) {
410   Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
411 
412   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
413                            ? EndBlock
414                            : LoadCmpBlocks[BlockIndex + 1];
415   // Early exit branch if difference found to ResultBlock. Otherwise,
416   // continue to next LoadCmpBlock or EndBlock.
417   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
418   Builder.Insert(CmpBr);
419 
420   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
421   // since early exit to ResultBlock was not taken (no difference was found in
422   // any of the bytes).
423   if (BlockIndex == LoadCmpBlocks.size() - 1) {
424     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
425     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
426   }
427 }
428 
429 // This function creates the IR intructions for loading and comparing using the
430 // given LoadSize. It loads the number of bytes specified by LoadSize from each
431 // source of the memcmp parameters. It then does a subtract to see if there was
432 // a difference in the loaded values. If a difference is found, it branches
433 // with an early exit to the ResultBlock for calculating which source was
434 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
435 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
436 // a special case through emitLoadCompareByteBlock. The special handling can
437 // simply subtract the loaded values and add it to the result phi node.
emitLoadCompareBlock(unsigned BlockIndex)438 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
439   // There is one load per block in this case, BlockIndex == LoadIndex.
440   const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
441 
442   if (CurLoadEntry.LoadSize == 1) {
443     MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
444     return;
445   }
446 
447   Type *LoadSizeType =
448       IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
449   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
450   assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
451 
452   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
453 
454   Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
455                                            CurLoadEntry.Offset);
456   Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
457                                            CurLoadEntry.Offset);
458 
459   // Load LoadSizeType from the base address.
460   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
461   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
462 
463   if (DL.isLittleEndian()) {
464     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
465                                                 Intrinsic::bswap, LoadSizeType);
466     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
467     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
468   }
469 
470   if (LoadSizeType != MaxLoadType) {
471     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
472     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
473   }
474 
475   // Add the loaded values to the phi nodes for calculating memcmp result only
476   // if result is not used in a zero equality.
477   if (!IsUsedForZeroCmp) {
478     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
479     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
480   }
481 
482   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
483   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
484                            ? EndBlock
485                            : LoadCmpBlocks[BlockIndex + 1];
486   // Early exit branch if difference found to ResultBlock. Otherwise, continue
487   // to next LoadCmpBlock or EndBlock.
488   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
489   Builder.Insert(CmpBr);
490 
491   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
492   // since early exit to ResultBlock was not taken (no difference was found in
493   // any of the bytes).
494   if (BlockIndex == LoadCmpBlocks.size() - 1) {
495     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
496     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
497   }
498 }
499 
500 // This function populates the ResultBlock with a sequence to calculate the
501 // memcmp result. It compares the two loaded source values and returns -1 if
502 // src1 < src2 and 1 if src1 > src2.
emitMemCmpResultBlock()503 void MemCmpExpansion::emitMemCmpResultBlock() {
504   // Special case: if memcmp result is used in a zero equality, result does not
505   // need to be calculated and can simply return 1.
506   if (IsUsedForZeroCmp) {
507     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
508     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
509     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
510     PhiRes->addIncoming(Res, ResBlock.BB);
511     BranchInst *NewBr = BranchInst::Create(EndBlock);
512     Builder.Insert(NewBr);
513     return;
514   }
515   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
516   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
517 
518   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
519                                   ResBlock.PhiSrc2);
520 
521   Value *Res =
522       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
523                            ConstantInt::get(Builder.getInt32Ty(), 1));
524 
525   BranchInst *NewBr = BranchInst::Create(EndBlock);
526   Builder.Insert(NewBr);
527   PhiRes->addIncoming(Res, ResBlock.BB);
528 }
529 
setupResultBlockPHINodes()530 void MemCmpExpansion::setupResultBlockPHINodes() {
531   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
532   Builder.SetInsertPoint(ResBlock.BB);
533   // Note: this assumes one load per block.
534   ResBlock.PhiSrc1 =
535       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
536   ResBlock.PhiSrc2 =
537       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
538 }
539 
setupEndBlockPHINodes()540 void MemCmpExpansion::setupEndBlockPHINodes() {
541   Builder.SetInsertPoint(&EndBlock->front());
542   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
543 }
544 
getMemCmpExpansionZeroCase()545 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
546   unsigned LoadIndex = 0;
547   // This loop populates each of the LoadCmpBlocks with the IR sequence to
548   // handle multiple loads per block.
