1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_HANDLES_HANDLES_H_
6 #define V8_HANDLES_HANDLES_H_
7 
8 #include <type_traits>
9 
10 #include "include/v8.h"
11 #include "src/base/functional.h"
12 #include "src/base/macros.h"
13 #include "src/common/checks.h"
14 #include "src/common/globals.h"
15 #include "src/zone/zone.h"
16 
17 namespace v8 {
18 namespace internal {
19 
20 // Forward declarations.
21 class HandleScopeImplementer;
22 class Isolate;
23 class LocalHeap;
24 class LocalIsolate;
25 template <typename T>
26 class MaybeHandle;
27 class Object;
28 class OrderedHashMap;
29 class OrderedHashSet;
30 class OrderedNameDictionary;
31 class RootVisitor;
32 class SmallOrderedHashMap;
33 class SmallOrderedHashSet;
34 class SmallOrderedNameDictionary;
35 class WasmExportedFunctionData;
36 
37 // ----------------------------------------------------------------------------
38 // Base class for Handle instantiations.  Don't use directly.
39 class HandleBase {
40  public:
HandleBase(Address * location)41   V8_INLINE explicit HandleBase(Address* location) : location_(location) {}
42   V8_INLINE explicit HandleBase(Address object, Isolate* isolate);
43   V8_INLINE explicit HandleBase(Address object, LocalIsolate* isolate);
44   V8_INLINE explicit HandleBase(Address object, LocalHeap* local_heap);
45 
46   // Check if this handle refers to the exact same object as the other handle.
47   V8_INLINE bool is_identical_to(const HandleBase that) const;
is_null()48   V8_INLINE bool is_null() const { return location_ == nullptr; }
49 
50   // Returns the raw address where this handle is stored. This should only be
51   // used for hashing handles; do not ever try to dereference it.
address()52   V8_INLINE Address address() const { return bit_cast<Address>(location_); }
53 
54   // Returns the address to where the raw pointer is stored.
55   // TODO(leszeks): This should probably be a const Address*, to encourage using
56   // PatchValue for modifying the handle's value.
location()57   V8_INLINE Address* location() const {
58     SLOW_DCHECK(location_ == nullptr || IsDereferenceAllowed());
59     return location_;
60   }
61 
62  protected:
63 #ifdef DEBUG
64   bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const;
65 #else
66   V8_INLINE
67   bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const { return true; }
68 #endif  // DEBUG
69 
70   // This uses type Address* as opposed to a pointer type to a typed
71   // wrapper class, because it doesn't point to instances of such a
72   // wrapper class. Design overview: https://goo.gl/Ph4CGz
73   Address* location_;
74 };
75 
76 // ----------------------------------------------------------------------------
77 // A Handle provides a reference to an object that survives relocation by
78 // the garbage collector.
79 //
80 // Handles are only valid within a HandleScope. When a handle is created
81 // for an object a cell is allocated in the current HandleScope.
82 //
83 // Also note that Handles do not provide default equality comparison or hashing
84 // operators on purpose. Such operators would be misleading, because intended
85 // semantics is ambiguous between Handle location and object identity. Instead
86 // use either {is_identical_to} or {location} explicitly.
87 template <typename T>
88 class Handle final : public HandleBase {
89  public:
90   // {ObjectRef} is returned by {Handle::operator->}. It should never be stored
91   // anywhere or used in any other code; no one should ever have to spell out
92   // {ObjectRef} in code. Its only purpose is to be dereferenced immediately by
93   // "operator-> chaining". Returning the address of the field is valid because
94   // this objects lifetime only ends at the end of the full statement.
95   class ObjectRef {
96    public:
97     T* operator->() { return &object_; }
98 
99    private:
100     friend class Handle<T>;
ObjectRef(T object)101     explicit ObjectRef(T object) : object_(object) {}
102 
103     T object_;
104   };
105 
Handle()106   V8_INLINE explicit Handle() : HandleBase(nullptr) {
107     // Skip static type check in order to allow Handle<XXX>::null() as default
108     // parameter values in non-inl header files without requiring full
109     // definition of type XXX.
110   }
111 
Handle(Address * location)112   V8_INLINE explicit Handle(Address* location) : HandleBase(location) {
113     // This static type check also fails for forward class declarations.
114     static_assert(std::is_convertible<T*, Object*>::value,
115                   "static type violation");
116     // TODO(jkummerow): Runtime type check here as a SLOW_DCHECK?
117   }
118 
119   V8_INLINE Handle(T object, Isolate* isolate);
120   V8_INLINE Handle(T object, LocalIsolate* isolate);
121   V8_INLINE Handle(T object, LocalHeap* local_heap);
122 
123   // Allocate a new handle for the object, do not canonicalize.
