1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15	"encoding/binary"
16	"net"
17	"runtime"
18	"syscall"
19	"unsafe"
20)
21
22/*
23 * Wrapped
24 */
25
26func Access(path string, mode uint32) (err error) {
27	return Faccessat(AT_FDCWD, path, mode, 0)
28}
29
30func Chmod(path string, mode uint32) (err error) {
31	return Fchmodat(AT_FDCWD, path, mode, 0)
32}
33
34func Chown(path string, uid int, gid int) (err error) {
35	return Fchownat(AT_FDCWD, path, uid, gid, 0)
36}
37
38func Creat(path string, mode uint32) (fd int, err error) {
39	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
40}
41
42//sys	fchmodat(dirfd int, path string, mode uint32) (err error)
43
44func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
45	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
46	// and check the flags. Otherwise the mode would be applied to the symlink
47	// destination which is not what the user expects.
48	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
49		return EINVAL
50	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
51		return EOPNOTSUPP
52	}
53	return fchmodat(dirfd, path, mode)
54}
55
56//sys	ioctl(fd int, req uint, arg uintptr) (err error)
57
58// ioctl itself should not be exposed directly, but additional get/set
59// functions for specific types are permissible.
60
61// IoctlSetPointerInt performs an ioctl operation which sets an
62// integer value on fd, using the specified request number. The ioctl
63// argument is called with a pointer to the integer value, rather than
64// passing the integer value directly.
65func IoctlSetPointerInt(fd int, req uint, value int) error {
66	v := int32(value)
67	return ioctl(fd, req, uintptr(unsafe.Pointer(&v)))
68}
69
70// IoctlSetInt performs an ioctl operation which sets an integer value
71// on fd, using the specified request number.
72func IoctlSetInt(fd int, req uint, value int) error {
73	return ioctl(fd, req, uintptr(value))
74}
75
76func ioctlSetWinsize(fd int, req uint, value *Winsize) error {
77	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
78}
79
80func ioctlSetTermios(fd int, req uint, value *Termios) error {
81	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
82}
83
84func IoctlSetRTCTime(fd int, value *RTCTime) error {
85	err := ioctl(fd, RTC_SET_TIME, uintptr(unsafe.Pointer(value)))
86	runtime.KeepAlive(value)
87	return err
88}
89
90// IoctlGetInt performs an ioctl operation which gets an integer value
91// from fd, using the specified request number.
92func IoctlGetInt(fd int, req uint) (int, error) {
93	var value int
94	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
95	return value, err
96}
97
98func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
99	var value Winsize
100	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
101	return &value, err
102}
103
104func IoctlGetTermios(fd int, req uint) (*Termios, error) {
105	var value Termios
106	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
107	return &value, err
108}
109
110func IoctlGetRTCTime(fd int) (*RTCTime, error) {
111	var value RTCTime
112	err := ioctl(fd, RTC_RD_TIME, uintptr(unsafe.Pointer(&value)))
113	return &value, err
114}
115
116//sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
117
118func Link(oldpath string, newpath string) (err error) {
119	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
120}
121
122func Mkdir(path string, mode uint32) (err error) {
123	return Mkdirat(AT_FDCWD, path, mode)
124}
125
126func Mknod(path string, mode uint32, dev int) (err error) {
127	return Mknodat(AT_FDCWD, path, mode, dev)
128}
129
130func Open(path string, mode int, perm uint32) (fd int, err error) {
131	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
132}
133
134//sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
135
136func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
137	return openat(dirfd, path, flags|O_LARGEFILE, mode)
138}
139
140//sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
141
142func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
143	if len(fds) == 0 {
144		return ppoll(nil, 0, timeout, sigmask)
145	}
146	return ppoll(&fds[0], len(fds), timeout, sigmask)
147}
148
149//sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
150
151func Readlink(path string, buf []byte) (n int, err error) {
152	return Readlinkat(AT_FDCWD, path, buf)
153}
154
155func Rename(oldpath string, newpath string) (err error) {
156	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
157}
158
159func Rmdir(path string) error {
160	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
161}
162
163//sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
164
165func Symlink(oldpath string, newpath string) (err error) {
166	return Symlinkat(oldpath, AT_FDCWD, newpath)
167}
168
169func Unlink(path string) error {
170	return Unlinkat(AT_FDCWD, path, 0)
171}
172
173//sys	Unlinkat(dirfd int, path string, flags int) (err error)
174
175func Utimes(path string, tv []Timeval) error {
176	if tv == nil {
177		err := utimensat(AT_FDCWD, path, nil, 0)
178		if err != ENOSYS {
179			return err
180		}
181		return utimes(path, nil)
182	}
183	if len(tv) != 2 {
184		return EINVAL
185	}
186	var ts [2]Timespec
187	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
188	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
189	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
190	if err != ENOSYS {
191		return err
192	}
193	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
194}
195
196//sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
197
198func UtimesNano(path string, ts []Timespec) error {
199	if ts == nil {
200		err := utimensat(AT_FDCWD, path, nil, 0)
201		if err != ENOSYS {
202			return err
203		}
204		return utimes(path, nil)
205	}
206	if len(ts) != 2 {
207		return EINVAL
208	}
209	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
210	if err != ENOSYS {
211		return err
212	}
213	// If the utimensat syscall isn't available (utimensat was added to Linux
214	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
215	var tv [2]Timeval
216	for i := 0; i < 2; i++ {
217		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
218	}
219	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
220}
221
222func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
223	if ts == nil {
224		return utimensat(dirfd, path, nil, flags)
225	}
226	if len(ts) != 2 {
227		return EINVAL
228	}
229	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
230}
231
232func Futimesat(dirfd int, path string, tv []Timeval) error {
233	if tv == nil {
234		return futimesat(dirfd, path, nil)
235	}
236	if len(tv) != 2 {
237		return EINVAL
238	}
239	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
240}
241
242func Futimes(fd int, tv []Timeval) (err error) {
243	// Believe it or not, this is the best we can do on Linux
244	// (and is what glibc does).
