1 /*
2  * Copyright (c) 1999-2010 Apple Inc.  All Rights Reserved.
3  *
4  * @APPLE_LICENSE_HEADER_START@
5  *
6  * This file contains Original Code and/or Modifications of Original Code
7  * as defined in and that are subject to the Apple Public Source License
8  * Version 2.0 (the 'License'). You may not use this file except in
9  * compliance with the License. Please obtain a copy of the License at
10  * http://www.opensource.apple.com/apsl/ and read it before using this
11  * file.
12  *
13  * The Original Code and all software distributed under the License are
14  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18  * Please see the License for the specific language governing rights and
19  * limitations under the License.
20  *
21  * @APPLE_LICENSE_HEADER_END@
22  */
23 #ifndef _MACHO_LOADER_H_
24 #define _MACHO_LOADER_H_
25 
26 /*
27  * This file describes the format of mach object files.
28  */
29 #include <stdint.h>
30 
31 /*
32  * <mach/machine.h> is needed here for the cpu_type_t and cpu_subtype_t types
33  * and contains the constants for the possible values of these types.
34  */
35 #include <mach/machine.h>
36 
37 /*
38  * <mach/vm_prot.h> is needed here for the vm_prot_t type and contains the
39  * constants that are or'ed together for the possible values of this type.
40  */
41 #include <mach/vm_prot.h>
42 
43 /*
44  * <machine/thread_status.h> is expected to define the flavors of the thread
45  * states and the structures of those flavors for each machine.
46  */
47 #include <mach/machine/thread_status.h>
48 #include <architecture/byte_order.h>
49 
50 /*
51  * The 32-bit mach header appears at the very beginning of the object file for
52  * 32-bit architectures.
53  */
54 struct mach_header {
55 	uint32_t	magic;		/* mach magic number identifier */
56 	cpu_type_t	cputype;	/* cpu specifier */
57 	cpu_subtype_t	cpusubtype;	/* machine specifier */
58 	uint32_t	filetype;	/* type of file */
59 	uint32_t	ncmds;		/* number of load commands */
60 	uint32_t	sizeofcmds;	/* the size of all the load commands */
61 	uint32_t	flags;		/* flags */
62 };
63 
64 /* Constant for the magic field of the mach_header (32-bit architectures) */
65 #define	MH_MAGIC	0xfeedface	/* the mach magic number */
66 #define MH_CIGAM	0xcefaedfe	/* NXSwapInt(MH_MAGIC) */
67 
68 /*
69  * The 64-bit mach header appears at the very beginning of object files for
70  * 64-bit architectures.
71  */
72 struct mach_header_64 {
73 	uint32_t	magic;		/* mach magic number identifier */
74 	cpu_type_t	cputype;	/* cpu specifier */
75 	cpu_subtype_t	cpusubtype;	/* machine specifier */
76 	uint32_t	filetype;	/* type of file */
77 	uint32_t	ncmds;		/* number of load commands */
78 	uint32_t	sizeofcmds;	/* the size of all the load commands */
79 	uint32_t	flags;		/* flags */
80 	uint32_t	reserved;	/* reserved */
81 };
82 
83 /* Constant for the magic field of the mach_header_64 (64-bit architectures) */
84 #define MH_MAGIC_64 0xfeedfacf /* the 64-bit mach magic number */
85 #define MH_CIGAM_64 0xcffaedfe /* NXSwapInt(MH_MAGIC_64) */
86 
87 /*
88  * The layout of the file depends on the filetype.  For all but the MH_OBJECT
89  * file type the segments are padded out and aligned on a segment alignment
90  * boundary for efficient demand pageing.  The MH_EXECUTE, MH_FVMLIB, MH_DYLIB,
91  * MH_DYLINKER and MH_BUNDLE file types also have the headers included as part
92  * of their first segment.
93  *
94  * The file type MH_OBJECT is a compact format intended as output of the
95  * assembler and input (and possibly output) of the link editor (the .o
96  * format).  All sections are in one unnamed segment with no segment padding.
97  * This format is used as an executable format when the file is so small the
98  * segment padding greatly increases its size.
99  *
100  * The file type MH_PRELOAD is an executable format intended for things that
101  * are not executed under the kernel (proms, stand alones, kernels, etc).  The
102  * format can be executed under the kernel but may demand paged it and not
103  * preload it before execution.
104  *
105  * A core file is in MH_CORE format and can be any in an arbritray legal
106  * Mach-O file.
107  *
108  * Constants for the filetype field of the mach_header
109  */
110 #define	MH_OBJECT	0x1		/* relocatable object file */
111 #define	MH_EXECUTE	0x2		/* demand paged executable file */
112 #define	MH_FVMLIB	0x3		/* fixed VM shared library file */
113 #define	MH_CORE		0x4		/* core file */
114 #define	MH_PRELOAD	0x5		/* preloaded executable file */
115 #define	MH_DYLIB	0x6		/* dynamically bound shared library */
116 #define	MH_DYLINKER	0x7		/* dynamic link editor */
117 #define	MH_BUNDLE	0x8		/* dynamically bound bundle file */
118 #define	MH_DYLIB_STUB	0x9		/* shared library stub for static */
119 					/*  linking only, no section contents */
120 #define	MH_DSYM		0xa		/* companion file with only debug */
121 					/*  sections */
122 #define	MH_KEXT_BUNDLE	0xb		/* x86_64 kexts */
123 
124 /* Constants for the flags field of the mach_header */
125 #define	MH_NOUNDEFS	0x1		/* the object file has no undefined
126 					   references */
127 #define	MH_INCRLINK	0x2		/* the object file is the output of an
128 					   incremental link against a base file
129 					   and can't be link edited again */
130 #define MH_DYLDLINK	0x4		/* the object file is input for the
131 					   dynamic linker and can't be staticly
132 					   link edited again */
133 #define MH_BINDATLOAD	0x8		/* the object file's undefined
134 					   references are bound by the dynamic
135 					   linker when loaded. */
136 #define MH_PREBOUND	0x10		/* the file has its dynamic undefined
137 					   references prebound. */
138 #define MH_SPLIT_SEGS	0x20		/* the file has its read-only and
139 					   read-write segments split */
140 #define MH_LAZY_INIT	0x40		/* the shared library init routine is
141 					   to be run lazily via catching memory
142 					   faults to its writeable segments
143 					   (obsolete) */
144 #define MH_TWOLEVEL	0x80		/* the image is using two-level name
145 					   space bindings */
146 #define MH_FORCE_FLAT	0x100		/* the executable is forcing all images
147 					   to use flat name space bindings */
148 #define MH_NOMULTIDEFS	0x200		/* this umbrella guarantees no multiple
149 					   defintions of symbols in its
150 					   sub-images so the two-level namespace
151 					   hints can always be used. */
152 #define MH_NOFIXPREBINDING 0x400	/* do not have dyld notify the
153 					   prebinding agent about this
154 					   executable */
155 #define MH_PREBINDABLE  0x800           /* the binary is not prebound but can
156 					   have its prebinding redone. only used
157                                            when MH_PREBOUND is not set. */
158 #define MH_ALLMODSBOUND 0x1000		/* indicates that this binary binds to
159                                            all two-level namespace modules of
160 					   its dependent libraries. only used
161 					   when MH_PREBINDABLE and MH_TWOLEVEL
162 					   are both set. */
163 #define MH_SUBSECTIONS_VIA_SYMBOLS 0x2000/* safe to divide up the sections into
164 					    sub-sections via symbols for dead
165 					    code stripping */
166 #define MH_CANONICAL    0x4000		/* the binary has been canonicalized
167 					   via the unprebind operation */
168 #define MH_WEAK_DEFINES	0x8000		/* the final linked image contains
169 					   external weak symbols */
170 #define MH_BINDS_TO_WEAK 0x10000	/* the final linked image uses
171 					   weak symbols */
172 
173 #define MH_ALLOW_STACK_EXECUTION 0x20000/* When this bit is set, all stacks
174 					   in the task will be given stack
175 					   execution privilege.  Only used in
176 					   MH_EXECUTE filetypes. */
177 #define MH_ROOT_SAFE 0x40000           /* When this bit is set, the binary
178 					  declares it is safe for use in
179 					  processes with uid zero */
180 
181 #define MH_SETUID_SAFE 0x80000         /* When this bit is set, the binary
182 					  declares it is safe for use in
183 					  processes when issetugid() is true */
184 
185 #define MH_NO_REEXPORTED_DYLIBS 0x100000 /* When this bit is set on a dylib,
186 					  the static linker does not need to
187 					  examine dependent dylibs to see
188 					  if any are re-exported */
189 #define	MH_PIE 0x200000			/* When this bit is set, the OS will
190 					   load the main executable at a
191 					   random address.  Only used in
192 					   MH_EXECUTE filetypes. */
193 #define	MH_DEAD_STRIPPABLE_DYLIB 0x400000 /* Only for use on dylibs.  When
194 					     linking against a dylib that
195 					     has this bit set, the static linker
196 					     will automatically not create a
197 					     LC_LOAD_DYLIB load command to the
198 					     dylib if no symbols are being
199 					     referenced from the dylib. */
200 #define MH_HAS_TLV_DESCRIPTORS 0x800000 /* Contains a section of type
201 					    S_THREAD_LOCAL_VARIABLES */
202 
203 #define MH_NO_HEAP_EXECUTION 0x1000000	/* When this bit is set, the OS will
204 					   run the main executable with
205 					   a non-executable heap even on
206 					   platforms (e.g. i386) that don't
207 					   require it. Only used in MH_EXECUTE
208 					   filetypes. */
209 
210 /*
211  * The load commands directly follow the mach_header.  The total size of all
212  * of the commands is given by the sizeofcmds field in the mach_header.  All
213  * load commands must have as their first two fields cmd and cmdsize.  The cmd
214  * field is filled in with a constant for that command type.  Each command type
215  * has a structure specifically for it.  The cmdsize field is the size in bytes
216  * of the particular load command structure plus anything that follows it that
217  * is a part of the load command (i.e. section structures, strings, etc.).  To
218  * advance to the next load command the cmdsize can be added to the offset or
219  * pointer of the current load command.  The cmdsize for 32-bit architectures
220  * MUST be a multiple of 4 bytes and for 64-bit architectures MUST be a multiple
221  * of 8 bytes (these are forever the maximum alignment of any load commands).
