1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // For reference check out:
16 // https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
17 //
18 // Note that we only have partial C++11 support yet.
19 
20 #include "absl/debugging/internal/demangle.h"
21 
22 #include <cstdint>
23 #include <cstdio>
24 #include <limits>
25 
26 namespace absl {
27 ABSL_NAMESPACE_BEGIN
28 namespace debugging_internal {
29 
30 typedef struct {
31   const char *abbrev;
32   const char *real_name;
33   // Number of arguments in <expression> context, or 0 if disallowed.
34   int arity;
35 } AbbrevPair;
36 
37 // List of operators from Itanium C++ ABI.
38 static const AbbrevPair kOperatorList[] = {
39     // New has special syntax (not currently supported).
40     {"nw", "new", 0},
41     {"na", "new[]", 0},
42 
43     // Works except that the 'gs' prefix is not supported.
44     {"dl", "delete", 1},
45     {"da", "delete[]", 1},
46 
47     {"ps", "+", 1},  // "positive"
48     {"ng", "-", 1},  // "negative"
49     {"ad", "&", 1},  // "address-of"
50     {"de", "*", 1},  // "dereference"
51     {"co", "~", 1},
52 
53     {"pl", "+", 2},
54     {"mi", "-", 2},
55     {"ml", "*", 2},
56     {"dv", "/", 2},
57     {"rm", "%", 2},
58     {"an", "&", 2},
59     {"or", "|", 2},
60     {"eo", "^", 2},
61     {"aS", "=", 2},
62     {"pL", "+=", 2},
63     {"mI", "-=", 2},
64     {"mL", "*=", 2},
65     {"dV", "/=", 2},
66     {"rM", "%=", 2},
67     {"aN", "&=", 2},
68     {"oR", "|=", 2},
69     {"eO", "^=", 2},
70     {"ls", "<<", 2},
71     {"rs", ">>", 2},
72     {"lS", "<<=", 2},
73     {"rS", ">>=", 2},
74     {"eq", "==", 2},
75     {"ne", "!=", 2},
76     {"lt", "<", 2},
77     {"gt", ">", 2},
78     {"le", "<=", 2},
79     {"ge", ">=", 2},
80     {"nt", "!", 1},
81     {"aa", "&&", 2},
82     {"oo", "||", 2},
83     {"pp", "++", 1},
84     {"mm", "--", 1},
85     {"cm", ",", 2},
86     {"pm", "->*", 2},
87     {"pt", "->", 0},  // Special syntax
88     {"cl", "()", 0},  // Special syntax
89     {"ix", "[]", 2},
90     {"qu", "?", 3},
91     {"st", "sizeof", 0},  // Special syntax
92     {"sz", "sizeof", 1},  // Not a real operator name, but used in expressions.
93     {nullptr, nullptr, 0},
94 };
95 
96 // List of builtin types from Itanium C++ ABI.
97 //
98 // Invariant: only one- or two-character type abbreviations here.
99 static const AbbrevPair kBuiltinTypeList[] = {
100     {"v", "void", 0},
101     {"w", "wchar_t", 0},
102     {"b", "bool", 0},
103     {"c", "char", 0},
104     {"a", "signed char", 0},
105     {"h", "unsigned char", 0},
106     {"s", "short", 0},
107     {"t", "unsigned short", 0},
108     {"i", "int", 0},
109     {"j", "unsigned int", 0},
110     {"l", "long", 0},
111     {"m", "unsigned long", 0},
112     {"x", "long long", 0},
113     {"y", "unsigned long long", 0},
114     {"n", "__int128", 0},
115     {"o", "unsigned __int128", 0},
116     {"f", "float", 0},
117     {"d", "double", 0},
118     {"e", "long double", 0},
119     {"g", "__float128", 0},
120     {"z", "ellipsis", 0},
121 
122     {"De", "decimal128", 0},      // IEEE 754r decimal floating point (128 bits)
123     {"Dd", "decimal64", 0},       // IEEE 754r decimal floating point (64 bits)
124     {"Dc", "decltype(auto)", 0},
125     {"Da", "auto", 0},
126     {"Dn", "std::nullptr_t", 0},  // i.e., decltype(nullptr)
127     {"Df", "decimal32", 0},       // IEEE 754r decimal floating point (32 bits)
128     {"Di", "char32_t", 0},
129     {"Du", "char8_t", 0},
130     {"Ds", "char16_t", 0},
131     {"Dh", "float16", 0},         // IEEE 754r half-precision float (16 bits)
132     {nullptr, nullptr, 0},
133 };
134 
135 // List of substitutions Itanium C++ ABI.
136 static const AbbrevPair kSubstitutionList[] = {
137     {"St", "", 0},
138     {"Sa", "allocator", 0},
139     {"Sb", "basic_string", 0},
140     // std::basic_string<char, std::char_traits<char>,std::allocator<char> >
141     {"Ss", "string", 0},
142     // std::basic_istream<char, std::char_traits<char> >
143     {"Si", "istream", 0},
144     // std::basic_ostream<char, std::char_traits<char> >
145     {"So", "ostream", 0},
146     // std::basic_iostream<char, std::char_traits<char> >
147     {"Sd", "iostream", 0},
148     {nullptr, nullptr, 0},
149 };
150 
151 // State needed for demangling.  This struct is copied in almost every stack
152 // frame, so every byte counts.
153 typedef struct {
154   int mangled_idx;                   // Cursor of mangled name.
155   int out_cur_idx;                   // Cursor of output string.
156   int prev_name_idx;                 // For constructors/destructors.
157   signed int prev_name_length : 16;  // For constructors/destructors.
158   signed int nest_level : 15;        // For nested names.
159   unsigned int append : 1;           // Append flag.
160   // Note: for some reason MSVC can't pack "bool append : 1" into the same int
161   // with the above two fields, so we use an int instead.  Amusingly it can pack
162   // "signed bool" as expected, but relying on that to continue to be a legal
163   // type seems ill-advised (as it's illegal in at least clang).
164 } ParseState;
165 
166 static_assert(sizeof(ParseState) == 4 * sizeof(int),
167               "unexpected size of ParseState");
168 
169 // One-off state for demangling that's not subject to backtracking -- either
170 // constant data, data that's intentionally immune to backtracking (steps), or
171 // data that would never be changed by backtracking anyway (recursion_depth).
172 //
173 // Only one copy of this exists for each call to Demangle, so the size of this
174 // struct is nearly inconsequential.
175 typedef struct {
176   const char *mangled_begin;  // Beginning of input string.
177   char *out;                  // Beginning of output string.
178   int out_end_idx;            // One past last allowed output character.
179   int recursion_depth;        // For stack exhaustion prevention.
180   int steps;               // Cap how much work we'll do, regardless of depth.
181   ParseState parse_state;  // Backtrackable state copied for most frames.
182 } State;
183 
184 namespace {
185 // Prevent deep recursion / stack exhaustion.
186 // Also prevent unbounded handling of complex inputs.
187 class ComplexityGuard {
188  public:
ComplexityGuard(State * state)189   explicit ComplexityGuard(State *state) : state_(state) {
190     ++state->recursion_depth;
191     ++state->steps;
192   }
~ComplexityGuard()193   ~ComplexityGuard() { --state_->recursion_depth; }
194 
195   // 256 levels of recursion seems like a reasonable upper limit on depth.
196   // 128 is not enough to demagle synthetic tests from demangle_unittest.txt:
197   // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..."
198   static constexpr int kRecursionDepthLimit = 256;
199 
200   // We're trying to pick a charitable upper-limit on how many parse steps are
201   // necessary to handle something that a human could actually make use of.
202   // This is mostly in place as a bound on how much work we'll do if we are
203   // asked to demangle an mangled name from an untrusted source, so it should be
204   // much larger than the largest expected symbol, but much smaller than the
205   // amount of work we can do in, e.g., a second.
206   //
207   // Some real-world symbols from an arbitrary binary started failing between
208   // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set
209   // the limit.
210   //
211   // Spending one second on 2^17 parse steps would require each step to take
212   // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in
213   // under a second.
214   static constexpr int kParseStepsLimit = 1 << 17;
215 
IsTooComplex() const216   bool IsTooComplex() const {
217     return state_->recursion_depth > kRecursionDepthLimit ||
218            state_->steps > kParseStepsLimit;
219   }
220 
221  private:
222   State *state_;
223 };
224 }  // namespace
225 
226 // We don't use strlen() in libc since it's not guaranteed to be async
227 // signal safe.
StrLen(const char * str)228 static size_t StrLen(const char *str) {
229   size_t len = 0;
230   while (*str != '\0') {
231     ++str;
232     ++len;
233   }
234   return len;
235 }
236 
237 // Returns true if "str" has at least "n" characters remaining.
AtLeastNumCharsRemaining(const char * str,int n)238 static bool AtLeastNumCharsRemaining(const char *str, int n) {
239   for (int i = 0; i < n; ++i) {
240     if (str[i] == '\0') {
241       return false;
242     }
243   }
244   return true;
245 }
246 
247 // Returns true if "str" has "prefix" as a prefix.
StrPrefix(const char * str,const char * prefix)248 static bool StrPrefix(const char *str, const char *prefix) {
249   size_t i = 0;
250   while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) {
251     ++i;
252   }
253   return prefix[i] == '\0';  // Consumed everything in "prefix".
