1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // This file defines the map container and its helpers to support protobuf maps.
32 //
33 // The Map and MapIterator types are provided by this header file.
34 // Please avoid using other types defined here, unless they are public
35 // types within Map or MapIterator, such as Map::value_type.
36 
37 #ifndef GOOGLE_PROTOBUF_MAP_H__
38 #define GOOGLE_PROTOBUF_MAP_H__
39 
40 #include <initializer_list>
41 #include <iterator>
42 #include <limits>  // To support Visual Studio 2008
43 #include <set>
44 #include <utility>
45 
46 #include <google/protobuf/stubs/common.h>
47 #include <google/protobuf/arena.h>
48 #include <google/protobuf/generated_enum_util.h>
49 #include <google/protobuf/map_type_handler.h>
50 #include <google/protobuf/stubs/hash.h>
51 
52 #ifdef SWIG
53 #error "You cannot SWIG proto headers"
54 #endif
55 
56 #include <google/protobuf/port_def.inc>
57 
58 namespace google {
59 namespace protobuf {
60 
61 template <typename Key, typename T>
62 class Map;
63 
64 class MapIterator;
65 
66 template <typename Enum>
67 struct is_proto_enum;
68 
69 namespace internal {
70 template <typename Derived, typename Key, typename T,
71           WireFormatLite::FieldType key_wire_type,
72           WireFormatLite::FieldType value_wire_type, int default_enum_value>
73 class MapFieldLite;
74 
75 template <typename Derived, typename Key, typename T,
76           WireFormatLite::FieldType key_wire_type,
77           WireFormatLite::FieldType value_wire_type, int default_enum_value>
78 class MapField;
79 
80 template <typename Key, typename T>
81 class TypeDefinedMapFieldBase;
82 
83 class DynamicMapField;
84 
85 class GeneratedMessageReflection;
86 }  // namespace internal
87 
88 // This is the class for Map's internal value_type. Instead of using
89 // std::pair as value_type, we use this class which provides us more control of
90 // its process of construction and destruction.
91 template <typename Key, typename T>
92 class MapPair {
93  public:
94   typedef const Key first_type;
95   typedef T second_type;
96 
MapPair(const Key & other_first,const T & other_second)97   MapPair(const Key& other_first, const T& other_second)
98       : first(other_first), second(other_second) {}
MapPair(const Key & other_first)99   explicit MapPair(const Key& other_first) : first(other_first), second() {}
MapPair(const MapPair & other)100   MapPair(const MapPair& other) : first(other.first), second(other.second) {}
101 
~MapPair()102   ~MapPair() {}
103 
104   // Implicitly convertible to std::pair of compatible types.
105   template <typename T1, typename T2>
106   operator std::pair<T1, T2>() const {
107     return std::pair<T1, T2>(first, second);
108   }
109 
110   const Key first;
111   T second;
112 
113  private:
114   friend class Arena;
115   friend class Map<Key, T>;
116 };
117 
118 // Map is an associative container type used to store protobuf map
119 // fields.  Each Map instance may or may not use a different hash function, a
120 // different iteration order, and so on.  E.g., please don't examine
121 // implementation details to decide if the following would work:
122 //  Map<int, int> m0, m1;
123 //  m0[0] = m1[0] = m0[1] = m1[1] = 0;
124 //  assert(m0.begin()->first == m1.begin()->first);  // Bug!
125 //
126 // Map's interface is similar to std::unordered_map, except that Map is not
127 // designed to play well with exceptions.
128 template <typename Key, typename T>
129 class Map {
130  public:
131   typedef Key key_type;
132   typedef T mapped_type;
133   typedef MapPair<Key, T> value_type;
134 
135   typedef value_type* pointer;
136   typedef const value_type* const_pointer;
137   typedef value_type& reference;
138   typedef const value_type& const_reference;
139 
140   typedef size_t size_type;
141   typedef hash<Key> hasher;
142 
Map()143   Map() : arena_(NULL), default_enum_value_(0) { Init(); }
Map(Arena * arena)144   explicit Map(Arena* arena) : arena_(arena), default_enum_value_(0) { Init(); }
145 
Map(const Map & other)146   Map(const Map& other)
147       : arena_(NULL), default_enum_value_(other.default_enum_value_) {
148     Init();
149     insert(other.begin(), other.end());
150   }
151 
Map(Map && other)152   Map(Map&& other) noexcept : Map() {
153     if (other.arena_) {
154       *this = other;
155     } else {
156       swap(other);
157     }
158   }
159   Map& operator=(Map&& other) noexcept {
160     if (this != &other) {
161       if (arena_ != other.arena_) {
162         *this = other;
163       } else {
164         swap(other);
165       }
166     }
167     return *this;
168   }
169 
170   template <class InputIt>
Map(const InputIt & first,const InputIt & last)171   Map(const InputIt& first, const InputIt& last)
172       : arena_(NULL), default_enum_value_(0) {
173     Init();
174     insert(first, last);
175   }
176 
~Map()177   ~Map() {
178     clear();
179     if (arena_ == NULL) {
180       delete elements_;
181     }
182   }
183 
184  private:
Init()185   void Init() {
186     elements_ =
187         Arena::Create<InnerMap>(arena_, 0u, hasher(), Allocator(arena_));
188   }
189 
190   // re-implement std::allocator to use arena allocator for memory allocation.
191   // Used for Map implementation. Users should not use this class
192   // directly.
193   template <typename U>
194   class MapAllocator {
195    public:
196     typedef U value_type;
197     typedef value_type* pointer;
198     typedef const value_type* const_pointer;
199     typedef value_type& reference;
200     typedef const value_type& const_reference;
201     typedef size_t size_type;
202     typedef ptrdiff_t difference_type;
203 
MapAllocator()204     MapAllocator() : arena_(NULL) {}
MapAllocator(Arena * arena)205     explicit MapAllocator(Arena* arena) : arena_(arena) {}
206     template <typename X>
MapAllocator(const MapAllocator<X> & allocator)207     MapAllocator(const MapAllocator<X>& allocator)
208         : arena_(allocator.arena()) {}
209 
210     pointer allocate(size_type n, const void* /* hint */ = 0) {
211       // If arena is not given, malloc needs to be called which doesn't
212       // construct element object.
