1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
11 //
12 // Author: Christian Duvivier (cduvivier@google.com)
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <stdlib.h>  // for abs()
19 #include <emmintrin.h>
20 
21 #include "src/dsp/common_sse2.h"
22 #include "src/enc/cost_enc.h"
23 #include "src/enc/vp8i_enc.h"
24 
25 //------------------------------------------------------------------------------
26 // Transforms (Paragraph 14.4)
27 
28 // Does one or two inverse transforms.
ITransform_SSE2(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)29 static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
30                             int do_two) {
31   // This implementation makes use of 16-bit fixed point versions of two
32   // multiply constants:
33   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
34   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
35   //
36   // To be able to use signed 16-bit integers, we use the following trick to
37   // have constants within range:
38   // - Associated constants are obtained by subtracting the 16-bit fixed point
39   //   version of one:
40   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
41   //      K1 = 85267  =>  k1 =  20091
42   //      K2 = 35468  =>  k2 = -30068
43   // - The multiplication of a variable by a constant become the sum of the
44   //   variable and the multiplication of that variable by the associated
45   //   constant:
46   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
47   const __m128i k1 = _mm_set1_epi16(20091);
48   const __m128i k2 = _mm_set1_epi16(-30068);
49   __m128i T0, T1, T2, T3;
50 
51   // Load and concatenate the transform coefficients (we'll do two inverse
52   // transforms in parallel). In the case of only one inverse transform, the
53   // second half of the vectors will just contain random value we'll never
54   // use nor store.
55   __m128i in0, in1, in2, in3;
56   {
57     in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
58     in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
59     in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
60     in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
61     // a00 a10 a20 a30   x x x x
62     // a01 a11 a21 a31   x x x x
63     // a02 a12 a22 a32   x x x x
64     // a03 a13 a23 a33   x x x x
65     if (do_two) {
66       const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
67       const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
68       const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
69       const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
70       in0 = _mm_unpacklo_epi64(in0, inB0);
71       in1 = _mm_unpacklo_epi64(in1, inB1);
72       in2 = _mm_unpacklo_epi64(in2, inB2);
73       in3 = _mm_unpacklo_epi64(in3, inB3);
74       // a00 a10 a20 a30   b00 b10 b20 b30
75       // a01 a11 a21 a31   b01 b11 b21 b31
76       // a02 a12 a22 a32   b02 b12 b22 b32
77       // a03 a13 a23 a33   b03 b13 b23 b33
78     }
79   }
80 
81   // Vertical pass and subsequent transpose.
82   {
83     // First pass, c and d calculations are longer because of the "trick"
84     // multiplications.
85     const __m128i a = _mm_add_epi16(in0, in2);
86     const __m128i b = _mm_sub_epi16(in0, in2);
87     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
88     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
89     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
90     const __m128i c3 = _mm_sub_epi16(in1, in3);
91     const __m128i c4 = _mm_sub_epi16(c1, c2);
92     const __m128i c = _mm_add_epi16(c3, c4);
93     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
94     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
95     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
96     const __m128i d3 = _mm_add_epi16(in1, in3);
97     const __m128i d4 = _mm_add_epi16(d1, d2);
98     const __m128i d = _mm_add_epi16(d3, d4);
99 
100     // Second pass.
101     const __m128i tmp0 = _mm_add_epi16(a, d);
102     const __m128i tmp1 = _mm_add_epi16(b, c);
103     const __m128i tmp2 = _mm_sub_epi16(b, c);
104     const __m128i tmp3 = _mm_sub_epi16(a, d);
105 
106     // Transpose the two 4x4.
107     VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
108   }
109 
110   // Horizontal pass and subsequent transpose.
111   {
112     // First pass, c and d calculations are longer because of the "trick"
113     // multiplications.
114     const __m128i four = _mm_set1_epi16(4);
115     const __m128i dc = _mm_add_epi16(T0, four);
116     const __m128i a =  _mm_add_epi16(dc, T2);
117     const __m128i b =  _mm_sub_epi16(dc, T2);
118     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
119     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
120     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
121     const __m128i c3 = _mm_sub_epi16(T1, T3);
122     const __m128i c4 = _mm_sub_epi16(c1, c2);
123     const __m128i c = _mm_add_epi16(c3, c4);
124     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
125     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
126     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
127     const __m128i d3 = _mm_add_epi16(T1, T3);
128     const __m128i d4 = _mm_add_epi16(d1, d2);
129     const __m128i d = _mm_add_epi16(d3, d4);
130 
131     // Second pass.
132     const __m128i tmp0 = _mm_add_epi16(a, d);
133     const __m128i tmp1 = _mm_add_epi16(b, c);
134     const __m128i tmp2 = _mm_sub_epi16(b, c);
135     const __m128i tmp3 = _mm_sub_epi16(a, d);
136     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
137     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
138     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
139     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
140 
141     // Transpose the two 4x4.
142     VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
143                            &T2, &T3);
144   }
145 
146   // Add inverse transform to 'ref' and store.
147   {
148     const __m128i zero = _mm_setzero_si128();
149     // Load the reference(s).
150     __m128i ref0, ref1, ref2, ref3;
151     if (do_two) {
152       // Load eight bytes/pixels per line.
153       ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
154       ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
155       ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
156       ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
157     } else {
158       // Load four bytes/pixels per line.
159       ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS]));
160       ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS]));
161       ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS]));
162       ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS]));
163     }
164     // Convert to 16b.
165     ref0 = _mm_unpacklo_epi8(ref0, zero);
166     ref1 = _mm_unpacklo_epi8(ref1, zero);
167     ref2 = _mm_unpacklo_epi8(ref2, zero);
168     ref3 = _mm_unpacklo_epi8(ref3, zero);
169     // Add the inverse transform(s).
170     ref0 = _mm_add_epi16(ref0, T0);
171     ref1 = _mm_add_epi16(ref1, T1);
172     ref2 = _mm_add_epi16(ref2, T2);
173     ref3 = _mm_add_epi16(ref3, T3);
174     // Unsigned saturate to 8b.