254 }
255 
InitState(State * state,const char * mangled,char * out,int out_size)256 static void InitState(State *state, const char *mangled, char *out,
257                       int out_size) {
258   state->mangled_begin = mangled;
259   state->out = out;
260   state->out_end_idx = out_size;
261   state->recursion_depth = 0;
262   state->steps = 0;
263 
264   state->parse_state.mangled_idx = 0;
265   state->parse_state.out_cur_idx = 0;
266   state->parse_state.prev_name_idx = 0;
267   state->parse_state.prev_name_length = -1;
268   state->parse_state.nest_level = -1;
269   state->parse_state.append = true;
270 }
271 
RemainingInput(State * state)272 static inline const char *RemainingInput(State *state) {
273   return &state->mangled_begin[state->parse_state.mangled_idx];
274 }
275 
276 // Returns true and advances "mangled_idx" if we find "one_char_token"
277 // at "mangled_idx" position.  It is assumed that "one_char_token" does
278 // not contain '\0'.
ParseOneCharToken(State * state,const char one_char_token)279 static bool ParseOneCharToken(State *state, const char one_char_token) {
280   ComplexityGuard guard(state);
281   if (guard.IsTooComplex()) return false;
282   if (RemainingInput(state)[0] == one_char_token) {
283     ++state->parse_state.mangled_idx;
284     return true;
285   }
286   return false;
287 }
288 
289 // Returns true and advances "mangled_cur" if we find "two_char_token"
290 // at "mangled_cur" position.  It is assumed that "two_char_token" does
291 // not contain '\0'.
ParseTwoCharToken(State * state,const char * two_char_token)292 static bool ParseTwoCharToken(State *state, const char *two_char_token) {
293   ComplexityGuard guard(state);
294   if (guard.IsTooComplex()) return false;
295   if (RemainingInput(state)[0] == two_char_token[0] &&
296       RemainingInput(state)[1] == two_char_token[1]) {
297     state->parse_state.mangled_idx += 2;
298     return true;
299   }
300   return false;
301 }
302 
303 // Returns true and advances "mangled_cur" if we find any character in
304 // "char_class" at "mangled_cur" position.
ParseCharClass(State * state,const char * char_class)305 static bool ParseCharClass(State *state, const char *char_class) {
306   ComplexityGuard guard(state);
307   if (guard.IsTooComplex()) return false;
308   if (RemainingInput(state)[0] == '\0') {
309     return false;
310   }
311   const char *p = char_class;
312   for (; *p != '\0'; ++p) {
313     if (RemainingInput(state)[0] == *p) {
314       ++state->parse_state.mangled_idx;
315       return true;
316     }
317   }
318   return false;
319 }
320 
ParseDigit(State * state,int * digit)321 static bool ParseDigit(State *state, int *digit) {
322   char c = RemainingInput(state)[0];
323   if (ParseCharClass(state, "0123456789")) {
324     if (digit != nullptr) {
325       *digit = c - '0';
326     }
327     return true;
328   }
329   return false;
330 }
331 
332 // This function is used for handling an optional non-terminal.
Optional(bool)333 static bool Optional(bool /*status*/) { return true; }
334 
335 // This function is used for handling <non-terminal>+ syntax.
336 typedef bool (*ParseFunc)(State *);
OneOrMore(ParseFunc parse_func,State * state)337 static bool OneOrMore(ParseFunc parse_func, State *state) {
338   if (parse_func(state)) {
339     while (parse_func(state)) {
340     }
341     return true;
342   }
343   return false;
344 }
345 
346 // This function is used for handling <non-terminal>* syntax. The function
347 // always returns true and must be followed by a termination token or a
348 // terminating sequence not handled by parse_func (e.g.
349 // ParseOneCharToken(state, 'E')).
ZeroOrMore(ParseFunc parse_func,State * state)350 static bool ZeroOrMore(ParseFunc parse_func, State *state) {
351   while (parse_func(state)) {
352   }
353   return true;
354 }
355 
356 // Append "str" at "out_cur_idx".  If there is an overflow, out_cur_idx is
357 // set to out_end_idx+1.  The output string is ensured to
358 // always terminate with '\0' as long as there is no overflow.
Append(State * state,const char * const str,const int length)359 static void Append(State *state, const char *const str, const int length) {
360   for (int i = 0; i < length; ++i) {
361     if (state->parse_state.out_cur_idx + 1 <
362         state->out_end_idx) {  // +1 for '\0'
363       state->out[state->parse_state.out_cur_idx++] = str[i];
364     } else {
365       // signal overflow
366       state->parse_state.out_cur_idx = state->out_end_idx + 1;
367       break;
368     }
369   }
370   if (state->parse_state.out_cur_idx < state->out_end_idx) {
371     state->out[state->parse_state.out_cur_idx] =
372         '\0';  // Terminate it with '\0'
373   }
374 }
375 
376 // We don't use equivalents in libc to avoid locale issues.
IsLower(char c)377 static bool IsLower(char c) { return c >= 'a' && c <= 'z'; }
378 
IsAlpha(char c)379 static bool IsAlpha(char c) {
380   return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
381 }
382 
IsDigit(char c)383 static bool IsDigit(char c) { return c >= '0' && c <= '9'; }
384 
385 // Returns true if "str" is a function clone suffix.  These suffixes are used
386 // by GCC 4.5.x and later versions (and our locally-modified version of GCC
387 // 4.4.x) to indicate functions which have been cloned during optimization.
388 // We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix.
IsFunctionCloneSuffix(const char * str)389 static bool IsFunctionCloneSuffix(const char *str) {
390   size_t i = 0;
391   while (str[i] != '\0') {
392     // Consume a single .<alpha>+.<digit>+ sequence.
393     if (str[i] != '.' || !IsAlpha(str[i + 1])) {
394       return false;
395     }
396     i += 2;
397     while (IsAlpha(str[i])) {
398       ++i;
399     }
400     if (str[i] != '.' || !IsDigit(str[i + 1])) {
401       return false;
402     }
403     i += 2;
404     while (IsDigit(str[i])) {
405       ++i;
406     }
407   }
408   return true;  // Consumed everything in "str".
409 }
410 
EndsWith(State * state,const char chr)411 static bool EndsWith(State *state, const char chr) {
412   return state->parse_state.out_cur_idx > 0 &&
413          state->parse_state.out_cur_idx < state->out_end_idx &&
414          chr == state->out[state->parse_state.out_cur_idx - 1];
415 }
416 
417 // Append "str" with some tweaks, iff "append" state is true.
MaybeAppendWithLength(State * state,const char * const str,const int length)418 static void MaybeAppendWithLength(State *state, const char *const str,
419                                   const int length) {
420   if (state->parse_state.append && length > 0) {
421     // Append a space if the output buffer ends with '<' and "str"
422     // starts with '<' to avoid <<<.
423     if (str[0] == '<' && EndsWith(state, '<')) {
424       Append(state, " ", 1);
425     }
426     // Remember the last identifier name for ctors/dtors,
427     // but only if we haven't yet overflown the buffer.
428     if (state->parse_state.out_cur_idx < state->out_end_idx &&
429         (IsAlpha(str[0]) || str[0] == '_')) {
430       state->parse_state.prev_name_idx = state->parse_state.out_cur_idx;
431       state->parse_state.prev_name_length = length;
432     }
433     Append(state, str, length);
434   }
435 }
436 
437 // Appends a positive decimal number to the output if appending is enabled.
MaybeAppendDecimal(State * state,unsigned int val)438 static bool MaybeAppendDecimal(State *state, unsigned int val) {
439   // Max {32-64}-bit unsigned int is 20 digits.
440   constexpr size_t kMaxLength = 20;
441   char buf[kMaxLength];
442 
443   // We can't use itoa or sprintf as neither is specified to be
444   // async-signal-safe.
445   if (state->parse_state.append) {
446     // We can't have a one-before-the-beginning pointer, so instead start with
447     // one-past-the-end and manipulate one character before the pointer.
448     char *p = &buf[kMaxLength];
449     do {  // val=0 is the only input that should write a leading zero digit.
450       *--p = (val % 10) + '0';
451       val /= 10;
452     } while (p > buf && val != 0);
453 
454     // 'p' landed on the last character we set.  How convenient.
455     Append(state, p, kMaxLength - (p - buf));
456   }
457 
458   return true;
459 }
460 
461 // A convenient wrapper around MaybeAppendWithLength().
462 // Returns true so that it can be placed in "if" conditions.
MaybeAppend(State * state,const char * const str)463 static bool MaybeAppend(State *state, const char *const str) {
464   if (state->parse_state.append) {
465     int length = StrLen(str);
466     MaybeAppendWithLength(state, str, length);
467   }
468   return true;
469 }
470 
471 // This function is used for handling nested names.
EnterNestedName(State * state)472 static bool EnterNestedName(State *state) {
473   state->parse_state.nest_level = 0;
474   return true;
475 }
476 
477 // This function is used for handling nested names.
LeaveNestedName(State * state,int16_t prev_value)478 static bool LeaveNestedName(State *state, int16_t prev_value) {
479   state->parse_state.nest_level = prev_value;
480   return true;
481 }
482 
483 // Disable the append mode not to print function parameters, etc.
DisableAppend(State * state)484 static bool DisableAppend(State *state) {
485   state->parse_state.append = false;
486   return true;
487 }
488 
489 // Restore the append mode to the previous state.