245	return Utimes("/proc/self/fd/"+itoa(fd), tv)
246}
247
248const ImplementsGetwd = true
249
250//sys	Getcwd(buf []byte) (n int, err error)
251
252func Getwd() (wd string, err error) {
253	var buf [PathMax]byte
254	n, err := Getcwd(buf[0:])
255	if err != nil {
256		return "", err
257	}
258	// Getcwd returns the number of bytes written to buf, including the NUL.
259	if n < 1 || n > len(buf) || buf[n-1] != 0 {
260		return "", EINVAL
261	}
262	return string(buf[0 : n-1]), nil
263}
264
265func Getgroups() (gids []int, err error) {
266	n, err := getgroups(0, nil)
267	if err != nil {
268		return nil, err
269	}
270	if n == 0 {
271		return nil, nil
272	}
273
274	// Sanity check group count. Max is 1<<16 on Linux.
275	if n < 0 || n > 1<<20 {
276		return nil, EINVAL
277	}
278
279	a := make([]_Gid_t, n)
280	n, err = getgroups(n, &a[0])
281	if err != nil {
282		return nil, err
283	}
284	gids = make([]int, n)
285	for i, v := range a[0:n] {
286		gids[i] = int(v)
287	}
288	return
289}
290
291func Setgroups(gids []int) (err error) {
292	if len(gids) == 0 {
293		return setgroups(0, nil)
294	}
295
296	a := make([]_Gid_t, len(gids))
297	for i, v := range gids {
298		a[i] = _Gid_t(v)
299	}
300	return setgroups(len(a), &a[0])
301}
302
303type WaitStatus uint32
304
305// Wait status is 7 bits at bottom, either 0 (exited),
306// 0x7F (stopped), or a signal number that caused an exit.
307// The 0x80 bit is whether there was a core dump.
308// An extra number (exit code, signal causing a stop)
309// is in the high bits. At least that's the idea.
310// There are various irregularities. For example, the
311// "continued" status is 0xFFFF, distinguishing itself
312// from stopped via the core dump bit.
313
314const (
315	mask    = 0x7F
316	core    = 0x80
317	exited  = 0x00
318	stopped = 0x7F
319	shift   = 8
320)
321
322func (w WaitStatus) Exited() bool { return w&mask == exited }
323
324func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
325
326func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
327
328func (w WaitStatus) Continued() bool { return w == 0xFFFF }
329
330func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
331
332func (w WaitStatus) ExitStatus() int {
333	if !w.Exited() {
334		return -1
335	}
336	return int(w>>shift) & 0xFF
337}
338
339func (w WaitStatus) Signal() syscall.Signal {
340	if !w.Signaled() {
341		return -1
342	}
343	return syscall.Signal(w & mask)
344}
345
346func (w WaitStatus) StopSignal() syscall.Signal {
347	if !w.Stopped() {
348		return -1
349	}
350	return syscall.Signal(w>>shift) & 0xFF
351}
352
353func (w WaitStatus) TrapCause() int {
354	if w.StopSignal() != SIGTRAP {
355		return -1
356	}
357	return int(w>>shift) >> 8
358}
359
360//sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
361
362func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
363	var status _C_int
364	wpid, err = wait4(pid, &status, options, rusage)
365	if wstatus != nil {
366		*wstatus = WaitStatus(status)
367	}
368	return
369}
370
371func Mkfifo(path string, mode uint32) error {
372	return Mknod(path, mode|S_IFIFO, 0)
373}
374
375func Mkfifoat(dirfd int, path string, mode uint32) error {
376	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
377}
378
379func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
380	if sa.Port < 0 || sa.Port > 0xFFFF {
381		return nil, 0, EINVAL
382	}
383	sa.raw.Family = AF_INET
384	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
385	p[0] = byte(sa.Port >> 8)
386	p[1] = byte(sa.Port)
387	for i := 0; i < len(sa.Addr); i++ {
388		sa.raw.Addr[i] = sa.Addr[i]
389	}
390	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
391}
392
393func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
394	if sa.Port < 0 || sa.Port > 0xFFFF {
395		return nil, 0, EINVAL
396	}
397	sa.raw.Family = AF_INET6
398	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
399	p[0] = byte(sa.Port >> 8)
400	p[1] = byte(sa.Port)
401	sa.raw.Scope_id = sa.ZoneId
402	for i := 0; i < len(sa.Addr); i++ {
403		sa.raw.Addr[i] = sa.Addr[i]
404	}
405	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
406}
407
408func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
409	name := sa.Name
410	n := len(name)
411	if n >= len(sa.raw.Path) {
412		return nil, 0, EINVAL
413	}
414	sa.raw.Family = AF_UNIX
415	for i := 0; i < n; i++ {
416		sa.raw.Path[i] = int8(name[i])
417	}
418	// length is family (uint16), name, NUL.
419	sl := _Socklen(2)
420	if n > 0 {
421		sl += _Socklen(n) + 1
422	}
423	if sa.raw.Path[0] == '@' {
424		sa.raw.Path[0] = 0
425		// Don't count trailing NUL for abstract address.
426		sl--
427	}
428
429	return unsafe.Pointer(&sa.raw), sl, nil
430}
431
432// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
433type SockaddrLinklayer struct {
434	Protocol uint16
435	Ifindex  int
436	Hatype   uint16
437	Pkttype  uint8
438	Halen    uint8
439	Addr     [8]byte
440	raw      RawSockaddrLinklayer
441}
442
443func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
444	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
445		return nil, 0, EINVAL
446	}
447	sa.raw.Family = AF_PACKET
448	sa.raw.Protocol = sa.Protocol
449	sa.raw.Ifindex = int32(sa.Ifindex)
450	sa.raw.Hatype = sa.Hatype
451	sa.raw.Pkttype = sa.Pkttype
452	sa.raw.Halen = sa.Halen
453	for i := 0; i < len(sa.Addr); i++ {
454		sa.raw.Addr[i] = sa.Addr[i]
455	}
456	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
457}
458
459// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
460type SockaddrNetlink struct {
461	Family uint16
462	Pad    uint16
463	Pid    uint32
464	Groups uint32
465	raw    RawSockaddrNetlink
466}
467
468func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
469	sa.raw.Family = AF_NETLINK
470	sa.raw.Pad = sa.Pad
471	sa.raw.Pid = sa.Pid
472	sa.raw.Groups = sa.Groups
473	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
474}
475
476// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
477// using the HCI protocol.