213       if (arena_ == NULL) {
214         return static_cast<pointer>(::operator new(n * sizeof(value_type)));
215       } else {
216         return reinterpret_cast<pointer>(
217             Arena::CreateArray<uint8>(arena_, n * sizeof(value_type)));
218       }
219     }
220 
deallocate(pointer p,size_type n)221     void deallocate(pointer p, size_type n) {
222       if (arena_ == NULL) {
223 #if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
224         ::operator delete(p, n * sizeof(value_type));
225 #else
226         (void)n;
227         ::operator delete(p);
228 #endif
229       }
230     }
231 
232 #if __cplusplus >= 201103L && !defined(GOOGLE_PROTOBUF_OS_APPLE) && \
233     !defined(GOOGLE_PROTOBUF_OS_NACL) &&                            \
234     !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
235     template <class NodeType, class... Args>
construct(NodeType * p,Args &&...args)236     void construct(NodeType* p, Args&&... args) {
237       // Clang 3.6 doesn't compile static casting to void* directly. (Issue
238       // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall
239       // not cast away constness". So first the maybe const pointer is casted to
240       // const void* and after the const void* is const casted.
241       new (const_cast<void*>(static_cast<const void*>(p)))
242           NodeType(std::forward<Args>(args)...);
243     }
244 
245     template <class NodeType>
destroy(NodeType * p)246     void destroy(NodeType* p) {
247       p->~NodeType();
248     }
249 #else
construct(pointer p,const_reference t)250     void construct(pointer p, const_reference t) { new (p) value_type(t); }
251 
destroy(pointer p)252     void destroy(pointer p) { p->~value_type(); }
253 #endif
254 
255     template <typename X>
256     struct rebind {
257       typedef MapAllocator<X> other;
258     };
259 
260     template <typename X>
261     bool operator==(const MapAllocator<X>& other) const {
262       return arena_ == other.arena_;
263     }
264 
265     template <typename X>
266     bool operator!=(const MapAllocator<X>& other) const {
267       return arena_ != other.arena_;
268     }
269 
270     // To support Visual Studio 2008
max_size()271     size_type max_size() const {
272       // parentheses around (std::...:max) prevents macro warning of max()
273       return (std::numeric_limits<size_type>::max)();
274     }
275 
276     // To support gcc-4.4, which does not properly
277     // support templated friend classes
arena()278     Arena* arena() const { return arena_; }
279 
280    private:
281     typedef void DestructorSkippable_;
282     Arena* const arena_;
283   };
284 
285   // InnerMap's key type is Key and its value type is value_type*.  We use a
286   // custom class here and for Node, below, to ensure that k_ is at offset 0,
287   // allowing safe conversion from pointer to Node to pointer to Key, and vice
288   // versa when appropriate.
289   class KeyValuePair {
290    public:
KeyValuePair(const Key & k,value_type * v)291     KeyValuePair(const Key& k, value_type* v) : k_(k), v_(v) {}
292 
key()293     const Key& key() const { return k_; }
key()294     Key& key() { return k_; }
value()295     value_type* value() const { return v_; }
value()296     value_type*& value() { return v_; }
297 
298    private:
299     Key k_;
300     value_type* v_;
301   };
302 
303   typedef MapAllocator<KeyValuePair> Allocator;
304 
305   // InnerMap is a generic hash-based map.  It doesn't contain any
306   // protocol-buffer-specific logic.  It is a chaining hash map with the
307   // additional feature that some buckets can be converted to use an ordered
308   // container.  This ensures O(lg n) bounds on find, insert, and erase, while
309   // avoiding the overheads of ordered containers most of the time.
310   //
311   // The implementation doesn't need the full generality of unordered_map,
312   // and it doesn't have it.  More bells and whistles can be added as needed.
313   // Some implementation details:
314   // 1. The hash function has type hasher and the equality function
315   //    equal_to<Key>.  We inherit from hasher to save space
316   //    (empty-base-class optimization).
317   // 2. The number of buckets is a power of two.
318   // 3. Buckets are converted to trees in pairs: if we convert bucket b then
319   //    buckets b and b^1 will share a tree.  Invariant: buckets b and b^1 have
320   //    the same non-NULL value iff they are sharing a tree.  (An alternative
321   //    implementation strategy would be to have a tag bit per bucket.)
322   // 4. As is typical for hash_map and such, the Keys and Values are always
323   //    stored in linked list nodes.  Pointers to elements are never invalidated
324   //    until the element is deleted.
325   // 5. The trees' payload type is pointer to linked-list node.  Tree-converting
326   //    a bucket doesn't copy Key-Value pairs.
327   // 6. Once we've tree-converted a bucket, it is never converted back. However,
328   //    the items a tree contains may wind up assigned to trees or lists upon a
329   //    rehash.
330   // 7. The code requires no C++ features from C++11 or later.
331   // 8. Mutations to a map do not invalidate the map's iterators, pointers to
332   //    elements, or references to elements.
333   // 9. Except for erase(iterator), any non-const method can reorder iterators.
334   class InnerMap : private hasher {
335    public:
336     typedef value_type* Value;
337 
InnerMap(size_type n,hasher h,Allocator alloc)338     InnerMap(size_type n, hasher h, Allocator alloc)
339         : hasher(h),
340           num_elements_(0),
341           seed_(Seed()),
342           table_(NULL),
343           alloc_(alloc) {
344       n = TableSize(n);
345       table_ = CreateEmptyTable(n);
346       num_buckets_ = index_of_first_non_null_ = n;
347     }
348 
~InnerMap()349     ~InnerMap() {
350       if (table_ != NULL) {
351         clear();
352         Dealloc<void*>(table_, num_buckets_);
353       }
354     }
355 
356    private:
357     enum { kMinTableSize = 8 };
358 
359     // Linked-list nodes, as one would expect for a chaining hash table.
