1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkArenaAlloc_DEFINED
9 #define SkArenaAlloc_DEFINED
10 
11 #include "include/private/SkTFitsIn.h"
12 
13 #include <cassert>
14 #include <cstddef>
15 #include <cstdint>
16 #include <cstdlib>
17 #include <cstring>
18 #include <limits>
19 #include <new>
20 #include <type_traits>
21 #include <utility>
22 #include <vector>
23 
24 // SkArenaAlloc allocates object and destroys the allocated objects when destroyed. It's designed
25 // to minimize the number of underlying block allocations. SkArenaAlloc allocates first out of an
26 // (optional) user-provided block of memory, and when that's exhausted it allocates on the heap,
27 // starting with an allocation of firstHeapAllocation bytes.  If your data (plus a small overhead)
28 // fits in the user-provided block, SkArenaAlloc never uses the heap, and if it fits in
29 // firstHeapAllocation bytes, it'll use the heap only once. If 0 is specified for
30 // firstHeapAllocation, then blockSize is used unless that too is 0, then 1024 is used.
31 //
32 // Examples:
33 //
34 //   char block[mostCasesSize];
35 //   SkArenaAlloc arena(block, mostCasesSize);
36 //
37 // If mostCasesSize is too large for the stack, you can use the following pattern.
38 //
39 //   std::unique_ptr<char[]> block{new char[mostCasesSize]};
40 //   SkArenaAlloc arena(block.get(), mostCasesSize, almostAllCasesSize);
41 //
42 // If the program only sometimes allocates memory, use the following pattern.
43 //
44 //   SkArenaAlloc arena(nullptr, 0, almostAllCasesSize);
45 //
46 // The storage does not necessarily need to be on the stack. Embedding the storage in a class also
47 // works.
48 //
49 //   class Foo {
50 //       char storage[mostCasesSize];
51 //       SkArenaAlloc arena (storage, mostCasesSize);
52 //   };
53 //
54 // In addition, the system is optimized to handle POD data including arrays of PODs (where
55 // POD is really data with no destructors). For POD data it has zero overhead per item, and a
56 // typical per block overhead of 8 bytes. For non-POD objects there is a per item overhead of 4
57 // bytes. For arrays of non-POD objects there is a per array overhead of typically 8 bytes. There
58 // is an addition overhead when switching from POD data to non-POD data of typically 8 bytes.
59 //
60 // If additional blocks are needed they are increased exponentially. This strategy bounds the
61 // recursion of the RunDtorsOnBlock to be limited to O(log size-of-memory). Block size grow using
62 // the Fibonacci sequence which means that for 2^32 memory there are 48 allocations, and for 2^48
63 // there are 71 allocations.
64 class SkArenaAlloc {
65 public:
66     SkArenaAlloc(char* block, size_t blockSize, size_t firstHeapAllocation);
67 
SkArenaAlloc(size_t firstHeapAllocation)68     explicit SkArenaAlloc(size_t firstHeapAllocation)
69         : SkArenaAlloc(nullptr, 0, firstHeapAllocation)
70     {}
71 
72     ~SkArenaAlloc();
73 
74     template <typename T, typename... Args>
make(Args &&...args)75     T* make(Args&&... args) {
76         uint32_t size      = ToU32(sizeof(T));
77         uint32_t alignment = ToU32(alignof(T));
78         char* objStart;
79         if (std::is_trivially_destructible<T>::value) {
80             objStart = this->allocObject(size, alignment);
81             fCursor = objStart + size;
82         } else {
83             objStart = this->allocObjectWithFooter(size + sizeof(Footer), alignment);
84             // Can never be UB because max value is alignof(T).
85             uint32_t padding = ToU32(objStart - fCursor);
86 
87             // Advance to end of object to install footer.
88             fCursor = objStart + size;
89             FooterAction* releaser = [](char* objEnd) {
90                 char* objStart = objEnd - (sizeof(T) + sizeof(Footer));
91                 ((T*)objStart)->~T();
92                 return objStart;
93             };
94             this->installFooter(releaser, padding);
95         }
96 
97         // This must be last to make objects with nested use of this allocator work.
98         return new(objStart) T(std::forward<Args>(args)...);
99     }
100 
101     template <typename T>
makeArrayDefault(size_t count)102     T* makeArrayDefault(size_t count) {
103         AssertRelease(SkTFitsIn<uint32_t>(count));
104         uint32_t safeCount = ToU32(count);
105         T* array = (T*)this->commonArrayAlloc<T>(safeCount);
106 
107         // If T is primitive then no initialization takes place.
108         for (size_t i = 0; i < safeCount; i++) {
109             new (&array[i]) T;
110         }
111         return array;
112     }
113 
114     template <typename T>
makeArray(size_t count)115     T* makeArray(size_t count) {
116         AssertRelease(SkTFitsIn<uint32_t>(count));
117         uint32_t safeCount = ToU32(count);
118         T* array = (T*)this->commonArrayAlloc<T>(safeCount);
119 
120         // If T is primitive then the memory is initialized. For example, an array of chars will
121         // be zeroed.