RestoreAppend(State * state,bool prev_value)490 static bool RestoreAppend(State *state, bool prev_value) {
491   state->parse_state.append = prev_value;
492   return true;
493 }
494 
495 // Increase the nest level for nested names.
MaybeIncreaseNestLevel(State * state)496 static void MaybeIncreaseNestLevel(State *state) {
497   if (state->parse_state.nest_level > -1) {
498     ++state->parse_state.nest_level;
499   }
500 }
501 
502 // Appends :: for nested names if necessary.
MaybeAppendSeparator(State * state)503 static void MaybeAppendSeparator(State *state) {
504   if (state->parse_state.nest_level >= 1) {
505     MaybeAppend(state, "::");
506   }
507 }
508 
509 // Cancel the last separator if necessary.
MaybeCancelLastSeparator(State * state)510 static void MaybeCancelLastSeparator(State *state) {
511   if (state->parse_state.nest_level >= 1 && state->parse_state.append &&
512       state->parse_state.out_cur_idx >= 2) {
513     state->parse_state.out_cur_idx -= 2;
514     state->out[state->parse_state.out_cur_idx] = '\0';
515   }
516 }
517 
518 // Returns true if the identifier of the given length pointed to by
519 // "mangled_cur" is anonymous namespace.
IdentifierIsAnonymousNamespace(State * state,int length)520 static bool IdentifierIsAnonymousNamespace(State *state, int length) {
521   // Returns true if "anon_prefix" is a proper prefix of "mangled_cur".
522   static const char anon_prefix[] = "_GLOBAL__N_";
523   return (length > static_cast<int>(sizeof(anon_prefix) - 1) &&
524           StrPrefix(RemainingInput(state), anon_prefix));
525 }
526 
527 // Forward declarations of our parsing functions.
528 static bool ParseMangledName(State *state);
529 static bool ParseEncoding(State *state);
530 static bool ParseName(State *state);
531 static bool ParseUnscopedName(State *state);
532 static bool ParseNestedName(State *state);
533 static bool ParsePrefix(State *state);
534 static bool ParseUnqualifiedName(State *state);
535 static bool ParseSourceName(State *state);
536 static bool ParseLocalSourceName(State *state);
537 static bool ParseUnnamedTypeName(State *state);
538 static bool ParseNumber(State *state, int *number_out);
539 static bool ParseFloatNumber(State *state);
540 static bool ParseSeqId(State *state);
541 static bool ParseIdentifier(State *state, int length);
542 static bool ParseOperatorName(State *state, int *arity);
543 static bool ParseSpecialName(State *state);
544 static bool ParseCallOffset(State *state);
545 static bool ParseNVOffset(State *state);
546 static bool ParseVOffset(State *state);
547 static bool ParseCtorDtorName(State *state);
548 static bool ParseDecltype(State *state);
549 static bool ParseType(State *state);
550 static bool ParseCVQualifiers(State *state);
551 static bool ParseBuiltinType(State *state);
552 static bool ParseFunctionType(State *state);
553 static bool ParseBareFunctionType(State *state);
554 static bool ParseClassEnumType(State *state);
555 static bool ParseArrayType(State *state);
556 static bool ParsePointerToMemberType(State *state);
557 static bool ParseTemplateParam(State *state);
558 static bool ParseTemplateTemplateParam(State *state);
559 static bool ParseTemplateArgs(State *state);
560 static bool ParseTemplateArg(State *state);
561 static bool ParseBaseUnresolvedName(State *state);
562 static bool ParseUnresolvedName(State *state);
563 static bool ParseExpression(State *state);
564 static bool ParseExprPrimary(State *state);
565 static bool ParseExprCastValue(State *state);
566 static bool ParseLocalName(State *state);
567 static bool ParseLocalNameSuffix(State *state);
568 static bool ParseDiscriminator(State *state);
569 static bool ParseSubstitution(State *state, bool accept_std);
570 
571 // Implementation note: the following code is a straightforward
572 // translation of the Itanium C++ ABI defined in BNF with a couple of
573 // exceptions.
574 //
575 // - Support GNU extensions not defined in the Itanium C++ ABI
576 // - <prefix> and <template-prefix> are combined to avoid infinite loop
577 // - Reorder patterns to shorten the code
578 // - Reorder patterns to give greedier functions precedence
579 //   We'll mark "Less greedy than" for these cases in the code
580 //
581 // Each parsing function changes the parse state and returns true on
582 // success, or returns false and doesn't change the parse state (note:
583 // the parse-steps counter increases regardless of success or failure).
584 // To ensure that the parse state isn't changed in the latter case, we
585 // save the original state before we call multiple parsing functions
586 // consecutively with &&, and restore it if unsuccessful.  See
587 // ParseEncoding() as an example of this convention.  We follow the
588 // convention throughout the code.
589 //
590 // Originally we tried to do demangling without following the full ABI
591 // syntax but it turned out we needed to follow the full syntax to
592 // parse complicated cases like nested template arguments.  Note that
593 // implementing a full-fledged demangler isn't trivial (libiberty's
594 // cp-demangle.c has +4300 lines).
595 //
596 // Note that (foo) in <(foo) ...> is a modifier to be ignored.
597 //
598 // Reference:
599 // - Itanium C++ ABI
600 //   <https://mentorembedded.github.io/cxx-abi/abi.html#mangling>
601 
602 // <mangled-name> ::= _Z <encoding>
ParseMangledName(State * state)603 static bool ParseMangledName(State *state) {
604   ComplexityGuard guard(state);
605   if (guard.IsTooComplex()) return false;
606   return ParseTwoCharToken(state, "_Z") && ParseEncoding(state);
607 }
608 
609 // <encoding> ::= <(function) name> <bare-function-type>
610 //            ::= <(data) name>
611 //            ::= <special-name>
ParseEncoding(State * state)612 static bool ParseEncoding(State *state) {
613   ComplexityGuard guard(state);
614   if (guard.IsTooComplex()) return false;
615   // Implementing the first two productions together as <name>
616   // [<bare-function-type>] avoids exponential blowup of backtracking.
617   //
618   // Since Optional(...) can't fail, there's no need to copy the state for
619   // backtracking.
620   if (ParseName(state) && Optional(ParseBareFunctionType(state))) {
621     return true;
622   }
623 
624   if (ParseSpecialName(state)) {
625     return true;
626   }
627   return false;
628 }
629 
630 // <name> ::= <nested-name>
631 //        ::= <unscoped-template-name> <template-args>
632 //        ::= <unscoped-name>
633 //        ::= <local-name>
ParseName(State * state)634 static bool ParseName(State *state) {
635   ComplexityGuard guard(state);
636   if (guard.IsTooComplex()) return false;
637   if (ParseNestedName(state) || ParseLocalName(state)) {
638     return true;
639   }
640 
641   // We reorganize the productions to avoid re-parsing unscoped names.
642   // - Inline <unscoped-template-name> productions:
643   //   <name> ::= <substitution> <template-args>
644   //          ::= <unscoped-name> <template-args>
645   //          ::= <unscoped-name>
646   // - Merge the two productions that start with unscoped-name:
647   //   <name> ::= <unscoped-name> [<template-args>]
648 
649   ParseState copy = state->parse_state;
650   // "std<...>" isn't a valid name.
651   if (ParseSubstitution(state, /*accept_std=*/false) &&
652       ParseTemplateArgs(state)) {
653     return true;
654   }
655   state->parse_state = copy;
656 
657   // Note there's no need to restore state after this since only the first
658   // subparser can fail.
659   return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state));
660 }
661 
662 // <unscoped-name> ::= <unqualified-name>
663 //                 ::= St <unqualified-name>
ParseUnscopedName(State * state)664 static bool ParseUnscopedName(State *state) {
665   ComplexityGuard guard(state);
666   if (guard.IsTooComplex()) return false;
667   if (ParseUnqualifiedName(state)) {
668     return true;
669   }
670 
671   ParseState copy = state->parse_state;
672   if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") &&
673       ParseUnqualifiedName(state)) {
674     return true;
675   }
676   state->parse_state = copy;
677   return false;
678 }
679 
680 // <ref-qualifer> ::= R // lvalue method reference qualifier
681 //                ::= O // rvalue method reference qualifier
ParseRefQualifier(State * state)682 static inline bool ParseRefQualifier(State *state) {
683   return ParseCharClass(state, "OR");
684 }
685 
686 // <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix>
687 //                   <unqualified-name> E
688 //               ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
689 //                   <template-args> E
ParseNestedName(State * state)690 static bool ParseNestedName(State *state) {
691   ComplexityGuard guard(state);
692   if (guard.IsTooComplex()) return false;
693   ParseState copy = state->parse_state;
694   if (ParseOneCharToken(state, 'N') && EnterNestedName(state) &&
695       Optional(ParseCVQualifiers(state)) &&
696       Optional(ParseRefQualifier(state)) && ParsePrefix(state) &&
697       LeaveNestedName(state, copy.nest_level) &&
698       ParseOneCharToken(state, 'E')) {
699     return true;
700   }
701   state->parse_state = copy;
702   return false;
703 }
704 
705 // This part is tricky.  If we literally translate them to code, we'll
706 // end up infinite loop.  Hence we merge them to avoid the case.