175     ref0 = _mm_packus_epi16(ref0, ref0);
176     ref1 = _mm_packus_epi16(ref1, ref1);
177     ref2 = _mm_packus_epi16(ref2, ref2);
178     ref3 = _mm_packus_epi16(ref3, ref3);
179     // Store the results.
180     if (do_two) {
181       // Store eight bytes/pixels per line.
182       _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
183       _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
184       _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
185       _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
186     } else {
187       // Store four bytes/pixels per line.
188       WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0));
189       WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1));
190       WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2));
191       WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3));
192     }
193   }
194 }
195 
FTransformPass1_SSE2(const __m128i * const in01,const __m128i * const in23,__m128i * const out01,__m128i * const out32)196 static void FTransformPass1_SSE2(const __m128i* const in01,
197                                  const __m128i* const in23,
198                                  __m128i* const out01,
199                                  __m128i* const out32) {
200   const __m128i k937 = _mm_set1_epi32(937);
201   const __m128i k1812 = _mm_set1_epi32(1812);
202 
203   const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
204   const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
205   const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
206                                             2217, 5352, 2217, 5352);
207   const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
208                                             -5352, 2217, -5352, 2217);
209 
210   // *in01 = 00 01 10 11 02 03 12 13
211   // *in23 = 20 21 30 31 22 23 32 33
212   const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
213   const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
214   // 00 01 10 11 03 02 13 12
215   // 20 21 30 31 23 22 33 32
216   const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
217   const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
218   // 00 01 10 11 20 21 30 31
219   // 03 02 13 12 23 22 33 32
220   const __m128i a01 = _mm_add_epi16(s01, s32);
221   const __m128i a32 = _mm_sub_epi16(s01, s32);
222   // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
223   // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
224 
225   const __m128i tmp0   = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
226   const __m128i tmp2   = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
227   const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
228   const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
229   const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
230   const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
231   const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
232   const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
233   const __m128i s03    = _mm_packs_epi32(tmp0, tmp2);
234   const __m128i s12    = _mm_packs_epi32(tmp1, tmp3);
235   const __m128i s_lo   = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
236   const __m128i s_hi   = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
237   const __m128i v23    = _mm_unpackhi_epi32(s_lo, s_hi);
238   *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
239   *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
240 }
241 
FTransformPass2_SSE2(const __m128i * const v01,const __m128i * const v32,int16_t * out)242 static void FTransformPass2_SSE2(const __m128i* const v01,
243                                  const __m128i* const v32,
244                                  int16_t* out) {
245   const __m128i zero = _mm_setzero_si128();
246   const __m128i seven = _mm_set1_epi16(7);
247   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
248                                            5352,  2217, 5352,  2217);
249   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
250                                            2217, -5352, 2217, -5352);
251   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
252   const __m128i k51000 = _mm_set1_epi32(51000);
253 
254   // Same operations are done on the (0,3) and (1,2) pairs.
255   // a3 = v0 - v3
256   // a2 = v1 - v2
257   const __m128i a32 = _mm_sub_epi16(*v01, *v32);
258   const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
259 
260   const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
261   const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
262   const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
263   const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
264   const __m128i d3 = _mm_add_epi32(c3, k51000);
265   const __m128i e1 = _mm_srai_epi32(d1, 16);
266   const __m128i e3 = _mm_srai_epi32(d3, 16);
267   // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
268   // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
269   const __m128i f1 = _mm_packs_epi32(e1, e1);
270   const __m128i f3 = _mm_packs_epi32(e3, e3);
271   // g1 = f1 + (a3 != 0);
272   // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
273   // desired (0, 1), we add one earlier through k12000_plus_one.
274   // -> g1 = f1 + 1 - (a3 == 0)
275   const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
276 
277   // a0 = v0 + v3
278   // a1 = v1 + v2
279   const __m128i a01 = _mm_add_epi16(*v01, *v32);
280   const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
281   const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
282   const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
283   const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
284   // d0 = (a0 + a1 + 7) >> 4;
285   // d2 = (a0 - a1 + 7) >> 4;
286   const __m128i d0 = _mm_srai_epi16(c0, 4);
287   const __m128i d2 = _mm_srai_epi16(c2, 4);
288 
289   const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
290   const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
291   _mm_storeu_si128((__m128i*)&out[0], d0_g1);
292   _mm_storeu_si128((__m128i*)&out[8], d2_f3);
293 }
294 
FTransform_SSE2(const uint8_t * src,const uint8_t * ref,int16_t * out)295 static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref,
296                             int16_t* out) {
297   const __m128i zero = _mm_setzero_si128();
298   // Load src.
299   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
300   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
301   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
302   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
303   // 00 01 02 03 *
304   // 10 11 12 13 *
305   // 20 21 22 23 *
306   // 30 31 32 33 *
307   // Shuffle.
308   const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
309   const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
310   // 00 01 10 11 02 03 12 13 * * ...
311   // 20 21 30 31 22 22 32 33 * * ...
312 
313   // Load ref.
314   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
315   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
316   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
317   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
318   const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
319   const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
320 
321   // Convert both to 16 bit.
322   const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
323   const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
324   const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
325   const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
326 
327   // Compute the difference.
328   const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
329   const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
330   __m128i v01, v32;
331 
332   // First pass
333   FTransformPass1_SSE2(&row01, &row23, &v01, &v32);
334 
335   // Second pass
336   FTransformPass2_SSE2(&v01, &v32, out);
337 }
338 
FTransform2_SSE2(const uint8_t * src,const uint8_t * ref,int16_t * out)339 static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref,
340                              int16_t* out) {
341   const __m128i zero = _mm_setzero_si128();
342 
343   // Load src and convert to 16b.
344   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
345   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
346   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
347   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
348   const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
349   const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
350   const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
351   const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
352   // Load ref and convert to 16b.