478type SockaddrHCI struct {
479	Dev     uint16
480	Channel uint16
481	raw     RawSockaddrHCI
482}
483
484func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
485	sa.raw.Family = AF_BLUETOOTH
486	sa.raw.Dev = sa.Dev
487	sa.raw.Channel = sa.Channel
488	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
489}
490
491// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
492// using the L2CAP protocol.
493type SockaddrL2 struct {
494	PSM      uint16
495	CID      uint16
496	Addr     [6]uint8
497	AddrType uint8
498	raw      RawSockaddrL2
499}
500
501func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
502	sa.raw.Family = AF_BLUETOOTH
503	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
504	psm[0] = byte(sa.PSM)
505	psm[1] = byte(sa.PSM >> 8)
506	for i := 0; i < len(sa.Addr); i++ {
507		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
508	}
509	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
510	cid[0] = byte(sa.CID)
511	cid[1] = byte(sa.CID >> 8)
512	sa.raw.Bdaddr_type = sa.AddrType
513	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
514}
515
516// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
517// using the RFCOMM protocol.
518//
519// Server example:
520//
521//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
522//      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
523//      	Channel: 1,
524//      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
525//      })
526//      _ = Listen(fd, 1)
527//      nfd, sa, _ := Accept(fd)
528//      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
529//      Read(nfd, buf)
530//
531// Client example:
532//
533//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
534//      _ = Connect(fd, &SockaddrRFCOMM{
535//      	Channel: 1,
536//      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
537//      })
538//      Write(fd, []byte(`hello`))
539type SockaddrRFCOMM struct {
540	// Addr represents a bluetooth address, byte ordering is little-endian.
541	Addr [6]uint8
542
543	// Channel is a designated bluetooth channel, only 1-30 are available for use.
544	// Since Linux 2.6.7 and further zero value is the first available channel.
545	Channel uint8
546
547	raw RawSockaddrRFCOMM
548}
549
550func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
551	sa.raw.Family = AF_BLUETOOTH
552	sa.raw.Channel = sa.Channel
553	sa.raw.Bdaddr = sa.Addr
554	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
555}
556
557// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
558// The RxID and TxID fields are used for transport protocol addressing in
559// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
560// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
561//
562// The SockaddrCAN struct must be bound to the socket file descriptor
563// using Bind before the CAN socket can be used.
564//
565//      // Read one raw CAN frame
566//      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
567//      addr := &SockaddrCAN{Ifindex: index}
568//      Bind(fd, addr)
569//      frame := make([]byte, 16)
570//      Read(fd, frame)
571//
572// The full SocketCAN documentation can be found in the linux kernel
573// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
574type SockaddrCAN struct {
575	Ifindex int
576	RxID    uint32
577	TxID    uint32
578	raw     RawSockaddrCAN
579}
580
581func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
582	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
583		return nil, 0, EINVAL
584	}
585	sa.raw.Family = AF_CAN
586	sa.raw.Ifindex = int32(sa.Ifindex)
587	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
588	for i := 0; i < 4; i++ {
589		sa.raw.Addr[i] = rx[i]
590	}
591	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
592	for i := 0; i < 4; i++ {
593		sa.raw.Addr[i+4] = tx[i]
594	}
595	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
596}
597
598// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
599// SockaddrALG enables userspace access to the Linux kernel's cryptography
600// subsystem. The Type and Name fields specify which type of hash or cipher
601// should be used with a given socket.
602//
603// To create a file descriptor that provides access to a hash or cipher, both
604// Bind and Accept must be used. Once the setup process is complete, input
605// data can be written to the socket, processed by the kernel, and then read
606// back as hash output or ciphertext.
607//
608// Here is an example of using an AF_ALG socket with SHA1 hashing.
609// The initial socket setup process is as follows:
610//
611//      // Open a socket to perform SHA1 hashing.
612//      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
613//      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
614//      unix.Bind(fd, addr)
615//      // Note: unix.Accept does not work at this time; must invoke accept()
616//      // manually using unix.Syscall.
617//      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
618//
619// Once a file descriptor has been returned from Accept, it may be used to
620// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
621// may be re-used repeatedly with subsequent Write and Read operations.
622//
623// When hashing a small byte slice or string, a single Write and Read may
624// be used:
625//
626//      // Assume hashfd is already configured using the setup process.
627//      hash := os.NewFile(hashfd, "sha1")
628//      // Hash an input string and read the results. Each Write discards
629//      // previous hash state. Read always reads the current state.
630//      b := make([]byte, 20)
631//      for i := 0; i < 2; i++ {
632//          io.WriteString(hash, "Hello, world.")
633//          hash.Read(b)
634//          fmt.Println(hex.EncodeToString(b))
635//      }
636//      // Output:
637//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
638//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
639//
640// For hashing larger byte slices, or byte streams such as those read from
641// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
642// the hash digest instead of creating a new one for a given chunk and finalizing it.
643//
644//      // Assume hashfd and addr are already configured using the setup process.
645//      hash := os.NewFile(hashfd, "sha1")
646//      // Hash the contents of a file.
647//      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
648//      b := make([]byte, 4096)
649//      for {
650//          n, err := f.Read(b)
651//          if err == io.EOF {
652//              break
653//          }
654//          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
655//      }
656//      hash.Read(b)
657//      fmt.Println(hex.EncodeToString(b))
658//      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
659//
660// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
661type SockaddrALG struct {
662	Type    string
663	Name    string
664	Feature uint32
665	Mask    uint32
666	raw     RawSockaddrALG
667}
668
669func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
670	// Leave room for NUL byte terminator.