707 //
708 // <prefix> ::= <prefix> <unqualified-name>
709 //          ::= <template-prefix> <template-args>
710 //          ::= <template-param>
711 //          ::= <substitution>
712 //          ::= # empty
713 // <template-prefix> ::= <prefix> <(template) unqualified-name>
714 //                   ::= <template-param>
715 //                   ::= <substitution>
ParsePrefix(State * state)716 static bool ParsePrefix(State *state) {
717   ComplexityGuard guard(state);
718   if (guard.IsTooComplex()) return false;
719   bool has_something = false;
720   while (true) {
721     MaybeAppendSeparator(state);
722     if (ParseTemplateParam(state) ||
723         ParseSubstitution(state, /*accept_std=*/true) ||
724         ParseUnscopedName(state) ||
725         (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) {
726       has_something = true;
727       MaybeIncreaseNestLevel(state);
728       continue;
729     }
730     MaybeCancelLastSeparator(state);
731     if (has_something && ParseTemplateArgs(state)) {
732       return ParsePrefix(state);
733     } else {
734       break;
735     }
736   }
737   return true;
738 }
739 
740 // <unqualified-name> ::= <operator-name>
741 //                    ::= <ctor-dtor-name>
742 //                    ::= <source-name>
743 //                    ::= <local-source-name> // GCC extension; see below.
744 //                    ::= <unnamed-type-name>
ParseUnqualifiedName(State * state)745 static bool ParseUnqualifiedName(State *state) {
746   ComplexityGuard guard(state);
747   if (guard.IsTooComplex()) return false;
748   return (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) ||
749           ParseSourceName(state) || ParseLocalSourceName(state) ||
750           ParseUnnamedTypeName(state));
751 }
752 
753 // <source-name> ::= <positive length number> <identifier>
ParseSourceName(State * state)754 static bool ParseSourceName(State *state) {
755   ComplexityGuard guard(state);
756   if (guard.IsTooComplex()) return false;
757   ParseState copy = state->parse_state;
758   int length = -1;
759   if (ParseNumber(state, &length) && ParseIdentifier(state, length)) {
760     return true;
761   }
762   state->parse_state = copy;
763   return false;
764 }
765 
766 // <local-source-name> ::= L <source-name> [<discriminator>]
767 //
768 // References:
769 //   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775
770 //   https://gcc.gnu.org/viewcvs?view=rev&revision=124467
ParseLocalSourceName(State * state)771 static bool ParseLocalSourceName(State *state) {
772   ComplexityGuard guard(state);
773   if (guard.IsTooComplex()) return false;
774   ParseState copy = state->parse_state;
775   if (ParseOneCharToken(state, 'L') && ParseSourceName(state) &&
776       Optional(ParseDiscriminator(state))) {
777     return true;
778   }
779   state->parse_state = copy;
780   return false;
781 }
782 
783 // <unnamed-type-name> ::= Ut [<(nonnegative) number>] _
784 //                     ::= <closure-type-name>
785 // <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _
786 // <lambda-sig>        ::= <(parameter) type>+
ParseUnnamedTypeName(State * state)787 static bool ParseUnnamedTypeName(State *state) {
788   ComplexityGuard guard(state);
789   if (guard.IsTooComplex()) return false;
790   ParseState copy = state->parse_state;
791   // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }.
792   // Optionally parse the encoded value into 'which' and add 2 to get the index.
793   int which = -1;
794 
795   // Unnamed type local to function or class.
796   if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) &&
797       which <= std::numeric_limits<int>::max() - 2 &&  // Don't overflow.
798       ParseOneCharToken(state, '_')) {
799     MaybeAppend(state, "{unnamed type#");
800     MaybeAppendDecimal(state, 2 + which);
801     MaybeAppend(state, "}");
802     return true;
803   }
804   state->parse_state = copy;
805 
806   // Closure type.
807   which = -1;
808   if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) &&
809       OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) &&
810       ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) &&
811       which <= std::numeric_limits<int>::max() - 2 &&  // Don't overflow.
812       ParseOneCharToken(state, '_')) {
813     MaybeAppend(state, "{lambda()#");
814     MaybeAppendDecimal(state, 2 + which);
815     MaybeAppend(state, "}");
816     return true;
817   }
818   state->parse_state = copy;
819 
820   return false;
821 }
822 
823 // <number> ::= [n] <non-negative decimal integer>
824 // If "number_out" is non-null, then *number_out is set to the value of the
825 // parsed number on success.
ParseNumber(State * state,int * number_out)826 static bool ParseNumber(State *state, int *number_out) {
827   ComplexityGuard guard(state);
828   if (guard.IsTooComplex()) return false;
829   bool negative = false;
830   if (ParseOneCharToken(state, 'n')) {
831     negative = true;
832   }
833   const char *p = RemainingInput(state);
834   uint64_t number = 0;
835   for (; *p != '\0'; ++p) {
836     if (IsDigit(*p)) {
837       number = number * 10 + (*p - '0');
838     } else {
839       break;
840     }
841   }
842   // Apply the sign with uint64_t arithmetic so overflows aren't UB.  Gives
843   // "incorrect" results for out-of-range inputs, but negative values only
844   // appear for literals, which aren't printed.
845   if (negative) {
846     number = ~number + 1;
847   }
848   if (p != RemainingInput(state)) {  // Conversion succeeded.
849     state->parse_state.mangled_idx += p - RemainingInput(state);
850     if (number_out != nullptr) {
851       // Note: possibly truncate "number".
852       *number_out = number;
853     }
854     return true;
855   }
856   return false;
857 }
858 
859 // Floating-point literals are encoded using a fixed-length lowercase
860 // hexadecimal string.
ParseFloatNumber(State * state)861 static bool ParseFloatNumber(State *state) {
862   ComplexityGuard guard(state);
863   if (guard.IsTooComplex()) return false;
864   const char *p = RemainingInput(state);
865   for (; *p != '\0'; ++p) {
866     if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) {
867       break;
868     }
869   }
870   if (p != RemainingInput(state)) {  // Conversion succeeded.
871     state->parse_state.mangled_idx += p - RemainingInput(state);
872     return true;
873   }
874   return false;
875 }
876 
877 // The <seq-id> is a sequence number in base 36,
878 // using digits and upper case letters
ParseSeqId(State * state)879 static bool ParseSeqId(State *state) {
880   ComplexityGuard guard(state);
881   if (guard.IsTooComplex()) return false;
882   const char *p = RemainingInput(state);
883   for (; *p != '\0'; ++p) {
884     if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) {
885       break;
886     }
887   }
888   if (p != RemainingInput(state)) {  // Conversion succeeded.
889     state->parse_state.mangled_idx += p - RemainingInput(state);
890     return true;
891   }
892   return false;
893 }
894 
895 // <identifier> ::= <unqualified source code identifier> (of given length)
ParseIdentifier(State * state,int length)896 static bool ParseIdentifier(State *state, int length) {
897   ComplexityGuard guard(state);
898   if (guard.IsTooComplex()) return false;
899   if (length < 0 || !AtLeastNumCharsRemaining(RemainingInput(state), length)) {
900     return false;
901   }
902   if (IdentifierIsAnonymousNamespace(state, length)) {
903     MaybeAppend(state, "(anonymous namespace)");
904   } else {
905     MaybeAppendWithLength(state, RemainingInput(state), length);
906   }
907   state->parse_state.mangled_idx += length;
908   return true;
909 }
910 
911 // <operator-name> ::= nw, and other two letters cases
912 //                 ::= cv <type>  # (cast)
913 //                 ::= v  <digit> <source-name> # vendor extended operator
ParseOperatorName(State * state,int * arity)914 static bool ParseOperatorName(State *state, int *arity) {
915   ComplexityGuard guard(state);
916   if (guard.IsTooComplex()) return false;
917   if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) {
918     return false;
919   }
920   // First check with "cv" (cast) case.
921   ParseState copy = state->parse_state;
922   if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") &&
923       EnterNestedName(state) && ParseType(state) &&
924       LeaveNestedName(state, copy.nest_level)) {
925     if (arity != nullptr) {
926       *arity = 1;
927     }
928     return true;
929   }
930   state->parse_state = copy;
931 
932   // Then vendor extended operators.
933   if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) &&
934       ParseSourceName(state)) {
935     return true;
936   }
937   state->parse_state = copy;
938 
939   // Other operator names should start with a lower alphabet followed
940   // by a lower/upper alphabet.
941   if (!(IsLower(RemainingInput(state)[0]) &&
942         IsAlpha(RemainingInput(state)[1]))) {
943     return false;
944   }
945   // We may want to perform a binary search if we really need speed.
946   const AbbrevPair *p;
947   for (p = kOperatorList; p->abbrev != nullptr; ++p) {
948     if (RemainingInput(state)[0] == p->abbrev[0] &&
949         RemainingInput(state)[1] == p->abbrev[1]) {
950       if (arity != nullptr) {
951         *arity = p->arity;
952       }
953       MaybeAppend(state, "operator");
954       if (IsLower(*p->real_name)) {  // new, delete, etc.