353   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
354   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
355   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
356   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
357   const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
358   const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
359   const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
360   const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
361   // Compute difference. -> 00 01 02 03  00' 01' 02' 03'
362   const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
363   const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
364   const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
365   const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
366 
367   // Unpack and shuffle
368   // 00 01 02 03   0 0 0 0
369   // 10 11 12 13   0 0 0 0
370   // 20 21 22 23   0 0 0 0
371   // 30 31 32 33   0 0 0 0
372   const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
373   const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
374   const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
375   const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
376   __m128i v01l, v32l;
377   __m128i v01h, v32h;
378 
379   // First pass
380   FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
381   FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);
382 
383   // Second pass
384   FTransformPass2_SSE2(&v01l, &v32l, out + 0);
385   FTransformPass2_SSE2(&v01h, &v32h, out + 16);
386 }
387 
FTransformWHTRow_SSE2(const int16_t * const in,__m128i * const out)388 static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) {
389   const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
390   const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
391   const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
392   const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
393   const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
394   const __m128i A01 = _mm_unpacklo_epi16(src0, src1);  // A0 A1 | ...
395   const __m128i A23 = _mm_unpacklo_epi16(src2, src3);  // A2 A3 | ...
396   const __m128i B0 = _mm_adds_epi16(A01, A23);    // a0 | a1 | ...
397   const __m128i B1 = _mm_subs_epi16(A01, A23);    // a3 | a2 | ...
398   const __m128i C0 = _mm_unpacklo_epi32(B0, B1);  // a0 | a1 | a3 | a2 | ...
399   const __m128i C1 = _mm_unpacklo_epi32(B1, B0);  // a3 | a2 | a0 | a1 | ...
400   const __m128i D = _mm_unpacklo_epi64(C0, C1);   // a0 a1 a3 a2 a3 a2 a0 a1
401   *out = _mm_madd_epi16(D, kMult);
402 }
403 
FTransformWHT_SSE2(const int16_t * in,int16_t * out)404 static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) {
405   // Input is 12b signed.
406   __m128i row0, row1, row2, row3;
407   // Rows are 14b signed.
408   FTransformWHTRow_SSE2(in + 0 * 64, &row0);
409   FTransformWHTRow_SSE2(in + 1 * 64, &row1);
410   FTransformWHTRow_SSE2(in + 2 * 64, &row2);
411   FTransformWHTRow_SSE2(in + 3 * 64, &row3);
412 
413   {
414     // The a* are 15b signed.
415     const __m128i a0 = _mm_add_epi32(row0, row2);
416     const __m128i a1 = _mm_add_epi32(row1, row3);
417     const __m128i a2 = _mm_sub_epi32(row1, row3);
418     const __m128i a3 = _mm_sub_epi32(row0, row2);
419     const __m128i a0a3 = _mm_packs_epi32(a0, a3);
420     const __m128i a1a2 = _mm_packs_epi32(a1, a2);
421 
422     // The b* are 16b signed.
423     const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
424     const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
425     const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
426     const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
427 
428     _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
429     _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
430   }
431 }
432 
433 //------------------------------------------------------------------------------
434 // Compute susceptibility based on DCT-coeff histograms:
435 // the higher, the "easier" the macroblock is to compress.
436 
CollectHistogram_SSE2(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)437 static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred,
438                                   int start_block, int end_block,
439                                   VP8Histogram* const histo) {
440   const __m128i zero = _mm_setzero_si128();
441   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
442   int j;
443   int distribution[MAX_COEFF_THRESH + 1] = { 0 };
444   for (j = start_block; j < end_block; ++j) {
445     int16_t out[16];
446     int k;
447 
448     FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
449 
450     // Convert coefficients to bin (within out[]).
451     {
452       // Load.
453       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
454       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
455       const __m128i d0 = _mm_sub_epi16(zero, out0);
456       const __m128i d1 = _mm_sub_epi16(zero, out1);
457       const __m128i abs0 = _mm_max_epi16(out0, d0);   // abs(v), 16b
458       const __m128i abs1 = _mm_max_epi16(out1, d1);
459       // v = abs(out) >> 3
460       const __m128i v0 = _mm_srai_epi16(abs0, 3);
461       const __m128i v1 = _mm_srai_epi16(abs1, 3);
462       // bin = min(v, MAX_COEFF_THRESH)
463       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
464       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
465       // Store.
466       _mm_storeu_si128((__m128i*)&out[0], bin0);
467       _mm_storeu_si128((__m128i*)&out[8], bin1);
468     }
469 
470     // Convert coefficients to bin.
471     for (k = 0; k < 16; ++k) {
472       ++distribution[out[k]];
473     }
474   }
475   VP8SetHistogramData(distribution, histo);
476 }
477 
478 //------------------------------------------------------------------------------
479 // Intra predictions
480 
481 // helper for chroma-DC predictions
Put8x8uv_SSE2(uint8_t v,uint8_t * dst)482 static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
483   int j;
484   const __m128i values = _mm_set1_epi8(v);
485   for (j = 0; j < 8; ++j) {
486     _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
487   }
488 }
489 
Put16_SSE2(uint8_t v,uint8_t * dst)490 static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
491   int j;
492   const __m128i values = _mm_set1_epi8(v);
493   for (j = 0; j < 16; ++j) {
494     _mm_store_si128((__m128i*)(dst + j * BPS), values);
495   }
496 }
497 
Fill_SSE2(uint8_t * dst,int value,int size)498 static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
499   if (size == 4) {
500     int j;
501     for (j = 0; j < 4; ++j) {
502       memset(dst + j * BPS, value, 4);
503     }
504   } else if (size == 8) {
505     Put8x8uv_SSE2(value, dst);
506   } else {
507     Put16_SSE2(value, dst);
508   }
509 }
510 
VE8uv_SSE2(uint8_t * dst,const uint8_t * top)511 static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) {
512   int j;
513   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
514   for (j = 0; j < 8; ++j) {
515     _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
516   }
517 }
518 
VE16_SSE2(uint8_t * dst,const uint8_t * top)519 static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) {