671	if len(sa.Type) > 13 {
672		return nil, 0, EINVAL
673	}
674	if len(sa.Name) > 63 {
675		return nil, 0, EINVAL
676	}
677
678	sa.raw.Family = AF_ALG
679	sa.raw.Feat = sa.Feature
680	sa.raw.Mask = sa.Mask
681
682	typ, err := ByteSliceFromString(sa.Type)
683	if err != nil {
684		return nil, 0, err
685	}
686	name, err := ByteSliceFromString(sa.Name)
687	if err != nil {
688		return nil, 0, err
689	}
690
691	copy(sa.raw.Type[:], typ)
692	copy(sa.raw.Name[:], name)
693
694	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
695}
696
697// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
698// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
699// bidirectional communication between a hypervisor and its guest virtual
700// machines.
701type SockaddrVM struct {
702	// CID and Port specify a context ID and port address for a VM socket.
703	// Guests have a unique CID, and hosts may have a well-known CID of:
704	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
705	//  - VMADDR_CID_HOST: refers to other processes on the host.
706	CID  uint32
707	Port uint32
708	raw  RawSockaddrVM
709}
710
711func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
712	sa.raw.Family = AF_VSOCK
713	sa.raw.Port = sa.Port
714	sa.raw.Cid = sa.CID
715
716	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
717}
718
719type SockaddrXDP struct {
720	Flags        uint16
721	Ifindex      uint32
722	QueueID      uint32
723	SharedUmemFD uint32
724	raw          RawSockaddrXDP
725}
726
727func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
728	sa.raw.Family = AF_XDP
729	sa.raw.Flags = sa.Flags
730	sa.raw.Ifindex = sa.Ifindex
731	sa.raw.Queue_id = sa.QueueID
732	sa.raw.Shared_umem_fd = sa.SharedUmemFD
733
734	return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
735}
736
737// This constant mirrors the #define of PX_PROTO_OE in
738// linux/if_pppox.h. We're defining this by hand here instead of
739// autogenerating through mkerrors.sh because including
740// linux/if_pppox.h causes some declaration conflicts with other
741// includes (linux/if_pppox.h includes linux/in.h, which conflicts
742// with netinet/in.h). Given that we only need a single zero constant
743// out of that file, it's cleaner to just define it by hand here.
744const px_proto_oe = 0
745
746type SockaddrPPPoE struct {
747	SID    uint16
748	Remote net.HardwareAddr
749	Dev    string
750	raw    RawSockaddrPPPoX
751}
752
753func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
754	if len(sa.Remote) != 6 {
755		return nil, 0, EINVAL
756	}
757	if len(sa.Dev) > IFNAMSIZ-1 {
758		return nil, 0, EINVAL
759	}
760
761	*(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
762	// This next field is in host-endian byte order. We can't use the
763	// same unsafe pointer cast as above, because this value is not
764	// 32-bit aligned and some architectures don't allow unaligned
765	// access.
766	//
767	// However, the value of px_proto_oe is 0, so we can use
768	// encoding/binary helpers to write the bytes without worrying
769	// about the ordering.
770	binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
771	// This field is deliberately big-endian, unlike the previous
772	// one. The kernel expects SID to be in network byte order.
773	binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
774	copy(sa.raw[8:14], sa.Remote)
775	for i := 14; i < 14+IFNAMSIZ; i++ {
776		sa.raw[i] = 0
777	}
778	copy(sa.raw[14:], sa.Dev)
779	return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
780}
781
782func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
783	switch rsa.Addr.Family {
784	case AF_NETLINK:
785		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
786		sa := new(SockaddrNetlink)
787		sa.Family = pp.Family
788		sa.Pad = pp.Pad
789		sa.Pid = pp.Pid
790		sa.Groups = pp.Groups
791		return sa, nil
792
793	case AF_PACKET:
794		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
795		sa := new(SockaddrLinklayer)
796		sa.Protocol = pp.Protocol
797		sa.Ifindex = int(pp.Ifindex)
798		sa.Hatype = pp.Hatype
799		sa.Pkttype = pp.Pkttype
800		sa.Halen = pp.Halen
801		for i := 0; i < len(sa.Addr); i++ {
802			sa.Addr[i] = pp.Addr[i]
803		}
804		return sa, nil
805
806	case AF_UNIX:
807		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
808		sa := new(SockaddrUnix)
809		if pp.Path[0] == 0 {
810			// "Abstract" Unix domain socket.
811			// Rewrite leading NUL as @ for textual display.
812			// (This is the standard convention.)
813			// Not friendly to overwrite in place,
814			// but the callers below don't care.
815			pp.Path[0] = '@'
816		}
817
818		// Assume path ends at NUL.
819		// This is not technically the Linux semantics for
820		// abstract Unix domain sockets--they are supposed
821		// to be uninterpreted fixed-size binary blobs--but
822		// everyone uses this convention.
