1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/core/SkEdge.h"
9 
10 #include "include/private/SkTo.h"
11 #include "src/core/SkFDot6.h"
12 #include "src/core/SkMathPriv.h"
13 
14 #include <utility>
15 
16 /*
17     In setLine, setQuadratic, setCubic, the first thing we do is to convert
18     the points into FDot6. This is modulated by the shift parameter, which
19     will either be 0, or something like 2 for antialiasing.
20 
21     In the float case, we want to turn the float into .6 by saying pt * 64,
22     or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
23 
24     In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
25     or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
26 */
27 
SkFDot6ToFixedDiv2(SkFDot6 value)28 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
29     // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
30     // away data in value, so just perform a modify up-shift
31     return SkLeftShift(value, 16 - 6 - 1);
32 }
33 
34 /////////////////////////////////////////////////////////////////////////
35 
setLine(const SkPoint & p0,const SkPoint & p1,const SkIRect * clip,int shift)36 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
37                     int shift) {
38     SkFDot6 x0, y0, x1, y1;
39 
40     {
41 #ifdef SK_RASTERIZE_EVEN_ROUNDING
42         x0 = SkScalarRoundToFDot6(p0.fX, shift);
43         y0 = SkScalarRoundToFDot6(p0.fY, shift);
44         x1 = SkScalarRoundToFDot6(p1.fX, shift);
45         y1 = SkScalarRoundToFDot6(p1.fY, shift);
46 #else
47         float scale = float(1 << (shift + 6));
48         x0 = int(p0.fX * scale);
49         y0 = int(p0.fY * scale);
50         x1 = int(p1.fX * scale);
51         y1 = int(p1.fY * scale);
52 #endif
53     }
54 
55     int winding = 1;
56 
57     if (y0 > y1) {
58         using std::swap;
59         swap(x0, x1);
60         swap(y0, y1);
61         winding = -1;
62     }
63 
64     int top = SkFDot6Round(y0);
65     int bot = SkFDot6Round(y1);
66 
67     // are we a zero-height line?
68     if (top == bot) {
69         return 0;
70     }
71     // are we completely above or below the clip?
72     if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
73         return 0;
74     }
75 
76     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
77     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
78 
79     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
80     fDX         = slope;
81     fFirstY     = top;
82     fLastY      = bot - 1;
83     fCurveCount = 0;
84     fWinding    = SkToS8(winding);
85     fCurveShift = 0;
86 
87     if (clip) {
88         this->chopLineWithClip(*clip);
89     }
90     return 1;
91 }
92 
93 // called from a curve subclass
updateLine(SkFixed x0,SkFixed y0,SkFixed x1,SkFixed y1)94 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
95 {
96     SkASSERT(fWinding == 1 || fWinding == -1);
97     SkASSERT(fCurveCount != 0);
98 //    SkASSERT(fCurveShift != 0);
99 
100     y0 >>= 10;
101     y1 >>= 10;
102 
103     SkASSERT(y0 <= y1);
104 
105     int top = SkFDot6Round(y0);
106     int bot = SkFDot6Round(y1);
107 
108 //  SkASSERT(top >= fFirstY);
109 
110     // are we a zero-height line?
111     if (top == bot)
112         return 0;
113 
114     x0 >>= 10;
115     x1 >>= 10;
116 
117     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
118     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
119 
120     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
121     fDX         = slope;
122     fFirstY     = top;
123     fLastY      = bot - 1;
124 
125     return 1;
126 }
127 
chopLineWithClip(const SkIRect & clip)128 void SkEdge::chopLineWithClip(const SkIRect& clip)
129 {
130     int top = fFirstY;
131 
132     SkASSERT(top < clip.fBottom);
133 
134     // clip the line to the top
135     if (top < clip.fTop)
136     {
137         SkASSERT(fLastY >= clip.fTop);
138         fX += fDX * (clip.fTop - top);
139         fFirstY = clip.fTop;
140     }
141 }
142 
143 ///////////////////////////////////////////////////////////////////////////////
144 
145 /*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
146     Note that this limits the number of lines we use to approximate a curve.
147     If we need to increase this, we need to store fCurveCount in something
148     larger than int8_t.
149 */
150 #define MAX_COEFF_SHIFT     6
151 
cheap_distance(SkFDot6 dx,SkFDot6 dy)152 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
153 {
154     dx = SkAbs32(dx);
155     dy = SkAbs32(dy);
156     // return max + min/2
157     if (dx > dy)
158         dx += dy >> 1;
159     else
160         dx = dy + (dx >> 1);
161     return dx;
162 }
163 
diff_to_shift(SkFDot6 dx,SkFDot6 dy,int shiftAA=2)164 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA = 2)
165 {
166     // cheap calc of distance from center of p0-p2 to the center of the curve
167     SkFDot6 dist = cheap_distance(dx, dy);
168 
169     // shift down dist (it is currently in dot6)
170     // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...)
171     // this is chosen by heuristic: make it as big as possible (to minimize segments)
172     // ... but small enough so that our curves still look smooth
173     // When shift > 0, we're using AA and everything is scaled up so we can
174     // lower the accuracy.