124   V8_INLINE static Handle<T> New(T object, Isolate* isolate);
125 
126   // Constructor for handling automatic up casting.
127   // Ex. Handle<JSFunction> can be passed when Handle<Object> is expected.
128   template <typename S, typename = typename std::enable_if<
129                             std::is_convertible<S*, T*>::value>::type>
130   // NOLINTNEXTLINE
Handle(Handle<S> handle)131   V8_INLINE Handle(Handle<S> handle) : HandleBase(handle) {}
132 
133   V8_INLINE ObjectRef operator->() const { return ObjectRef{**this}; }
134 
135   V8_INLINE T operator*() const {
136     // unchecked_cast because we rather trust Handle<T> to contain a T than
137     // include all the respective -inl.h headers for SLOW_DCHECKs.
138     SLOW_DCHECK(IsDereferenceAllowed());
139     return T::unchecked_cast(Object(*location()));
140   }
141 
142   template <typename S>
143   inline static const Handle<T> cast(Handle<S> that);
144 
145   // Consider declaring values that contain empty handles as
146   // MaybeHandle to force validation before being used as handles.
null()147   static const Handle<T> null() { return Handle<T>(); }
148 
149   // Location equality.
equals(Handle<T> other)150   bool equals(Handle<T> other) const { return address() == other.address(); }
151 
152   // Patches this Handle's value, in-place, with a new value. All handles with
153   // the same location will see this update.
PatchValue(T new_value)154   void PatchValue(T new_value) {
155     SLOW_DCHECK(location_ != nullptr && IsDereferenceAllowed());
156     *location_ = new_value.ptr();
157   }
158 
159   // Provide function object for location equality comparison.
160   struct equal_to {
operatorequal_to161     V8_INLINE bool operator()(Handle<T> lhs, Handle<T> rhs) const {
162       return lhs.equals(rhs);
163     }
164   };
165 
166   // Provide function object for location hashing.
167   struct hash {
operatorhash168     V8_INLINE size_t operator()(Handle<T> const& handle) const {
169       return base::hash<Address>()(handle.address());
170     }
171   };
172 
173  private:
174   // Handles of different classes are allowed to access each other's location_.
175   template <typename>
176   friend class Handle;
177   // MaybeHandle is allowed to access location_.
178   template <typename>
179   friend class MaybeHandle;
180 };
181 
182 template <typename T>
183 inline std::ostream& operator<<(std::ostream& os, Handle<T> handle);
184 
185 // ----------------------------------------------------------------------------
186 // A stack-allocated class that governs a number of local handles.
187 // After a handle scope has been created, all local handles will be
188 // allocated within that handle scope until either the handle scope is
189 // deleted or another handle scope is created.  If there is already a
190 // handle scope and a new one is created, all allocations will take
191 // place in the new handle scope until it is deleted.  After that,
192 // new handles will again be allocated in the original handle scope.
193 //
194 // After the handle scope of a local handle has been deleted the
195 // garbage collector will no longer track the object stored in the
196 // handle and may deallocate it.  The behavior of accessing a handle
197 // for which the handle scope has been deleted is undefined.
198 class HandleScope {
199  public:
200   explicit inline HandleScope(Isolate* isolate);
201   inline HandleScope(HandleScope&& other) V8_NOEXCEPT;
202 
203   // Allow placement new.
new(size_t size,void * storage)204   void* operator new(size_t size, void* storage) {
205     return ::operator new(size, storage);
206   }
207 
208   // Prevent heap allocation or illegal handle scopes.
209   void* operator new(size_t size) = delete;
210   void operator delete(void* size_t) = delete;
211 
212   inline ~HandleScope();
213 
214   inline HandleScope& operator=(HandleScope&& other) V8_NOEXCEPT;
215 
216   // Counts the number of allocated handles.
217   V8_EXPORT_PRIVATE static int NumberOfHandles(Isolate* isolate);
218 
219   // Create a new handle or lookup a canonical handle.
220   V8_INLINE static Address* GetHandle(Isolate* isolate, Address value);
221 
222   // Creates a new handle with the given value.
223   V8_INLINE static Address* CreateHandle(Isolate* isolate, Address value);
224 
225   // Deallocates any extensions used by the current scope.
226   V8_EXPORT_PRIVATE static void DeleteExtensions(Isolate* isolate);
227 
228   static Address current_next_address(Isolate* isolate);
229   static Address current_limit_address(Isolate* isolate);
230   static Address current_level_address(Isolate* isolate);
231 
232   // Closes the HandleScope (invalidating all handles
233   // created in the scope of the HandleScope) and returns
234   // a Handle backed by the parent scope holding the
235   // value of the argument handle.