823		n := 0
824		for n < len(pp.Path) && pp.Path[n] != 0 {
825			n++
826		}
827		bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
828		sa.Name = string(bytes)
829		return sa, nil
830
831	case AF_INET:
832		pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
833		sa := new(SockaddrInet4)
834		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
835		sa.Port = int(p[0])<<8 + int(p[1])
836		for i := 0; i < len(sa.Addr); i++ {
837			sa.Addr[i] = pp.Addr[i]
838		}
839		return sa, nil
840
841	case AF_INET6:
842		pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
843		sa := new(SockaddrInet6)
844		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
845		sa.Port = int(p[0])<<8 + int(p[1])
846		sa.ZoneId = pp.Scope_id
847		for i := 0; i < len(sa.Addr); i++ {
848			sa.Addr[i] = pp.Addr[i]
849		}
850		return sa, nil
851
852	case AF_VSOCK:
853		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
854		sa := &SockaddrVM{
855			CID:  pp.Cid,
856			Port: pp.Port,
857		}
858		return sa, nil
859	case AF_BLUETOOTH:
860		proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
861		if err != nil {
862			return nil, err
863		}
864		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
865		switch proto {
866		case BTPROTO_L2CAP:
867			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
868			sa := &SockaddrL2{
869				PSM:      pp.Psm,
870				CID:      pp.Cid,
871				Addr:     pp.Bdaddr,
872				AddrType: pp.Bdaddr_type,
873			}
874			return sa, nil
875		case BTPROTO_RFCOMM:
876			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
877			sa := &SockaddrRFCOMM{
878				Channel: pp.Channel,
879				Addr:    pp.Bdaddr,
880			}
881			return sa, nil
882		}
883	case AF_XDP:
884		pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
885		sa := &SockaddrXDP{
886			Flags:        pp.Flags,
887			Ifindex:      pp.Ifindex,
888			QueueID:      pp.Queue_id,
889			SharedUmemFD: pp.Shared_umem_fd,
890		}
891		return sa, nil
892	case AF_PPPOX:
893		pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
894		if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
895			return nil, EINVAL
896		}
897		sa := &SockaddrPPPoE{
898			SID:    binary.BigEndian.Uint16(pp[6:8]),
899			Remote: net.HardwareAddr(pp[8:14]),
900		}
901		for i := 14; i < 14+IFNAMSIZ; i++ {
902			if pp[i] == 0 {
903				sa.Dev = string(pp[14:i])
904				break
905			}
906		}
907		return sa, nil
908	}
909	return nil, EAFNOSUPPORT
910}
911
912func Accept(fd int) (nfd int, sa Sockaddr, err error) {
913	var rsa RawSockaddrAny
914	var len _Socklen = SizeofSockaddrAny
915	nfd, err = accept(fd, &rsa, &len)
916	if err != nil {
917		return
918	}
919	sa, err = anyToSockaddr(fd, &rsa)
920	if err != nil {
921		Close(nfd)
922		nfd = 0
923	}
924	return
925}
926
927func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
928	var rsa RawSockaddrAny
929	var len _Socklen = SizeofSockaddrAny
930	nfd, err = accept4(fd, &rsa, &len, flags)
931	if err != nil {
932		return
933	}
934	if len > SizeofSockaddrAny {
935		panic("RawSockaddrAny too small")
936	}
937	sa, err = anyToSockaddr(fd, &rsa)
938	if err != nil {
939		Close(nfd)
940		nfd = 0
941	}
942	return
943}
944
945func Getsockname(fd int) (sa Sockaddr, err error) {
946	var rsa RawSockaddrAny
947	var len _Socklen = SizeofSockaddrAny
948	if err = getsockname(fd, &rsa, &len); err != nil {
949		return
950	}
951	return anyToSockaddr(fd, &rsa)
952}
953
954func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
955	var value IPMreqn
956	vallen := _Socklen(SizeofIPMreqn)
957	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
958	return &value, err
959}
960
961func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
962	var value Ucred
963	vallen := _Socklen(SizeofUcred)
964	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
965	return &value, err
966}
967
968func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
969	var value TCPInfo
970	vallen := _Socklen(SizeofTCPInfo)
971	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
972	return &value, err
973}
974
975// GetsockoptString returns the string value of the socket option opt for the
976// socket associated with fd at the given socket level.
977func GetsockoptString(fd, level, opt int) (string, error) {
978	buf := make([]byte, 256)
979	vallen := _Socklen(len(buf))
980	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
981	if err != nil {
982		if err == ERANGE {
983			buf = make([]byte, vallen)
984			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
985		}
986		if err != nil {
987			return "", err
988		}
989	}
990	return string(buf[:vallen-1]), nil
991}
992
993func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
994	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
995}
996
997// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
998// socket to filter incoming packets.  See 'man 7 socket' for usage information.
999func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1000	return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1001}
1002
1003func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1004	var p unsafe.Pointer
1005	if len(filter) > 0 {
1006		p = unsafe.Pointer(&filter[0])
1007	}
1008	return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1009}
1010
1011// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1012
1013// KeyctlInt calls keyctl commands in which each argument is an int.
1014// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1015// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1016// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1017// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1018//sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1019
1020// KeyctlBuffer calls keyctl commands in which the third and fourth
1021// arguments are a buffer and its length, respectively.
1022// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1023//sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1024
1025// KeyctlString calls keyctl commands which return a string.
1026// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1027func KeyctlString(cmd int, id int) (string, error) {
1028	// We must loop as the string data may change in between the syscalls.
1029	// We could allocate a large buffer here to reduce the chance that the
1030	// syscall needs to be called twice; however, this is unnecessary as
1031	// the performance loss is negligible.
1032	var buffer []byte
1033	for {
1034		// Try to fill the buffer with data
1035		length, err := KeyctlBuffer(cmd, id, buffer, 0)
1036		if err != nil {
1037			return "", err
1038		}
1039
1040		// Check if the data was written
1041		if length <= len(buffer) {
1042			// Exclude the null terminator
1043			return string(buffer[:length-1]), nil
1044		}
1045
1046		// Make a bigger buffer if needed
1047		buffer = make([]byte, length)
1048	}
1049}
1050
1051// Keyctl commands with special signatures.
1052
1053// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1054// See the full documentation at:
1055// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1056func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1057	createInt := 0
1058	if create {
1059		createInt = 1
1060	}
1061	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1062}
1063
1064// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1065// key handle permission mask as described in the "keyctl setperm" section of
1066// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1067// See the full documentation at:
1068// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1069func KeyctlSetperm(id int, perm uint32) error {
1070	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1071	return err
1072}
1073
1074//sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1075
1076// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1077// See the full documentation at:
1078// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1079func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1080	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1081}
1082
1083//sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1084
1085// KeyctlSearch implements the KEYCTL_SEARCH command.