520   const __m128i top_values = _mm_load_si128((const __m128i*)top);
521   int j;
522   for (j = 0; j < 16; ++j) {
523     _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
524   }
525 }
526 
VerticalPred_SSE2(uint8_t * dst,const uint8_t * top,int size)527 static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst,
528                                           const uint8_t* top, int size) {
529   if (top != NULL) {
530     if (size == 8) {
531       VE8uv_SSE2(dst, top);
532     } else {
533       VE16_SSE2(dst, top);
534     }
535   } else {
536     Fill_SSE2(dst, 127, size);
537   }
538 }
539 
HE8uv_SSE2(uint8_t * dst,const uint8_t * left)540 static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) {
541   int j;
542   for (j = 0; j < 8; ++j) {
543     const __m128i values = _mm_set1_epi8(left[j]);
544     _mm_storel_epi64((__m128i*)dst, values);
545     dst += BPS;
546   }
547 }
548 
HE16_SSE2(uint8_t * dst,const uint8_t * left)549 static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) {
550   int j;
551   for (j = 0; j < 16; ++j) {
552     const __m128i values = _mm_set1_epi8(left[j]);
553     _mm_store_si128((__m128i*)dst, values);
554     dst += BPS;
555   }
556 }
557 
HorizontalPred_SSE2(uint8_t * dst,const uint8_t * left,int size)558 static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst,
559                                             const uint8_t* left, int size) {
560   if (left != NULL) {
561     if (size == 8) {
562       HE8uv_SSE2(dst, left);
563     } else {
564       HE16_SSE2(dst, left);
565     }
566   } else {
567     Fill_SSE2(dst, 129, size);
568   }
569 }
570 
TM_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)571 static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left,
572                                 const uint8_t* top, int size) {
573   const __m128i zero = _mm_setzero_si128();
574   int y;
575   if (size == 8) {
576     const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
577     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
578     for (y = 0; y < 8; ++y, dst += BPS) {
579       const int val = left[y] - left[-1];
580       const __m128i base = _mm_set1_epi16(val);
581       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
582       _mm_storel_epi64((__m128i*)dst, out);
583     }
584   } else {
585     const __m128i top_values = _mm_load_si128((const __m128i*)top);
586     const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
587     const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
588     for (y = 0; y < 16; ++y, dst += BPS) {
589       const int val = left[y] - left[-1];
590       const __m128i base = _mm_set1_epi16(val);
591       const __m128i out_0 = _mm_add_epi16(base, top_base_0);
592       const __m128i out_1 = _mm_add_epi16(base, top_base_1);
593       const __m128i out = _mm_packus_epi16(out_0, out_1);
594       _mm_store_si128((__m128i*)dst, out);
595     }
596   }
597 }
598 
TrueMotion_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)599 static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left,
600                                         const uint8_t* top, int size) {
601   if (left != NULL) {
602     if (top != NULL) {
603       TM_SSE2(dst, left, top, size);
604     } else {
605       HorizontalPred_SSE2(dst, left, size);
606     }
607   } else {
608     // true motion without left samples (hence: with default 129 value)
609     // is equivalent to VE prediction where you just copy the top samples.
610     // Note that if top samples are not available, the default value is
611     // then 129, and not 127 as in the VerticalPred case.
612     if (top != NULL) {
613       VerticalPred_SSE2(dst, top, size);
614     } else {
615       Fill_SSE2(dst, 129, size);
616     }
617   }
618 }
619 
DC8uv_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)620 static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left,
621                                    const uint8_t* top) {
622   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
623   const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
624   const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
625   const int DC = VP8HorizontalAdd8b(&combined) + 8;
626   Put8x8uv_SSE2(DC >> 4, dst);
627 }
628 
DC8uvNoLeft_SSE2(uint8_t * dst,const uint8_t * top)629 static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
630   const __m128i zero = _mm_setzero_si128();
631   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
632   const __m128i sum = _mm_sad_epu8(top_values, zero);
633   const int DC = _mm_cvtsi128_si32(sum) + 4;
634   Put8x8uv_SSE2(DC >> 3, dst);
635 }
636 
DC8uvNoTop_SSE2(uint8_t * dst,const uint8_t * left)637 static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) {
638   // 'left' is contiguous so we can reuse the top summation.
639   DC8uvNoLeft_SSE2(dst, left);
640 }
641 
DC8uvNoTopLeft_SSE2(uint8_t * dst)642 static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
643   Put8x8uv_SSE2(0x80, dst);
644 }
645 
DC8uvMode_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)646 static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left,
647                                        const uint8_t* top) {
648   if (top != NULL) {
649     if (left != NULL) {  // top and left present
650       DC8uv_SSE2(dst, left, top);
651     } else {  // top, but no left
652       DC8uvNoLeft_SSE2(dst, top);
653     }
654   } else if (left != NULL) {  // left but no top
655     DC8uvNoTop_SSE2(dst, left);
656   } else {  // no top, no left, nothing.
657     DC8uvNoTopLeft_SSE2(dst);
658   }
659 }
660 
DC16_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)661 static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left,
662                                   const uint8_t* top) {
663   const __m128i top_row = _mm_load_si128((const __m128i*)top);
664   const __m128i left_row = _mm_load_si128((const __m128i*)left);
665   const int DC =
666       VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
667   Put16_SSE2(DC >> 5, dst);
668 }
669 
DC16NoLeft_SSE2(uint8_t * dst,const uint8_t * top)670 static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
671   const __m128i top_row = _mm_load_si128((const __m128i*)top);
672   const int DC = VP8HorizontalAdd8b(&top_row) + 8;
673   Put16_SSE2(DC >> 4, dst);
674 }
675 
DC16NoTop_SSE2(uint8_t * dst,const uint8_t * left)676 static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) {
677   // 'left' is contiguous so we can reuse the top summation.
678   DC16NoLeft_SSE2(dst, left);
679 }
680 
DC16NoTopLeft_SSE2(uint8_t * dst)681 static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
682   Put16_SSE2(0x80, dst);
683 }
684 
DC16Mode_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)685 static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left,
686                                       const uint8_t* top) {
687   if (top != NULL) {
688     if (left != NULL) {  // top and left present
689       DC16_SSE2(dst, left, top);
690     } else {  // top, but no left
691       DC16NoLeft_SSE2(dst, top);
692     }
693   } else if (left != NULL) {  // left but no top
694     DC16NoTop_SSE2(dst, left);
695   } else {  // no top, no left, nothing.