360     struct Node {
361       KeyValuePair kv;
362       Node* next;
363     };
364 
365     // This is safe only if the given pointer is known to point to a Key that is
366     // part of a Node.
NodePtrFromKeyPtr(Key * k)367     static Node* NodePtrFromKeyPtr(Key* k) {
368       return reinterpret_cast<Node*>(k);
369     }
370 
KeyPtrFromNodePtr(Node * node)371     static Key* KeyPtrFromNodePtr(Node* node) { return &node->kv.key(); }
372 
373     // Trees.  The payload type is pointer to Key, so that we can query the tree
374     // with Keys that are not in any particular data structure.  When we insert,
375     // though, the pointer is always pointing to a Key that is inside a Node.
376     struct KeyCompare {
operatorKeyCompare377       bool operator()(const Key* n0, const Key* n1) const { return *n0 < *n1; }
378     };
379     typedef typename Allocator::template rebind<Key*>::other KeyPtrAllocator;
380     typedef std::set<Key*, KeyCompare, KeyPtrAllocator> Tree;
381     typedef typename Tree::iterator TreeIterator;
382 
383     // iterator and const_iterator are instantiations of iterator_base.
384     template <typename KeyValueType>
385     struct iterator_base {
386       typedef KeyValueType& reference;
387       typedef KeyValueType* pointer;
388 
389       // Invariants:
390       // node_ is always correct. This is handy because the most common
391       // operations are operator* and operator-> and they only use node_.
392       // When node_ is set to a non-NULL value, all the other non-const fields
393       // are updated to be correct also, but those fields can become stale
394       // if the underlying map is modified.  When those fields are needed they
395       // are rechecked, and updated if necessary.
iterator_baseiterator_base396       iterator_base() : node_(NULL), m_(NULL), bucket_index_(0) {}
397 
iterator_baseiterator_base398       explicit iterator_base(const InnerMap* m) : m_(m) {
399         SearchFrom(m->index_of_first_non_null_);
400       }
401 
402       // Any iterator_base can convert to any other.  This is overkill, and we
403       // rely on the enclosing class to use it wisely.  The standard "iterator
404       // can convert to const_iterator" is OK but the reverse direction is not.
405       template <typename U>
iterator_baseiterator_base406       explicit iterator_base(const iterator_base<U>& it)
407           : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {}
408 
iterator_baseiterator_base409       iterator_base(Node* n, const InnerMap* m, size_type index)
410           : node_(n), m_(m), bucket_index_(index) {}
411 
iterator_baseiterator_base412       iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index)
413           : node_(NodePtrFromKeyPtr(*tree_it)), m_(m), bucket_index_(index) {
414         // Invariant: iterators that use buckets with trees have an even
415         // bucket_index_.
416         GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u);
417       }
418 
419       // Advance through buckets, looking for the first that isn't empty.
420       // If nothing non-empty is found then leave node_ == NULL.
SearchFromiterator_base421       void SearchFrom(size_type start_bucket) {
422         GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ ||
423                m_->table_[m_->index_of_first_non_null_] != NULL);
424         node_ = NULL;
425         for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_;
426              bucket_index_++) {
427           if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
428             node_ = static_cast<Node*>(m_->table_[bucket_index_]);
429             break;
430           } else if (m_->TableEntryIsTree(bucket_index_)) {
431             Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
432             GOOGLE_DCHECK(!tree->empty());
433             node_ = NodePtrFromKeyPtr(*tree->begin());
434             break;
435           }
436         }
437       }
438 
439       reference operator*() const { return node_->kv; }
440       pointer operator->() const { return &(operator*()); }
441 
442       friend bool operator==(const iterator_base& a, const iterator_base& b) {
443         return a.node_ == b.node_;
444       }
445       friend bool operator!=(const iterator_base& a, const iterator_base& b) {
446         return a.node_ != b.node_;
447       }
448 
449       iterator_base& operator++() {
450         if (node_->next == NULL) {
451           TreeIterator tree_it;
452           const bool is_list = revalidate_if_necessary(&tree_it);
453           if (is_list) {
454             SearchFrom(bucket_index_ + 1);
455           } else {
456             GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u);
457             Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
458             if (++tree_it == tree->end()) {
459               SearchFrom(bucket_index_ + 2);
460             } else {
461               node_ = NodePtrFromKeyPtr(*tree_it);
462             }
463           }
464         } else {
465           node_ = node_->next;
466         }
467         return *this;
468       }
469 
470       iterator_base operator++(int /* unused */) {
471         iterator_base tmp = *this;
472         ++*this;
473         return tmp;
474       }
475 
476       // Assumes node_ and m_ are correct and non-NULL, but other fields may be
477       // stale.  Fix them as needed.  Then return true iff node_ points to a
478       // Node in a list.  If false is returned then *it is modified to be
479       // a valid iterator for node_.
revalidate_if_necessaryiterator_base480       bool revalidate_if_necessary(TreeIterator* it) {
481         GOOGLE_DCHECK(node_ != NULL && m_ != NULL);
482         // Force bucket_index_ to be in range.
483         bucket_index_ &= (m_->num_buckets_ - 1);
484         // Common case: the bucket we think is relevant points to node_.
485         if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true;
486         // Less common: the bucket is a linked list with node_ somewhere in it,
487         // but not at the head.
488         if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
489           Node* l = static_cast<Node*>(m_->table_[bucket_index_]);
490           while ((l = l->next) != NULL) {
491             if (l == node_) {
492               return true;
493             }
494           }
495         }
496         // Well, bucket_index_ still might be correct, but probably
497         // not.  Revalidate just to be sure.  This case is rare enough that we
498         // don't worry about potential optimizations, such as having a custom
499         // find-like method that compares Node* instead of const Key&.
