1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set sw=2 ts=8 et tw=80 : */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4  * License, v. 2.0. If a copy of the MPL was not distributed with this
5  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 
7 #include "AxisPhysicsModel.h"
8 
9 namespace mozilla {
10 namespace layers {
11 
12 /**
13  * The simulation is advanced forward in time with a fixed time step to ensure
14  * that it remains deterministic given variable framerates.  To determine the
15  * position at any variable time, two samples are interpolated.
16  *
17  * kFixedtimestep is set to 120hz in order to ensure that every frame in a
18  * common 60hz refresh rate display will have at least one physics simulation
19  * sample.  More accuracy can be obtained by reducing kFixedTimestep to smaller
20  * intervals, such as 240hz or 1000hz, at the cost of more CPU cycles.  If
21  * kFixedTimestep is increased to much longer intervals, interpolation will
22  * become less effective at reducing temporal jitter and the simulation will
23  * lose accuracy.
24  */
25 const double AxisPhysicsModel::kFixedTimestep = 1.0 / 120.0; // 120hz
26 
27 /**
28  * Constructs an AxisPhysicsModel with initial values for state.
29  *
30  * @param aInitialPosition sets the initial position of the simulation,
31  *        in AppUnits.
32  * @param aInitialVelocity sets the initial velocity of the simulation,
33  *        in AppUnits / second.
34  */
AxisPhysicsModel(double aInitialPosition,double aInitialVelocity)35 AxisPhysicsModel::AxisPhysicsModel(double aInitialPosition,
36                                    double aInitialVelocity)
37   : mProgress(1.0)
38   , mPrevState(aInitialPosition, aInitialVelocity)
39   , mNextState(aInitialPosition, aInitialVelocity)
40 {
41 
42 }
43 
~AxisPhysicsModel()44 AxisPhysicsModel::~AxisPhysicsModel()
45 {
46 
47 }
48 
49 double
GetVelocity()50 AxisPhysicsModel::GetVelocity()
51 {
52   return LinearInterpolate(mPrevState.v, mNextState.v, mProgress);
53 }
54 
55 double
GetPosition()56 AxisPhysicsModel::GetPosition()
57 {
58   return LinearInterpolate(mPrevState.p, mNextState.p, mProgress);
59 }
60 
61 void
SetVelocity(double aVelocity)62 AxisPhysicsModel::SetVelocity(double aVelocity)
63 {
64   mNextState.v = aVelocity;
65   mNextState.p = GetPosition();
66   mProgress = 1.0;
67 }
68 
69 void
SetPosition(double aPosition)70 AxisPhysicsModel::SetPosition(double aPosition)
71 {
72   mNextState.v = GetVelocity();
73   mNextState.p = aPosition;
74   mProgress = 1.0;
75 }
76 
77 void
Simulate(const TimeDuration & aDeltaTime)78 AxisPhysicsModel::Simulate(const TimeDuration& aDeltaTime)
79 {
80   for(mProgress += aDeltaTime.ToSeconds() / kFixedTimestep;
81       mProgress > 1.0; mProgress -= 1.0) {
82     Integrate(kFixedTimestep);
83   }
84 }
85 
86 void
Integrate(double aDeltaTime)87 AxisPhysicsModel::Integrate(double aDeltaTime)
88 {
89   mPrevState = mNextState;
90 
91   // RK4 (Runge-Kutta method) Integration
92   // http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
93   Derivative a = Evaluate( mNextState, 0.0, Derivative() );
94   Derivative b = Evaluate( mNextState, aDeltaTime * 0.5, a );
95   Derivative c = Evaluate( mNextState, aDeltaTime * 0.5, b );
96   Derivative d = Evaluate( mNextState, aDeltaTime, c );
97 
98   double dpdt = 1.0 / 6.0 * (a.dp + 2.0 * (b.dp + c.dp) + d.dp);
99   double dvdt = 1.0 / 6.0 * (a.dv + 2.0 * (b.dv + c.dv) + d.dv);
100 
101   mNextState.p += dpdt * aDeltaTime;
102   mNextState.v += dvdt * aDeltaTime;
103 }
104 
105 AxisPhysicsModel::Derivative
Evaluate(const State & aInitState,double aDeltaTime,const Derivative & aDerivative)106 AxisPhysicsModel::Evaluate(const State &aInitState, double aDeltaTime,
107                            const Derivative &aDerivative)
108 {
109   State state( aInitState.p + aDerivative.dp*aDeltaTime, aInitState.v + aDerivative.dv*aDeltaTime );
110 
111   return Derivative( state.v, Acceleration(state) );
112 }
113 
114 double
LinearInterpolate(double aV1,double aV2,double aBlend)115 AxisPhysicsModel::LinearInterpolate(double aV1, double aV2, double aBlend)
116 {
117   return aV1 * (1.0 - aBlend) + aV2 * aBlend;
118 }
119 
120 } // namespace layers
121 } // namespace mozilla
122