1 /* -----------------------------------------------------------------------
2    ffi.c - Copyright (c) 2012 Tilera Corp.
3 
4    TILE Foreign Function Interface
5 
6    Permission is hereby granted, free of charge, to any person obtaining
7    a copy of this software and associated documentation files (the
8    ``Software''), to deal in the Software without restriction, including
9    without limitation the rights to use, copy, modify, merge, publish,
10    distribute, sublicense, and/or sell copies of the Software, and to
11    permit persons to whom the Software is furnished to do so, subject to
12    the following conditions:
13 
14    The above copyright notice and this permission notice shall be included
15    in all copies or substantial portions of the Software.
16 
17    THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
18    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
20    NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
21    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
22    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24    DEALINGS IN THE SOFTWARE.
25    ----------------------------------------------------------------------- */
26 
27 #include <ffi.h>
28 #include <ffi_common.h>
29 #include <stdlib.h>
30 #include <stdint.h>
31 #include <unistd.h>
32 #include <arch/abi.h>
33 #include <arch/icache.h>
34 #include <arch/opcode.h>
35 
36 
37 /* The first 10 registers are used to pass arguments and return values. */
38 #define NUM_ARG_REGS 10
39 
40 /* Performs a raw function call with the given NUM_ARG_REGS register arguments
41    and the specified additional stack arguments (if any). */
42 extern void ffi_call_tile(ffi_sarg reg_args[NUM_ARG_REGS],
43                           const ffi_sarg *stack_args,
44                           size_t stack_args_bytes,
45                           void (*fnaddr)(void))
46   FFI_HIDDEN;
47 
48 /* This handles the raw call from the closure stub, cleaning up the
49    parameters and delegating to ffi_closure_tile_inner. */
50 extern void ffi_closure_tile(void) FFI_HIDDEN;
51 
52 
53 ffi_status
ffi_prep_cif_machdep(ffi_cif * cif)54 ffi_prep_cif_machdep(ffi_cif *cif)
55 {
56   /* We always allocate room for all registers. Even if we don't
57      use them as parameters, they get returned in the same array
58      as struct return values so we need to make room. */
59   if (cif->bytes < NUM_ARG_REGS * FFI_SIZEOF_ARG)
60     cif->bytes = NUM_ARG_REGS * FFI_SIZEOF_ARG;
61 
62   if (cif->rtype->size > NUM_ARG_REGS * FFI_SIZEOF_ARG)
63     cif->flags = FFI_TYPE_STRUCT;
64   else
65     cif->flags = FFI_TYPE_INT;
66 
67   /* Nothing to do. */
68   return FFI_OK;
69 }
70 
71 
72 static long
assign_to_ffi_arg(ffi_sarg * out,void * in,const ffi_type * type,int write_to_reg)73 assign_to_ffi_arg(ffi_sarg *out, void *in, const ffi_type *type,
74                   int write_to_reg)
75 {
76   switch (type->type)
77     {
78     case FFI_TYPE_SINT8:
79       *out = *(SINT8 *)in;
80       return 1;
81 
82     case FFI_TYPE_UINT8:
83       *out = *(UINT8 *)in;
84       return 1;
85 
86     case FFI_TYPE_SINT16:
87       *out = *(SINT16 *)in;
88       return 1;
89 
90     case FFI_TYPE_UINT16:
91       *out = *(UINT16 *)in;
92       return 1;
93 
94     case FFI_TYPE_SINT32:
95     case FFI_TYPE_UINT32:
96 #ifndef __LP64__
97     case FFI_TYPE_POINTER:
98 #endif
99       /* Note that even unsigned 32-bit quantities are sign extended
100          on tilegx when stored in a register.  */
101       *out = *(SINT32 *)in;
102       return 1;
103 
104     case FFI_TYPE_FLOAT:
105 #ifdef __tilegx__
106       if (write_to_reg)
107         {
108           /* Properly sign extend the value.  */
109           union { float f; SINT32 s32; } val;
110           val.f = *(float *)in;
111           *out = val.s32;
112         }
113       else
114 #endif
115         {
116           *(float *)out = *(float *)in;
117         }