500         iterator_base i(m_->find(*KeyPtrFromNodePtr(node_), it));
501         bucket_index_ = i.bucket_index_;
502         return m_->TableEntryIsList(bucket_index_);
503       }
504 
505       Node* node_;
506       const InnerMap* m_;
507       size_type bucket_index_;
508     };
509 
510    public:
511     typedef iterator_base<KeyValuePair> iterator;
512     typedef iterator_base<const KeyValuePair> const_iterator;
513 
begin()514     iterator begin() { return iterator(this); }
end()515     iterator end() { return iterator(); }
begin()516     const_iterator begin() const { return const_iterator(this); }
end()517     const_iterator end() const { return const_iterator(); }
518 
clear()519     void clear() {
520       for (size_type b = 0; b < num_buckets_; b++) {
521         if (TableEntryIsNonEmptyList(b)) {
522           Node* node = static_cast<Node*>(table_[b]);
523           table_[b] = NULL;
524           do {
525             Node* next = node->next;
526             DestroyNode(node);
527             node = next;
528           } while (node != NULL);
529         } else if (TableEntryIsTree(b)) {
530           Tree* tree = static_cast<Tree*>(table_[b]);
531           GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0);
532           table_[b] = table_[b + 1] = NULL;
533           typename Tree::iterator tree_it = tree->begin();
534           do {
535             Node* node = NodePtrFromKeyPtr(*tree_it);
536             typename Tree::iterator next = tree_it;
537             ++next;
538             tree->erase(tree_it);
539             DestroyNode(node);
540             tree_it = next;
541           } while (tree_it != tree->end());
542           DestroyTree(tree);
543           b++;
544         }
545       }
546       num_elements_ = 0;
547       index_of_first_non_null_ = num_buckets_;
548     }
549 
hash_function()550     const hasher& hash_function() const { return *this; }
551 
max_size()552     static size_type max_size() {
553       return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28);
554     }
size()555     size_type size() const { return num_elements_; }
empty()556     bool empty() const { return size() == 0; }
557 
find(const Key & k)558     iterator find(const Key& k) { return iterator(FindHelper(k).first); }
find(const Key & k)559     const_iterator find(const Key& k) const { return find(k, NULL); }
contains(const Key & k)560     bool contains(const Key& k) const { return find(k) != end(); }
561 
562     // In traditional C++ style, this performs "insert if not present."
insert(const KeyValuePair & kv)563     std::pair<iterator, bool> insert(const KeyValuePair& kv) {
564       std::pair<const_iterator, size_type> p = FindHelper(kv.key());
565       // Case 1: key was already present.
566       if (p.first.node_ != NULL)
567         return std::make_pair(iterator(p.first), false);
568       // Case 2: insert.
569       if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
570         p = FindHelper(kv.key());
571       }
572       const size_type b = p.second;  // bucket number
573       Node* node = Alloc<Node>(1);
574       alloc_.construct(&node->kv, kv);
575       iterator result = InsertUnique(b, node);
576       ++num_elements_;
577       return std::make_pair(result, true);
578     }
579 
580     // The same, but if an insertion is necessary then the value portion of the
581     // inserted key-value pair is left uninitialized.
insert(const Key & k)582     std::pair<iterator, bool> insert(const Key& k) {
583       std::pair<const_iterator, size_type> p = FindHelper(k);
584       // Case 1: key was already present.
585       if (p.first.node_ != NULL)
586         return std::make_pair(iterator(p.first), false);
587       // Case 2: insert.
588       if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
589         p = FindHelper(k);
590       }
591       const size_type b = p.second;  // bucket number
592       Node* node = Alloc<Node>(1);
593       typedef typename Allocator::template rebind<Key>::other KeyAllocator;
594       KeyAllocator(alloc_).construct(&node->kv.key(), k);
595       iterator result = InsertUnique(b, node);
596       ++num_elements_;
597       return std::make_pair(result, true);
598     }
599 
600     Value& operator[](const Key& k) {
601       KeyValuePair kv(k, Value());
602       return insert(kv).first->value();
603     }
604 
erase(iterator it)605     void erase(iterator it) {
606       GOOGLE_DCHECK_EQ(it.m_, this);
607       typename Tree::iterator tree_it;
608       const bool is_list = it.revalidate_if_necessary(&tree_it);
609       size_type b = it.bucket_index_;
610       Node* const item = it.node_;
611       if (is_list) {
612         GOOGLE_DCHECK(TableEntryIsNonEmptyList(b));
613         Node* head = static_cast<Node*>(table_[b]);
614         head = EraseFromLinkedList(item, head);
615         table_[b] = static_cast<void*>(head);
616       } else {
617         GOOGLE_DCHECK(TableEntryIsTree(b));
618         Tree* tree = static_cast<Tree*>(table_[b]);
619         tree->erase(*tree_it);
620         if (tree->empty()) {
621           // Force b to be the minimum of b and b ^ 1.  This is important
622           // only because we want index_of_first_non_null_ to be correct.