955         MaybeAppend(state, " ");
956       }
957       MaybeAppend(state, p->real_name);
958       state->parse_state.mangled_idx += 2;
959       return true;
960     }
961   }
962   return false;
963 }
964 
965 // <special-name> ::= TV <type>
966 //                ::= TT <type>
967 //                ::= TI <type>
968 //                ::= TS <type>
969 //                ::= TH <type>  # thread-local
970 //                ::= Tc <call-offset> <call-offset> <(base) encoding>
971 //                ::= GV <(object) name>
972 //                ::= T <call-offset> <(base) encoding>
973 // G++ extensions:
974 //                ::= TC <type> <(offset) number> _ <(base) type>
975 //                ::= TF <type>
976 //                ::= TJ <type>
977 //                ::= GR <name>
978 //                ::= GA <encoding>
979 //                ::= Th <call-offset> <(base) encoding>
980 //                ::= Tv <call-offset> <(base) encoding>
981 //
982 // Note: we don't care much about them since they don't appear in
983 // stack traces.  The are special data.
ParseSpecialName(State * state)984 static bool ParseSpecialName(State *state) {
985   ComplexityGuard guard(state);
986   if (guard.IsTooComplex()) return false;
987   ParseState copy = state->parse_state;
988   if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTISH") &&
989       ParseType(state)) {
990     return true;
991   }
992   state->parse_state = copy;
993 
994   if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) &&
995       ParseCallOffset(state) && ParseEncoding(state)) {
996     return true;
997   }
998   state->parse_state = copy;
999 
1000   if (ParseTwoCharToken(state, "GV") && ParseName(state)) {
1001     return true;
1002   }
1003   state->parse_state = copy;
1004 
1005   if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) &&
1006       ParseEncoding(state)) {
1007     return true;
1008   }
1009   state->parse_state = copy;
1010 
1011   // G++ extensions
1012   if (ParseTwoCharToken(state, "TC") && ParseType(state) &&
1013       ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
1014       DisableAppend(state) && ParseType(state)) {
1015     RestoreAppend(state, copy.append);
1016     return true;
1017   }
1018   state->parse_state = copy;
1019 
1020   if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") &&
1021       ParseType(state)) {
1022     return true;
1023   }
1024   state->parse_state = copy;
1025 
1026   if (ParseTwoCharToken(state, "GR") && ParseName(state)) {
1027     return true;
1028   }
1029   state->parse_state = copy;
1030 
1031   if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) {
1032     return true;
1033   }
1034   state->parse_state = copy;
1035 
1036   if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") &&
1037       ParseCallOffset(state) && ParseEncoding(state)) {
1038     return true;
1039   }
1040   state->parse_state = copy;
1041   return false;
1042 }
1043 
1044 // <call-offset> ::= h <nv-offset> _
1045 //               ::= v <v-offset> _
ParseCallOffset(State * state)1046 static bool ParseCallOffset(State *state) {
1047   ComplexityGuard guard(state);
1048   if (guard.IsTooComplex()) return false;
1049   ParseState copy = state->parse_state;
1050   if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) &&
1051       ParseOneCharToken(state, '_')) {
1052     return true;
1053   }
1054   state->parse_state = copy;
1055 
1056   if (ParseOneCharToken(state, 'v') && ParseVOffset(state) &&
1057       ParseOneCharToken(state, '_')) {
1058     return true;
1059   }
1060   state->parse_state = copy;
1061 
1062   return false;
1063 }
1064 
1065 // <nv-offset> ::= <(offset) number>
ParseNVOffset(State * state)1066 static bool ParseNVOffset(State *state) {
1067   ComplexityGuard guard(state);
1068   if (guard.IsTooComplex()) return false;
1069   return ParseNumber(state, nullptr);
1070 }
1071 
1072 // <v-offset>  ::= <(offset) number> _ <(virtual offset) number>
ParseVOffset(State * state)1073 static bool ParseVOffset(State *state) {
1074   ComplexityGuard guard(state);
1075   if (guard.IsTooComplex()) return false;
1076   ParseState copy = state->parse_state;
1077   if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
1078       ParseNumber(state, nullptr)) {
1079     return true;
1080   }
1081   state->parse_state = copy;
1082   return false;
1083 }
1084 
1085 // <ctor-dtor-name> ::= C1 | C2 | C3 | CI1 <base-class-type> | CI2
1086 // <base-class-type>
1087 //                  ::= D0 | D1 | D2
1088 // # GCC extensions: "unified" constructor/destructor.  See
1089 // #
1090 // https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847
1091 //                  ::= C4 | D4
ParseCtorDtorName(State * state)1092 static bool ParseCtorDtorName(State *state) {
1093   ComplexityGuard guard(state);
1094   if (guard.IsTooComplex()) return false;
1095   ParseState copy = state->parse_state;
1096   if (ParseOneCharToken(state, 'C')) {
1097     if (ParseCharClass(state, "1234")) {
1098       const char *const prev_name =
1099           state->out + state->parse_state.prev_name_idx;
1100       MaybeAppendWithLength(state, prev_name,
1101                             state->parse_state.prev_name_length);
1102       return true;
1103     } else if (ParseOneCharToken(state, 'I') && ParseCharClass(state, "12") &&
1104                ParseClassEnumType(state)) {
1105       return true;
1106     }
1107   }
1108   state->parse_state = copy;
1109 
1110   if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) {
1111     const char *const prev_name = state->out + state->parse_state.prev_name_idx;
1112     MaybeAppend(state, "~");
1113     MaybeAppendWithLength(state, prev_name,
1114                           state->parse_state.prev_name_length);
1115     return true;
1116   }
1117   state->parse_state = copy;
1118   return false;
1119 }
1120 
1121 // <decltype> ::= Dt <expression> E  # decltype of an id-expression or class
1122 //                                   # member access (C++0x)
1123 //            ::= DT <expression> E  # decltype of an expression (C++0x)
ParseDecltype(State * state)1124 static bool ParseDecltype(State *state) {
1125   ComplexityGuard guard(state);
1126   if (guard.IsTooComplex()) return false;
1127 
1128   ParseState copy = state->parse_state;
1129   if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") &&
1130       ParseExpression(state) && ParseOneCharToken(state, 'E')) {
1131     return true;
1132   }
1133   state->parse_state = copy;
1134 
1135   return false;
1136 }
1137 
1138 // <type> ::= <CV-qualifiers> <type>
1139 //        ::= P <type>   # pointer-to
1140 //        ::= R <type>   # reference-to
1141 //        ::= O <type>   # rvalue reference-to (C++0x)
1142 //        ::= C <type>   # complex pair (C 2000)
1143 //        ::= G <type>   # imaginary (C 2000)
1144 //        ::= U <source-name> <type>  # vendor extended type qualifier
1145 //        ::= <builtin-type>
1146 //        ::= <function-type>
1147 //        ::= <class-enum-type>  # note: just an alias for <name>
1148 //        ::= <array-type>
1149 //        ::= <pointer-to-member-type>
1150 //        ::= <template-template-param> <template-args>
1151 //        ::= <template-param>
1152 //        ::= <decltype>
1153 //        ::= <substitution>
1154 //        ::= Dp <type>          # pack expansion of (C++0x)
1155 //        ::= Dv <num-elems> _   # GNU vector extension
1156 //
ParseType(State * state)1157 static bool ParseType(State *state) {
1158   ComplexityGuard guard(state);
1159   if (guard.IsTooComplex()) return false;
1160   ParseState copy = state->parse_state;
1161 
1162   // We should check CV-qualifers, and PRGC things first.
1163   //
1164   // CV-qualifiers overlap with some operator names, but an operator name is not
1165   // valid as a type.  To avoid an ambiguity that can lead to exponential time
1166   // complexity, refuse to backtrack the CV-qualifiers.
1167   //
1168   // _Z4aoeuIrMvvE
1169   //  => _Z 4aoeuI        rM  v     v   E
1170   //         aoeu<operator%=, void, void>
1171   //  => _Z 4aoeuI r Mv v              E
1172   //         aoeu<void void::* restrict>
1173   //
1174   // By consuming the CV-qualifiers first, the former parse is disabled.
1175   if (ParseCVQualifiers(state)) {
1176     const bool result = ParseType(state);
1177     if (!result) state->parse_state = copy;
1178     return result;
1179   }
1180   state->parse_state = copy;
1181 
1182   // Similarly, these tag characters can overlap with other <name>s resulting in
1183   // two different parse prefixes that land on <template-args> in the same
1184   // place, such as "C3r1xI...".  So, disable the "ctor-name = C3" parse by
1185   // refusing to backtrack the tag characters.
1186   if (ParseCharClass(state, "OPRCG")) {
1187     const bool result = ParseType(state);
1188     if (!result) state->parse_state = copy;
1189     return result;
1190   }
1191   state->parse_state = copy;
1192 
1193   if (ParseTwoCharToken(state, "Dp") && ParseType(state)) {
1194     return true;
1195   }
1196   state->parse_state = copy;
1197 
1198   if (ParseOneCharToken(state, 'U') && ParseSourceName(state) &&
1199       ParseType(state)) {
1200     return true;
1201   }
1202   state->parse_state = copy;
1203 
1204   if (ParseBuiltinType(state) || ParseFunctionType(state) ||
1205       ParseClassEnumType(state) || ParseArrayType(state) ||
1206       ParsePointerToMemberType(state) || ParseDecltype(state) ||
1207       // "std" on its own isn't a type.
1208       ParseSubstitution(state, /*accept_std=*/false)) {
1209     return true;
1210   }
1211 
1212   if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) {
1213     return true;
1214   }
1215   state->parse_state = copy;
1216 
1217   // Less greedy than <template-template-param> <template-args>.