175     dist = (dist + (1 << 4)) >> (3 + shiftAA);
176 
177     // each subdivision (shift value) cuts this dist (error) by 1/4
178     return (32 - SkCLZ(dist)) >> 1;
179 }
180 
setQuadraticWithoutUpdate(const SkPoint pts[3],int shift)181 bool SkQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) {
182     SkFDot6 x0, y0, x1, y1, x2, y2;
183 
184     {
185 #ifdef SK_RASTERIZE_EVEN_ROUNDING
186         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
187         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
188         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
189         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
190         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
191         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
192 #else
193         float scale = float(1 << (shift + 6));
194         x0 = int(pts[0].fX * scale);
195         y0 = int(pts[0].fY * scale);
196         x1 = int(pts[1].fX * scale);
197         y1 = int(pts[1].fY * scale);
198         x2 = int(pts[2].fX * scale);
199         y2 = int(pts[2].fY * scale);
200 #endif
201     }
202 
203     int winding = 1;
204     if (y0 > y2)
205     {
206         using std::swap;
207         swap(x0, x2);
208         swap(y0, y2);
209         winding = -1;
210     }
211     SkASSERT(y0 <= y1 && y1 <= y2);
212 
213     int top = SkFDot6Round(y0);
214     int bot = SkFDot6Round(y2);
215 
216     // are we a zero-height quad (line)?
217     if (top == bot)
218         return 0;
219 
220     // compute number of steps needed (1 << shift)
221     {
222         SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2;
223         SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2;
224         // This is a little confusing:
225         // before this line, shift is the scale up factor for AA;
226         // after this line, shift is the fCurveShift.
227         shift = diff_to_shift(dx, dy, shift);
228         SkASSERT(shift >= 0);
229     }
230     // need at least 1 subdivision for our bias trick
231     if (shift == 0) {
232         shift = 1;
233     } else if (shift > MAX_COEFF_SHIFT) {
234         shift = MAX_COEFF_SHIFT;
235     }
236 
237     fWinding    = SkToS8(winding);
238     //fCubicDShift only set for cubics
239     fCurveCount = SkToS8(1 << shift);
240 
241     /*
242      *  We want to reformulate into polynomial form, to make it clear how we
243      *  should forward-difference.
244      *
245      *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
246      *
247      *  A = p0 - 2p1 + p2
248      *  B = 2(p1 - p0)
249      *  C = p0
250      *
251      *  Our caller must have constrained our inputs (p0..p2) to all fit into
252      *  16.16. However, as seen above, we sometimes compute values that can be
253      *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
254      *  A and B at 1/2 of their actual value, and just apply a 2x scale during
255      *  application in updateQuadratic(). Hence we store (shift - 1) in
256      *  fCurveShift.
257      */
258 
259     fCurveShift = SkToU8(shift - 1);
260 
261     SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value
262     SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value
263 
264     fQx     = SkFDot6ToFixed(x0);
265     fQDx    = B + (A >> shift);     // biased by shift
266     fQDDx   = A >> (shift - 1);     // biased by shift
267 
268     A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value
269     B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value
270 
271     fQy     = SkFDot6ToFixed(y0);
272     fQDy    = B + (A >> shift);     // biased by shift
273     fQDDy   = A >> (shift - 1);     // biased by shift
274 
275     fQLastX = SkFDot6ToFixed(x2);
276     fQLastY = SkFDot6ToFixed(y2);
277 
278     return true;
279 }
280 
setQuadratic(const SkPoint pts[3],int shift)281 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) {
282     if (!setQuadraticWithoutUpdate(pts, shift)) {
283         return 0;
284     }
285     return this->updateQuadratic();
286 }
287 
updateQuadratic()288 int SkQuadraticEdge::updateQuadratic()
289 {
290     int     success;
291     int     count = fCurveCount;
292     SkFixed oldx = fQx;
293     SkFixed oldy = fQy;
294     SkFixed dx = fQDx;
295     SkFixed dy = fQDy;
296     SkFixed newx, newy;
297     int     shift = fCurveShift;
298 
299     SkASSERT(count > 0);
300 
301     do {
302         if (--count > 0)
303         {
304             newx    = oldx + (dx >> shift);
305             dx    += fQDDx;
306             newy    = oldy + (dy >> shift);
307             dy    += fQDDy;
308         }
309         else    // last segment
310         {
311             newx    = fQLastX;
312             newy    = fQLastY;
313         }
314         success = this->updateLine(oldx, oldy, newx, newy);
315         oldx = newx;
316         oldy = newy;
317     } while (count > 0 && !success);
318 
319     fQx         = newx;
320     fQy         = newy;
321     fQDx        = dx;
322     fQDy        = dy;
323     fCurveCount = SkToS8(count);
324     return success;
325 }
326 
327 /////////////////////////////////////////////////////////////////////////
328 
SkFDot6UpShift(SkFDot6 x,int upShift)329 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
330     SkASSERT((SkLeftShift(x, upShift) >> upShift) == x);
331     return SkLeftShift(x, upShift);
332 }
333 
334 /*  f(1/3) = (8a + 12b + 6c + d) / 27
335     f(2/3) = (a + 6b + 12c + 8d) / 27
336 
337     f(1/3)-b = (8a - 15b + 6c + d) / 27
338     f(2/3)-c = (a + 6b - 15c + 8d) / 27
339 
340     use 16/512 to approximate 1/27
341 */
cubic_delta_from_line(SkFDot6 a,SkFDot6 b,SkFDot6 c,SkFDot6 d)342 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
343 {
344     // since our parameters may be negative, we don't use << to avoid ASAN warnings