122         for (size_t i = 0; i < safeCount; i++) {
123             new (&array[i]) T();
124         }
125         return array;
126     }
127 
128     // Only use makeBytesAlignedTo if none of the typed variants are impractical to use.
makeBytesAlignedTo(size_t size,size_t align)129     void* makeBytesAlignedTo(size_t size, size_t align) {
130         AssertRelease(SkTFitsIn<uint32_t>(size));
131         auto objStart = this->allocObject(ToU32(size), ToU32(align));
132         fCursor = objStart + size;
133         return objStart;
134     }
135 
136     // Destroy all allocated objects, free any heap allocations.
137     void reset();
138 
139 private:
AssertRelease(bool cond)140     static void AssertRelease(bool cond) { if (!cond) { ::abort(); } }
ToU32(size_t v)141     static uint32_t ToU32(size_t v) {
142         assert(SkTFitsIn<uint32_t>(v));
143         return (uint32_t)v;
144     }
145 
146     using Footer = int64_t;
147     using FooterAction = char* (char*);
148 
149     static char* SkipPod(char* footerEnd);
150     static void RunDtorsOnBlock(char* footerEnd);
151     static char* NextBlock(char* footerEnd);
152 
153     void installFooter(FooterAction* releaser, uint32_t padding);
154     void installUint32Footer(FooterAction* action, uint32_t value, uint32_t padding);
155     void installPtrFooter(FooterAction* action, char* ptr, uint32_t padding);
156 
157     void ensureSpace(uint32_t size, uint32_t alignment);
158 
allocObject(uint32_t size,uint32_t alignment)159     char* allocObject(uint32_t size, uint32_t alignment) {
160         uintptr_t mask = alignment - 1;
161         uintptr_t alignedOffset = (~reinterpret_cast<uintptr_t>(fCursor) + 1) & mask;
162         uintptr_t totalSize = size + alignedOffset;
163         AssertRelease(totalSize >= size);
164         if (totalSize > static_cast<uintptr_t>(fEnd - fCursor)) {
165             this->ensureSpace(size, alignment);
166             alignedOffset = (~reinterpret_cast<uintptr_t>(fCursor) + 1) & mask;
167         }
168         return fCursor + alignedOffset;
169     }
170 
171     char* allocObjectWithFooter(uint32_t sizeIncludingFooter, uint32_t alignment);
172 
173     template <typename T>
commonArrayAlloc(uint32_t count)174     char* commonArrayAlloc(uint32_t count) {
175         char* objStart;
176         AssertRelease(count <= std::numeric_limits<uint32_t>::max() / sizeof(T));
177         uint32_t arraySize = ToU32(count * sizeof(T));
178         uint32_t alignment = ToU32(alignof(T));
179 
180         if (std::is_trivially_destructible<T>::value) {
181             objStart = this->allocObject(arraySize, alignment);
182             fCursor = objStart + arraySize;
183         } else {
184             constexpr uint32_t overhead = sizeof(Footer) + sizeof(uint32_t);
185             AssertRelease(arraySize <= std::numeric_limits<uint32_t>::max() - overhead);
186             uint32_t totalSize = arraySize + overhead;
187             objStart = this->allocObjectWithFooter(totalSize, alignment);
188 
189             // Can never be UB because max value is alignof(T).
190             uint32_t padding = ToU32(objStart - fCursor);
191 
192             // Advance to end of array to install footer.?
193             fCursor = objStart + arraySize;
194             this->installUint32Footer(
195                 [](char* footerEnd) {
196                     char* objEnd = footerEnd - (sizeof(Footer) + sizeof(uint32_t));
197                     uint32_t count;
198                     memmove(&count, objEnd, sizeof(uint32_t));
199                     char* objStart = objEnd - count * sizeof(T);
200                     T* array = (T*) objStart;
201                     for (uint32_t i = 0; i < count; i++) {
202                         array[i].~T();
203                     }
204                     return objStart;
205                 },
206                 ToU32(count),
207                 padding);
208         }
209 
210         return objStart;
211     }
212 
213     char*          fDtorCursor;
214     char*          fCursor;
215     char*          fEnd;
216     char* const    fFirstBlock;
217     const uint32_t fFirstSize;
218     const uint32_t fFirstHeapAllocationSize;
219 
220     // Use the Fibonacci sequence as the growth factor for block size. The size of the block
221     // allocated is fFib0 * fFirstHeapAllocationSize. Using 2 ^ n * fFirstHeapAllocationSize
222     // had too much slop for Android.
223     uint32_t       fFib0 {1}, fFib1 {1};
224 };
225 
226 // Helper for defining allocators with inline/reserved storage.
227 // For argument declarations, stick to the base type (SkArenaAlloc).
228 template <size_t InlineStorageSize>
229 class SkSTArenaAlloc : public SkArenaAlloc {
230 public:
231     explicit SkSTArenaAlloc(size_t firstHeapAllocation = InlineStorageSize)
INHERITED(fInlineStorage,InlineStorageSize,firstHeapAllocation)232         : INHERITED(fInlineStorage, InlineStorageSize, firstHeapAllocation) {}
233 
234 private:
235     char fInlineStorage[InlineStorageSize];
236 
237     using INHERITED = SkArenaAlloc;
238 };
239 
240 #endif  // SkArenaAlloc_DEFINED
241