1218   if (ParseTemplateParam(state)) {
1219     return true;
1220   }
1221 
1222   if (ParseTwoCharToken(state, "Dv") && ParseNumber(state, nullptr) &&
1223       ParseOneCharToken(state, '_')) {
1224     return true;
1225   }
1226   state->parse_state = copy;
1227 
1228   return false;
1229 }
1230 
1231 // <CV-qualifiers> ::= [r] [V] [K]
1232 // We don't allow empty <CV-qualifiers> to avoid infinite loop in
1233 // ParseType().
ParseCVQualifiers(State * state)1234 static bool ParseCVQualifiers(State *state) {
1235   ComplexityGuard guard(state);
1236   if (guard.IsTooComplex()) return false;
1237   int num_cv_qualifiers = 0;
1238   num_cv_qualifiers += ParseOneCharToken(state, 'r');
1239   num_cv_qualifiers += ParseOneCharToken(state, 'V');
1240   num_cv_qualifiers += ParseOneCharToken(state, 'K');
1241   return num_cv_qualifiers > 0;
1242 }
1243 
1244 // <builtin-type> ::= v, etc.  # single-character builtin types
1245 //                ::= u <source-name>
1246 //                ::= Dd, etc.  # two-character builtin types
1247 //
1248 // Not supported:
1249 //                ::= DF <number> _ # _FloatN (N bits)
1250 //
ParseBuiltinType(State * state)1251 static bool ParseBuiltinType(State *state) {
1252   ComplexityGuard guard(state);
1253   if (guard.IsTooComplex()) return false;
1254   const AbbrevPair *p;
1255   for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) {
1256     // Guaranteed only 1- or 2-character strings in kBuiltinTypeList.
1257     if (p->abbrev[1] == '\0') {
1258       if (ParseOneCharToken(state, p->abbrev[0])) {
1259         MaybeAppend(state, p->real_name);
1260         return true;
1261       }
1262     } else if (p->abbrev[2] == '\0' && ParseTwoCharToken(state, p->abbrev)) {
1263       MaybeAppend(state, p->real_name);
1264       return true;
1265     }
1266   }
1267 
1268   ParseState copy = state->parse_state;
1269   if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) {
1270     return true;
1271   }
1272   state->parse_state = copy;
1273   return false;
1274 }
1275 
1276 //  <exception-spec> ::= Do                # non-throwing
1277 //                                           exception-specification (e.g.,
1278 //                                           noexcept, throw())
1279 //                   ::= DO <expression> E # computed (instantiation-dependent)
1280 //                                           noexcept
1281 //                   ::= Dw <type>+ E      # dynamic exception specification
1282 //                                           with instantiation-dependent types
ParseExceptionSpec(State * state)1283 static bool ParseExceptionSpec(State *state) {
1284   ComplexityGuard guard(state);
1285   if (guard.IsTooComplex()) return false;
1286 
1287   if (ParseTwoCharToken(state, "Do")) return true;
1288 
1289   ParseState copy = state->parse_state;
1290   if (ParseTwoCharToken(state, "DO") && ParseExpression(state) &&
1291       ParseOneCharToken(state, 'E')) {
1292     return true;
1293   }
1294   state->parse_state = copy;
1295   if (ParseTwoCharToken(state, "Dw") && OneOrMore(ParseType, state) &&
1296       ParseOneCharToken(state, 'E')) {
1297     return true;
1298   }
1299   state->parse_state = copy;
1300 
1301   return false;
1302 }
1303 
1304 // <function-type> ::= [exception-spec] F [Y] <bare-function-type> [O] E
ParseFunctionType(State * state)1305 static bool ParseFunctionType(State *state) {
1306   ComplexityGuard guard(state);
1307   if (guard.IsTooComplex()) return false;
1308   ParseState copy = state->parse_state;
1309   if (Optional(ParseExceptionSpec(state)) && ParseOneCharToken(state, 'F') &&
1310       Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) &&
1311       Optional(ParseOneCharToken(state, 'O')) &&
1312       ParseOneCharToken(state, 'E')) {
1313     return true;
1314   }
1315   state->parse_state = copy;
1316   return false;
1317 }
1318 
1319 // <bare-function-type> ::= <(signature) type>+
ParseBareFunctionType(State * state)1320 static bool ParseBareFunctionType(State *state) {
1321   ComplexityGuard guard(state);
1322   if (guard.IsTooComplex()) return false;
1323   ParseState copy = state->parse_state;
1324   DisableAppend(state);
1325   if (OneOrMore(ParseType, state)) {
1326     RestoreAppend(state, copy.append);
1327     MaybeAppend(state, "()");
1328     return true;
1329   }
1330   state->parse_state = copy;
1331   return false;
1332 }
1333 
1334 // <class-enum-type> ::= <name>
ParseClassEnumType(State * state)1335 static bool ParseClassEnumType(State *state) {
1336   ComplexityGuard guard(state);
1337   if (guard.IsTooComplex()) return false;
1338   return ParseName(state);
1339 }
1340 
1341 // <array-type> ::= A <(positive dimension) number> _ <(element) type>
1342 //              ::= A [<(dimension) expression>] _ <(element) type>
ParseArrayType(State * state)1343 static bool ParseArrayType(State *state) {
1344   ComplexityGuard guard(state);
1345   if (guard.IsTooComplex()) return false;
1346   ParseState copy = state->parse_state;
1347   if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) &&
1348       ParseOneCharToken(state, '_') && ParseType(state)) {
1349     return true;
1350   }
1351   state->parse_state = copy;
1352 
1353   if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) &&
1354       ParseOneCharToken(state, '_') && ParseType(state)) {
1355     return true;
1356   }
1357   state->parse_state = copy;
1358   return false;
1359 }
1360 
1361 // <pointer-to-member-type> ::= M <(class) type> <(member) type>
ParsePointerToMemberType(State * state)1362 static bool ParsePointerToMemberType(State *state) {
1363   ComplexityGuard guard(state);
1364   if (guard.IsTooComplex()) return false;
1365   ParseState copy = state->parse_state;
1366   if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) {
1367     return true;
1368   }
1369   state->parse_state = copy;
1370   return false;
1371 }
1372 
1373 // <template-param> ::= T_
1374 //                  ::= T <parameter-2 non-negative number> _
ParseTemplateParam(State * state)1375 static bool ParseTemplateParam(State *state) {
1376   ComplexityGuard guard(state);
1377   if (guard.IsTooComplex()) return false;
1378   if (ParseTwoCharToken(state, "T_")) {
1379     MaybeAppend(state, "?");  // We don't support template substitutions.
1380     return true;
1381   }
1382 
1383   ParseState copy = state->parse_state;
1384   if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) &&
1385       ParseOneCharToken(state, '_')) {
1386     MaybeAppend(state, "?");  // We don't support template substitutions.
1387     return true;
1388   }
1389   state->parse_state = copy;
1390   return false;
1391 }
1392 
1393 // <template-template-param> ::= <template-param>
1394 //                           ::= <substitution>
ParseTemplateTemplateParam(State * state)1395 static bool ParseTemplateTemplateParam(State *state) {
1396   ComplexityGuard guard(state);
1397   if (guard.IsTooComplex()) return false;
1398   return (ParseTemplateParam(state) ||
1399           // "std" on its own isn't a template.
1400           ParseSubstitution(state, /*accept_std=*/false));
1401 }
1402 
1403 // <template-args> ::= I <template-arg>+ E
ParseTemplateArgs(State * state)1404 static bool ParseTemplateArgs(State *state) {
1405   ComplexityGuard guard(state);
1406   if (guard.IsTooComplex()) return false;
1407   ParseState copy = state->parse_state;
1408   DisableAppend(state);
1409   if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) &&
1410       ParseOneCharToken(state, 'E')) {
1411     RestoreAppend(state, copy.append);
1412     MaybeAppend(state, "<>");
1413     return true;
1414   }
1415   state->parse_state = copy;
1416   return false;
1417 }
1418 
1419 // <template-arg>  ::= <type>
1420 //                 ::= <expr-primary>
1421 //                 ::= J <template-arg>* E        # argument pack
1422 //                 ::= X <expression> E
ParseTemplateArg(State * state)1423 static bool ParseTemplateArg(State *state) {
1424   ComplexityGuard guard(state);
1425   if (guard.IsTooComplex()) return false;
1426   ParseState copy = state->parse_state;
1427   if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) &&
1428       ParseOneCharToken(state, 'E')) {
1429     return true;
1430   }
1431   state->parse_state = copy;
1432 
1433   // There can be significant overlap between the following leading to
1434   // exponential backtracking:
1435   //
1436   //   <expr-primary> ::= L <type> <expr-cast-value> E
1437   //                 e.g. L 2xxIvE 1                 E
1438   //   <type>         ==> <local-source-name> <template-args>
1439   //                 e.g. L 2xx               IvE
1440   //
1441   // This means parsing an entire <type> twice, and <type> can contain
1442   // <template-arg>, so this can generate exponential backtracking.  There is
1443   // only overlap when the remaining input starts with "L <source-name>", so
1444   // parse all cases that can start this way jointly to share the common prefix.
1445   //
1446   // We have:
1447   //
1448   //   <template-arg> ::= <type>
1449   //                  ::= <expr-primary>
1450   //
1451   // First, drop all the productions of <type> that must start with something
1452   // other than 'L'.  All that's left is <class-enum-type>; inline it.