696     DC16NoTopLeft_SSE2(dst);
697   }
698 }
699 
700 //------------------------------------------------------------------------------
701 // 4x4 predictions
702 
703 #define DST(x, y) dst[(x) + (y) * BPS]
704 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
705 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
706 
707 // We use the following 8b-arithmetic tricks:
708 //     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
709 //   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
710 // and:
711 //     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
712 //   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
713 //   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
714 
VE4_SSE2(uint8_t * dst,const uint8_t * top)715 static WEBP_INLINE void VE4_SSE2(uint8_t* dst,
716                                  const uint8_t* top) {  // vertical
717   const __m128i one = _mm_set1_epi8(1);
718   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
719   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
720   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
721   const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
722   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
723   const __m128i b = _mm_subs_epu8(a, lsb);
724   const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
725   const uint32_t vals = _mm_cvtsi128_si32(avg);
726   int i;
727   for (i = 0; i < 4; ++i) {
728     WebPUint32ToMem(dst + i * BPS, vals);
729   }
730 }
731 
HE4_SSE2(uint8_t * dst,const uint8_t * top)732 static WEBP_INLINE void HE4_SSE2(uint8_t* dst,
733                                  const uint8_t* top) {  // horizontal
734   const int X = top[-1];
735   const int I = top[-2];
736   const int J = top[-3];
737   const int K = top[-4];
738   const int L = top[-5];
739   WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
740   WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
741   WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
742   WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
743 }
744 
DC4_SSE2(uint8_t * dst,const uint8_t * top)745 static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) {
746   uint32_t dc = 4;
747   int i;
748   for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
749   Fill_SSE2(dst, dc >> 3, 4);
750 }
751 
LD4_SSE2(uint8_t * dst,const uint8_t * top)752 static WEBP_INLINE void LD4_SSE2(uint8_t* dst,
753                                  const uint8_t* top) {  // Down-Left
754   const __m128i one = _mm_set1_epi8(1);
755   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
756   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
757   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
758   const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
759   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
760   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
761   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
762   const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
763   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
764   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
765   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
766   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
767 }
768 
VR4_SSE2(uint8_t * dst,const uint8_t * top)769 static WEBP_INLINE void VR4_SSE2(uint8_t* dst,
770                                  const uint8_t* top) {  // Vertical-Right
771   const __m128i one = _mm_set1_epi8(1);
772   const int I = top[-2];
773   const int J = top[-3];
774   const int K = top[-4];
775   const int X = top[-1];
776   const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
777   const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
778   const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
779   const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
780   const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
781   const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
782   const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
783   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
784   const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
785   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
786   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
787   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
788   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
789 
790   // these two are hard to implement in SSE2, so we keep the C-version:
791   DST(0, 2) = AVG3(J, I, X);
792   DST(0, 3) = AVG3(K, J, I);
793 }
794 
VL4_SSE2(uint8_t * dst,const uint8_t * top)795 static WEBP_INLINE void VL4_SSE2(uint8_t* dst,
796                                  const uint8_t* top) {  // Vertical-Left
797   const __m128i one = _mm_set1_epi8(1);
798   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
799   const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
800   const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
801   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
802   const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
803   const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
804   const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
805   const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
806   const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
807   const __m128i abbc = _mm_or_si128(ab, bc);
808   const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
809   const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
810   const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
811   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
812   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
813   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
814   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
815 
816   // these two are hard to get and irregular
817   DST(3, 2) = (extra_out >> 0) & 0xff;
818   DST(3, 3) = (extra_out >> 8) & 0xff;
819 }
820 
RD4_SSE2(uint8_t * dst,const uint8_t * top)821 static WEBP_INLINE void RD4_SSE2(uint8_t* dst,
822                                  const uint8_t* top) {  // Down-right
823   const __m128i one = _mm_set1_epi8(1);
824   const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
825   const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
826   const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
827   const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
828   const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
829   const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
830   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
831   const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
832   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
833   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
834   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
835   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
836 }
837 
HU4_SSE2(uint8_t * dst,const uint8_t * top)838 static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) {
839   const int I = top[-2];
840   const int J = top[-3];
841   const int K = top[-4];
842   const int L = top[-5];
843   DST(0, 0) =             AVG2(I, J);
844   DST(2, 0) = DST(0, 1) = AVG2(J, K);
845   DST(2, 1) = DST(0, 2) = AVG2(K, L);
846   DST(1, 0) =             AVG3(I, J, K);
847   DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
848   DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
849   DST(3, 2) = DST(2, 2) =
850   DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
851 }
852 
HD4_SSE2(uint8_t * dst,const uint8_t * top)853 static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) {
854   const int X = top[-1];
855   const int I = top[-2];
856   const int J = top[-3];
857   const int K = top[-4];
858   const int L = top[-5];
859   const int A = top[0];