549   for (unsigned I = 0; I < getNumBlocks(); ++I) {
550     emitLoadCompareBlockMultipleLoads(I, LoadIndex);
551   }
552 
553   emitMemCmpResultBlock();
554   return PhiRes;
555 }
556 
557 /// A memcmp expansion that compares equality with 0 and only has one block of
558 /// load and compare can bypass the compare, branch, and phi IR that is required
559 /// in the general case.
getMemCmpEqZeroOneBlock()560 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
561   unsigned LoadIndex = 0;
562   Value *Cmp = getCompareLoadPairs(0, LoadIndex);
563   assert(LoadIndex == getNumLoads() && "some entries were not consumed");
564   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
565 }
566 
567 /// A memcmp expansion that only has one block of load and compare can bypass
568 /// the compare, branch, and phi IR that is required in the general case.
getMemCmpOneBlock()569 Value *MemCmpExpansion::getMemCmpOneBlock() {
570   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
571   Value *Source1 = CI->getArgOperand(0);
572   Value *Source2 = CI->getArgOperand(1);
573 
574   // Cast source to LoadSizeType*.
575   if (Source1->getType() != LoadSizeType)
576     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
577   if (Source2->getType() != LoadSizeType)
578     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
579 
580   // Load LoadSizeType from the base address.
581   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
582   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
583 
584   if (DL.isLittleEndian() && Size != 1) {
585     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
586                                                 Intrinsic::bswap, LoadSizeType);
587     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
588     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
589   }
590 
591   if (Size < 4) {
592     // The i8 and i16 cases don't need compares. We zext the loaded values and
593     // subtract them to get the suitable negative, zero, or positive i32 result.
594     LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
595     LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
596     return Builder.CreateSub(LoadSrc1, LoadSrc2);
597   }
598 
599   // The result of memcmp is negative, zero, or positive, so produce that by
600   // subtracting 2 extended compare bits: sub (ugt, ult).
601   // If a target prefers to use selects to get -1/0/1, they should be able
602   // to transform this later. The inverse transform (going from selects to math)
603   // may not be possible in the DAG because the selects got converted into
604   // branches before we got there.
605   Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
606   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
607   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
608   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
609   return Builder.CreateSub(ZextUGT, ZextULT);
610 }
611 
612 // This function expands the memcmp call into an inline expansion and returns
613 // the memcmp result.
getMemCmpExpansion()614 Value *MemCmpExpansion::getMemCmpExpansion() {
615   // Create the basic block framework for a multi-block expansion.
616   if (getNumBlocks() != 1) {
617     BasicBlock *StartBlock = CI->getParent();
618     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
619     setupEndBlockPHINodes();
620     createResultBlock();
621 
622     // If return value of memcmp is not used in a zero equality, we need to
623     // calculate which source was larger. The calculation requires the
624     // two loaded source values of each load compare block.
625     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
626     if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
627 
628     // Create the number of required load compare basic blocks.
629     createLoadCmpBlocks();
630 
631     // Update the terminator added by splitBasicBlock to branch to the first
632     // LoadCmpBlock.
633     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
634   }
635 
636   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
637 
638   if (IsUsedForZeroCmp)
639     return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
640                                : getMemCmpExpansionZeroCase();
641 
642   if (getNumBlocks() == 1)
643     return getMemCmpOneBlock();
644 
645   for (unsigned I = 0; I < getNumBlocks(); ++I) {
646     emitLoadCompareBlock(I);
647   }
648 
649   emitMemCmpResultBlock();
650   return PhiRes;
651 }
652 
653 // This function checks to see if an expansion of memcmp can be generated.
654 // It checks for constant compare size that is less than the max inline size.
655 // If an expansion cannot occur, returns false to leave as a library call.
656 // Otherwise, the library call is replaced with a new IR instruction sequence.