1453   //
1454   //   <type> ::= <nested-name> # starts with 'N'
1455   //          ::= <unscoped-name>
1456   //          ::= <unscoped-template-name> <template-args>
1457   //          ::= <local-name> # starts with 'Z'
1458   //
1459   // Drop and inline again:
1460   //
1461   //   <type> ::= <unscoped-name>
1462   //          ::= <unscoped-name> <template-args>
1463   //          ::= <substitution> <template-args> # starts with 'S'
1464   //
1465   // Merge the first two, inline <unscoped-name>, drop last:
1466   //
1467   //   <type> ::= <unqualified-name> [<template-args>]
1468   //          ::= St <unqualified-name> [<template-args>] # starts with 'S'
1469   //
1470   // Drop and inline:
1471   //
1472   //   <type> ::= <operator-name> [<template-args>] # starts with lowercase
1473   //          ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D'
1474   //          ::= <source-name> [<template-args>] # starts with digit
1475   //          ::= <local-source-name> [<template-args>]
1476   //          ::= <unnamed-type-name> [<template-args>] # starts with 'U'
1477   //
1478   // One more time:
1479   //
1480   //   <type> ::= L <source-name> [<template-args>]
1481   //
1482   // Likewise with <expr-primary>:
1483   //
1484   //   <expr-primary> ::= L <type> <expr-cast-value> E
1485   //                  ::= LZ <encoding> E # cannot overlap; drop
1486   //                  ::= L <mangled_name> E # cannot overlap; drop
1487   //
1488   // By similar reasoning as shown above, the only <type>s starting with
1489   // <source-name> are "<source-name> [<template-args>]".  Inline this.
1490   //
1491   //   <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E
1492   //
1493   // Now inline both of these into <template-arg>:
1494   //
1495   //   <template-arg> ::= L <source-name> [<template-args>]
1496   //                  ::= L <source-name> [<template-args>] <expr-cast-value> E
1497   //
1498   // Merge them and we're done:
1499   //   <template-arg>
1500   //     ::= L <source-name> [<template-args>] [<expr-cast-value> E]
1501   if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) {
1502     copy = state->parse_state;
1503     if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) {
1504       return true;
1505     }
1506     state->parse_state = copy;
1507     return true;
1508   }
1509 
1510   // Now that the overlapping cases can't reach this code, we can safely call
1511   // both of these.
1512   if (ParseType(state) || ParseExprPrimary(state)) {
1513     return true;
1514   }
1515   state->parse_state = copy;
1516 
1517   if (ParseOneCharToken(state, 'X') && ParseExpression(state) &&
1518       ParseOneCharToken(state, 'E')) {
1519     return true;
1520   }
1521   state->parse_state = copy;
1522   return false;
1523 }
1524 
1525 // <unresolved-type> ::= <template-param> [<template-args>]
1526 //                   ::= <decltype>
1527 //                   ::= <substitution>
ParseUnresolvedType(State * state)1528 static inline bool ParseUnresolvedType(State *state) {
1529   // No ComplexityGuard because we don't copy the state in this stack frame.
1530   return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) ||
1531          ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false);
1532 }
1533 
1534 // <simple-id> ::= <source-name> [<template-args>]
ParseSimpleId(State * state)1535 static inline bool ParseSimpleId(State *state) {
1536   // No ComplexityGuard because we don't copy the state in this stack frame.
1537 
1538   // Note: <simple-id> cannot be followed by a parameter pack; see comment in
1539   // ParseUnresolvedType.
1540   return ParseSourceName(state) && Optional(ParseTemplateArgs(state));
1541 }
1542 
1543 // <base-unresolved-name> ::= <source-name> [<template-args>]
1544 //                        ::= on <operator-name> [<template-args>]
1545 //                        ::= dn <destructor-name>
ParseBaseUnresolvedName(State * state)1546 static bool ParseBaseUnresolvedName(State *state) {
1547   ComplexityGuard guard(state);
1548   if (guard.IsTooComplex()) return false;
1549 
1550   if (ParseSimpleId(state)) {
1551     return true;
1552   }
1553 
1554   ParseState copy = state->parse_state;
1555   if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) &&
1556       Optional(ParseTemplateArgs(state))) {
1557     return true;
1558   }
1559   state->parse_state = copy;
1560 
1561   if (ParseTwoCharToken(state, "dn") &&
1562       (ParseUnresolvedType(state) || ParseSimpleId(state))) {
1563     return true;
1564   }
1565   state->parse_state = copy;
1566 
1567   return false;
1568 }
1569 
1570 // <unresolved-name> ::= [gs] <base-unresolved-name>
1571 //                   ::= sr <unresolved-type> <base-unresolved-name>
1572 //                   ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1573 //                         <base-unresolved-name>
1574 //                   ::= [gs] sr <unresolved-qualifier-level>+ E
1575 //                         <base-unresolved-name>
ParseUnresolvedName(State * state)1576 static bool ParseUnresolvedName(State *state) {
1577   ComplexityGuard guard(state);
1578   if (guard.IsTooComplex()) return false;
1579 
1580   ParseState copy = state->parse_state;
1581   if (Optional(ParseTwoCharToken(state, "gs")) &&
1582       ParseBaseUnresolvedName(state)) {
1583     return true;
1584   }
1585   state->parse_state = copy;
1586 
1587   if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) &&
1588       ParseBaseUnresolvedName(state)) {
1589     return true;
1590   }
1591   state->parse_state = copy;
1592 
1593   if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') &&
1594       ParseUnresolvedType(state) &&
1595       OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
1596       ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
1597     return true;
1598   }
1599   state->parse_state = copy;
1600 
1601   if (Optional(ParseTwoCharToken(state, "gs")) &&
1602       ParseTwoCharToken(state, "sr") &&
1603       OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
1604       ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
1605     return true;
1606   }
1607   state->parse_state = copy;
1608 
1609   return false;
1610 }
1611 
1612 // <expression> ::= <1-ary operator-name> <expression>
1613 //              ::= <2-ary operator-name> <expression> <expression>
1614 //              ::= <3-ary operator-name> <expression> <expression> <expression>
1615 //              ::= cl <expression>+ E
1616 //              ::= cv <type> <expression>      # type (expression)
1617 //              ::= cv <type> _ <expression>* E # type (expr-list)
1618 //              ::= st <type>
1619 //              ::= <template-param>
1620 //              ::= <function-param>
1621 //              ::= <expr-primary>
1622 //              ::= dt <expression> <unresolved-name> # expr.name
1623 //              ::= pt <expression> <unresolved-name> # expr->name
1624 //              ::= sp <expression>         # argument pack expansion
1625 //              ::= sr <type> <unqualified-name> <template-args>
1626 //              ::= sr <type> <unqualified-name>
1627 // <function-param> ::= fp <(top-level) CV-qualifiers> _
1628 //                  ::= fp <(top-level) CV-qualifiers> <number> _
1629 //                  ::= fL <number> p <(top-level) CV-qualifiers> _
1630 //                  ::= fL <number> p <(top-level) CV-qualifiers> <number> _
ParseExpression(State * state)1631 static bool ParseExpression(State *state) {
1632   ComplexityGuard guard(state);
1633   if (guard.IsTooComplex()) return false;
1634   if (ParseTemplateParam(state) || ParseExprPrimary(state)) {
1635     return true;
1636   }
1637 
1638   // Object/function call expression.
1639   ParseState copy = state->parse_state;
1640   if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) &&
1641       ParseOneCharToken(state, 'E')) {
1642     return true;
1643   }
1644   state->parse_state = copy;
1645 
1646   // Function-param expression (level 0).
1647   if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) &&
1648       Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
1649     return true;
1650   }
1651   state->parse_state = copy;
1652 
1653   // Function-param expression (level 1+).
1654   if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) &&
1655       ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) &&
1656       Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
1657     return true;
1658   }
1659   state->parse_state = copy;
1660 
1661   // Parse the conversion expressions jointly to avoid re-parsing the <type> in
1662   // their common prefix.  Parsed as:
1663   // <expression> ::= cv <type> <conversion-args>
1664   // <conversion-args> ::= _ <expression>* E
1665   //                   ::= <expression>
1666   //
1667   // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName
1668   // also needs to accept "cv <type>" in other contexts.
1669   if (ParseTwoCharToken(state, "cv")) {
1670     if (ParseType(state)) {
1671       ParseState copy2 = state->parse_state;
1672       if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) &&
1673           ParseOneCharToken(state, 'E')) {
1674         return true;
1675       }
1676       state->parse_state = copy2;
1677       if (ParseExpression(state)) {
1678         return true;
1679       }
1680     }
1681   } else {
1682     // Parse unary, binary, and ternary operator expressions jointly, taking
1683     // care not to re-parse subexpressions repeatedly. Parse like:
1684     //   <expression> ::= <operator-name> <expression>
1685     //                    [<one-to-two-expressions>]
1686     //   <one-to-two-expressions> ::= <expression> [<expression>]
1687     int arity = -1;
1688     if (ParseOperatorName(state, &arity) &&
1689         arity > 0 &&  // 0 arity => disabled.
1690         (arity < 3 || ParseExpression(state)) &&
1691         (arity < 2 || ParseExpression(state)) &&
1692         (arity < 1 || ParseExpression(state))) {
1693       return true;
1694     }
1695   }
1696   state->parse_state = copy;
1697 
1698   // sizeof type
1699   if (ParseTwoCharToken(state, "st") && ParseType(state)) {
1700     return true;
1701   }
1702   state->parse_state = copy;
1703 
1704   // Object and pointer member access expressions.