860   const int B = top[1];
861   const int C = top[2];
862 
863   DST(0, 0) = DST(2, 1) = AVG2(I, X);
864   DST(0, 1) = DST(2, 2) = AVG2(J, I);
865   DST(0, 2) = DST(2, 3) = AVG2(K, J);
866   DST(0, 3)             = AVG2(L, K);
867 
868   DST(3, 0)             = AVG3(A, B, C);
869   DST(2, 0)             = AVG3(X, A, B);
870   DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
871   DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
872   DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
873   DST(1, 3)             = AVG3(L, K, J);
874 }
875 
TM4_SSE2(uint8_t * dst,const uint8_t * top)876 static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) {
877   const __m128i zero = _mm_setzero_si128();
878   const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
879   const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
880   int y;
881   for (y = 0; y < 4; ++y, dst += BPS) {
882     const int val = top[-2 - y] - top[-1];
883     const __m128i base = _mm_set1_epi16(val);
884     const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
885     WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
886   }
887 }
888 
889 #undef DST
890 #undef AVG3
891 #undef AVG2
892 
893 //------------------------------------------------------------------------------
894 // luma 4x4 prediction
895 
896 // Left samples are top[-5 .. -2], top_left is top[-1], top are
897 // located at top[0..3], and top right is top[4..7]
Intra4Preds_SSE2(uint8_t * dst,const uint8_t * top)898 static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) {
899   DC4_SSE2(I4DC4 + dst, top);
900   TM4_SSE2(I4TM4 + dst, top);
901   VE4_SSE2(I4VE4 + dst, top);
902   HE4_SSE2(I4HE4 + dst, top);
903   RD4_SSE2(I4RD4 + dst, top);
904   VR4_SSE2(I4VR4 + dst, top);
905   LD4_SSE2(I4LD4 + dst, top);
906   VL4_SSE2(I4VL4 + dst, top);
907   HD4_SSE2(I4HD4 + dst, top);
908   HU4_SSE2(I4HU4 + dst, top);
909 }
910 
911 //------------------------------------------------------------------------------
912 // Chroma 8x8 prediction (paragraph 12.2)
913 
IntraChromaPreds_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)914 static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left,
915                                   const uint8_t* top) {
916   // U block
917   DC8uvMode_SSE2(C8DC8 + dst, left, top);
918   VerticalPred_SSE2(C8VE8 + dst, top, 8);
919   HorizontalPred_SSE2(C8HE8 + dst, left, 8);
920   TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
921   // V block
922   dst += 8;
923   if (top != NULL) top += 8;
924   if (left != NULL) left += 16;
925   DC8uvMode_SSE2(C8DC8 + dst, left, top);
926   VerticalPred_SSE2(C8VE8 + dst, top, 8);
927   HorizontalPred_SSE2(C8HE8 + dst, left, 8);
928   TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
929 }
930 
931 //------------------------------------------------------------------------------
932 // luma 16x16 prediction (paragraph 12.3)
933 
Intra16Preds_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)934 static void Intra16Preds_SSE2(uint8_t* dst,
935                               const uint8_t* left, const uint8_t* top) {
936   DC16Mode_SSE2(I16DC16 + dst, left, top);
937   VerticalPred_SSE2(I16VE16 + dst, top, 16);
938   HorizontalPred_SSE2(I16HE16 + dst, left, 16);
939   TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
940 }
941 
942 //------------------------------------------------------------------------------
943 // Metric
944 
SubtractAndAccumulate_SSE2(const __m128i a,const __m128i b,__m128i * const sum)945 static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
946                                                    const __m128i b,
947                                                    __m128i* const sum) {
948   // take abs(a-b) in 8b
949   const __m128i a_b = _mm_subs_epu8(a, b);
950   const __m128i b_a = _mm_subs_epu8(b, a);
951   const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
952   // zero-extend to 16b
953   const __m128i zero = _mm_setzero_si128();
954   const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
955   const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
956   // multiply with self
957   const __m128i sum1 = _mm_madd_epi16(C0, C0);
958   const __m128i sum2 = _mm_madd_epi16(C1, C1);
959   *sum = _mm_add_epi32(sum1, sum2);
960 }
961 
SSE_16xN_SSE2(const uint8_t * a,const uint8_t * b,int num_pairs)962 static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b,
963                                      int num_pairs) {
964   __m128i sum = _mm_setzero_si128();
965   int32_t tmp[4];
966   int i;
967 
968   for (i = 0; i < num_pairs; ++i) {
969     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
970     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
971     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
972     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
973     __m128i sum1, sum2;
974     SubtractAndAccumulate_SSE2(a0, b0, &sum1);
975     SubtractAndAccumulate_SSE2(a1, b1, &sum2);
976     sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
977     a += 2 * BPS;
978     b += 2 * BPS;
979   }
980   _mm_storeu_si128((__m128i*)tmp, sum);
981   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
982 }
983 
SSE16x16_SSE2(const uint8_t * a,const uint8_t * b)984 static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) {
985   return SSE_16xN_SSE2(a, b, 8);
986 }
987 
SSE16x8_SSE2(const uint8_t * a,const uint8_t * b)988 static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) {
989   return SSE_16xN_SSE2(a, b, 4);
990 }
991 
992 #define LOAD_8x16b(ptr) \
993   _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
994 
SSE8x8_SSE2(const uint8_t * a,const uint8_t * b)995 static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) {
996   const __m128i zero = _mm_setzero_si128();
997   int num_pairs = 4;
998   __m128i sum = zero;
999   int32_t tmp[4];
1000   while (num_pairs-- > 0) {
1001     const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1002     const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1003     const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1004     const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1005     // subtract
1006     const __m128i c0 = _mm_subs_epi16(a0, b0);
1007     const __m128i c1 = _mm_subs_epi16(a1, b1);
1008     // multiply/accumulate with self
1009     const __m128i d0 = _mm_madd_epi16(c0, c0);
1010     const __m128i d1 = _mm_madd_epi16(c1, c1);
1011     // collect
1012     const __m128i sum01 = _mm_add_epi32(d0, d1);
1013     sum = _mm_add_epi32(sum, sum01);
1014     a += 2 * BPS;
1015     b += 2 * BPS;
1016   }
1017   _mm_storeu_si128((__m128i*)tmp, sum);
1018   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1019 }
1020 #undef LOAD_8x16b
1021 
SSE4x4_SSE2(const uint8_t * a,const uint8_t * b)1022 static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) {
1023   const __m128i zero = _mm_setzero_si128();
1024 
1025   // Load values. Note that we read 8 pixels instead of 4,
1026   // but the a/b buffers are over-allocated to that effect.
1027   const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1028   const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1029   const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1030   const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1031   const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1032   const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1033   const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1034   const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1035   // Combine pair of lines.
1036   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1037   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1038   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1039   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1040   // Convert to 16b.