222  * The padded bytes must be zero.  All tables in the object file must also
223  * follow these rules so the file can be memory mapped.  Otherwise the pointers
224  * to these tables will not work well or at all on some machines.  With all
225  * padding zeroed like objects will compare byte for byte.
226  */
227 struct load_command {
228 	uint32_t cmd;		/* type of load command */
229 	uint32_t cmdsize;	/* total size of command in bytes */
230 };
231 
232 /*
233  * After MacOS X 10.1 when a new load command is added that is required to be
234  * understood by the dynamic linker for the image to execute properly the
235  * LC_REQ_DYLD bit will be or'ed into the load command constant.  If the dynamic
236  * linker sees such a load command it it does not understand will issue a
237  * "unknown load command required for execution" error and refuse to use the
238  * image.  Other load commands without this bit that are not understood will
239  * simply be ignored.
240  */
241 #define LC_REQ_DYLD 0x80000000
242 
243 /* Constants for the cmd field of all load commands, the type */
244 #define	LC_SEGMENT	0x1	/* segment of this file to be mapped */
245 #define	LC_SYMTAB	0x2	/* link-edit stab symbol table info */
246 #define	LC_SYMSEG	0x3	/* link-edit gdb symbol table info (obsolete) */
247 #define	LC_THREAD	0x4	/* thread */
248 #define	LC_UNIXTHREAD	0x5	/* unix thread (includes a stack) */
249 #define	LC_LOADFVMLIB	0x6	/* load a specified fixed VM shared library */
250 #define	LC_IDFVMLIB	0x7	/* fixed VM shared library identification */
251 #define	LC_IDENT	0x8	/* object identification info (obsolete) */
252 #define LC_FVMFILE	0x9	/* fixed VM file inclusion (internal use) */
253 #define LC_PREPAGE      0xa     /* prepage command (internal use) */
254 #define	LC_DYSYMTAB	0xb	/* dynamic link-edit symbol table info */
255 #define	LC_LOAD_DYLIB	0xc	/* load a dynamically linked shared library */
256 #define	LC_ID_DYLIB	0xd	/* dynamically linked shared lib ident */
257 #define LC_LOAD_DYLINKER 0xe	/* load a dynamic linker */
258 #define LC_ID_DYLINKER	0xf	/* dynamic linker identification */
259 #define	LC_PREBOUND_DYLIB 0x10	/* modules prebound for a dynamically */
260 				/*  linked shared library */
261 #define	LC_ROUTINES	0x11	/* image routines */
262 #define	LC_SUB_FRAMEWORK 0x12	/* sub framework */
263 #define	LC_SUB_UMBRELLA 0x13	/* sub umbrella */
264 #define	LC_SUB_CLIENT	0x14	/* sub client */
265 #define	LC_SUB_LIBRARY  0x15	/* sub library */
266 #define	LC_TWOLEVEL_HINTS 0x16	/* two-level namespace lookup hints */
267 #define	LC_PREBIND_CKSUM  0x17	/* prebind checksum */
268 
269 /*
270  * load a dynamically linked shared library that is allowed to be missing
271  * (all symbols are weak imported).
272  */
273 #define	LC_LOAD_WEAK_DYLIB (0x18 | LC_REQ_DYLD)
274 
275 #define	LC_SEGMENT_64	0x19	/* 64-bit segment of this file to be
276 				   mapped */
277 #define	LC_ROUTINES_64	0x1a	/* 64-bit image routines */
278 #define LC_UUID		0x1b	/* the uuid */
279 #define LC_RPATH       (0x1c | LC_REQ_DYLD)    /* runpath additions */
280 #define LC_CODE_SIGNATURE 0x1d	/* local of code signature */
281 #define LC_SEGMENT_SPLIT_INFO 0x1e /* local of info to split segments */
282 #define LC_REEXPORT_DYLIB (0x1f | LC_REQ_DYLD) /* load and re-export dylib */
283 #define	LC_LAZY_LOAD_DYLIB 0x20	/* delay load of dylib until first use */
284 #define	LC_ENCRYPTION_INFO 0x21	/* encrypted segment information */
285 #define	LC_DYLD_INFO 	0x22	/* compressed dyld information */
286 #define	LC_DYLD_INFO_ONLY (0x22|LC_REQ_DYLD)	/* compressed dyld information only */
287 #define	LC_LOAD_UPWARD_DYLIB (0x23 | LC_REQ_DYLD) /* load upward dylib */
288 #define LC_VERSION_MIN_MACOSX 0x24   /* build for MacOSX min OS version */
289 #define LC_VERSION_MIN_IPHONEOS 0x25 /* build for iPhoneOS min OS version */
290 #define LC_FUNCTION_STARTS 0x26 /* compressed table of function start addresses */
291 #define LC_DYLD_ENVIRONMENT 0x27 /* string for dyld to treat
292 				    like environment variable */
293 
294 /*
295  * A variable length string in a load command is represented by an lc_str
296  * union.  The strings are stored just after the load command structure and
297  * the offset is from the start of the load command structure.  The size
298  * of the string is reflected in the cmdsize field of the load command.
299  * Once again any padded bytes to bring the cmdsize field to a multiple
300  * of 4 bytes must be zero.
301  */
302 union lc_str {
303 	uint32_t	offset;	/* offset to the string */
304 #ifndef __LP64__
305 	char		*ptr;	/* pointer to the string */
306 #endif
307 };
308 
309 /*
310  * The segment load command indicates that a part of this file is to be
311  * mapped into the task's address space.  The size of this segment in memory,
312  * vmsize, maybe equal to or larger than the amount to map from this file,
313  * filesize.  The file is mapped starting at fileoff to the beginning of
314  * the segment in memory, vmaddr.  The rest of the memory of the segment,
315  * if any, is allocated zero fill on demand.  The segment's maximum virtual
316  * memory protection and initial virtual memory protection are specified
317  * by the maxprot and initprot fields.  If the segment has sections then the
318  * section structures directly follow the segment command and their size is
319  * reflected in cmdsize.
320  */
321 struct segment_command { /* for 32-bit architectures */
322 	uint32_t	cmd;		/* LC_SEGMENT */
323 	uint32_t	cmdsize;	/* includes sizeof section structs */
324 	char		segname[16];	/* segment name */
325 	uint32_t	vmaddr;		/* memory address of this segment */
326 	uint32_t	vmsize;		/* memory size of this segment */
327 	uint32_t	fileoff;	/* file offset of this segment */
328 	uint32_t	filesize;	/* amount to map from the file */
329 	vm_prot_t	maxprot;	/* maximum VM protection */
330 	vm_prot_t	initprot;	/* initial VM protection */
331 	uint32_t	nsects;		/* number of sections in segment */
332 	uint32_t	flags;		/* flags */
333 };
334 
335 /*
336  * The 64-bit segment load command indicates that a part of this file is to be
337  * mapped into a 64-bit task's address space.  If the 64-bit segment has
338  * sections then section_64 structures directly follow the 64-bit segment
339  * command and their size is reflected in cmdsize.