623           b &= ~static_cast<size_type>(1);
624           DestroyTree(tree);
625           table_[b] = table_[b + 1] = NULL;
626         }
627       }
628       DestroyNode(item);
629       --num_elements_;
630       if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) {
631         while (index_of_first_non_null_ < num_buckets_ &&
632                table_[index_of_first_non_null_] == NULL) {
633           ++index_of_first_non_null_;
634         }
635       }
636     }
637 
638    private:
find(const Key & k,TreeIterator * it)639     const_iterator find(const Key& k, TreeIterator* it) const {
640       return FindHelper(k, it).first;
641     }
FindHelper(const Key & k)642     std::pair<const_iterator, size_type> FindHelper(const Key& k) const {
643       return FindHelper(k, NULL);
644     }
FindHelper(const Key & k,TreeIterator * it)645     std::pair<const_iterator, size_type> FindHelper(const Key& k,
646                                                     TreeIterator* it) const {
647       size_type b = BucketNumber(k);
648       if (TableEntryIsNonEmptyList(b)) {
649         Node* node = static_cast<Node*>(table_[b]);
650         do {
651           if (IsMatch(*KeyPtrFromNodePtr(node), k)) {
652             return std::make_pair(const_iterator(node, this, b), b);
653           } else {
654             node = node->next;
655           }
656         } while (node != NULL);
657       } else if (TableEntryIsTree(b)) {
658         GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
659         b &= ~static_cast<size_t>(1);
660         Tree* tree = static_cast<Tree*>(table_[b]);
661         Key* key = const_cast<Key*>(&k);
662         typename Tree::iterator tree_it = tree->find(key);
663         if (tree_it != tree->end()) {
664           if (it != NULL) *it = tree_it;
665           return std::make_pair(const_iterator(tree_it, this, b), b);
666         }
667       }
668       return std::make_pair(end(), b);
669     }
670 
671     // Insert the given Node in bucket b.  If that would make bucket b too big,
672     // and bucket b is not a tree, create a tree for buckets b and b^1 to share.
673     // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
674     // bucket.  num_elements_ is not modified.
InsertUnique(size_type b,Node * node)675     iterator InsertUnique(size_type b, Node* node) {
676       GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ ||
677              table_[index_of_first_non_null_] != NULL);
678       // In practice, the code that led to this point may have already
679       // determined whether we are inserting into an empty list, a short list,
680       // or whatever.  But it's probably cheap enough to recompute that here;
681       // it's likely that we're inserting into an empty or short list.
682       iterator result;
683       GOOGLE_DCHECK(find(*KeyPtrFromNodePtr(node)) == end());
684       if (TableEntryIsEmpty(b)) {
685         result = InsertUniqueInList(b, node);
686       } else if (TableEntryIsNonEmptyList(b)) {
687         if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) {
688           TreeConvert(b);
689           result = InsertUniqueInTree(b, node);
690           GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1));
691         } else {
692           // Insert into a pre-existing list.  This case cannot modify
693           // index_of_first_non_null_, so we skip the code to update it.
694           return InsertUniqueInList(b, node);
695         }
696       } else {
697         // Insert into a pre-existing tree.  This case cannot modify
698         // index_of_first_non_null_, so we skip the code to update it.
699         return InsertUniqueInTree(b, node);
700       }
701       // parentheses around (std::min) prevents macro expansion of min(...)
702       index_of_first_non_null_ =
703           (std::min)(index_of_first_non_null_, result.bucket_index_);
704       return result;
705     }
706 
707     // Helper for InsertUnique.  Handles the case where bucket b is a
708     // not-too-long linked list.
InsertUniqueInList(size_type b,Node * node)709     iterator InsertUniqueInList(size_type b, Node* node) {
710       node->next = static_cast<Node*>(table_[b]);
711       table_[b] = static_cast<void*>(node);
712       return iterator(node, this, b);
713     }
714 
715     // Helper for InsertUnique.  Handles the case where bucket b points to a
716     // Tree.
InsertUniqueInTree(size_type b,Node * node)717     iterator InsertUniqueInTree(size_type b, Node* node) {
718       GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
719       // Maintain the invariant that node->next is NULL for all Nodes in Trees.
720       node->next = NULL;
721       return iterator(
722           static_cast<Tree*>(table_[b])->insert(KeyPtrFromNodePtr(node)).first,
723           this, b & ~static_cast<size_t>(1));
724     }
725 
726     // Returns whether it did resize.  Currently this is only used when
727     // num_elements_ increases, though it could be used in other situations.
728     // It checks for load too low as well as load too high: because any number
729     // of erases can occur between inserts, the load could be as low as 0 here.
730     // Resizing to a lower size is not always helpful, but failing to do so can
731     // destroy the expected big-O bounds for some operations. By having the
732     // policy that sometimes we resize down as well as up, clients can easily
733     // keep O(size()) = O(number of buckets) if they want that.
ResizeIfLoadIsOutOfRange(size_type new_size)734     bool ResizeIfLoadIsOutOfRange(size_type new_size) {
735       const size_type kMaxMapLoadTimes16 = 12;  // controls RAM vs CPU tradeoff
736       const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16;
737       const size_type lo_cutoff = hi_cutoff / 4;
738       // We don't care how many elements are in trees.  If a lot are,
739       // we may resize even though there are many empty buckets.  In
740       // practice, this seems fine.
741       if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) {
742         if (num_buckets_ <= max_size() / 2) {
743           Resize(num_buckets_ * 2);
744           return true;
745         }
746       } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff &&
747                                         num_buckets_ > kMinTableSize)) {
748         size_type lg2_of_size_reduction_factor = 1;
749         // It's possible we want to shrink a lot here... size() could even be 0.
750         // So, estimate how much to shrink by making sure we don't shrink so
751         // much that we would need to grow the table after a few inserts.
752         const size_type hypothetical_size = new_size * 5 / 4 + 1;
753         while ((hypothetical_size << lg2_of_size_reduction_factor) <
754                hi_cutoff) {
755           ++lg2_of_size_reduction_factor;
756         }
757         size_type new_num_buckets = std::max<size_type>(
758             kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
759         if (new_num_buckets != num_buckets_) {
760           Resize(new_num_buckets);
761           return true;
762         }
763       }
764       return false;
765     }
766 
767     // Resize to the given number of buckets.