118       return 1;
119 
120     case FFI_TYPE_SINT64:
121     case FFI_TYPE_UINT64:
122     case FFI_TYPE_DOUBLE:
123 #ifdef __LP64__
124     case FFI_TYPE_POINTER:
125 #endif
126       *(UINT64 *)out = *(UINT64 *)in;
127       return sizeof(UINT64) / FFI_SIZEOF_ARG;
128 
129     case FFI_TYPE_STRUCT:
130       memcpy(out, in, type->size);
131       return (type->size + FFI_SIZEOF_ARG - 1) / FFI_SIZEOF_ARG;
132 
133     case FFI_TYPE_VOID:
134       /* Must be a return type. Nothing to do. */
135       return 0;
136 
137     default:
138       FFI_ASSERT(0);
139       return -1;
140     }
141 }
142 
143 
144 void
ffi_call(ffi_cif * cif,void (* fn)(void),void * rvalue,void ** avalue)145 ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
146 {
147   ffi_sarg * const arg_mem = alloca(cif->bytes);
148   ffi_sarg * const reg_args = arg_mem;
149   ffi_sarg * const stack_args = &reg_args[NUM_ARG_REGS];
150   ffi_sarg *argp = arg_mem;
151   ffi_type ** const arg_types = cif->arg_types;
152   const long num_args = cif->nargs;
153   long i;
154 
155   if (cif->flags == FFI_TYPE_STRUCT)
156     {
157       /* Pass a hidden pointer to the return value. We make sure there
158          is scratch space for the callee to store the return value even if
159          our caller doesn't care about it. */
160       *argp++ = (intptr_t)(rvalue ? rvalue : alloca(cif->rtype->size));
161 
162       /* No more work needed to return anything. */
163       rvalue = NULL;
164     }
165 
166   for (i = 0; i < num_args; i++)
167     {
168       ffi_type *type = arg_types[i];
169       void * const arg_in = avalue[i];
170       ptrdiff_t arg_word = argp - arg_mem;
171 
172 #ifndef __tilegx__
173       /* Doubleword-aligned values are always in an even-number register
174          pair, or doubleword-aligned stack slot if out of registers. */
175       long align = arg_word & (type->alignment > FFI_SIZEOF_ARG);
176       argp += align;
177       arg_word += align;
178 #endif
179 
180       if (type->type == FFI_TYPE_STRUCT)
181         {
182           const size_t arg_size_in_words =
183             (type->size + FFI_SIZEOF_ARG - 1) / FFI_SIZEOF_ARG;
184 
185           if (arg_word < NUM_ARG_REGS &&
186               arg_word + arg_size_in_words > NUM_ARG_REGS)
187             {
188               /* Args are not allowed to span registers and the stack. */
189               argp = stack_args;
190             }
191 
192           memcpy(argp, arg_in, type->size);
193           argp += arg_size_in_words;
194         }
195       else
196         {
197           argp += assign_to_ffi_arg(argp, arg_in, arg_types[i], 1);
198         }
199     }
200 
201   /* Actually do the call. */
202   ffi_call_tile(reg_args, stack_args,
203                 cif->bytes - (NUM_ARG_REGS * FFI_SIZEOF_ARG), fn);
204 
205   if (rvalue != NULL)
206     assign_to_ffi_arg(rvalue, reg_args, cif->rtype, 0);
207 }
208 
209 
210 /* Template code for closure. */
211 extern const UINT64 ffi_template_tramp_tile[] FFI_HIDDEN;
212 
213 
214 ffi_status
ffi_prep_closure_loc(ffi_closure * closure,ffi_cif * cif,void (* fun)(ffi_cif *,void *,void **,void *),void * user_data,void * codeloc)215 ffi_prep_closure_loc (ffi_closure *closure,
216                       ffi_cif *cif,
217                       void (*fun)(ffi_cif*, void*, void**, void*),
218                       void *user_data,
219                       void *codeloc)
220 {
221 #ifdef __tilegx__
222   /* TILE-Gx */
223   SINT64 c;
224   SINT64 h;
225   int s;
226   UINT64 *out;
227 
228   if (cif->abi != FFI_UNIX)
229     return FFI_BAD_ABI;
230 
231   out = (UINT64 *)closure->tramp;
232 
233   c = (intptr_t)closure;
234   h = (intptr_t)ffi_closure_tile;
235   s = 0;
236 
237   /* Find the smallest shift count that doesn't lose information
238      (i.e. no need to explicitly insert high bits of the address that
239      are just the sign extension of the low bits). */