340  */
341 struct segment_command_64 { /* for 64-bit architectures */
342 	uint32_t	cmd;		/* LC_SEGMENT_64 */
343 	uint32_t	cmdsize;	/* includes sizeof section_64 structs */
344 	char		segname[16];	/* segment name */
345 	uint64_t	vmaddr;		/* memory address of this segment */
346 	uint64_t	vmsize;		/* memory size of this segment */
347 	uint64_t	fileoff;	/* file offset of this segment */
348 	uint64_t	filesize;	/* amount to map from the file */
349 	vm_prot_t	maxprot;	/* maximum VM protection */
350 	vm_prot_t	initprot;	/* initial VM protection */
351 	uint32_t	nsects;		/* number of sections in segment */
352 	uint32_t	flags;		/* flags */
353 };
354 
355 /* Constants for the flags field of the segment_command */
356 #define	SG_HIGHVM	0x1	/* the file contents for this segment is for
357 				   the high part of the VM space, the low part
358 				   is zero filled (for stacks in core files) */
359 #define	SG_FVMLIB	0x2	/* this segment is the VM that is allocated by
360 				   a fixed VM library, for overlap checking in
361 				   the link editor */
362 #define	SG_NORELOC	0x4	/* this segment has nothing that was relocated
363 				   in it and nothing relocated to it, that is
364 				   it maybe safely replaced without relocation*/
365 #define SG_PROTECTED_VERSION_1	0x8 /* This segment is protected.  If the
366 				       segment starts at file offset 0, the
367 				       first page of the segment is not
368 				       protected.  All other pages of the
369 				       segment are protected. */
370 
371 /*
372  * A segment is made up of zero or more sections.  Non-MH_OBJECT files have
373  * all of their segments with the proper sections in each, and padded to the
374  * specified segment alignment when produced by the link editor.  The first
375  * segment of a MH_EXECUTE and MH_FVMLIB format file contains the mach_header
376  * and load commands of the object file before its first section.  The zero
377  * fill sections are always last in their segment (in all formats).  This
378  * allows the zeroed segment padding to be mapped into memory where zero fill
379  * sections might be. The gigabyte zero fill sections, those with the section
380  * type S_GB_ZEROFILL, can only be in a segment with sections of this type.
381  * These segments are then placed after all other segments.
382  *
383  * The MH_OBJECT format has all of its sections in one segment for
384  * compactness.  There is no padding to a specified segment boundary and the
385  * mach_header and load commands are not part of the segment.
386  *
387  * Sections with the same section name, sectname, going into the same segment,
388  * segname, are combined by the link editor.  The resulting section is aligned
389  * to the maximum alignment of the combined sections and is the new section's
390  * alignment.  The combined sections are aligned to their original alignment in
391  * the combined section.  Any padded bytes to get the specified alignment are
392  * zeroed.
393  *
394  * The format of the relocation entries referenced by the reloff and nreloc
395  * fields of the section structure for mach object files is described in the
396  * header file <reloc.h>.
397  */
398 struct section { /* for 32-bit architectures */
399 	char		sectname[16];	/* name of this section */
400 	char		segname[16];	/* segment this section goes in */
401 	uint32_t	addr;		/* memory address of this section */
402 	uint32_t	size;		/* size in bytes of this section */
403 	uint32_t	offset;		/* file offset of this section */
404 	uint32_t	align;		/* section alignment (power of 2) */
405 	uint32_t	reloff;		/* file offset of relocation entries */
406 	uint32_t	nreloc;		/* number of relocation entries */
407 	uint32_t	flags;		/* flags (section type and attributes)*/
408 	uint32_t	reserved1;	/* reserved (for offset or index) */
409 	uint32_t	reserved2;	/* reserved (for count or sizeof) */
410 };
411 
412 struct section_64 { /* for 64-bit architectures */
413 	char		sectname[16];	/* name of this section */
414 	char		segname[16];	/* segment this section goes in */
415 	uint64_t	addr;		/* memory address of this section */
416 	uint64_t	size;		/* size in bytes of this section */
417 	uint32_t	offset;		/* file offset of this section */
418 	uint32_t	align;		/* section alignment (power of 2) */
419 	uint32_t	reloff;		/* file offset of relocation entries */
420 	uint32_t	nreloc;		/* number of relocation entries */
421 	uint32_t	flags;		/* flags (section type and attributes)*/
422 	uint32_t	reserved1;	/* reserved (for offset or index) */
423 	uint32_t	reserved2;	/* reserved (for count or sizeof) */
424 	uint32_t	reserved3;	/* reserved */
425 };
426 
427 /*
428  * The flags field of a section structure is separated into two parts a section
429  * type and section attributes.  The section types are mutually exclusive (it
430  * can only have one type) but the section attributes are not (it may have more
431  * than one attribute).
432  */
433 #define SECTION_TYPE		 0x000000ff	/* 256 section types */
434 #define SECTION_ATTRIBUTES	 0xffffff00	/*  24 section attributes */
435 
436 /* Constants for the type of a section */
437 #define	S_REGULAR		0x0	/* regular section */
438 #define	S_ZEROFILL		0x1	/* zero fill on demand section */
439 #define	S_CSTRING_LITERALS	0x2	/* section with only literal C strings*/
440 #define	S_4BYTE_LITERALS	0x3	/* section with only 4 byte literals */
441 #define	S_8BYTE_LITERALS	0x4	/* section with only 8 byte literals */
442 #define	S_LITERAL_POINTERS	0x5	/* section with only pointers to */
443 					/*  literals */
444 /*
445  * For the two types of symbol pointers sections and the symbol stubs section
446  * they have indirect symbol table entries.  For each of the entries in the
447  * section the indirect symbol table entries, in corresponding order in the
448  * indirect symbol table, start at the index stored in the reserved1 field
449  * of the section structure.  Since the indirect symbol table entries
450  * correspond to the entries in the section the number of indirect symbol table
451  * entries is inferred from the size of the section divided by the size of the
452  * entries in the section.  For symbol pointers sections the size of the entries
453  * in the section is 4 bytes and for symbol stubs sections the byte size of the
454  * stubs is stored in the reserved2 field of the section structure.
455  */
456 #define	S_NON_LAZY_SYMBOL_POINTERS	0x6	/* section with only non-lazy
457 						   symbol pointers */
458 #define	S_LAZY_SYMBOL_POINTERS		0x7	/* section with only lazy symbol
459 						   pointers */
460 #define	S_SYMBOL_STUBS			0x8	/* section with only symbol
461 						   stubs, byte size of stub in
462 						   the reserved2 field */
463 #define	S_MOD_INIT_FUNC_POINTERS	0x9	/* section with only function
464 						   pointers for initialization*/
465 #define	S_MOD_TERM_FUNC_POINTERS	0xa	/* section with only function
466 						   pointers for termination */
467 #define	S_COALESCED			0xb	/* section contains symbols that
468 						   are to be coalesced */
469 #define	S_GB_ZEROFILL			0xc	/* zero fill on demand section
470 						   (that can be larger than 4
471 						   gigabytes) */
472 #define	S_INTERPOSING			0xd	/* section with only pairs of
473 						   function pointers for
474 						   interposing */
475 #define	S_16BYTE_LITERALS		0xe	/* section with only 16 byte
476 						   literals */
477 #define	S_DTRACE_DOF			0xf	/* section contains
478 						   DTrace Object Format */
479 #define	S_LAZY_DYLIB_SYMBOL_POINTERS	0x10	/* section with only lazy
480 						   symbol pointers to lazy
481 						   loaded dylibs */
482 /*
483  * Section types to support thread local variables
484  */
485 #define S_THREAD_LOCAL_REGULAR                   0x11  /* template of initial
486 							  values for TLVs */
487 #define S_THREAD_LOCAL_ZEROFILL                  0x12  /* template of initial
488 							  values for TLVs */
489 #define S_THREAD_LOCAL_VARIABLES                 0x13  /* TLV descriptors */
490 #define S_THREAD_LOCAL_VARIABLE_POINTERS         0x14  /* pointers to TLV
491                                                           descriptors */
492 #define S_THREAD_LOCAL_INIT_FUNCTION_POINTERS    0x15  /* functions to call
493 							  to initialize TLV
494 							  values */
495 
496 /*
497  * Constants for the section attributes part of the flags field of a section
498  * structure.