Resize(size_t new_num_buckets)768     void Resize(size_t new_num_buckets) {
769       GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize);
770       void** const old_table = table_;
771       const size_type old_table_size = num_buckets_;
772       num_buckets_ = new_num_buckets;
773       table_ = CreateEmptyTable(num_buckets_);
774       const size_type start = index_of_first_non_null_;
775       index_of_first_non_null_ = num_buckets_;
776       for (size_type i = start; i < old_table_size; i++) {
777         if (TableEntryIsNonEmptyList(old_table, i)) {
778           TransferList(old_table, i);
779         } else if (TableEntryIsTree(old_table, i)) {
780           TransferTree(old_table, i++);
781         }
782       }
783       Dealloc<void*>(old_table, old_table_size);
784     }
785 
TransferList(void * const * table,size_type index)786     void TransferList(void* const* table, size_type index) {
787       Node* node = static_cast<Node*>(table[index]);
788       do {
789         Node* next = node->next;
790         InsertUnique(BucketNumber(*KeyPtrFromNodePtr(node)), node);
791         node = next;
792       } while (node != NULL);
793     }
794 
TransferTree(void * const * table,size_type index)795     void TransferTree(void* const* table, size_type index) {
796       Tree* tree = static_cast<Tree*>(table[index]);
797       typename Tree::iterator tree_it = tree->begin();
798       do {
799         Node* node = NodePtrFromKeyPtr(*tree_it);
800         InsertUnique(BucketNumber(**tree_it), node);
801       } while (++tree_it != tree->end());
802       DestroyTree(tree);
803     }
804 
EraseFromLinkedList(Node * item,Node * head)805     Node* EraseFromLinkedList(Node* item, Node* head) {
806       if (head == item) {
807         return head->next;
808       } else {
809         head->next = EraseFromLinkedList(item, head->next);
810         return head;
811       }
812     }
813 
TableEntryIsEmpty(size_type b)814     bool TableEntryIsEmpty(size_type b) const {
815       return TableEntryIsEmpty(table_, b);
816     }
TableEntryIsNonEmptyList(size_type b)817     bool TableEntryIsNonEmptyList(size_type b) const {
818       return TableEntryIsNonEmptyList(table_, b);
819     }
TableEntryIsTree(size_type b)820     bool TableEntryIsTree(size_type b) const {
821       return TableEntryIsTree(table_, b);
822     }
TableEntryIsList(size_type b)823     bool TableEntryIsList(size_type b) const {
824       return TableEntryIsList(table_, b);
825     }
TableEntryIsEmpty(void * const * table,size_type b)826     static bool TableEntryIsEmpty(void* const* table, size_type b) {
827       return table[b] == NULL;
828     }
TableEntryIsNonEmptyList(void * const * table,size_type b)829     static bool TableEntryIsNonEmptyList(void* const* table, size_type b) {
830       return table[b] != NULL && table[b] != table[b ^ 1];
831     }
TableEntryIsTree(void * const * table,size_type b)832     static bool TableEntryIsTree(void* const* table, size_type b) {
833       return !TableEntryIsEmpty(table, b) &&
834              !TableEntryIsNonEmptyList(table, b);
835     }
TableEntryIsList(void * const * table,size_type b)836     static bool TableEntryIsList(void* const* table, size_type b) {
837       return !TableEntryIsTree(table, b);
838     }
839 
TreeConvert(size_type b)840     void TreeConvert(size_type b) {
841       GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1));
842       typename Allocator::template rebind<Tree>::other tree_allocator(alloc_);
843       Tree* tree = tree_allocator.allocate(1);
844       // We want to use the three-arg form of construct, if it exists, but we
845       // create a temporary and use the two-arg construct that's known to exist.
846       // It's clunky, but the compiler should be able to generate more-or-less
847       // the same code.
848       tree_allocator.construct(tree,
849                                Tree(KeyCompare(), KeyPtrAllocator(alloc_)));
850       // Now the tree is ready to use.
851       size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree);
852       GOOGLE_DCHECK_EQ(count, tree->size());
853       table_[b] = table_[b ^ 1] = static_cast<void*>(tree);
854     }
855 
856     // Copy a linked list in the given bucket to a tree.
857     // Returns the number of things it copied.
CopyListToTree(size_type b,Tree * tree)858     size_type CopyListToTree(size_type b, Tree* tree) {
859       size_type count = 0;
860       Node* node = static_cast<Node*>(table_[b]);
861       while (node != NULL) {
862         tree->insert(KeyPtrFromNodePtr(node));
863         ++count;
864         Node* next = node->next;
865         node->next = NULL;
866         node = next;
867       }
868       return count;
869     }
870 
871     // Return whether table_[b] is a linked list that seems awfully long.
872     // Requires table_[b] to point to a non-empty linked list.
TableEntryIsTooLong(size_type b)873     bool TableEntryIsTooLong(size_type b) {
874       const size_type kMaxLength = 8;
875       size_type count = 0;
876       Node* node = static_cast<Node*>(table_[b]);
877       do {
878         ++count;
879         node = node->next;
880       } while (node != NULL);
881       // Invariant: no linked list ever is more than kMaxLength in length.
882       GOOGLE_DCHECK_LE(count, kMaxLength);
883       return count >= kMaxLength;
884     }
885 
BucketNumber(const Key & k)886     size_type BucketNumber(const Key& k) const {
887       // We inherit from hasher, so one-arg operator() provides a hash function.
888       size_type h = (*const_cast<InnerMap*>(this))(k);
889       return (h + seed_) & (num_buckets_ - 1);
890     }
891 
IsMatch(const Key & k0,const Key & k1)892     bool IsMatch(const Key& k0, const Key& k1) const {
893       return std::equal_to<Key>()(k0, k1);
894     }
895 
896     // Return a power of two no less than max(kMinTableSize, n).
897     // Assumes either n < kMinTableSize or n is a power of two.
TableSize(size_type n)898     size_type TableSize(size_type n) {
899       return n < static_cast<size_type>(kMinTableSize)
900                  ? static_cast<size_type>(kMinTableSize)
901                  : n;
902     }
903 
904     // Use alloc_ to allocate an array of n objects of type U.
905     template <typename U>
Alloc(size_type n)906     U* Alloc(size_type n) {
907       typedef typename Allocator::template rebind<U>::other alloc_type;
908       return alloc_type(alloc_).allocate(n);
909     }
910 
911     // Use alloc_ to deallocate an array of n objects of type U.
