1// Copyright 2020 The Wuffs Authors. 2// 3// Licensed under the Apache License, Version 2.0 (the "License"); 4// you may not use this file except in compliance with the License. 5// You may obtain a copy of the License at 6// 7// https://www.apache.org/licenses/LICENSE-2.0 8// 9// Unless required by applicable law or agreed to in writing, software 10// distributed under the License is distributed on an "AS IS" BASIS, 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12// See the License for the specific language governing permissions and 13// limitations under the License. 14 15// +build ignore 16 17package main 18 19// print-render-number-f64-tests.go prints the 20// test_wuffs_strconv_render_number_f64 test cases. 21// 22// Usage: go run print-render-number-f64-tests.go 23 24import ( 25 "fmt" 26 "math" 27 "os" 28 "sort" 29 "strconv" 30) 31 32func main() { 33 if err := main1(); err != nil { 34 os.Stderr.WriteString(err.Error() + "\n") 35 os.Exit(1) 36 } 37} 38 39func main1() error { 40 testCases := append([]uint64(nil), u64TestCases...) 41 for _, f := range f64TestCases { 42 testCases = append(testCases, math.Float64bits(f)) 43 } 44 45 sort.Slice(testCases, func(i int, j int) bool { 46 return testCases[i] < testCases[j] 47 }) 48 49 for i, tc := range testCases { 50 f := math.Float64frombits(tc) 51 52 if (i > 0) && (tc == testCases[i-1]) { 53 return fmt.Errorf("duplicate test case (f=%g, tc=0x%X)", f, tc) 54 } 55 56 // Check that calling strconv.FormatFloat with a precision of -1 (round 57 // to shortest) does indeed return a string that, when parsed, recovers 58 // the original number. 59 shortest := strconv.FormatFloat(f, 'g', -1, 64) 60 g, err := strconv.ParseFloat(shortest, 64) 61 if err != nil { 62 return fmt.Errorf("ParseFloat failed (f=%g, tc=0x%X): %v", f, tc, err) 63 } 64 equal := tc == math.Float64bits(g) 65 if math.IsNaN(f) { 66 equal = math.IsNaN(g) 67 } 68 if !equal { 69 return fmt.Errorf("round-trip failed (f=%g, tc=0x%X)", f, tc) 70 } 71 } 72 73 for _, tc := range testCases { 74 f := math.Float64frombits(tc) 75 fmt.Printf(`{ 76 .x = 0x%016X, 77 .want__e = %s, 78 .want__f = %s, 79 .want_0g = %s, 80 .want_2e = %s, 81 .want_3f = %s, 82 .want_4g = %s, 83},`+"\n", 84 tc, 85 do(f, -1, 'e'), 86 do(f, -1, 'f'), 87 do(f, +0, 'g'), 88 do(f, +2, 'e'), 89 do(f, +3, 'f'), 90 do(f, +4, 'g'), 91 ) 92 } 93 return nil 94} 95 96func do(f float64, precision int, format byte) (ret string) { 97 s := strconv.FormatFloat(f, format, precision, 64) 98 for ; len(s) > 50; s = s[50:] { 99 ret += fmt.Sprintf("%q\n\t\t", s[:50]) 100 } 101 ret += fmt.Sprintf("%q", s) 102 if ret == `"+Inf"` { 103 ret = `"Inf"` 104 } 105 return ret 106} 107 108var f64TestCases = []float64{ 109 // Approximations of e, the base of the natural logarithm. 110 2.7, 111 2.72, 112 2.718, 113 2.7183, 114 2.71828, 115 2.718282, 116 2.7182818, 117 2.71828183, 118 119 // Approximations of N_A, the Avogadro constant. 120 6.0e23, 121 6.02e23, 122 6.022e23, 123 6.0221e23, 124 6.02214e23, 125 6.022141e23, 126 6.0221408e23, 127 6.02214076e23, 128} 129 130var u64TestCases = []uint64{ 131 0x0000000000000000, 132 0x0000000000000001, 133 0x0000000000000002, 134 0x0000000000000003, 135 0x000730D67819E8D2, 136 0x000FFFFFFFFFFFFF, 137 0x0010000000000000, 138 0x0031FA182C40C60D, 139 0x369C314ABE948EB1, 140 0x3F88000000000000, 141 0x3FD0000000000000, 142 0x3FD3333333333333, 143 0x3FD3333333333334, 144 0x3FD5555555555555, 145 0x3FEFFFFFFFFFFFFF, 146 0x3FF0000000000000, 147 0x3FF0000000000001, 148 0x3FF0000000000002, 149 0x3FF4000000000000, 150 0x3FF8000000000000, 151 0x4008000000000000, 152 0x400921F9F01B866E, 153 0x400921FB54442D11, 154 0x400921FB54442D18, 155 0x400C000000000000, 156 0x4014000000000000, 157 0x4036000000000000, 158 0x4037000000000000, 159 0x4038000000000000, 160 0x40FE240C9FCB0C02, 161 0x41E0246690000001, 162 0x4202A05F20000000, 163 0x4330000000000000, 164 0x4330000000000001, 165 0x4330000000000002, 166 0x433FFFFFFFFFFFFE, 167 0x433FFFFFFFFFFFFF, 168 0x4340000000000000, 169 0x4340000000000001, 170 0x4340000000000002, 171 0x4370000000000000, 172 0x43F002F1776DDA67, 173 0x4415AF1D78B58C40, 174 0x44B52D02C7E14AF6, 175 0x46293E5939A08CEA, 176 0x54B249AD2594C37D, 177 0x7BBA44DF832B8D46, 178 0x7BF06B0BB1FB384C, 179 0x7C2485CE9E7A065F, 180 0x7FAC7B1F3CAC7433, 181 0x7FE1CCF385EBC8A0, 182 0x7FEFFFFFFFFFFFFF, 183 0x7FF0000000000000, 184 0x7FFFFFFFFFFFFFFF, 185 0x8000000000000000, 186 0xC008000000000000, 187 0xFFF0000000000000, 188 0xFFFFFFFFFFFFFFFF, 189} 190