657 /// We want to transform:
658 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
659 /// To:
660 /// loadbb:
661 ///  %0 = bitcast i32* %buffer2 to i8*
662 ///  %1 = bitcast i32* %buffer1 to i8*
663 ///  %2 = bitcast i8* %1 to i64*
664 ///  %3 = bitcast i8* %0 to i64*
665 ///  %4 = load i64, i64* %2
666 ///  %5 = load i64, i64* %3
667 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
668 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
669 ///  %8 = sub i64 %6, %7
670 ///  %9 = icmp ne i64 %8, 0
671 ///  br i1 %9, label %res_block, label %loadbb1
672 /// res_block:                                        ; preds = %loadbb2,
673 /// %loadbb1, %loadbb
674 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
675 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
676 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
677 ///  %11 = select i1 %10, i32 -1, i32 1
678 ///  br label %endblock
679 /// loadbb1:                                          ; preds = %loadbb
680 ///  %12 = bitcast i32* %buffer2 to i8*
681 ///  %13 = bitcast i32* %buffer1 to i8*
682 ///  %14 = bitcast i8* %13 to i32*
683 ///  %15 = bitcast i8* %12 to i32*
684 ///  %16 = getelementptr i32, i32* %14, i32 2
685 ///  %17 = getelementptr i32, i32* %15, i32 2
686 ///  %18 = load i32, i32* %16
687 ///  %19 = load i32, i32* %17
688 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
689 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
690 ///  %22 = zext i32 %20 to i64
691 ///  %23 = zext i32 %21 to i64
692 ///  %24 = sub i64 %22, %23
693 ///  %25 = icmp ne i64 %24, 0
694 ///  br i1 %25, label %res_block, label %loadbb2
695 /// loadbb2:                                          ; preds = %loadbb1
696 ///  %26 = bitcast i32* %buffer2 to i8*
697 ///  %27 = bitcast i32* %buffer1 to i8*
698 ///  %28 = bitcast i8* %27 to i16*
699 ///  %29 = bitcast i8* %26 to i16*
700 ///  %30 = getelementptr i16, i16* %28, i16 6
701 ///  %31 = getelementptr i16, i16* %29, i16 6
702 ///  %32 = load i16, i16* %30
703 ///  %33 = load i16, i16* %31
704 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
705 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
706 ///  %36 = zext i16 %34 to i64
707 ///  %37 = zext i16 %35 to i64
708 ///  %38 = sub i64 %36, %37
709 ///  %39 = icmp ne i64 %38, 0
710 ///  br i1 %39, label %res_block, label %loadbb3
711 /// loadbb3:                                          ; preds = %loadbb2
712 ///  %40 = bitcast i32* %buffer2 to i8*
713 ///  %41 = bitcast i32* %buffer1 to i8*
714 ///  %42 = getelementptr i8, i8* %41, i8 14
715 ///  %43 = getelementptr i8, i8* %40, i8 14
716 ///  %44 = load i8, i8* %42
717 ///  %45 = load i8, i8* %43
718 ///  %46 = zext i8 %44 to i32
719 ///  %47 = zext i8 %45 to i32
720 ///  %48 = sub i32 %46, %47
721 ///  br label %endblock
722 /// endblock:                                         ; preds = %res_block,
723 /// %loadbb3
724 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
725 ///  ret i32 %phi.res
expandMemCmp(CallInst * CI,const TargetTransformInfo * TTI,const TargetLowering * TLI,const DataLayout * DL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)726 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
727                          const TargetLowering *TLI, const DataLayout *DL,
728                          ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
729   NumMemCmpCalls++;
730 
731   // Early exit from expansion if -Oz.
732   if (CI->getFunction()->hasMinSize())
733     return false;
734 
735   // Early exit from expansion if size is not a constant.
736   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
737   if (!SizeCast) {
738     NumMemCmpNotConstant++;
739     return false;
740   }
741   const uint64_t SizeVal = SizeCast->getZExtValue();
742 
743   if (SizeVal == 0) {
744     return false;
745   }
746   // TTI call to check if target would like to expand memcmp. Also, get the
747   // available load sizes.