1041   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1042   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1043   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1044   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1045   // subtract, square and accumulate
1046   const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1047   const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1048   const __m128i e0 = _mm_madd_epi16(d0, d0);
1049   const __m128i e1 = _mm_madd_epi16(d1, d1);
1050   const __m128i sum = _mm_add_epi32(e0, e1);
1051 
1052   int32_t tmp[4];
1053   _mm_storeu_si128((__m128i*)tmp, sum);
1054   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1055 }
1056 
1057 //------------------------------------------------------------------------------
1058 
Mean16x4_SSE2(const uint8_t * ref,uint32_t dc[4])1059 static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) {
1060   const __m128i mask = _mm_set1_epi16(0x00ff);
1061   const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
1062   const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
1063   const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
1064   const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
1065   const __m128i b0 = _mm_srli_epi16(a0, 8);     // hi byte
1066   const __m128i b1 = _mm_srli_epi16(a1, 8);
1067   const __m128i b2 = _mm_srli_epi16(a2, 8);
1068   const __m128i b3 = _mm_srli_epi16(a3, 8);
1069   const __m128i c0 = _mm_and_si128(a0, mask);   // lo byte
1070   const __m128i c1 = _mm_and_si128(a1, mask);
1071   const __m128i c2 = _mm_and_si128(a2, mask);
1072   const __m128i c3 = _mm_and_si128(a3, mask);
1073   const __m128i d0 = _mm_add_epi32(b0, c0);
1074   const __m128i d1 = _mm_add_epi32(b1, c1);
1075   const __m128i d2 = _mm_add_epi32(b2, c2);
1076   const __m128i d3 = _mm_add_epi32(b3, c3);
1077   const __m128i e0 = _mm_add_epi32(d0, d1);
1078   const __m128i e1 = _mm_add_epi32(d2, d3);
1079   const __m128i f0 = _mm_add_epi32(e0, e1);
1080   uint16_t tmp[8];
1081   _mm_storeu_si128((__m128i*)tmp, f0);
1082   dc[0] = tmp[0] + tmp[1];
1083   dc[1] = tmp[2] + tmp[3];
1084   dc[2] = tmp[4] + tmp[5];
1085   dc[3] = tmp[6] + tmp[7];
1086 }
1087 
1088 //------------------------------------------------------------------------------
1089 // Texture distortion
1090 //
1091 // We try to match the spectral content (weighted) between source and
1092 // reconstructed samples.
1093 
1094 // Hadamard transform
1095 // Returns the weighted sum of the absolute value of transformed coefficients.
1096 // w[] contains a row-major 4 by 4 symmetric matrix.
TTransform_SSE2(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)1097 static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB,
1098                            const uint16_t* const w) {
1099   int32_t sum[4];
1100   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1101   const __m128i zero = _mm_setzero_si128();
1102 
1103   // Load and combine inputs.
1104   {
1105     const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1106     const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1107     const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1108     const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1109     const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1110     const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1111     const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1112     const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1113 
1114     // Combine inA and inB (we'll do two transforms in parallel).
1115     const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
1116     const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
1117     const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
1118     const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
1119     tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
1120     tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
1121     tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
1122     tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
1123     // a00 a01 a02 a03   b00 b01 b02 b03
1124     // a10 a11 a12 a13   b10 b11 b12 b13
1125     // a20 a21 a22 a23   b20 b21 b22 b23
1126     // a30 a31 a32 a33   b30 b31 b32 b33
1127   }
1128 
1129   // Vertical pass first to avoid a transpose (vertical and horizontal passes
1130   // are commutative because w/kWeightY is symmetric) and subsequent transpose.
1131   {
1132     // Calculate a and b (two 4x4 at once).
1133     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1134     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1135     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1136     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1137     const __m128i b0 = _mm_add_epi16(a0, a1);
1138     const __m128i b1 = _mm_add_epi16(a3, a2);
1139     const __m128i b2 = _mm_sub_epi16(a3, a2);
1140     const __m128i b3 = _mm_sub_epi16(a0, a1);
1141     // a00 a01 a02 a03   b00 b01 b02 b03
1142     // a10 a11 a12 a13   b10 b11 b12 b13
1143     // a20 a21 a22 a23   b20 b21 b22 b23
1144     // a30 a31 a32 a33   b30 b31 b32 b33
1145 
1146     // Transpose the two 4x4.
1147     VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
1148   }
1149 
1150   // Horizontal pass and difference of weighted sums.
1151   {
1152     // Load all inputs.
1153     const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1154     const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1155 
1156     // Calculate a and b (two 4x4 at once).
1157     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1158     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1159     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1160     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1161     const __m128i b0 = _mm_add_epi16(a0, a1);
1162     const __m128i b1 = _mm_add_epi16(a3, a2);
1163     const __m128i b2 = _mm_sub_epi16(a3, a2);
1164     const __m128i b3 = _mm_sub_epi16(a0, a1);
1165 
1166     // Separate the transforms of inA and inB.
1167     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1168     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1169     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1170     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1171 
1172     {
1173       const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1174       const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1175       const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1176       const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1177       A_b0 = _mm_max_epi16(A_b0, d0);   // abs(v), 16b
1178       A_b2 = _mm_max_epi16(A_b2, d1);
1179       B_b0 = _mm_max_epi16(B_b0, d2);
1180       B_b2 = _mm_max_epi16(B_b2, d3);
1181     }
1182 
1183     // weighted sums
1184     A_b0 = _mm_madd_epi16(A_b0, w_0);
1185     A_b2 = _mm_madd_epi16(A_b2, w_8);
1186     B_b0 = _mm_madd_epi16(B_b0, w_0);
1187     B_b2 = _mm_madd_epi16(B_b2, w_8);
1188     A_b0 = _mm_add_epi32(A_b0, A_b2);
1189     B_b0 = _mm_add_epi32(B_b0, B_b2);
1190 
1191     // difference of weighted sums
1192     A_b0 = _mm_sub_epi32(A_b0, B_b0);
1193     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1194   }
1195   return sum[0] + sum[1] + sum[2] + sum[3];
1196 }
1197 
Disto4x4_SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1198 static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b,
1199                          const uint16_t* const w) {
1200   const int diff_sum = TTransform_SSE2(a, b, w);
1201   return abs(diff_sum) >> 5;
1202 }
1203 
Disto16x16_SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1204 static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b,
1205                            const uint16_t* const w) {
1206   int D = 0;
1207   int x, y;
1208   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1209     for (x = 0; x < 16; x += 4) {
1210       D += Disto4x4_SSE2(a + x + y, b + x + y, w);
1211     }
1212   }
1213   return D;
1214 }
1215 
1216 //------------------------------------------------------------------------------
1217 // Quantization
1218 //
1219 
DoQuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)1220 static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1221                                             const uint16_t* const sharpen,
1222                                             const VP8Matrix* const mtx) {
1223   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1224   const __m128i zero = _mm_setzero_si128();
1225   __m128i coeff0, coeff8;
1226   __m128i out0, out8;
1227   __m128i packed_out;
1228 
1229   // Load all inputs.