236   template <typename T>
237   Handle<T> CloseAndEscape(Handle<T> handle_value);
238 
isolate()239   Isolate* isolate() { return isolate_; }
240 
241   // Limit for number of handles with --check-handle-count. This is
242   // large enough to compile natives and pass unit tests with some
243   // slack for future changes to natives.
244   static const int kCheckHandleThreshold = 30 * 1024;
245 
246  private:
247   Isolate* isolate_;
248   Address* prev_next_;
249   Address* prev_limit_;
250 
251   // Close the handle scope resetting limits to a previous state.
252   static inline void CloseScope(Isolate* isolate, Address* prev_next,
253                                 Address* prev_limit);
254 
255   // Extend the handle scope making room for more handles.
256   V8_EXPORT_PRIVATE static Address* Extend(Isolate* isolate);
257 
258 #ifdef ENABLE_HANDLE_ZAPPING
259   // Zaps the handles in the half-open interval [start, end).
260   V8_EXPORT_PRIVATE static void ZapRange(Address* start, Address* end);
261 #endif
262 
263   friend class v8::HandleScope;
264   friend class HandleScopeImplementer;
265   friend class Isolate;
266   friend class LocalHandles;
267   friend class PersistentHandles;
268 
269   DISALLOW_COPY_AND_ASSIGN(HandleScope);
270 };
271 
272 // Forward declarations for CanonicalHandleScope.
273 template <typename V, class AllocationPolicy>
274 class IdentityMap;
275 class RootIndexMap;
276 class OptimizedCompilationInfo;
277 
278 using CanonicalHandlesMap = IdentityMap<Address*, ZoneAllocationPolicy>;
279 
280 // A CanonicalHandleScope does not open a new HandleScope. It changes the
281 // existing HandleScope so that Handles created within are canonicalized.
282 // This does not apply to nested inner HandleScopes unless a nested
283 // CanonicalHandleScope is introduced. Handles are only canonicalized within
284 // the same CanonicalHandleScope, but not across nested ones.
285 class V8_EXPORT_PRIVATE CanonicalHandleScope final {
286  public:
287   // If we passed a compilation info as parameter, we created the
288   // CanonicalHandlesMap on said compilation info's zone(). If so, in the
289   // CanonicalHandleScope destructor we hand off the canonical handle map to the
290   // compilation info. The compilation info is responsible for the disposal. If
291   // we don't have a compilation info, we create a zone in this constructor. To
292   // properly dispose of said zone, we need to first free the identity_map_
293   // which is done manually even though identity_map_ is a unique_ptr.
294   explicit CanonicalHandleScope(Isolate* isolate,
295                                 OptimizedCompilationInfo* info = nullptr);
296   ~CanonicalHandleScope();
297 
298  private:
299   Address* Lookup(Address object);
300 
301   std::unique_ptr<CanonicalHandlesMap> DetachCanonicalHandles();
302 
303   Isolate* isolate_;
304   OptimizedCompilationInfo* info_;
305   Zone* zone_;
306   RootIndexMap* root_index_map_;
307   std::unique_ptr<CanonicalHandlesMap> identity_map_;
308   // Ordinary nested handle scopes within the current one are not canonical.
309   int canonical_level_;
310   // We may have nested canonical scopes. Handles are canonical within each one.
311   CanonicalHandleScope* prev_canonical_scope_;
312 
313   friend class HandleScope;
314 };
315 
316 // Seal off the current HandleScope so that new handles can only be created
317 // if a new HandleScope is entered.
318 class SealHandleScope final {
319  public:
320 #ifndef DEBUG
SealHandleScope(Isolate * isolate)321   explicit SealHandleScope(Isolate* isolate) {}
322   ~SealHandleScope() = default;
323 #else
324   explicit inline SealHandleScope(Isolate* isolate);
325   inline ~SealHandleScope();
326 
327  private:
328   Isolate* isolate_;
329   Address* prev_limit_;
330   int prev_sealed_level_;
331 #endif
332 };
333 
334 struct HandleScopeData final {
335   Address* next;
336   Address* limit;
337   int level;
338   int sealed_level;
339   CanonicalHandleScope* canonical_scope;
340 
Initializefinal341   void Initialize() {
342     next = limit = nullptr;
343     sealed_level = level = 0;
344     canonical_scope = nullptr;
345   }
346 };
347 
348 }  // namespace internal
349 }  // namespace v8
350 
351 #endif  // V8_HANDLES_HANDLES_H_
352