1086// See the full documentation at:
1087// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1088func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1089	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1090}
1091
1092//sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1093
1094// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1095// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1096// of Iovec (each of which represents a buffer) instead of a single buffer.
1097// See the full documentation at:
1098// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1099func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1100	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1101}
1102
1103//sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1104
1105// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1106// computes a Diffie-Hellman shared secret based on the provide params. The
1107// secret is written to the provided buffer and the returned size is the number
1108// of bytes written (returning an error if there is insufficient space in the
1109// buffer). If a nil buffer is passed in, this function returns the minimum
1110// buffer length needed to store the appropriate data. Note that this differs
1111// from KEYCTL_READ's behavior which always returns the requested payload size.
1112// See the full documentation at:
1113// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1114func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1115	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1116}
1117
1118func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
1119	var msg Msghdr
1120	var rsa RawSockaddrAny
1121	msg.Name = (*byte)(unsafe.Pointer(&rsa))
1122	msg.Namelen = uint32(SizeofSockaddrAny)
1123	var iov Iovec
1124	if len(p) > 0 {
1125		iov.Base = &p[0]
1126		iov.SetLen(len(p))
1127	}
1128	var dummy byte
1129	if len(oob) > 0 {
1130		if len(p) == 0 {
1131			var sockType int
1132			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1133			if err != nil {
1134				return
1135			}
1136			// receive at least one normal byte
1137			if sockType != SOCK_DGRAM {
1138				iov.Base = &dummy
1139				iov.SetLen(1)
1140			}
1141		}
1142		msg.Control = &oob[0]
1143		msg.SetControllen(len(oob))
1144	}
1145	msg.Iov = &iov
1146	msg.Iovlen = 1
1147	if n, err = recvmsg(fd, &msg, flags); err != nil {
1148		return
1149	}
1150	oobn = int(msg.Controllen)
1151	recvflags = int(msg.Flags)
1152	// source address is only specified if the socket is unconnected
1153	if rsa.Addr.Family != AF_UNSPEC {
1154		from, err = anyToSockaddr(fd, &rsa)
1155	}
1156	return
1157}
1158
1159func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1160	_, err = SendmsgN(fd, p, oob, to, flags)
1161	return
1162}
1163
1164func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1165	var ptr unsafe.Pointer
1166	var salen _Socklen
1167	if to != nil {
1168		var err error
1169		ptr, salen, err = to.sockaddr()
1170		if err != nil {
1171			return 0, err
1172		}
1173	}
1174	var msg Msghdr
1175	msg.Name = (*byte)(ptr)
1176	msg.Namelen = uint32(salen)
1177	var iov Iovec
1178	if len(p) > 0 {
1179		iov.Base = &p[0]
1180		iov.SetLen(len(p))
1181	}
1182	var dummy byte
1183	if len(oob) > 0 {
1184		if len(p) == 0 {
1185			var sockType int
1186			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1187			if err != nil {
1188				return 0, err
1189			}
1190			// send at least one normal byte
1191			if sockType != SOCK_DGRAM {
1192				iov.Base = &dummy
1193				iov.SetLen(1)
1194			}
1195		}
1196		msg.Control = &oob[0]
1197		msg.SetControllen(len(oob))
1198	}
1199	msg.Iov = &iov
1200	msg.Iovlen = 1
1201	if n, err = sendmsg(fd, &msg, flags); err != nil {
1202		return 0, err
1203	}
1204	if len(oob) > 0 && len(p) == 0 {
1205		n = 0
1206	}
1207	return n, nil
1208}
1209
1210// BindToDevice binds the socket associated with fd to device.
1211func BindToDevice(fd int, device string) (err error) {
1212	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1213}
1214
1215//sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1216
1217func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1218	// The peek requests are machine-size oriented, so we wrap it
1219	// to retrieve arbitrary-length data.
1220
1221	// The ptrace syscall differs from glibc's ptrace.
1222	// Peeks returns the word in *data, not as the return value.
1223
1224	var buf [SizeofPtr]byte
1225
1226	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1227	// access (PEEKUSER warns that it might), but if we don't
1228	// align our reads, we might straddle an unmapped page
1229	// boundary and not get the bytes leading up to the page
1230	// boundary.
1231	n := 0
1232	if addr%SizeofPtr != 0 {
1233		err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1234		if err != nil {
1235			return 0, err
1236		}
1237		n += copy(out, buf[addr%SizeofPtr:])
1238		out = out[n:]
1239	}
1240
1241	// Remainder.
1242	for len(out) > 0 {
1243		// We use an internal buffer to guarantee alignment.
1244		// It's not documented if this is necessary, but we're paranoid.
1245		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1246		if err != nil {
1247			return n, err
1248		}
1249		copied := copy(out, buf[0:])
1250		n += copied
1251		out = out[copied:]
1252	}
1253
1254	return n, nil
1255}
1256
1257func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1258	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1259}
1260
1261func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1262	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1263}
1264
1265func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1266	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1267}
1268
1269func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1270	// As for ptracePeek, we need to align our accesses to deal
1271	// with the possibility of straddling an invalid page.
1272
1273	// Leading edge.
1274	n := 0
1275	if addr%SizeofPtr != 0 {
1276		var buf [SizeofPtr]byte
1277		err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1278		if err != nil {
1279			return 0, err
1280		}
1281		n += copy(buf[addr%SizeofPtr:], data)
1282		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1283		err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1284		if err != nil {
1285			return 0, err
1286		}
1287		data = data[n:]
1288	}
1289
1290	// Interior.
1291	for len(data) > SizeofPtr {
1292		word := *((*uintptr)(unsafe.Pointer(&data[0])))
1293		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1294		if err != nil {
1295			return n, err
1296		}
1297		n += SizeofPtr
1298		data = data[SizeofPtr:]
1299	}
1300
1301	// Trailing edge.