499  */
500 #define SECTION_ATTRIBUTES_USR	 0xff000000	/* User setable attributes */
501 #define S_ATTR_PURE_INSTRUCTIONS 0x80000000	/* section contains only true
502 						   machine instructions */
503 #define S_ATTR_NO_TOC 		 0x40000000	/* section contains coalesced
504 						   symbols that are not to be
505 						   in a ranlib table of
506 						   contents */
507 #define S_ATTR_STRIP_STATIC_SYMS 0x20000000	/* ok to strip static symbols
508 						   in this section in files
509 						   with the MH_DYLDLINK flag */
510 #define S_ATTR_NO_DEAD_STRIP	 0x10000000	/* no dead stripping */
511 #define S_ATTR_LIVE_SUPPORT	 0x08000000	/* blocks are live if they
512 						   reference live blocks */
513 #define S_ATTR_SELF_MODIFYING_CODE 0x04000000	/* Used with i386 code stubs
514 						   written on by dyld */
515 /*
516  * If a segment contains any sections marked with S_ATTR_DEBUG then all
517  * sections in that segment must have this attribute.  No section other than
518  * a section marked with this attribute may reference the contents of this
519  * section.  A section with this attribute may contain no symbols and must have
520  * a section type S_REGULAR.  The static linker will not copy section contents
521  * from sections with this attribute into its output file.  These sections
522  * generally contain DWARF debugging info.
523  */
524 #define	S_ATTR_DEBUG		 0x02000000	/* a debug section */
525 #define SECTION_ATTRIBUTES_SYS	 0x00ffff00	/* system setable attributes */
526 #define S_ATTR_SOME_INSTRUCTIONS 0x00000400	/* section contains some
527 						   machine instructions */
528 #define S_ATTR_EXT_RELOC	 0x00000200	/* section has external
529 						   relocation entries */
530 #define S_ATTR_LOC_RELOC	 0x00000100	/* section has local
531 						   relocation entries */
532 
533 
534 /*
535  * The names of segments and sections in them are mostly meaningless to the
536  * link-editor.  But there are few things to support traditional UNIX
537  * executables that require the link-editor and assembler to use some names
538  * agreed upon by convention.
539  *
540  * The initial protection of the "__TEXT" segment has write protection turned
541  * off (not writeable).
542  *
543  * The link-editor will allocate common symbols at the end of the "__common"
544  * section in the "__DATA" segment.  It will create the section and segment
545  * if needed.
546  */
547 
548 /* The currently known segment names and the section names in those segments */
549 
550 #define	SEG_PAGEZERO	"__PAGEZERO"	/* the pagezero segment which has no */
551 					/* protections and catches NULL */
552 					/* references for MH_EXECUTE files */
553 
554 
555 #define	SEG_TEXT	"__TEXT"	/* the tradition UNIX text segment */
556 #define	SECT_TEXT	"__text"	/* the real text part of the text */
557 					/* section no headers, and no padding */
558 #define SECT_FVMLIB_INIT0 "__fvmlib_init0"	/* the fvmlib initialization */
559 						/*  section */
560 #define SECT_FVMLIB_INIT1 "__fvmlib_init1"	/* the section following the */
561 					        /*  fvmlib initialization */
562 						/*  section */
563 
564 #define	SEG_DATA	"__DATA"	/* the tradition UNIX data segment */
565 #define	SECT_DATA	"__data"	/* the real initialized data section */
566 					/* no padding, no bss overlap */
567 #define	SECT_BSS	"__bss"		/* the real uninitialized data section*/
568 					/* no padding */
569 #define SECT_COMMON	"__common"	/* the section common symbols are */
570 					/* allocated in by the link editor */
571 
572 #define	SEG_OBJC	"__OBJC"	/* objective-C runtime segment */
573 #define SECT_OBJC_SYMBOLS "__symbol_table"	/* symbol table */
574 #define SECT_OBJC_MODULES "__module_info"	/* module information */
575 #define SECT_OBJC_STRINGS "__selector_strs"	/* string table */
576 #define SECT_OBJC_REFS "__selector_refs"	/* string table */
577 
578 #define	SEG_ICON	 "__ICON"	/* the icon segment */
579 #define	SECT_ICON_HEADER "__header"	/* the icon headers */
580 #define	SECT_ICON_TIFF   "__tiff"	/* the icons in tiff format */
581 
582 #define	SEG_LINKEDIT	"__LINKEDIT"	/* the segment containing all structs */
583 					/* created and maintained by the link */
584 					/* editor.  Created with -seglinkedit */
585 					/* option to ld(1) for MH_EXECUTE and */
586 					/* FVMLIB file types only */
587 
588 #define SEG_UNIXSTACK	"__UNIXSTACK"	/* the unix stack segment */
589 
590 #define SEG_IMPORT	"__IMPORT"	/* the segment for the self (dyld) */
591 					/* modifing code stubs that has read, */
592 					/* write and execute permissions */
593 
594 /*
595  * Fixed virtual memory shared libraries are identified by two things.  The
596  * target pathname (the name of the library as found for execution), and the
597  * minor version number.  The address of where the headers are loaded is in
598  * header_addr. (THIS IS OBSOLETE and no longer supported).
599  */
600 struct fvmlib {
601 	union lc_str	name;		/* library's target pathname */
602 	uint32_t	minor_version;	/* library's minor version number */
603 	uint32_t	header_addr;	/* library's header address */
604 };
605 
606 /*
607  * A fixed virtual shared library (filetype == MH_FVMLIB in the mach header)
608  * contains a fvmlib_command (cmd == LC_IDFVMLIB) to identify the library.
609  * An object that uses a fixed virtual shared library also contains a
610  * fvmlib_command (cmd == LC_LOADFVMLIB) for each library it uses.
611  * (THIS IS OBSOLETE and no longer supported).
612  */
613 struct fvmlib_command {
614 	uint32_t	cmd;		/* LC_IDFVMLIB or LC_LOADFVMLIB */
615 	uint32_t	cmdsize;	/* includes pathname string */
616 	struct fvmlib	fvmlib;		/* the library identification */
617 };
618 
619 /*
620  * Dynamicly linked shared libraries are identified by two things.  The
621  * pathname (the name of the library as found for execution), and the
622  * compatibility version number.  The pathname must match and the compatibility
623  * number in the user of the library must be greater than or equal to the
624  * library being used.  The time stamp is used to record the time a library was
625  * built and copied into user so it can be use to determined if the library used
626  * at runtime is exactly the same as used to built the program.
627  */
628 struct dylib {
629     union lc_str  name;			/* library's path name */
630     uint32_t timestamp;			/* library's build time stamp */
631     uint32_t current_version;		/* library's current version number */
632     uint32_t compatibility_version;	/* library's compatibility vers number*/
633 };
634 
635 /*
636  * A dynamically linked shared library (filetype == MH_DYLIB in the mach header)
637  * contains a dylib_command (cmd == LC_ID_DYLIB) to identify the library.
638  * An object that uses a dynamically linked shared library also contains a
639  * dylib_command (cmd == LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, or
640  * LC_REEXPORT_DYLIB) for each library it uses.
641  */
642 struct dylib_command {
643 	uint32_t	cmd;		/* LC_ID_DYLIB, LC_LOAD_{,WEAK_}DYLIB,
644 					   LC_REEXPORT_DYLIB */
645 	uint32_t	cmdsize;	/* includes pathname string */
646 	struct dylib	dylib;		/* the library identification */
647 };
648 
649 /*
650  * A dynamically linked shared library may be a subframework of an umbrella
651  * framework.  If so it will be linked with "-umbrella umbrella_name" where
652  * Where "umbrella_name" is the name of the umbrella framework. A subframework
653  * can only be linked against by its umbrella framework or other subframeworks
654  * that are part of the same umbrella framework.  Otherwise the static link
655  * editor produces an error and states to link against the umbrella framework.
656  * The name of the umbrella framework for subframeworks is recorded in the
657  * following structure.
658  */
659 struct sub_framework_command {
660 	uint32_t	cmd;		/* LC_SUB_FRAMEWORK */
661 	uint32_t	cmdsize;	/* includes umbrella string */
662 	union lc_str 	umbrella;	/* the umbrella framework name */
663 };
664 
665 /*
666  * For dynamically linked shared libraries that are subframework of an umbrella
667  * framework they can allow clients other than the umbrella framework or other
668  * subframeworks in the same umbrella framework.  To do this the subframework
669  * is built with "-allowable_client client_name" and an LC_SUB_CLIENT load
670  * command is created for each -allowable_client flag.  The client_name is
671  * usually a framework name.  It can also be a name used for bundles clients
672  * where the bundle is built with "-client_name client_name".