240   while ((c >> s) != (SINT16)(c >> s) || (h >> s) != (SINT16)(h >> s))
241     s += 16;
242 
243 #define OPS(a, b, shift) \
244   (create_Imm16_X0((a) >> (shift)) | create_Imm16_X1((b) >> (shift)))
245 
246   /* Emit the moveli. */
247   *out++ = ffi_template_tramp_tile[0] | OPS(c, h, s);
248   for (s -= 16; s >= 0; s -= 16)
249     *out++ = ffi_template_tramp_tile[1] | OPS(c, h, s);
250 
251 #undef OPS
252 
253   *out++ = ffi_template_tramp_tile[2];
254 
255 #else
256   /* TILEPro */
257   UINT64 *out;
258   intptr_t delta;
259 
260   if (cif->abi != FFI_UNIX)
261     return FFI_BAD_ABI;
262 
263   out = (UINT64 *)closure->tramp;
264   delta = (intptr_t)ffi_closure_tile - (intptr_t)codeloc;
265 
266   *out++ = ffi_template_tramp_tile[0] | create_JOffLong_X1(delta >> 3);
267 #endif
268 
269   closure->cif = cif;
270   closure->fun = fun;
271   closure->user_data = user_data;
272 
273   invalidate_icache(closure->tramp, (char *)out - closure->tramp,
274                     getpagesize());
275 
276   return FFI_OK;
277 }
278 
279 
280 /* This is called by the assembly wrapper for closures. This does
281    all of the work. On entry reg_args[0] holds the values the registers
282    had when the closure was invoked. On return reg_args[1] holds the register
283    values to be returned to the caller (many of which may be garbage). */
284 void FFI_HIDDEN
ffi_closure_tile_inner(ffi_closure * closure,ffi_sarg reg_args[2][NUM_ARG_REGS],ffi_sarg * stack_args)285 ffi_closure_tile_inner(ffi_closure *closure,
286                        ffi_sarg reg_args[2][NUM_ARG_REGS],
287                        ffi_sarg *stack_args)
288 {
289   ffi_cif * const cif = closure->cif;
290   void ** const avalue = alloca(cif->nargs * sizeof(void *));
291   void *rvalue;
292   ffi_type ** const arg_types = cif->arg_types;
293   ffi_sarg * const reg_args_in = reg_args[0];
294   ffi_sarg * const reg_args_out = reg_args[1];
295   ffi_sarg * argp;
296   long i, arg_word, nargs = cif->nargs;
297   /* Use a union to guarantee proper alignment for double. */
298   union { ffi_sarg arg[NUM_ARG_REGS]; double d; UINT64 u64; } closure_ret;
299 
300   /* Start out reading register arguments. */
301   argp = reg_args_in;
302 
303   /* Copy the caller's structure return address to that the closure
304      returns the data directly to the caller.  */
305   if (cif->flags == FFI_TYPE_STRUCT)
306     {
307       /* Return by reference via hidden pointer. */
308       rvalue = (void *)(intptr_t)*argp++;
309       arg_word = 1;
310     }
311   else
312     {
313       /* Return the value in registers. */
314       rvalue = &closure_ret;
315       arg_word = 0;
316     }
317 
318   /* Grab the addresses of the arguments. */
319   for (i = 0; i < nargs; i++)
320     {
321       ffi_type * const type = arg_types[i];
322       const size_t arg_size_in_words =
323         (type->size + FFI_SIZEOF_ARG - 1) / FFI_SIZEOF_ARG;
324 
325 #ifndef __tilegx__
326       /* Doubleword-aligned values are always in an even-number register
327          pair, or doubleword-aligned stack slot if out of registers. */
328       long align = arg_word & (type->alignment > FFI_SIZEOF_ARG);
329       argp += align;
330       arg_word += align;
331 #endif
332 
333       if (arg_word == NUM_ARG_REGS ||
334           (arg_word < NUM_ARG_REGS &&
335            arg_word + arg_size_in_words > NUM_ARG_REGS))
336         {
337           /* Switch to reading arguments from the stack. */
338           argp = stack_args;
339           arg_word = NUM_ARG_REGS;
340         }
341 
342       avalue[i] = argp;
343       argp += arg_size_in_words;
344       arg_word += arg_size_in_words;
345     }
346 
347   /* Invoke the closure.  */
348   closure->fun(cif, rvalue, avalue, closure->user_data);
349 
350   if (cif->flags != FFI_TYPE_STRUCT)
351     {
352       /* Canonicalize for register representation. */
353       assign_to_ffi_arg(reg_args_out, &closure_ret, cif->rtype, 1);
354     }
355 }
356