1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4  **********************************************************************
5  * Copyright (c) 2003-2008, International Business Machines
6  * Corporation and others.  All Rights Reserved.
7  **********************************************************************
8  * Author: Alan Liu
9  * Created: September 2 2003
10  * Since: ICU 2.8
11  **********************************************************************
12  */
13 
14 #ifndef GREGOIMP_H
15 #define GREGOIMP_H
16 #include "unicode/utypes.h"
17 #if !UCONFIG_NO_FORMATTING
18 
19 #include "unicode/ures.h"
20 #include "unicode/locid.h"
21 #include "putilimp.h"
22 
23 U_NAMESPACE_BEGIN
24 
25 /**
26  * A utility class providing mathematical functions used by time zone
27  * and calendar code.  Do not instantiate.  Formerly just named 'Math'.
28  * @internal
29  */
30 class ClockMath {
31  public:
32     /**
33      * Divide two integers, returning the floor of the quotient.
34      * Unlike the built-in division, this is mathematically
35      * well-behaved.  E.g., <code>-1/4</code> => 0 but
36      * <code>floorDivide(-1,4)</code> => -1.
37      * @param numerator the numerator
38      * @param denominator a divisor which must be != 0
39      * @return the floor of the quotient
40      */
41     static int32_t floorDivide(int32_t numerator, int32_t denominator);
42 
43     /**
44      * Divide two integers, returning the floor of the quotient.
45      * Unlike the built-in division, this is mathematically
46      * well-behaved.  E.g., <code>-1/4</code> => 0 but
47      * <code>floorDivide(-1,4)</code> => -1.
48      * @param numerator the numerator
49      * @param denominator a divisor which must be != 0
50      * @return the floor of the quotient
51      */
52     static int64_t floorDivide(int64_t numerator, int64_t denominator);
53 
54     /**
55      * Divide two numbers, returning the floor of the quotient.
56      * Unlike the built-in division, this is mathematically
57      * well-behaved.  E.g., <code>-1/4</code> => 0 but
58      * <code>floorDivide(-1,4)</code> => -1.
59      * @param numerator the numerator
60      * @param denominator a divisor which must be != 0
61      * @return the floor of the quotient
62      */
63     static inline double floorDivide(double numerator, double denominator);
64 
65     /**
66      * Divide two numbers, returning the floor of the quotient and
67      * the modulus remainder.  Unlike the built-in division, this is
68      * mathematically well-behaved.  E.g., <code>-1/4</code> => 0 and
69      * <code>-1%4</code> => -1, but <code>floorDivide(-1,4)</code> =>
70      * -1 with <code>remainder</code> => 3.  NOTE: If numerator is
71      * too large, the returned quotient may overflow.
72      * @param numerator the numerator
73      * @param denominator a divisor which must be != 0
74      * @param remainder output parameter to receive the
75      * remainder. Unlike <code>numerator % denominator</code>, this
76      * will always be non-negative, in the half-open range <code>[0,
77      * |denominator|)</code>.
78      * @return the floor of the quotient
79      */
80     static int32_t floorDivide(double numerator, int32_t denominator,
81                                int32_t& remainder);
82 
83     /**
84      * For a positive divisor, return the quotient and remainder
85      * such that dividend = quotient*divisor + remainder and
86      * 0 <= remainder < divisor.
87      *
88      * Works around edge-case bugs.  Handles pathological input
89      * (dividend >> divisor) reasonably.
90      *
91      * Calling with a divisor <= 0 is disallowed.
92      */
93     static double floorDivide(double dividend, double divisor,
94                               double& remainder);
95 };
96 
97 // Useful millisecond constants
98 #define kOneDay    (1.0 * U_MILLIS_PER_DAY)       //  86,400,000
99 #define kOneHour   (60*60*1000)
100 #define kOneMinute 60000
101 #define kOneSecond 1000
102 #define kOneMillisecond  1
103 #define kOneWeek   (7.0 * kOneDay) // 604,800,000
104 
105 // Epoch constants
106 #define kJan1_1JulianDay  1721426 // January 1, year 1 (Gregorian)
107 
108 #define kEpochStartAsJulianDay  2440588 // January 1, 1970 (Gregorian)
109 
110 #define kEpochYear              1970
111 
112 
113 #define kEarliestViableMillis  -185331720384000000.0  // minimum representable by julian day  -1e17
114 
115 #define kLatestViableMillis     185753453990400000.0  // max representable by julian day      +1e17
116 
117 /**
118  * The minimum supported Julian day.  This value is equivalent to
119  * MIN_MILLIS.