673  */
674 struct sub_client_command {
675 	uint32_t	cmd;		/* LC_SUB_CLIENT */
676 	uint32_t	cmdsize;	/* includes client string */
677 	union lc_str 	client;		/* the client name */
678 };
679 
680 /*
681  * A dynamically linked shared library may be a sub_umbrella of an umbrella
682  * framework.  If so it will be linked with "-sub_umbrella umbrella_name" where
683  * Where "umbrella_name" is the name of the sub_umbrella framework.  When
684  * staticly linking when -twolevel_namespace is in effect a twolevel namespace
685  * umbrella framework will only cause its subframeworks and those frameworks
686  * listed as sub_umbrella frameworks to be implicited linked in.  Any other
687  * dependent dynamic libraries will not be linked it when -twolevel_namespace
688  * is in effect.  The primary library recorded by the static linker when
689  * resolving a symbol in these libraries will be the umbrella framework.
690  * Zero or more sub_umbrella frameworks may be use by an umbrella framework.
691  * The name of a sub_umbrella framework is recorded in the following structure.
692  */
693 struct sub_umbrella_command {
694 	uint32_t	cmd;		/* LC_SUB_UMBRELLA */
695 	uint32_t	cmdsize;	/* includes sub_umbrella string */
696 	union lc_str 	sub_umbrella;	/* the sub_umbrella framework name */
697 };
698 
699 /*
700  * A dynamically linked shared library may be a sub_library of another shared
701  * library.  If so it will be linked with "-sub_library library_name" where
702  * Where "library_name" is the name of the sub_library shared library.  When
703  * staticly linking when -twolevel_namespace is in effect a twolevel namespace
704  * shared library will only cause its subframeworks and those frameworks
705  * listed as sub_umbrella frameworks and libraries listed as sub_libraries to
706  * be implicited linked in.  Any other dependent dynamic libraries will not be
707  * linked it when -twolevel_namespace is in effect.  The primary library
708  * recorded by the static linker when resolving a symbol in these libraries
709  * will be the umbrella framework (or dynamic library). Zero or more sub_library
710  * shared libraries may be use by an umbrella framework or (or dynamic library).
711  * The name of a sub_library framework is recorded in the following structure.
712  * For example /usr/lib/libobjc_profile.A.dylib would be recorded as "libobjc".
713  */
714 struct sub_library_command {
715 	uint32_t	cmd;		/* LC_SUB_LIBRARY */
716 	uint32_t	cmdsize;	/* includes sub_library string */
717 	union lc_str 	sub_library;	/* the sub_library name */
718 };
719 
720 /*
721  * A program (filetype == MH_EXECUTE) that is
722  * prebound to its dynamic libraries has one of these for each library that
723  * the static linker used in prebinding.  It contains a bit vector for the
724  * modules in the library.  The bits indicate which modules are bound (1) and
725  * which are not (0) from the library.  The bit for module 0 is the low bit
726  * of the first byte.  So the bit for the Nth module is:
727  * (linked_modules[N/8] >> N%8) & 1
728  */
729 struct prebound_dylib_command {
730 	uint32_t	cmd;		/* LC_PREBOUND_DYLIB */
731 	uint32_t	cmdsize;	/* includes strings */
732 	union lc_str	name;		/* library's path name */
733 	uint32_t	nmodules;	/* number of modules in library */
734 	union lc_str	linked_modules;	/* bit vector of linked modules */
735 };
736 
737 /*
738  * A program that uses a dynamic linker contains a dylinker_command to identify
739  * the name of the dynamic linker (LC_LOAD_DYLINKER).  And a dynamic linker
740  * contains a dylinker_command to identify the dynamic linker (LC_ID_DYLINKER).
741  * A file can have at most one of these.
742  * This struct is also used for the LC_DYLD_ENVIRONMENT load command and
743  * contains string for dyld to treat like environment variable.
744  */
745 struct dylinker_command {
746 	uint32_t	cmd;		/* LC_ID_DYLINKER, LC_LOAD_DYLINKER or
747 					   LC_DYLD_ENVIRONMENT */
748 	uint32_t	cmdsize;	/* includes pathname string */
749 	union lc_str    name;		/* dynamic linker's path name */
750 };
751 
752 /*
753  * Thread commands contain machine-specific data structures suitable for
754  * use in the thread state primitives.  The machine specific data structures
755  * follow the struct thread_command as follows.
756  * Each flavor of machine specific data structure is preceded by an unsigned
757  * long constant for the flavor of that data structure, an uint32_t
758  * that is the count of longs of the size of the state data structure and then
759  * the state data structure follows.  This triple may be repeated for many
760  * flavors.  The constants for the flavors, counts and state data structure
761  * definitions are expected to be in the header file <machine/thread_status.h>.
762  * These machine specific data structures sizes must be multiples of
763  * 4 bytes  The cmdsize reflects the total size of the thread_command
764  * and all of the sizes of the constants for the flavors, counts and state
765  * data structures.
766  *
767  * For executable objects that are unix processes there will be one
768  * thread_command (cmd == LC_UNIXTHREAD) created for it by the link-editor.
769  * This is the same as a LC_THREAD, except that a stack is automatically
770  * created (based on the shell's limit for the stack size).  Command arguments
771  * and environment variables are copied onto that stack.
772  */
773 struct thread_command {
774 	uint32_t	cmd;		/* LC_THREAD or  LC_UNIXTHREAD */
775 	uint32_t	cmdsize;	/* total size of this command */
776 	/* uint32_t flavor		   flavor of thread state */
777 	/* uint32_t count		   count of longs in thread state */
778 	/* struct XXX_thread_state state   thread state for this flavor */
779 	/* ... */
780 };
781 
782 /*
783  * The routines command contains the address of the dynamic shared library
784  * initialization routine and an index into the module table for the module
785  * that defines the routine.  Before any modules are used from the library the
786  * dynamic linker fully binds the module that defines the initialization routine
787  * and then calls it.  This gets called before any module initialization
788  * routines (used for C++ static constructors) in the library.
789  */
790 struct routines_command { /* for 32-bit architectures */
791 	uint32_t	cmd;		/* LC_ROUTINES */
792 	uint32_t	cmdsize;	/* total size of this command */
793 	uint32_t	init_address;	/* address of initialization routine */
794 	uint32_t	init_module;	/* index into the module table that */
795 				        /*  the init routine is defined in */
796 	uint32_t	reserved1;
797 	uint32_t	reserved2;
798 	uint32_t	reserved3;
799 	uint32_t	reserved4;
800 	uint32_t	reserved5;
801 	uint32_t	reserved6;
802 };
803 
804 /*
805  * The 64-bit routines command.  Same use as above.
806  */
807 struct routines_command_64 { /* for 64-bit architectures */
808 	uint32_t	cmd;		/* LC_ROUTINES_64 */
809 	uint32_t	cmdsize;	/* total size of this command */
810 	uint64_t	init_address;	/* address of initialization routine */
811 	uint64_t	init_module;	/* index into the module table that */
812 					/*  the init routine is defined in */
813 	uint64_t	reserved1;
814 	uint64_t	reserved2;
815 	uint64_t	reserved3;
816 	uint64_t	reserved4;
817 	uint64_t	reserved5;
818 	uint64_t	reserved6;
819 };
820 
821 /*
822  * The symtab_command contains the offsets and sizes of the link-edit 4.3BSD
823  * "stab" style symbol table information as described in the header files
824  * <nlist.h> and <stab.h>.
825  */
826 struct symtab_command {
827 	uint32_t	cmd;		/* LC_SYMTAB */
828 	uint32_t	cmdsize;	/* sizeof(struct symtab_command) */
829 	uint32_t	symoff;		/* symbol table offset */
830 	uint32_t	nsyms;		/* number of symbol table entries */
831 	uint32_t	stroff;		/* string table offset */
832 	uint32_t	strsize;	/* string table size in bytes */
833 };
834 
835 /*
836  * This is the second set of the symbolic information which is used to support
837  * the data structures for the dynamically link editor.
838  *
839  * The original set of symbolic information in the symtab_command which contains
840  * the symbol and string tables must also be present when this load command is
841  * present.  When this load command is present the symbol table is organized
842  * into three groups of symbols:
843  *	local symbols (static and debugging symbols) - grouped by module
844  *	defined external symbols - grouped by module (sorted by name if not lib)
845  *	undefined external symbols (sorted by name if MH_BINDATLOAD is not set,
846  *	     			    and in order the were seen by the static
847  *				    linker if MH_BINDATLOAD is set)
848  * In this load command there are offsets and counts to each of the three groups
849  * of symbols.