1230   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1231   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1232   const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1233   const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1234   const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1235   const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1236 
1237   // extract sign(in)  (0x0000 if positive, 0xffff if negative)
1238   const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1239   const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1240 
1241   // coeff = abs(in) = (in ^ sign) - sign
1242   coeff0 = _mm_xor_si128(in0, sign0);
1243   coeff8 = _mm_xor_si128(in8, sign8);
1244   coeff0 = _mm_sub_epi16(coeff0, sign0);
1245   coeff8 = _mm_sub_epi16(coeff8, sign8);
1246 
1247   // coeff = abs(in) + sharpen
1248   if (sharpen != NULL) {
1249     const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1250     const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1251     coeff0 = _mm_add_epi16(coeff0, sharpen0);
1252     coeff8 = _mm_add_epi16(coeff8, sharpen8);
1253   }
1254 
1255   // out = (coeff * iQ + B) >> QFIX
1256   {
1257     // doing calculations with 32b precision (QFIX=17)
1258     // out = (coeff * iQ)
1259     const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1260     const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1261     const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1262     const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1263     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1264     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1265     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1266     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1267     // out = (coeff * iQ + B)
1268     const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1269     const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1270     const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1271     const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1272     out_00 = _mm_add_epi32(out_00, bias_00);
1273     out_04 = _mm_add_epi32(out_04, bias_04);
1274     out_08 = _mm_add_epi32(out_08, bias_08);
1275     out_12 = _mm_add_epi32(out_12, bias_12);
1276     // out = QUANTDIV(coeff, iQ, B, QFIX)
1277     out_00 = _mm_srai_epi32(out_00, QFIX);
1278     out_04 = _mm_srai_epi32(out_04, QFIX);
1279     out_08 = _mm_srai_epi32(out_08, QFIX);
1280     out_12 = _mm_srai_epi32(out_12, QFIX);
1281 
1282     // pack result as 16b
1283     out0 = _mm_packs_epi32(out_00, out_04);
1284     out8 = _mm_packs_epi32(out_08, out_12);
1285 
1286     // if (coeff > 2047) coeff = 2047
1287     out0 = _mm_min_epi16(out0, max_coeff_2047);
1288     out8 = _mm_min_epi16(out8, max_coeff_2047);
1289   }
1290 
1291   // get sign back (if (sign[j]) out_n = -out_n)
1292   out0 = _mm_xor_si128(out0, sign0);
1293   out8 = _mm_xor_si128(out8, sign8);
1294   out0 = _mm_sub_epi16(out0, sign0);
1295   out8 = _mm_sub_epi16(out8, sign8);
1296 
1297   // in = out * Q
1298   in0 = _mm_mullo_epi16(out0, q0);
1299   in8 = _mm_mullo_epi16(out8, q8);
1300 
1301   _mm_storeu_si128((__m128i*)&in[0], in0);
1302   _mm_storeu_si128((__m128i*)&in[8], in8);
1303 
1304   // zigzag the output before storing it.
1305   //
1306   // The zigzag pattern can almost be reproduced with a small sequence of
1307   // shuffles. After it, we only need to swap the 7th (ending up in third
1308   // position instead of twelfth) and 8th values.
1309   {
1310     __m128i outZ0, outZ8;
1311     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
1312     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1313     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1314     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
1315     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1316     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1317     _mm_storeu_si128((__m128i*)&out[0], outZ0);
1318     _mm_storeu_si128((__m128i*)&out[8], outZ8);
1319     packed_out = _mm_packs_epi16(outZ0, outZ8);
1320   }
1321   {
1322     const int16_t outZ_12 = out[12];
1323     const int16_t outZ_3 = out[3];
1324     out[3] = outZ_12;
1325     out[12] = outZ_3;
1326   }
1327 
1328   // detect if all 'out' values are zeroes or not
1329   return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1330 }
1331 
QuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1332 static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1333                               const VP8Matrix* const mtx) {
1334   return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
1335 }
1336 
QuantizeBlockWHT_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1337 static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
1338                                  const VP8Matrix* const mtx) {
1339   return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
1340 }
1341 
Quantize2Blocks_SSE2(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)1342 static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
1343                                 const VP8Matrix* const mtx) {
1344   int nz;
1345   const uint16_t* const sharpen = &mtx->sharpen_[0];
1346   nz  = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1347   nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1348   return nz;
1349 }
1350 
1351 //------------------------------------------------------------------------------
1352 // Entry point
1353 
1354 extern void VP8EncDspInitSSE2(void);
1355 
VP8EncDspInitSSE2(void)1356 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1357   VP8CollectHistogram = CollectHistogram_SSE2;
1358   VP8EncPredLuma16 = Intra16Preds_SSE2;
1359   VP8EncPredChroma8 = IntraChromaPreds_SSE2;
1360   VP8EncPredLuma4 = Intra4Preds_SSE2;
1361   VP8EncQuantizeBlock = QuantizeBlock_SSE2;
1362   VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
1363   VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
1364   VP8ITransform = ITransform_SSE2;
1365   VP8FTransform = FTransform_SSE2;
1366   VP8FTransform2 = FTransform2_SSE2;
1367   VP8FTransformWHT = FTransformWHT_SSE2;
1368   VP8SSE16x16 = SSE16x16_SSE2;
1369   VP8SSE16x8 = SSE16x8_SSE2;
1370   VP8SSE8x8 = SSE8x8_SSE2;
1371   VP8SSE4x4 = SSE4x4_SSE2;
1372   VP8TDisto4x4 = Disto4x4_SSE2;
1373   VP8TDisto16x16 = Disto16x16_SSE2;
1374   VP8Mean16x4 = Mean16x4_SSE2;
1375 }
1376 
1377 #else  // !WEBP_USE_SSE2
1378 
1379 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1380 
1381 #endif  // WEBP_USE_SSE2
1382