748   const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
749   bool OptForSize = CI->getFunction()->hasOptSize() ||
750                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
751   auto Options = TTI->enableMemCmpExpansion(OptForSize,
752                                             IsUsedForZeroCmp);
753   if (!Options) return false;
754 
755   if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
756     Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
757 
758   if (OptForSize &&
759       MaxLoadsPerMemcmpOptSize.getNumOccurrences())
760     Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
761 
762   if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
763     Options.MaxNumLoads = MaxLoadsPerMemcmp;
764 
765   MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL);
766 
767   // Don't expand if this will require more loads than desired by the target.
768   if (Expansion.getNumLoads() == 0) {
769     NumMemCmpGreaterThanMax++;
770     return false;
771   }
772 
773   NumMemCmpInlined++;
774 
775   Value *Res = Expansion.getMemCmpExpansion();
776 
777   // Replace call with result of expansion and erase call.
778   CI->replaceAllUsesWith(Res);
779   CI->eraseFromParent();
780 
781   return true;
782 }
783 
784 
785 
786 class ExpandMemCmpPass : public FunctionPass {
787 public:
788   static char ID;
789 
ExpandMemCmpPass()790   ExpandMemCmpPass() : FunctionPass(ID) {
791     initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
792   }
793 
runOnFunction(Function & F)794   bool runOnFunction(Function &F) override {
795     if (skipFunction(F)) return false;
796 
797     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
798     if (!TPC) {
799       return false;
800     }
801     const TargetLowering* TL =
802         TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
803 
804     const TargetLibraryInfo *TLI =
805         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
806     const TargetTransformInfo *TTI =
807         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
808     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
809     auto *BFI = (PSI && PSI->hasProfileSummary()) ?
810            &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
811            nullptr;
812     auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI);
813     return !PA.areAllPreserved();
814   }
815 
816 private:
getAnalysisUsage(AnalysisUsage & AU) const817   void getAnalysisUsage(AnalysisUsage &AU) const override {
818     AU.addRequired<TargetLibraryInfoWrapperPass>();
819     AU.addRequired<TargetTransformInfoWrapperPass>();
820     AU.addRequired<ProfileSummaryInfoWrapperPass>();
821     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
822     FunctionPass::getAnalysisUsage(AU);
823   }
824 
825   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
826                             const TargetTransformInfo *TTI,
827                             const TargetLowering* TL,
828                             ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI);
829   // Returns true if a change was made.
830   bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
831                   const TargetTransformInfo *TTI, const TargetLowering* TL,
832                   const DataLayout& DL, ProfileSummaryInfo *PSI,
833                   BlockFrequencyInfo *BFI);
834 };
835 
runOnBlock(BasicBlock & BB,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,const TargetLowering * TL,const DataLayout & DL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)836 bool ExpandMemCmpPass::runOnBlock(
837     BasicBlock &BB, const TargetLibraryInfo *TLI,
838     const TargetTransformInfo *TTI, const TargetLowering* TL,
839     const DataLayout& DL, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
840   for (Instruction& I : BB) {
841     CallInst *CI = dyn_cast<CallInst>(&I);
842     if (!CI) {
843       continue;
844     }
845     LibFunc Func;
846     if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
847         (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
848         expandMemCmp(CI, TTI, TL, &DL, PSI, BFI)) {
849       return true;
850     }
851   }
852   return false;
853 }
854 
855 
runImpl(Function & F,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,const TargetLowering * TL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)856 PreservedAnalyses ExpandMemCmpPass::runImpl(
857     Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
858     const TargetLowering* TL, ProfileSummaryInfo *PSI,
859     BlockFrequencyInfo *BFI) {
860   const DataLayout& DL = F.getParent()->getDataLayout();
861   bool MadeChanges = false;
862   for (auto BBIt = F.begin(); BBIt != F.end();) {
863     if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI)) {
864       MadeChanges = true;
865       // If changes were made, restart the function from the beginning, since
866       // the structure of the function was changed.
867       BBIt = F.begin();
868     } else {
869       ++BBIt;
870     }
871   }
872   return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
873 }
874 
875 } // namespace
876 
877 char ExpandMemCmpPass::ID = 0;
878 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
879                       "Expand memcmp() to load/stores", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)880 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
881 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
882 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
883 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
884 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
885                     "Expand memcmp() to load/stores", false, false)
886 
887 FunctionPass *llvm::createExpandMemCmpPass() {
888   return new ExpandMemCmpPass();
889 }
890