345     SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9;
346     SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9;
347 
348     return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
349 }
350 
setCubicWithoutUpdate(const SkPoint pts[4],int shift,bool sortY)351 bool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift, bool sortY) {
352     SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
353 
354     {
355 #ifdef SK_RASTERIZE_EVEN_ROUNDING
356         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
357         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
358         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
359         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
360         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
361         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
362         x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
363         y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
364 #else
365         float scale = float(1 << (shift + 6));
366         x0 = int(pts[0].fX * scale);
367         y0 = int(pts[0].fY * scale);
368         x1 = int(pts[1].fX * scale);
369         y1 = int(pts[1].fY * scale);
370         x2 = int(pts[2].fX * scale);
371         y2 = int(pts[2].fY * scale);
372         x3 = int(pts[3].fX * scale);
373         y3 = int(pts[3].fY * scale);
374 #endif
375     }
376 
377     int winding = 1;
378     if (sortY && y0 > y3)
379     {
380         using std::swap;
381         swap(x0, x3);
382         swap(x1, x2);
383         swap(y0, y3);
384         swap(y1, y2);
385         winding = -1;
386     }
387 
388     int top = SkFDot6Round(y0);
389     int bot = SkFDot6Round(y3);
390 
391     // are we a zero-height cubic (line)?
392     if (sortY && top == bot)
393         return 0;
394 
395     // compute number of steps needed (1 << shift)
396     {
397         // Can't use (center of curve - center of baseline), since center-of-curve
398         // need not be the max delta from the baseline (it could even be coincident)
399         // so we try just looking at the two off-curve points
400         SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
401         SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
402         // add 1 (by observation)
403         shift = diff_to_shift(dx, dy) + 1;
404     }
405     // need at least 1 subdivision for our bias trick
406     SkASSERT(shift > 0);
407     if (shift > MAX_COEFF_SHIFT) {
408         shift = MAX_COEFF_SHIFT;
409     }
410 
411     /*  Since our in coming data is initially shifted down by 10 (or 8 in
412         antialias). That means the most we can shift up is 8. However, we
413         compute coefficients with a 3*, so the safest upshift is really 6
414     */
415     int upShift = 6;    // largest safe value
416     int downShift = shift + upShift - 10;
417     if (downShift < 0) {
418         downShift = 0;
419         upShift = 10 - shift;
420     }
421 
422     fWinding    = SkToS8(winding);
423     fCurveCount = SkToS8(SkLeftShift(-1, shift));
424     fCurveShift = SkToU8(shift);
425     fCubicDShift = SkToU8(downShift);
426 
427     SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
428     SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
429     SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
430 
431     fCx     = SkFDot6ToFixed(x0);
432     fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
433     fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
434     fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift
435 
436     B = SkFDot6UpShift(3 * (y1 - y0), upShift);
437     C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
438     D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
439 
440     fCy     = SkFDot6ToFixed(y0);
441     fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
442     fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
443     fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift
444 
445     fCLastX = SkFDot6ToFixed(x3);
446     fCLastY = SkFDot6ToFixed(y3);
447 
448     return true;
449 }
450 
setCubic(const SkPoint pts[4],int shift)451 int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
452     if (!this->setCubicWithoutUpdate(pts, shift)) {
453         return 0;
454     }
455     return this->updateCubic();
456 }
457 
updateCubic()458 int SkCubicEdge::updateCubic()
459 {
460     int     success;
461     int     count = fCurveCount;
462     SkFixed oldx = fCx;
463     SkFixed oldy = fCy;
464     SkFixed newx, newy;
465     const int ddshift = fCurveShift;
466     const int dshift = fCubicDShift;
467 
468     SkASSERT(count < 0);
469 
470     do {
471         if (++count < 0)
472         {
473             newx    = oldx + (fCDx >> dshift);
474             fCDx    += fCDDx >> ddshift;
475             fCDDx   += fCDDDx;
476 
477             newy    = oldy + (fCDy >> dshift);
478             fCDy    += fCDDy >> ddshift;
479             fCDDy   += fCDDDy;
480         }
481         else    // last segment
482         {
483         //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
484             newx    = fCLastX;
485             newy    = fCLastY;
486         }
487 
488         // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
489         // doesn't always achieve that, so we have to explicitly pin it here.
490         if (newy < oldy) {
491             newy = oldy;
492         }
493 
494         success = this->updateLine(oldx, oldy, newx, newy);
495         oldx = newx;
496         oldy = newy;
497     } while (count < 0 && !success);
498 
499     fCx         = newx;
500     fCy         = newy;
501     fCurveCount = SkToS8(count);
502     return success;
503 }
504