1705   if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) &&
1706       ParseExpression(state) && ParseType(state)) {
1707     return true;
1708   }
1709   state->parse_state = copy;
1710 
1711   // Pointer-to-member access expressions.  This parses the same as a binary
1712   // operator, but it's implemented separately because "ds" shouldn't be
1713   // accepted in other contexts that parse an operator name.
1714   if (ParseTwoCharToken(state, "ds") && ParseExpression(state) &&
1715       ParseExpression(state)) {
1716     return true;
1717   }
1718   state->parse_state = copy;
1719 
1720   // Parameter pack expansion
1721   if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) {
1722     return true;
1723   }
1724   state->parse_state = copy;
1725 
1726   return ParseUnresolvedName(state);
1727 }
1728 
1729 // <expr-primary> ::= L <type> <(value) number> E
1730 //                ::= L <type> <(value) float> E
1731 //                ::= L <mangled-name> E
1732 //                // A bug in g++'s C++ ABI version 2 (-fabi-version=2).
1733 //                ::= LZ <encoding> E
1734 //
1735 // Warning, subtle: the "bug" LZ production above is ambiguous with the first
1736 // production where <type> starts with <local-name>, which can lead to
1737 // exponential backtracking in two scenarios:
1738 //
1739 // - When whatever follows the E in the <local-name> in the first production is
1740 //   not a name, we backtrack the whole <encoding> and re-parse the whole thing.
1741 //
1742 // - When whatever follows the <local-name> in the first production is not a
1743 //   number and this <expr-primary> may be followed by a name, we backtrack the
1744 //   <name> and re-parse it.
1745 //
1746 // Moreover this ambiguity isn't always resolved -- for example, the following
1747 // has two different parses:
1748 //
1749 //   _ZaaILZ4aoeuE1x1EvE
1750 //   => operator&&<aoeu, x, E, void>
1751 //   => operator&&<(aoeu::x)(1), void>
1752 //
1753 // To resolve this, we just do what GCC's demangler does, and refuse to parse
1754 // casts to <local-name> types.
ParseExprPrimary(State * state)1755 static bool ParseExprPrimary(State *state) {
1756   ComplexityGuard guard(state);
1757   if (guard.IsTooComplex()) return false;
1758   ParseState copy = state->parse_state;
1759 
1760   // The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E"
1761   // or fail, no backtracking.
1762   if (ParseTwoCharToken(state, "LZ")) {
1763     if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) {
1764       return true;
1765     }
1766 
1767     state->parse_state = copy;
1768     return false;
1769   }
1770 
1771   // The merged cast production.
1772   if (ParseOneCharToken(state, 'L') && ParseType(state) &&
1773       ParseExprCastValue(state)) {
1774     return true;
1775   }
1776   state->parse_state = copy;
1777 
1778   if (ParseOneCharToken(state, 'L') && ParseMangledName(state) &&
1779       ParseOneCharToken(state, 'E')) {
1780     return true;
1781   }
1782   state->parse_state = copy;
1783 
1784   return false;
1785 }
1786 
1787 // <number> or <float>, followed by 'E', as described above ParseExprPrimary.
ParseExprCastValue(State * state)1788 static bool ParseExprCastValue(State *state) {
1789   ComplexityGuard guard(state);
1790   if (guard.IsTooComplex()) return false;
1791   // We have to be able to backtrack after accepting a number because we could
1792   // have e.g. "7fffE", which will accept "7" as a number but then fail to find
1793   // the 'E'.
1794   ParseState copy = state->parse_state;
1795   if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) {
1796     return true;
1797   }
1798   state->parse_state = copy;
1799 
1800   if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) {
1801     return true;
1802   }
1803   state->parse_state = copy;
1804 
1805   return false;
1806 }
1807 
1808 // <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>]
1809 //              ::= Z <(function) encoding> E s [<discriminator>]
1810 //
1811 // Parsing a common prefix of these two productions together avoids an
1812 // exponential blowup of backtracking.  Parse like:
1813 //   <local-name> := Z <encoding> E <local-name-suffix>
1814 //   <local-name-suffix> ::= s [<discriminator>]
1815 //                       ::= <name> [<discriminator>]
1816 
ParseLocalNameSuffix(State * state)1817 static bool ParseLocalNameSuffix(State *state) {
1818   ComplexityGuard guard(state);
1819   if (guard.IsTooComplex()) return false;
1820 
1821   if (MaybeAppend(state, "::") && ParseName(state) &&
1822       Optional(ParseDiscriminator(state))) {
1823     return true;
1824   }
1825 
1826   // Since we're not going to overwrite the above "::" by re-parsing the
1827   // <encoding> (whose trailing '\0' byte was in the byte now holding the
1828   // first ':'), we have to rollback the "::" if the <name> parse failed.
1829   if (state->parse_state.append) {
1830     state->out[state->parse_state.out_cur_idx - 2] = '\0';
1831   }
1832 
1833   return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state));
1834 }
1835 
ParseLocalName(State * state)1836 static bool ParseLocalName(State *state) {
1837   ComplexityGuard guard(state);
1838   if (guard.IsTooComplex()) return false;
1839   ParseState copy = state->parse_state;
1840   if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) &&
1841       ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) {
1842     return true;
1843   }
1844   state->parse_state = copy;
1845   return false;
1846 }
1847 
1848 // <discriminator> := _ <(non-negative) number>
ParseDiscriminator(State * state)1849 static bool ParseDiscriminator(State *state) {
1850   ComplexityGuard guard(state);
1851   if (guard.IsTooComplex()) return false;
1852   ParseState copy = state->parse_state;
1853   if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) {
1854     return true;
1855   }
1856   state->parse_state = copy;
1857   return false;
1858 }
1859 
1860 // <substitution> ::= S_
1861 //                ::= S <seq-id> _
1862 //                ::= St, etc.
1863 //
1864 // "St" is special in that it's not valid as a standalone name, and it *is*
1865 // allowed to precede a name without being wrapped in "N...E".  This means that
1866 // if we accept it on its own, we can accept "St1a" and try to parse
1867 // template-args, then fail and backtrack, accept "St" on its own, then "1a" as
1868 // an unqualified name and re-parse the same template-args.  To block this
1869 // exponential backtracking, we disable it with 'accept_std=false' in
1870 // problematic contexts.
ParseSubstitution(State * state,bool accept_std)1871 static bool ParseSubstitution(State *state, bool accept_std) {
1872   ComplexityGuard guard(state);
1873   if (guard.IsTooComplex()) return false;
1874   if (ParseTwoCharToken(state, "S_")) {
1875     MaybeAppend(state, "?");  // We don't support substitutions.
1876     return true;
1877   }
1878 
1879   ParseState copy = state->parse_state;
1880   if (ParseOneCharToken(state, 'S') && ParseSeqId(state) &&
1881       ParseOneCharToken(state, '_')) {
1882     MaybeAppend(state, "?");  // We don't support substitutions.
1883     return true;
1884   }
1885   state->parse_state = copy;
1886 
1887   // Expand abbreviations like "St" => "std".
1888   if (ParseOneCharToken(state, 'S')) {
1889     const AbbrevPair *p;
1890     for (p = kSubstitutionList; p->abbrev != nullptr; ++p) {
1891       if (RemainingInput(state)[0] == p->abbrev[1] &&
1892           (accept_std || p->abbrev[1] != 't')) {
1893         MaybeAppend(state, "std");
1894         if (p->real_name[0] != '\0') {
1895           MaybeAppend(state, "::");
1896           MaybeAppend(state, p->real_name);
1897         }
1898         ++state->parse_state.mangled_idx;
1899         return true;
1900       }
1901     }
1902   }
1903   state->parse_state = copy;
1904   return false;
1905 }
1906 
1907 // Parse <mangled-name>, optionally followed by either a function-clone suffix
1908 // or version suffix.  Returns true only if all of "mangled_cur" was consumed.
ParseTopLevelMangledName(State * state)1909 static bool ParseTopLevelMangledName(State *state) {
1910   ComplexityGuard guard(state);
1911   if (guard.IsTooComplex()) return false;
1912   if (ParseMangledName(state)) {
1913     if (RemainingInput(state)[0] != '\0') {
1914       // Drop trailing function clone suffix, if any.
1915       if (IsFunctionCloneSuffix(RemainingInput(state))) {
1916         return true;
1917       }
1918       // Append trailing version suffix if any.
1919       // ex. _Z3foo@@GLIBCXX_3.4
1920       if (RemainingInput(state)[0] == '@') {
1921         MaybeAppend(state, RemainingInput(state));
1922         return true;
1923       }
1924       return false;  // Unconsumed suffix.
1925     }
1926     return true;
1927   }
1928   return false;
1929 }
1930 
Overflowed(const State * state)1931 static bool Overflowed(const State *state) {
1932   return state->parse_state.out_cur_idx >= state->out_end_idx;
1933 }
1934 
1935 // The demangler entry point.
Demangle(const char * mangled,char * out,int out_size)1936 bool Demangle(const char *mangled, char *out, int out_size) {
1937   State state;
1938   InitState(&state, mangled, out, out_size);
1939   return ParseTopLevelMangledName(&state) && !Overflowed(&state);
1940 }
1941 
1942 }  // namespace debugging_internal
1943 ABSL_NAMESPACE_END
1944 }  // namespace absl
1945