120  */
121 #define MIN_JULIAN (-0x7F000000)
122 
123 /**
124  * The minimum supported epoch milliseconds.  This value is equivalent
125  * to MIN_JULIAN.
126  */
127 #define MIN_MILLIS ((MIN_JULIAN - kEpochStartAsJulianDay) * kOneDay)
128 
129 /**
130  * The maximum supported Julian day.  This value is equivalent to
131  * MAX_MILLIS.
132  */
133 #define MAX_JULIAN (+0x7F000000)
134 
135 /**
136  * The maximum supported epoch milliseconds.  This value is equivalent
137  * to MAX_JULIAN.
138  */
139 #define MAX_MILLIS ((MAX_JULIAN - kEpochStartAsJulianDay) * kOneDay)
140 
141 /**
142  * A utility class providing proleptic Gregorian calendar functions
143  * used by time zone and calendar code.  Do not instantiate.
144  *
145  * Note:  Unlike GregorianCalendar, all computations performed by this
146  * class occur in the pure proleptic GregorianCalendar.
147  */
148 class Grego {
149  public:
150     /**
151      * Return true if the given year is a leap year.
152      * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc.
153      * @return true if the year is a leap year
154      */
155     static inline UBool isLeapYear(int32_t year);
156 
157     /**
158      * Return the number of days in the given month.
159      * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc.
160      * @param month 0-based month, with 0==Jan
161      * @return the number of days in the given month
162      */
163     static inline int8_t monthLength(int32_t year, int32_t month);
164 
165     /**
166      * Return the length of a previous month of the Gregorian calendar.
167      * @param y the extended year
168      * @param m the 0-based month number
169      * @return the number of days in the month previous to the given month
170      */
171     static inline int8_t previousMonthLength(int y, int m);
172 
173     /**
174      * Convert a year, month, and day-of-month, given in the proleptic
175      * Gregorian calendar, to 1970 epoch days.
176      * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc.
177      * @param month 0-based month, with 0==Jan
178      * @param dom 1-based day of month
179      * @return the day number, with day 0 == Jan 1 1970
180      */
181     static double fieldsToDay(int32_t year, int32_t month, int32_t dom);
182 
183     /**
184      * Convert a 1970-epoch day number to proleptic Gregorian year,
185      * month, day-of-month, and day-of-week.
186      * @param day 1970-epoch day (integral value)
187      * @param year output parameter to receive year
188      * @param month output parameter to receive month (0-based, 0==Jan)
189      * @param dom output parameter to receive day-of-month (1-based)
190      * @param dow output parameter to receive day-of-week (1-based, 1==Sun)
191      * @param doy output parameter to receive day-of-year (1-based)
192      */
193     static void dayToFields(double day, int32_t& year, int32_t& month,
194                             int32_t& dom, int32_t& dow, int32_t& doy);
195 
196     /**
197      * Convert a 1970-epoch day number to proleptic Gregorian year,
198      * month, day-of-month, and day-of-week.
199      * @param day 1970-epoch day (integral value)
200      * @param year output parameter to receive year
201      * @param month output parameter to receive month (0-based, 0==Jan)
202      * @param dom output parameter to receive day-of-month (1-based)
203      * @param dow output parameter to receive day-of-week (1-based, 1==Sun)
204      */
205     static inline void dayToFields(double day, int32_t& year, int32_t& month,
206                                    int32_t& dom, int32_t& dow);
207 
208     /**
209      * Convert a 1970-epoch milliseconds to proleptic Gregorian year,
210      * month, day-of-month, and day-of-week, day of year and millis-in-day.
