1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkPoint3.h"
9 
10 // Returns the square of the Euclidian distance to (x,y,z).
get_length_squared(float x,float y,float z)11 static inline float get_length_squared(float x, float y, float z) {
12     return x * x + y * y + z * z;
13 }
14 
15 // Calculates the square of the Euclidian distance to (x,y,z) and stores it in
16 // *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
17 //
18 // This logic is encapsulated in a helper method to make it explicit that we
19 // always perform this check in the same manner, to avoid inconsistencies
20 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
is_length_nearly_zero(float x,float y,float z,float * lengthSquared)21 static inline bool is_length_nearly_zero(float x, float y, float z, float *lengthSquared) {
22     *lengthSquared = get_length_squared(x, y, z);
23     return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
24 }
25 
Length(SkScalar x,SkScalar y,SkScalar z)26 SkScalar SkPoint3::Length(SkScalar x, SkScalar y, SkScalar z) {
27     float magSq = get_length_squared(x, y, z);
28     if (SkScalarIsFinite(magSq)) {
29         return sk_float_sqrt(magSq);
30     } else {
31         double xx = x;
32         double yy = y;
33         double zz = z;
34         return (float)sqrt(xx * xx + yy * yy + zz * zz);
35     }
36 }
37 
38 /*
39  *  We have to worry about 2 tricky conditions:
40  *  1. underflow of magSq (compared against nearlyzero^2)
41  *  2. overflow of magSq (compared w/ isfinite)
42  *
43  *  If we underflow, we return false. If we overflow, we compute again using
44  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
45  */
normalize()46 bool SkPoint3::normalize() {
47     float magSq;
48     if (is_length_nearly_zero(fX, fY, fZ, &magSq)) {
49         this->set(0, 0, 0);
50         return false;
51     }
52     // sqrtf does not provide enough precision; since sqrt takes a double,
53     // there's no additional penalty to storing invScale in a double
54     double invScale;
55     if (sk_float_isfinite(magSq)) {
56         invScale = magSq;
57     } else {
58         // our magSq step overflowed to infinity, so use doubles instead.
59         // much slower, but needed when x, y or z is very large, otherwise we
60         // divide by inf. and return (0,0,0) vector.
61         double xx = fX;
62         double yy = fY;
63         double zz = fZ;
64         invScale = xx * xx + yy * yy + zz * zz;
65     }
66     // using a float instead of a double for scale loses too much precision
67     double scale = 1 / sqrt(invScale);
68     fX *= scale;
69     fY *= scale;
70     fZ *= scale;
71     if (!sk_float_isfinite(fX) || !sk_float_isfinite(fY) || !sk_float_isfinite(fZ)) {
72         this->set(0, 0, 0);
73         return false;
74     }
75     return true;
76 }
77