850  *
851  * This load command contains a the offsets and sizes of the following new
852  * symbolic information tables:
853  *	table of contents
854  *	module table
855  *	reference symbol table
856  *	indirect symbol table
857  * The first three tables above (the table of contents, module table and
858  * reference symbol table) are only present if the file is a dynamically linked
859  * shared library.  For executable and object modules, which are files
860  * containing only one module, the information that would be in these three
861  * tables is determined as follows:
862  * 	table of contents - the defined external symbols are sorted by name
863  *	module table - the file contains only one module so everything in the
864  *		       file is part of the module.
865  *	reference symbol table - is the defined and undefined external symbols
866  *
867  * For dynamically linked shared library files this load command also contains
868  * offsets and sizes to the pool of relocation entries for all sections
869  * separated into two groups:
870  *	external relocation entries
871  *	local relocation entries
872  * For executable and object modules the relocation entries continue to hang
873  * off the section structures.
874  */
875 struct dysymtab_command {
876     uint32_t cmd;	/* LC_DYSYMTAB */
877     uint32_t cmdsize;	/* sizeof(struct dysymtab_command) */
878 
879     /*
880      * The symbols indicated by symoff and nsyms of the LC_SYMTAB load command
881      * are grouped into the following three groups:
882      *    local symbols (further grouped by the module they are from)
883      *    defined external symbols (further grouped by the module they are from)
884      *    undefined symbols
885      *
886      * The local symbols are used only for debugging.  The dynamic binding
887      * process may have to use them to indicate to the debugger the local
888      * symbols for a module that is being bound.
889      *
890      * The last two groups are used by the dynamic binding process to do the
891      * binding (indirectly through the module table and the reference symbol
892      * table when this is a dynamically linked shared library file).
893      */
894     uint32_t ilocalsym;	/* index to local symbols */
895     uint32_t nlocalsym;	/* number of local symbols */
896 
897     uint32_t iextdefsym;/* index to externally defined symbols */
898     uint32_t nextdefsym;/* number of externally defined symbols */
899 
900     uint32_t iundefsym;	/* index to undefined symbols */
901     uint32_t nundefsym;	/* number of undefined symbols */
902 
903     /*
904      * For the for the dynamic binding process to find which module a symbol
905      * is defined in the table of contents is used (analogous to the ranlib
906      * structure in an archive) which maps defined external symbols to modules
907      * they are defined in.  This exists only in a dynamically linked shared
908      * library file.  For executable and object modules the defined external
909      * symbols are sorted by name and is use as the table of contents.
910      */
911     uint32_t tocoff;	/* file offset to table of contents */
912     uint32_t ntoc;	/* number of entries in table of contents */
913 
914     /*
915      * To support dynamic binding of "modules" (whole object files) the symbol
916      * table must reflect the modules that the file was created from.  This is
917      * done by having a module table that has indexes and counts into the merged
918      * tables for each module.  The module structure that these two entries
919      * refer to is described below.  This exists only in a dynamically linked
920      * shared library file.  For executable and object modules the file only
921      * contains one module so everything in the file belongs to the module.
922      */
923     uint32_t modtaboff;	/* file offset to module table */
924     uint32_t nmodtab;	/* number of module table entries */
925 
926     /*
927      * To support dynamic module binding the module structure for each module
928      * indicates the external references (defined and undefined) each module
929      * makes.  For each module there is an offset and a count into the
930      * reference symbol table for the symbols that the module references.
931      * This exists only in a dynamically linked shared library file.  For
932      * executable and object modules the defined external symbols and the
933      * undefined external symbols indicates the external references.
934      */
935     uint32_t extrefsymoff;	/* offset to referenced symbol table */
936     uint32_t nextrefsyms;	/* number of referenced symbol table entries */
937 
938     /*
939      * The sections that contain "symbol pointers" and "routine stubs" have
940      * indexes and (implied counts based on the size of the section and fixed
941      * size of the entry) into the "indirect symbol" table for each pointer
942      * and stub.  For every section of these two types the index into the
943      * indirect symbol table is stored in the section header in the field
944      * reserved1.  An indirect symbol table entry is simply a 32bit index into
945      * the symbol table to the symbol that the pointer or stub is referring to.
946      * The indirect symbol table is ordered to match the entries in the section.
947      */
948     uint32_t indirectsymoff; /* file offset to the indirect symbol table */
949     uint32_t nindirectsyms;  /* number of indirect symbol table entries */
950 
951     /*
952      * To support relocating an individual module in a library file quickly the
953      * external relocation entries for each module in the library need to be
954      * accessed efficiently.  Since the relocation entries can't be accessed
955      * through the section headers for a library file they are separated into
956      * groups of local and external entries further grouped by module.  In this
957      * case the presents of this load command who's extreloff, nextrel,
958      * locreloff and nlocrel fields are non-zero indicates that the relocation
959      * entries of non-merged sections are not referenced through the section
960      * structures (and the reloff and nreloc fields in the section headers are
961      * set to zero).
962      *
963      * Since the relocation entries are not accessed through the section headers
964      * this requires the r_address field to be something other than a section
965      * offset to identify the item to be relocated.  In this case r_address is
966      * set to the offset from the vmaddr of the first LC_SEGMENT command.
967      * For MH_SPLIT_SEGS images r_address is set to the the offset from the
968      * vmaddr of the first read-write LC_SEGMENT command.
969      *
970      * The relocation entries are grouped by module and the module table
971      * entries have indexes and counts into them for the group of external
972      * relocation entries for that the module.
973      *
974      * For sections that are merged across modules there must not be any
975      * remaining external relocation entries for them (for merged sections
976      * remaining relocation entries must be local).
977      */
978     uint32_t extreloff;	/* offset to external relocation entries */
979     uint32_t nextrel;	/* number of external relocation entries */
980 
981     /*
982      * All the local relocation entries are grouped together (they are not
983      * grouped by their module since they are only used if the object is moved
984      * from it staticly link edited address).
985      */
986     uint32_t locreloff;	/* offset to local relocation entries */
987     uint32_t nlocrel;	/* number of local relocation entries */
988 
989 };
990 
991 /*
992  * An indirect symbol table entry is simply a 32bit index into the symbol table
993  * to the symbol that the pointer or stub is refering to.  Unless it is for a
994  * non-lazy symbol pointer section for a defined symbol which strip(1) as
995  * removed.  In which case it has the value INDIRECT_SYMBOL_LOCAL.  If the
996  * symbol was also absolute INDIRECT_SYMBOL_ABS is or'ed with that.
997  */
998 #define INDIRECT_SYMBOL_LOCAL	0x80000000
999 #define INDIRECT_SYMBOL_ABS	0x40000000
1000 
1001 
1002 /* a table of contents entry */
1003 struct dylib_table_of_contents {
1004     uint32_t symbol_index;	/* the defined external symbol
1005 				   (index into the symbol table) */
1006     uint32_t module_index;	/* index into the module table this symbol
1007 				   is defined in */
1008 };
1009 
1010 /* a module table entry */
1011 struct dylib_module {
1012     uint32_t module_name;	/* the module name (index into string table) */
1013 
1014     uint32_t iextdefsym;	/* index into externally defined symbols */
1015     uint32_t nextdefsym;	/* number of externally defined symbols */
1016     uint32_t irefsym;		/* index into reference symbol table */
1017     uint32_t nrefsym;		/* number of reference symbol table entries */
1018     uint32_t ilocalsym;		/* index into symbols for local symbols */
1019     uint32_t nlocalsym;		/* number of local symbols */
1020 
1021     uint32_t iextrel;		/* index into external relocation entries */
1022     uint32_t nextrel;		/* number of external relocation entries */
1023 
1024     uint32_t iinit_iterm;	/* low 16 bits are the index into the init
1025 				   section, high 16 bits are the index into
1026 			           the term section */
1027     uint32_t ninit_nterm;	/* low 16 bits are the number of init section
1028 				   entries, high 16 bits are the number of
1029 				   term section entries */
1030 
1031     uint32_t			/* for this module address of the start of */
1032 	objc_module_info_addr;  /*  the (__OBJC,__module_info) section */
1033     uint32_t			/* for this module size of */
1034 	objc_module_info_size;	/*  the (__OBJC,__module_info) section */
1035 };
1036 
1037 /* a 64-bit module table entry */
1038 struct dylib_module_64 {
1039     uint32_t module_name;	/* the module name (index into string table) */
1040 
1041     uint32_t iextdefsym;	/* index into externally defined symbols */
1042     uint32_t nextdefsym;	/* number of externally defined symbols */
1043     uint32_t irefsym;		/* index into reference symbol table */
1044     uint32_t nrefsym;		/* number of reference symbol table entries */
1045     uint32_t ilocalsym;		/* index into symbols for local symbols */
1046     uint32_t nlocalsym;		/* number of local symbols */
1047 
1048     uint32_t iextrel;		/* index into external relocation entries */
1049     uint32_t nextrel;		/* number of external relocation entries */
1050 
1051     uint32_t iinit_iterm;	/* low 16 bits are the index into the init
1052 				   section, high 16 bits are the index into
1053 				   the term section */
1054     uint32_t ninit_nterm;      /* low 16 bits are the number of init section
1055 				  entries, high 16 bits are the number of
1056 				  term section entries */
1057 
1058     uint32_t			/* for this module size of */
1059         objc_module_info_size;	/*  the (__OBJC,__module_info) section */
1060     uint64_t			/* for this module address of the start of */
1061         objc_module_info_addr;	/*  the (__OBJC,__module_info) section */
1062 };
1063 
1064 /*
1065  * The entries in the reference symbol table are used when loading the module
1066  * (both by the static and dynamic link editors) and if the module is unloaded
1067  * or replaced.  Therefore all external symbols (defined and undefined) are
1068  * listed in the module's reference table.  The flags describe the type of
1069  * reference that is being made.  The constants for the flags are defined in
1070  * <mach-o/nlist.h> as they are also used for symbol table entries.