912     template <typename U>
Dealloc(U * t,size_type n)913     void Dealloc(U* t, size_type n) {
914       typedef typename Allocator::template rebind<U>::other alloc_type;
915       alloc_type(alloc_).deallocate(t, n);
916     }
917 
DestroyNode(Node * node)918     void DestroyNode(Node* node) {
919       alloc_.destroy(&node->kv);
920       Dealloc<Node>(node, 1);
921     }
922 
DestroyTree(Tree * tree)923     void DestroyTree(Tree* tree) {
924       typename Allocator::template rebind<Tree>::other tree_allocator(alloc_);
925       tree_allocator.destroy(tree);
926       tree_allocator.deallocate(tree, 1);
927     }
928 
CreateEmptyTable(size_type n)929     void** CreateEmptyTable(size_type n) {
930       GOOGLE_DCHECK(n >= kMinTableSize);
931       GOOGLE_DCHECK_EQ(n & (n - 1), 0);
932       void** result = Alloc<void*>(n);
933       memset(result, 0, n * sizeof(result[0]));
934       return result;
935     }
936 
937     // Return a randomish value.
Seed()938     size_type Seed() const {
939       size_type s = static_cast<size_type>(reinterpret_cast<uintptr_t>(this));
940 #if defined(__x86_64__) && defined(__GNUC__) && \
941     !defined(GOOGLE_PROTOBUF_NO_RDTSC)
942       uint32 hi, lo;
943       asm("rdtsc" : "=a"(lo), "=d"(hi));
944       s += ((static_cast<uint64>(hi) << 32) | lo);
945 #endif
946       return s;
947     }
948 
949     size_type num_elements_;
950     size_type num_buckets_;
951     size_type seed_;
952     size_type index_of_first_non_null_;
953     void** table_;  // an array with num_buckets_ entries
954     Allocator alloc_;
955     GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap);
956   };  // end of class InnerMap
957 
958  public:
959   // Iterators
960   class const_iterator {
961     typedef typename InnerMap::const_iterator InnerIt;
962 
963    public:
964     typedef std::forward_iterator_tag iterator_category;
965     typedef typename Map::value_type value_type;
966     typedef ptrdiff_t difference_type;
967     typedef const value_type* pointer;
968     typedef const value_type& reference;
969 
const_iterator()970     const_iterator() {}
const_iterator(const InnerIt & it)971     explicit const_iterator(const InnerIt& it) : it_(it) {}
972 
973     const_reference operator*() const { return *it_->value(); }
974     const_pointer operator->() const { return &(operator*()); }
975 
976     const_iterator& operator++() {
977       ++it_;
978       return *this;
979     }
980     const_iterator operator++(int) { return const_iterator(it_++); }
981 
982     friend bool operator==(const const_iterator& a, const const_iterator& b) {
983       return a.it_ == b.it_;
984     }
985     friend bool operator!=(const const_iterator& a, const const_iterator& b) {
986       return !(a == b);
987     }
988 
989    private:
990     InnerIt it_;
991   };
992 
993   class iterator {
994     typedef typename InnerMap::iterator InnerIt;
995 
996    public:
997     typedef std::forward_iterator_tag iterator_category;
998     typedef typename Map::value_type value_type;
999     typedef ptrdiff_t difference_type;
1000     typedef value_type* pointer;
1001     typedef value_type& reference;
1002 
iterator()1003     iterator() {}
iterator(const InnerIt & it)1004     explicit iterator(const InnerIt& it) : it_(it) {}
1005 
1006     reference operator*() const { return *it_->value(); }
1007     pointer operator->() const { return &(operator*()); }
1008 
1009     iterator& operator++() {
1010       ++it_;
1011       return *this;
1012     }
1013     iterator operator++(int) { return iterator(it_++); }
1014 
1015     // Allow implicit conversion to const_iterator.
const_iterator()1016     operator const_iterator() const {
1017       return const_iterator(typename InnerMap::const_iterator(it_));
1018     }
1019 
1020     friend bool operator==(const iterator& a, const iterator& b) {
1021       return a.it_ == b.it_;
1022     }
1023     friend bool operator!=(const iterator& a, const iterator& b) {
1024       return !(a == b);
1025     }
1026 
1027    private:
1028     friend class Map;
1029 
1030     InnerIt it_;
1031   };
1032 
begin()1033   iterator begin() { return iterator(elements_->begin()); }
end()1034   iterator end() { return iterator(elements_->end()); }
begin()1035   const_iterator begin() const {
1036     return const_iterator(iterator(elements_->begin()));
1037   }
end()1038   const_iterator end() const {
1039     return const_iterator(iterator(elements_->end()));
1040   }
cbegin()1041   const_iterator cbegin() const { return begin(); }
cend()1042   const_iterator cend() const { return end(); }
1043 
1044   // Capacity
size()1045   size_type size() const { return elements_->size(); }
empty()1046   bool empty() const { return size() == 0; }
1047 
1048   // Element access
1049   T& operator[](const key_type& key) {
1050     value_type** value = &(*elements_)[key];
1051     if (*value == NULL) {
1052       *value = CreateValueTypeInternal(key);
1053       internal::MapValueInitializer<is_proto_enum<T>::value, T>::Initialize(
1054           (*value)->second, default_enum_value_);
1055     }
1056     return (*value)->second;
1057   }
at(const key_type & key)1058   const T& at(const key_type& key) const {
1059     const_iterator it = find(key);
1060     GOOGLE_CHECK(it != end()) << "key not found: " << key;
1061     return it->second;
1062   }
at(const key_type & key)1063   T& at(const key_type& key) {
1064     iterator it = find(key);
1065     GOOGLE_CHECK(it != end()) << "key not found: " << key;
1066     return it->second;
1067   }
1068 
1069   // Lookup
count(const key_type & key)1070   size_type count(const key_type& key) const {
1071     const_iterator it = find(key);
1072     GOOGLE_DCHECK(it == end() || key == it->first);
1073     return it == end() ? 0 : 1;
1074   }