211      * @param time 1970-epoch milliseconds
212      * @param year output parameter to receive year
213      * @param month output parameter to receive month (0-based, 0==Jan)
214      * @param dom output parameter to receive day-of-month (1-based)
215      * @param dow output parameter to receive day-of-week (1-based, 1==Sun)
216      * @param doy output parameter to receive day-of-year (1-based)
217      * @param mid output parameter to receive millis-in-day
218      */
219     static void timeToFields(UDate time, int32_t& year, int32_t& month,
220                             int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid);
221 
222     /**
223      * Return the day of week on the 1970-epoch day
224      * @param day the 1970-epoch day (integral value)
225      * @return the day of week
226      */
227     static int32_t dayOfWeek(double day);
228 
229     /**
230      * Returns the ordinal number for the specified day of week within the month.
231      * The valid return value is 1, 2, 3, 4 or -1.
232      * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc.
233      * @param month 0-based month, with 0==Jan
234      * @param dom 1-based day of month
235      * @return The ordinal number for the specified day of week within the month
236      */
237     static int32_t dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom);
238 
239     /**
240      * Converts Julian day to time as milliseconds.
241      * @param julian the given Julian day number.
242      * @return time as milliseconds.
243      * @internal
244      */
245     static inline double julianDayToMillis(int32_t julian);
246 
247     /**
248      * Converts time as milliseconds to Julian day.
249      * @param millis the given milliseconds.
250      * @return the Julian day number.
251      * @internal
252      */
253     static inline int32_t millisToJulianDay(double millis);
254 
255     /**
256      * Calculates the Gregorian day shift value for an extended year.
257      * @param eyear Extended year
258      * @returns number of days to ADD to Julian in order to convert from J->G
259      */
260     static inline int32_t gregorianShift(int32_t eyear);
261 
262  private:
263     static const int16_t DAYS_BEFORE[24];
264     static const int8_t MONTH_LENGTH[24];
265 };
266 
floorDivide(double numerator,double denominator)267 inline double ClockMath::floorDivide(double numerator, double denominator) {
268     return uprv_floor(numerator / denominator);
269 }
270 
isLeapYear(int32_t year)271 inline UBool Grego::isLeapYear(int32_t year) {
272     // year&0x3 == year%4
273     return ((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0));
274 }
275 
276 inline int8_t
monthLength(int32_t year,int32_t month)277 Grego::monthLength(int32_t year, int32_t month) {
278     return MONTH_LENGTH[month + (isLeapYear(year) ? 12 : 0)];
279 }
280 
281 inline int8_t
previousMonthLength(int y,int m)282 Grego::previousMonthLength(int y, int m) {
283   return (m > 0) ? monthLength(y, m-1) : 31;
284 }
285 
dayToFields(double day,int32_t & year,int32_t & month,int32_t & dom,int32_t & dow)286 inline void Grego::dayToFields(double day, int32_t& year, int32_t& month,
287                                int32_t& dom, int32_t& dow) {
288   int32_t doy_unused;
289   dayToFields(day,year,month,dom,dow,doy_unused);
290 }
291 
julianDayToMillis(int32_t julian)292 inline double Grego::julianDayToMillis(int32_t julian)
293 {
294   return (julian - kEpochStartAsJulianDay) * kOneDay;
295 }
296 
millisToJulianDay(double millis)297 inline int32_t Grego::millisToJulianDay(double millis) {
298   return (int32_t) (kEpochStartAsJulianDay + ClockMath::floorDivide(millis, (double)kOneDay));
299 }
300 
gregorianShift(int32_t eyear)301 inline int32_t Grego::gregorianShift(int32_t eyear) {
302   int64_t y = (int64_t)eyear-1;
303   int32_t gregShift = static_cast<int32_t>(ClockMath::floorDivide(y, (int64_t)400) - ClockMath::floorDivide(y, (int64_t)100) + 2);
304   return gregShift;
305 }
306 
307 U_NAMESPACE_END
308 
309 #endif // !UCONFIG_NO_FORMATTING
310 #endif // GREGOIMP_H
311 
312 //eof
313