1302	if len(data) > 0 {
1303		var buf [SizeofPtr]byte
1304		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1305		if err != nil {
1306			return n, err
1307		}
1308		copy(buf[0:], data)
1309		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1310		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1311		if err != nil {
1312			return n, err
1313		}
1314		n += len(data)
1315	}
1316
1317	return n, nil
1318}
1319
1320func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1321	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1322}
1323
1324func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1325	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1326}
1327
1328func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1329	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1330}
1331
1332func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1333	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1334}
1335
1336func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1337	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1338}
1339
1340func PtraceSetOptions(pid int, options int) (err error) {
1341	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1342}
1343
1344func PtraceGetEventMsg(pid int) (msg uint, err error) {
1345	var data _C_long
1346	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1347	msg = uint(data)
1348	return
1349}
1350
1351func PtraceCont(pid int, signal int) (err error) {
1352	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1353}
1354
1355func PtraceSyscall(pid int, signal int) (err error) {
1356	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1357}
1358
1359func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1360
1361func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1362
1363func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1364
1365//sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1366
1367func Reboot(cmd int) (err error) {
1368	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1369}
1370
1371func ReadDirent(fd int, buf []byte) (n int, err error) {
1372	return Getdents(fd, buf)
1373}
1374
1375//sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1376
1377func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1378	// Certain file systems get rather angry and EINVAL if you give
1379	// them an empty string of data, rather than NULL.
1380	if data == "" {
1381		return mount(source, target, fstype, flags, nil)
1382	}
1383	datap, err := BytePtrFromString(data)
1384	if err != nil {
1385		return err
1386	}
1387	return mount(source, target, fstype, flags, datap)
1388}
1389
1390func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1391	if raceenabled {
1392		raceReleaseMerge(unsafe.Pointer(&ioSync))
1393	}
1394	return sendfile(outfd, infd, offset, count)
1395}
1396
1397// Sendto
1398// Recvfrom
1399// Socketpair
1400
1401/*
1402 * Direct access
1403 */
1404//sys	Acct(path string) (err error)
1405//sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1406//sys	Adjtimex(buf *Timex) (state int, err error)
1407//sys	Chdir(path string) (err error)
1408//sys	Chroot(path string) (err error)
1409//sys	ClockGetres(clockid int32, res *Timespec) (err error)
1410//sys	ClockGettime(clockid int32, time *Timespec) (err error)
1411//sys	ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1412//sys	Close(fd int) (err error)
1413//sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1414//sys	DeleteModule(name string, flags int) (err error)
1415//sys	Dup(oldfd int) (fd int, err error)
1416//sys	Dup3(oldfd int, newfd int, flags int) (err error)
1417//sysnb	EpollCreate1(flag int) (fd int, err error)
1418//sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1419//sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1420//sys	Exit(code int) = SYS_EXIT_GROUP
1421//sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1422//sys	Fchdir(fd int) (err error)
1423//sys	Fchmod(fd int, mode uint32) (err error)
1424//sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1425//sys	fcntl(fd int, cmd int, arg int) (val int, err error)
1426//sys	Fdatasync(fd int) (err error)
1427//sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1428//sys	FinitModule(fd int, params string, flags int) (err error)
1429//sys	Flistxattr(fd int, dest []byte) (sz int, err error)
1430//sys	Flock(fd int, how int) (err error)
1431//sys	Fremovexattr(fd int, attr string) (err error)
1432//sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1433//sys	Fsync(fd int) (err error)
1434//sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1435//sysnb	Getpgid(pid int) (pgid int, err error)
1436
1437func Getpgrp() (pid int) {
1438	pid, _ = Getpgid(0)
1439	return
1440}
1441
1442//sysnb	Getpid() (pid int)
1443//sysnb	Getppid() (ppid int)
1444//sys	Getpriority(which int, who int) (prio int, err error)
1445//sys	Getrandom(buf []byte, flags int) (n int, err error)
1446//sysnb	Getrusage(who int, rusage *Rusage) (err error)
1447//sysnb	Getsid(pid int) (sid int, err error)
1448//sysnb	Gettid() (tid int)
1449//sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
1450//sys	InitModule(moduleImage []byte, params string) (err error)
1451//sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1452//sysnb	InotifyInit1(flags int) (fd int, err error)
1453//sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1454//sysnb	Kill(pid int, sig syscall.Signal) (err error)
1455//sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1456//sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1457//sys	Listxattr(path string, dest []byte) (sz int, err error)
1458//sys	Llistxattr(path string, dest []byte) (sz int, err error)
1459//sys	Lremovexattr(path string, attr string) (err error)
1460//sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1461//sys	MemfdCreate(name string, flags int) (fd int, err error)
1462//sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
1463//sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1464//sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
1465//sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1466//sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1467//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1468//sys   Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1469//sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1470//sys	read(fd int, p []byte) (n int, err error)
1471//sys	Removexattr(path string, attr string) (err error)
1472//sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1473//sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1474//sys	Setdomainname(p []byte) (err error)
1475//sys	Sethostname(p []byte) (err error)
1476//sysnb	Setpgid(pid int, pgid int) (err error)
1477//sysnb	Setsid() (pid int, err error)
1478//sysnb	Settimeofday(tv *Timeval) (err error)
1479//sys	Setns(fd int, nstype int) (err error)
1480
1481// issue 1435.
1482// On linux Setuid and Setgid only affects the current thread, not the process.
1483// This does not match what most callers expect so we must return an error
1484// here rather than letting the caller think that the call succeeded.
1485
1486func Setuid(uid int) (err error) {
1487	return EOPNOTSUPP
1488}
1489
1490func Setgid(uid int) (err error) {
1491	return EOPNOTSUPP
1492}
1493
1494//sys	Setpriority(which int, who int, prio int) (err error)
1495//sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
1496//sys	Signalfd(fd int, mask *Sigset_t, flags int) = SYS_SIGNALFD4
1497//sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1498//sys	Sync()
1499//sys	Syncfs(fd int) (err error)
1500//sysnb	Sysinfo(info *Sysinfo_t) (err error)
1501//sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1502//sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1503//sysnb	Times(tms *Tms) (ticks uintptr, err error)
1504//sysnb	Umask(mask int) (oldmask int)
1505//sysnb	Uname(buf *Utsname) (err error)
1506//sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1507//sys	Unshare(flags int) (err error)
1508//sys	write(fd int, p []byte) (n int, err error)
1509//sys	exitThread(code int) (err error) = SYS_EXIT
1510//sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1511//sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1512
1513// mmap varies by architecture; see syscall_linux_*.go.