1071  */
1072 struct dylib_reference {
1073     uint32_t isym:24,		/* index into the symbol table */
1074     		  flags:8;	/* flags to indicate the type of reference */
1075 };
1076 
1077 /*
1078  * The twolevel_hints_command contains the offset and number of hints in the
1079  * two-level namespace lookup hints table.
1080  */
1081 struct twolevel_hints_command {
1082     uint32_t cmd;	/* LC_TWOLEVEL_HINTS */
1083     uint32_t cmdsize;	/* sizeof(struct twolevel_hints_command) */
1084     uint32_t offset;	/* offset to the hint table */
1085     uint32_t nhints;	/* number of hints in the hint table */
1086 };
1087 
1088 /*
1089  * The entries in the two-level namespace lookup hints table are twolevel_hint
1090  * structs.  These provide hints to the dynamic link editor where to start
1091  * looking for an undefined symbol in a two-level namespace image.  The
1092  * isub_image field is an index into the sub-images (sub-frameworks and
1093  * sub-umbrellas list) that made up the two-level image that the undefined
1094  * symbol was found in when it was built by the static link editor.  If
1095  * isub-image is 0 the the symbol is expected to be defined in library and not
1096  * in the sub-images.  If isub-image is non-zero it is an index into the array
1097  * of sub-images for the umbrella with the first index in the sub-images being
1098  * 1. The array of sub-images is the ordered list of sub-images of the umbrella
1099  * that would be searched for a symbol that has the umbrella recorded as its
1100  * primary library.  The table of contents index is an index into the
1101  * library's table of contents.  This is used as the starting point of the
1102  * binary search or a directed linear search.
1103  */
1104 struct twolevel_hint {
1105     uint32_t
1106 	isub_image:8,	/* index into the sub images */
1107 	itoc:24;	/* index into the table of contents */
1108 };
1109 
1110 /*
1111  * The prebind_cksum_command contains the value of the original check sum for
1112  * prebound files or zero.  When a prebound file is first created or modified
1113  * for other than updating its prebinding information the value of the check sum
1114  * is set to zero.  When the file has it prebinding re-done and if the value of
1115  * the check sum is zero the original check sum is calculated and stored in
1116  * cksum field of this load command in the output file.  If when the prebinding
1117  * is re-done and the cksum field is non-zero it is left unchanged from the
1118  * input file.
1119  */
1120 struct prebind_cksum_command {
1121     uint32_t cmd;	/* LC_PREBIND_CKSUM */
1122     uint32_t cmdsize;	/* sizeof(struct prebind_cksum_command) */
1123     uint32_t cksum;	/* the check sum or zero */
1124 };
1125 
1126 /*
1127  * The uuid load command contains a single 128-bit unique random number that
1128  * identifies an object produced by the static link editor.
1129  */
1130 struct uuid_command {
1131     uint32_t	cmd;		/* LC_UUID */
1132     uint32_t	cmdsize;	/* sizeof(struct uuid_command) */
1133     uint8_t	uuid[16];	/* the 128-bit uuid */
1134 };
1135 
1136 /*
1137  * The rpath_command contains a path which at runtime should be added to
1138  * the current run path used to find @rpath prefixed dylibs.
1139  */
1140 struct rpath_command {
1141     uint32_t	 cmd;		/* LC_RPATH */
1142     uint32_t	 cmdsize;	/* includes string */
1143     union lc_str path;		/* path to add to run path */
1144 };
1145 
1146 /*
1147  * The linkedit_data_command contains the offsets and sizes of a blob
1148  * of data in the __LINKEDIT segment.
1149  */
1150 struct linkedit_data_command {
1151     uint32_t	cmd;		/* LC_CODE_SIGNATURE, LC_SEGMENT_SPLIT_INFO,
1152                                    or LC_FUNCTION_STARTS */
1153     uint32_t	cmdsize;	/* sizeof(struct linkedit_data_command) */
1154     uint32_t	dataoff;	/* file offset of data in __LINKEDIT segment */
1155     uint32_t	datasize;	/* file size of data in __LINKEDIT segment  */
1156 };
1157 
1158 /*
1159  * The encryption_info_command contains the file offset and size of an
1160  * of an encrypted segment.
1161  */
1162 struct encryption_info_command {
1163    uint32_t	cmd;		/* LC_ENCRYPTION_INFO */
1164    uint32_t	cmdsize;	/* sizeof(struct encryption_info_command) */
1165    uint32_t	cryptoff;	/* file offset of encrypted range */
1166    uint32_t	cryptsize;	/* file size of encrypted range */
1167    uint32_t	cryptid;	/* which enryption system,
1168 				   0 means not-encrypted yet */
1169 };
1170 
1171 /*
1172  * The version_min_command contains the min OS version on which this
1173  * binary was built to run.
1174  */
1175 struct version_min_command {
1176     uint32_t	cmd;		/* LC_VERSION_MIN_MACOSX or
1177 				   LC_VERSION_MIN_IPHONEOS  */
1178     uint32_t	cmdsize;	/* sizeof(struct min_version_command) */
1179     uint32_t	version;	/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
1180     uint32_t	reserved;	/* zero */
1181 };
1182 
1183 /*
1184  * The dyld_info_command contains the file offsets and sizes of
1185  * the new compressed form of the information dyld needs to
1186  * load the image.  This information is used by dyld on Mac OS X
1187  * 10.6 and later.  All information pointed to by this command
1188  * is encoded using byte streams, so no endian swapping is needed
1189  * to interpret it.
1190  */
1191 struct dyld_info_command {
1192    uint32_t   cmd;		/* LC_DYLD_INFO or LC_DYLD_INFO_ONLY */
1193    uint32_t   cmdsize;		/* sizeof(struct dyld_info_command) */
1194 
1195     /*
1196      * Dyld rebases an image whenever dyld loads it at an address different
1197      * from its preferred address.  The rebase information is a stream
1198      * of byte sized opcodes whose symbolic names start with REBASE_OPCODE_.
1199      * Conceptually the rebase information is a table of tuples:
1200      *    <seg-index, seg-offset, type>
1201      * The opcodes are a compressed way to encode the table by only
1202      * encoding when a column changes.  In addition simple patterns
1203      * like "every n'th offset for m times" can be encoded in a few
1204      * bytes.
1205      */
1206     uint32_t   rebase_off;	/* file offset to rebase info  */
1207     uint32_t   rebase_size;	/* size of rebase info   */
1208 
1209     /*
1210      * Dyld binds an image during the loading process, if the image
1211      * requires any pointers to be initialized to symbols in other images.
1212      * The bind information is a stream of byte sized
1213      * opcodes whose symbolic names start with BIND_OPCODE_.
1214      * Conceptually the bind information is a table of tuples:
1215      *    <seg-index, seg-offset, type, symbol-library-ordinal, symbol-name, addend>
1216      * The opcodes are a compressed way to encode the table by only
1217      * encoding when a column changes.  In addition simple patterns
1218      * like for runs of pointers initialzed to the same value can be
1219      * encoded in a few bytes.