find(const key_type & key)1075   const_iterator find(const key_type& key) const {
1076     return const_iterator(iterator(elements_->find(key)));
1077   }
find(const key_type & key)1078   iterator find(const key_type& key) { return iterator(elements_->find(key)); }
contains(const Key & key)1079   bool contains(const Key& key) const { return elements_->contains(key); }
equal_range(const key_type & key)1080   std::pair<const_iterator, const_iterator> equal_range(
1081       const key_type& key) const {
1082     const_iterator it = find(key);
1083     if (it == end()) {
1084       return std::pair<const_iterator, const_iterator>(it, it);
1085     } else {
1086       const_iterator begin = it++;
1087       return std::pair<const_iterator, const_iterator>(begin, it);
1088     }
1089   }
equal_range(const key_type & key)1090   std::pair<iterator, iterator> equal_range(const key_type& key) {
1091     iterator it = find(key);
1092     if (it == end()) {
1093       return std::pair<iterator, iterator>(it, it);
1094     } else {
1095       iterator begin = it++;
1096       return std::pair<iterator, iterator>(begin, it);
1097     }
1098   }
1099 
1100   // insert
insert(const value_type & value)1101   std::pair<iterator, bool> insert(const value_type& value) {
1102     std::pair<typename InnerMap::iterator, bool> p =
1103         elements_->insert(value.first);
1104     if (p.second) {
1105       p.first->value() = CreateValueTypeInternal(value);
1106     }
1107     return std::pair<iterator, bool>(iterator(p.first), p.second);
1108   }
1109   template <class InputIt>
insert(InputIt first,InputIt last)1110   void insert(InputIt first, InputIt last) {
1111     for (InputIt it = first; it != last; ++it) {
1112       iterator exist_it = find(it->first);
1113       if (exist_it == end()) {
1114         operator[](it->first) = it->second;
1115       }
1116     }
1117   }
insert(std::initializer_list<value_type> values)1118   void insert(std::initializer_list<value_type> values) {
1119     insert(values.begin(), values.end());
1120   }
1121 
1122   // Erase and clear
erase(const key_type & key)1123   size_type erase(const key_type& key) {
1124     iterator it = find(key);
1125     if (it == end()) {
1126       return 0;
1127     } else {
1128       erase(it);
1129       return 1;
1130     }
1131   }
erase(iterator pos)1132   iterator erase(iterator pos) {
1133     if (arena_ == NULL) delete pos.operator->();
1134     iterator i = pos++;
1135     elements_->erase(i.it_);
1136     return pos;
1137   }
erase(iterator first,iterator last)1138   void erase(iterator first, iterator last) {
1139     while (first != last) {
1140       first = erase(first);
1141     }
1142   }
clear()1143   void clear() { erase(begin(), end()); }
1144 
1145   // Assign
1146   Map& operator=(const Map& other) {
1147     if (this != &other) {
1148       clear();
1149       insert(other.begin(), other.end());
1150     }
1151     return *this;
1152   }
1153 
swap(Map & other)1154   void swap(Map& other) {
1155     if (arena_ == other.arena_) {
1156       std::swap(default_enum_value_, other.default_enum_value_);
1157       std::swap(elements_, other.elements_);
1158     } else {
1159       // TODO(zuguang): optimize this. The temporary copy can be allocated
1160       // in the same arena as the other message, and the "other = copy" can
1161       // be replaced with the fast-path swap above.
1162       Map copy = *this;
1163       *this = other;
1164       other = copy;
1165     }
1166   }
1167 
1168   // Access to hasher.  Currently this returns a copy, but it may
1169   // be modified to return a const reference in the future.
hash_function()1170   hasher hash_function() const { return elements_->hash_function(); }
1171 
1172  private:
1173   // Set default enum value only for proto2 map field whose value is enum type.
SetDefaultEnumValue(int default_enum_value)1174   void SetDefaultEnumValue(int default_enum_value) {
1175     default_enum_value_ = default_enum_value;
1176   }
1177 
CreateValueTypeInternal(const Key & key)1178   value_type* CreateValueTypeInternal(const Key& key) {
1179     if (arena_ == NULL) {
1180       return new value_type(key);
1181     } else {
1182       value_type* value = reinterpret_cast<value_type*>(
1183           Arena::CreateArray<uint8>(arena_, sizeof(value_type)));
1184       Arena::CreateInArenaStorage(const_cast<Key*>(&value->first), arena_);
1185       Arena::CreateInArenaStorage(&value->second, arena_);
1186       const_cast<Key&>(value->first) = key;
1187       return value;
1188     }
1189   }
1190 
CreateValueTypeInternal(const value_type & value)1191   value_type* CreateValueTypeInternal(const value_type& value) {
1192     if (arena_ == NULL) {
1193       return new value_type(value);
1194     } else {
1195       value_type* p = reinterpret_cast<value_type*>(
1196           Arena::CreateArray<uint8>(arena_, sizeof(value_type)));
1197       Arena::CreateInArenaStorage(const_cast<Key*>(&p->first), arena_);
1198       Arena::CreateInArenaStorage(&p->second, arena_);
1199       const_cast<Key&>(p->first) = value.first;
1200       p->second = value.second;
1201       return p;
1202     }
1203   }
1204 
1205   Arena* arena_;
1206   int default_enum_value_;
1207   InnerMap* elements_;
1208 
1209   friend class Arena;
1210   typedef void InternalArenaConstructable_;
1211   typedef void DestructorSkippable_;
1212   template <typename Derived, typename K, typename V,
1213             internal::WireFormatLite::FieldType key_wire_type,
1214             internal::WireFormatLite::FieldType value_wire_type,
1215             int default_enum_value>
1216   friend class internal::MapFieldLite;
1217 };
1218 
1219 }  // namespace protobuf
1220 }  // namespace google
1221 
1222 #include <google/protobuf/port_undef.inc>
1223 
1224 #endif  // GOOGLE_PROTOBUF_MAP_H__
1225