1514//sys	munmap(addr uintptr, length uintptr) (err error)
1515
1516var mapper = &mmapper{
1517	active: make(map[*byte][]byte),
1518	mmap:   mmap,
1519	munmap: munmap,
1520}
1521
1522func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
1523	return mapper.Mmap(fd, offset, length, prot, flags)
1524}
1525
1526func Munmap(b []byte) (err error) {
1527	return mapper.Munmap(b)
1528}
1529
1530//sys	Madvise(b []byte, advice int) (err error)
1531//sys	Mprotect(b []byte, prot int) (err error)
1532//sys	Mlock(b []byte) (err error)
1533//sys	Mlockall(flags int) (err error)
1534//sys	Msync(b []byte, flags int) (err error)
1535//sys	Munlock(b []byte) (err error)
1536//sys	Munlockall() (err error)
1537
1538// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
1539// using the specified flags.
1540func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
1541	var p unsafe.Pointer
1542	if len(iovs) > 0 {
1543		p = unsafe.Pointer(&iovs[0])
1544	}
1545
1546	n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
1547	if errno != 0 {
1548		return 0, syscall.Errno(errno)
1549	}
1550
1551	return int(n), nil
1552}
1553
1554//sys	faccessat(dirfd int, path string, mode uint32) (err error)
1555
1556func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
1557	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
1558		return EINVAL
1559	}
1560
1561	// The Linux kernel faccessat system call does not take any flags.
1562	// The glibc faccessat implements the flags itself; see
1563	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
1564	// Because people naturally expect syscall.Faccessat to act
1565	// like C faccessat, we do the same.
1566
1567	if flags == 0 {
1568		return faccessat(dirfd, path, mode)
1569	}
1570
1571	var st Stat_t
1572	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
1573		return err
1574	}
1575
1576	mode &= 7
1577	if mode == 0 {
1578		return nil
1579	}
1580
1581	var uid int
1582	if flags&AT_EACCESS != 0 {
1583		uid = Geteuid()
1584	} else {
1585		uid = Getuid()
1586	}
1587
1588	if uid == 0 {
1589		if mode&1 == 0 {
1590			// Root can read and write any file.
1591			return nil
1592		}
1593		if st.Mode&0111 != 0 {
1594			// Root can execute any file that anybody can execute.
1595			return nil
1596		}
1597		return EACCES
1598	}
1599
1600	var fmode uint32
1601	if uint32(uid) == st.Uid {
1602		fmode = (st.Mode >> 6) & 7
1603	} else {
1604		var gid int
1605		if flags&AT_EACCESS != 0 {
1606			gid = Getegid()
1607		} else {
1608			gid = Getgid()
1609		}
1610
1611		if uint32(gid) == st.Gid {
1612			fmode = (st.Mode >> 3) & 7
1613		} else {
1614			fmode = st.Mode & 7
1615		}
1616	}
1617
1618	if fmode&mode == mode {
1619		return nil
1620	}
1621
1622	return EACCES
1623}
1624
1625/*
1626 * Unimplemented
1627 */
1628// AfsSyscall
1629// Alarm
1630// ArchPrctl
1631// Brk
1632// Capget
1633// Capset
1634// ClockNanosleep
1635// ClockSettime
1636// Clone
1637// EpollCtlOld
1638// EpollPwait
1639// EpollWaitOld
1640// Execve
1641// Fork
1642// Futex
1643// GetKernelSyms
1644// GetMempolicy
1645// GetRobustList
1646// GetThreadArea
1647// Getitimer
1648// Getpmsg
1649// IoCancel
1650// IoDestroy
1651// IoGetevents
1652// IoSetup
1653// IoSubmit
1654// IoprioGet
1655// IoprioSet
1656// KexecLoad
1657// LookupDcookie
1658// Mbind
1659// MigratePages
1660// Mincore
1661// ModifyLdt
1662// Mount
1663// MovePages
1664// MqGetsetattr
1665// MqNotify
1666// MqOpen
1667// MqTimedreceive
1668// MqTimedsend
1669// MqUnlink
1670// Mremap
1671// Msgctl
1672// Msgget
1673// Msgrcv
1674// Msgsnd
1675// Nfsservctl
1676// Personality
1677// Pselect6
1678// Ptrace
1679// Putpmsg
1680// Quotactl
1681// Readahead
1682// Readv
1683// RemapFilePages
1684// RestartSyscall
1685// RtSigaction
1686// RtSigpending
1687// RtSigprocmask
1688// RtSigqueueinfo
1689// RtSigreturn
1690// RtSigsuspend
1691// RtSigtimedwait
1692// SchedGetPriorityMax
1693// SchedGetPriorityMin
1694// SchedGetparam
1695// SchedGetscheduler
1696// SchedRrGetInterval
1697// SchedSetparam
1698// SchedYield
1699// Security
1700// Semctl
1701// Semget
1702// Semop
1703// Semtimedop
1704// SetMempolicy
1705// SetRobustList
1706// SetThreadArea
1707// SetTidAddress
1708// Shmat
1709// Shmctl
1710// Shmdt
1711// Shmget
1712// Sigaltstack
1713// Swapoff
1714// Swapon
1715// Sysfs
1716// TimerCreate
1717// TimerDelete
1718// TimerGetoverrun
1719// TimerGettime
1720// TimerSettime
1721// Timerfd
1722// Tkill (obsolete)
1723// Tuxcall
1724// Umount2
1725// Uselib
1726// Utimensat
1727// Vfork
1728// Vhangup
1729// Vserver
1730// Waitid
1731// _Sysctl
1732