1220      */
1221     uint32_t   bind_off;	/* file offset to binding info   */
1222     uint32_t   bind_size;	/* size of binding info  */
1223 
1224     /*
1225      * Some C++ programs require dyld to unique symbols so that all
1226      * images in the process use the same copy of some code/data.
1227      * This step is done after binding. The content of the weak_bind
1228      * info is an opcode stream like the bind_info.  But it is sorted
1229      * alphabetically by symbol name.  This enable dyld to walk
1230      * all images with weak binding information in order and look
1231      * for collisions.  If there are no collisions, dyld does
1232      * no updating.  That means that some fixups are also encoded
1233      * in the bind_info.  For instance, all calls to "operator new"
1234      * are first bound to libstdc++.dylib using the information
1235      * in bind_info.  Then if some image overrides operator new
1236      * that is detected when the weak_bind information is processed
1237      * and the call to operator new is then rebound.
1238      */
1239     uint32_t   weak_bind_off;	/* file offset to weak binding info   */
1240     uint32_t   weak_bind_size;  /* size of weak binding info  */
1241 
1242     /*
1243      * Some uses of external symbols do not need to be bound immediately.
1244      * Instead they can be lazily bound on first use.  The lazy_bind
1245      * are contains a stream of BIND opcodes to bind all lazy symbols.
1246      * Normal use is that dyld ignores the lazy_bind section when
1247      * loading an image.  Instead the static linker arranged for the
1248      * lazy pointer to initially point to a helper function which
1249      * pushes the offset into the lazy_bind area for the symbol
1250      * needing to be bound, then jumps to dyld which simply adds
1251      * the offset to lazy_bind_off to get the information on what
1252      * to bind.
1253      */
1254     uint32_t   lazy_bind_off;	/* file offset to lazy binding info */
1255     uint32_t   lazy_bind_size;  /* size of lazy binding infs */
1256 
1257     /*
1258      * The symbols exported by a dylib are encoded in a trie.  This
1259      * is a compact representation that factors out common prefixes.
1260      * It also reduces LINKEDIT pages in RAM because it encodes all
1261      * information (name, address, flags) in one small, contiguous range.
1262      * The export area is a stream of nodes.  The first node sequentially
1263      * is the start node for the trie.
1264      *
1265      * Nodes for a symbol start with a uleb128 that is the length of
1266      * the exported symbol information for the string so far.
1267      * If there is no exported symbol, the node starts with a zero byte.
1268      * If there is exported info, it follows the length.  First is
1269      * a uleb128 containing flags.  Normally, it is followed by a
1270      * uleb128 encoded offset which is location of the content named
1271      * by the symbol from the mach_header for the image.  If the flags
1272      * is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is
1273      * a uleb128 encoded library ordinal, then a zero terminated
1274      * UTF8 string.  If the string is zero length, then the symbol
1275      * is re-export from the specified dylib with the same name.
1276      *
1277      * After the optional exported symbol information is a byte of
1278      * how many edges (0-255) that this node has leaving it,
1279      * followed by each edge.
1280      * Each edge is a zero terminated UTF8 of the addition chars
1281      * in the symbol, followed by a uleb128 offset for the node that
1282      * edge points to.
1283      *
1284      */
1285     uint32_t   export_off;	/* file offset to lazy binding info */
1286     uint32_t   export_size;	/* size of lazy binding infs */
1287 };
1288 
1289 /*
1290  * The following are used to encode rebasing information
1291  */
1292 #define REBASE_TYPE_POINTER					1
1293 #define REBASE_TYPE_TEXT_ABSOLUTE32				2
1294 #define REBASE_TYPE_TEXT_PCREL32				3
1295 
1296 #define REBASE_OPCODE_MASK					0xF0
1297 #define REBASE_IMMEDIATE_MASK					0x0F
1298 #define REBASE_OPCODE_DONE					0x00
1299 #define REBASE_OPCODE_SET_TYPE_IMM				0x10
1300 #define REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB		0x20
1301 #define REBASE_OPCODE_ADD_ADDR_ULEB				0x30
1302 #define REBASE_OPCODE_ADD_ADDR_IMM_SCALED			0x40
1303 #define REBASE_OPCODE_DO_REBASE_IMM_TIMES			0x50
1304 #define REBASE_OPCODE_DO_REBASE_ULEB_TIMES			0x60
1305 #define REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB			0x70
1306 #define REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB	0x80
1307 
1308 
1309 /*
1310  * The following are used to encode binding information
1311  */
1312 #define BIND_TYPE_POINTER					1
1313 #define BIND_TYPE_TEXT_ABSOLUTE32				2
1314 #define BIND_TYPE_TEXT_PCREL32					3
1315 
1316 #define BIND_SPECIAL_DYLIB_SELF					 0
1317 #define BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE			-1
1318 #define BIND_SPECIAL_DYLIB_FLAT_LOOKUP				-2
1319 
1320 #define BIND_SYMBOL_FLAGS_WEAK_IMPORT				0x1
1321 #define BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION			0x8
1322 
1323 #define BIND_OPCODE_MASK					0xF0
1324 #define BIND_IMMEDIATE_MASK					0x0F
1325 #define BIND_OPCODE_DONE					0x00
1326 #define BIND_OPCODE_SET_DYLIB_ORDINAL_IMM			0x10
1327 #define BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB			0x20
1328 #define BIND_OPCODE_SET_DYLIB_SPECIAL_IMM			0x30
1329 #define BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM		0x40
1330 #define BIND_OPCODE_SET_TYPE_IMM				0x50
1331 #define BIND_OPCODE_SET_ADDEND_SLEB				0x60
1332 #define BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB			0x70
1333 #define BIND_OPCODE_ADD_ADDR_ULEB				0x80
1334 #define BIND_OPCODE_DO_BIND					0x90
1335 #define BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB			0xA0
1336 #define BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED			0xB0
1337 #define BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB		0xC0
1338 
1339 
1340 /*
1341  * The following are used on the flags byte of a terminal node
1342  * in the export information.
1343  */
1344 #define EXPORT_SYMBOL_FLAGS_KIND_MASK				0x03
1345 #define EXPORT_SYMBOL_FLAGS_KIND_REGULAR			0x00
1346 #define EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL			0x01
1347 #define EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION			0x04
1348 #define EXPORT_SYMBOL_FLAGS_REEXPORT				0x08
1349 #define EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER			0x10
1350 
1351 /*
1352  * The symseg_command contains the offset and size of the GNU style
1353  * symbol table information as described in the header file <symseg.h>.
1354  * The symbol roots of the symbol segments must also be aligned properly
1355  * in the file.  So the requirement of keeping the offsets aligned to a
1356  * multiple of a 4 bytes translates to the length field of the symbol
1357  * roots also being a multiple of a long.  Also the padding must again be
1358  * zeroed. (THIS IS OBSOLETE and no longer supported).
1359  */
1360 struct symseg_command {
1361 	uint32_t	cmd;		/* LC_SYMSEG */
1362 	uint32_t	cmdsize;	/* sizeof(struct symseg_command) */
1363 	uint32_t	offset;		/* symbol segment offset */
1364 	uint32_t	size;		/* symbol segment size in bytes */
1365 };
1366 
1367 /*
1368  * The ident_command contains a free format string table following the
1369  * ident_command structure.  The strings are null terminated and the size of
1370  * the command is padded out with zero bytes to a multiple of 4 bytes/
1371  * (THIS IS OBSOLETE and no longer supported).
1372  */
1373 struct ident_command {
1374 	uint32_t cmd;		/* LC_IDENT */
1375 	uint32_t cmdsize;	/* strings that follow this command */
1376 };
1377 
1378 /*
1379  * The fvmfile_command contains a reference to a file to be loaded at the
1380  * specified virtual address.  (Presently, this command is reserved for
1381  * internal use.  The kernel ignores this command when loading a program into
1382  * memory).
1383  */
1384 struct fvmfile_command {
1385 	uint32_t cmd;			/* LC_FVMFILE */
1386 	uint32_t cmdsize;		/* includes pathname string */
1387 	union lc_str	name;		/* files pathname */
1388 	uint32_t	header_addr;	/* files virtual address */
1389 };
1390 
1391 /*
1392  * Sections of type S_THREAD_LOCAL_VARIABLES contain an array
1393  * of tlv_descriptor structures.
1394  */
1395 struct tlv_descriptor
1396 {
1397 	void*		(*thunk)(struct tlv_descriptor*);
1398 	unsigned long	key;
1399 	unsigned long	offset;
1400 };
1401 
1402 #endif /* _MACHO_LOADER_H_ */
1403