1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test.  They are subject to change without notice.
36 
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39 
40 #include "gtest/internal/gtest-port.h"
41 
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif  // GTEST_OS_LINUX
48 
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52 
53 #include <ctype.h>
54 #include <float.h>
55 #include <string.h>
56 #include <iomanip>
57 #include <limits>
58 #include <set>
59 #include <string>
60 #include <vector>
61 
62 #include "gtest/gtest-message.h"
63 #include "gtest/internal/gtest-string.h"
64 #include "gtest/internal/gtest-filepath.h"
65 #include "gtest/internal/gtest-type-util.h"
66 
67 // Due to C++ preprocessor weirdness, we need double indirection to
68 // concatenate two tokens when one of them is __LINE__.  Writing
69 //
70 //   foo ## __LINE__
71 //
72 // will result in the token foo__LINE__, instead of foo followed by
73 // the current line number.  For more details, see
74 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
75 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
76 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
77 
78 class ProtocolMessage;
79 namespace proto2 { class Message; }
80 
81 namespace testing {
82 
83 // Forward declarations.
84 
85 class AssertionResult;                 // Result of an assertion.
86 class Message;                         // Represents a failure message.
87 class Test;                            // Represents a test.
88 class TestInfo;                        // Information about a test.
89 class TestPartResult;                  // Result of a test part.
90 class UnitTest;                        // A collection of test cases.
91 
92 template <typename T>
93 ::std::string PrintToString(const T& value);
94 
95 namespace internal {
96 
97 struct TraceInfo;                      // Information about a trace point.
98 class ScopedTrace;                     // Implements scoped trace.
99 class TestInfoImpl;                    // Opaque implementation of TestInfo
100 class UnitTestImpl;                    // Opaque implementation of UnitTest
101 
102 // How many times InitGoogleTest() has been called.
103 GTEST_API_ extern int g_init_gtest_count;
104 
105 // The text used in failure messages to indicate the start of the
106 // stack trace.
107 GTEST_API_ extern const char kStackTraceMarker[];
108 
109 // Two overloaded helpers for checking at compile time whether an
110 // expression is a null pointer literal (i.e. NULL or any 0-valued
111 // compile-time integral constant).  Their return values have
112 // different sizes, so we can use sizeof() to test which version is
113 // picked by the compiler.  These helpers have no implementations, as
114 // we only need their signatures.
115 //
116 // Given IsNullLiteralHelper(x), the compiler will pick the first
117 // version if x can be implicitly converted to Secret*, and pick the
118 // second version otherwise.  Since Secret is a secret and incomplete
119 // type, the only expression a user can write that has type Secret* is
120 // a null pointer literal.  Therefore, we know that x is a null
121 // pointer literal if and only if the first version is picked by the
122 // compiler.
123 char IsNullLiteralHelper(Secret* p);
124 char (&IsNullLiteralHelper(...))[2];  // NOLINT
125 
126 // A compile-time bool constant that is true if and only if x is a
127 // null pointer literal (i.e. NULL or any 0-valued compile-time
128 // integral constant).
129 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
130 // We lose support for NULL detection where the compiler doesn't like
131 // passing non-POD classes through ellipsis (...).
132 # define GTEST_IS_NULL_LITERAL_(x) false
133 #else
134 # define GTEST_IS_NULL_LITERAL_(x) \
135     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
136 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
137 
138 // Appends the user-supplied message to the Google-Test-generated message.
139 GTEST_API_ std::string AppendUserMessage(
140     const std::string& gtest_msg, const Message& user_msg);
141 
142 #if GTEST_HAS_EXCEPTIONS
143 
144 // This exception is thrown by (and only by) a failed Google Test
145 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
146 // are enabled).  We derive it from std::runtime_error, which is for
147 // errors presumably detectable only at run time.  Since
148 // std::runtime_error inherits from std::exception, many testing
149 // frameworks know how to extract and print the message inside it.
150 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
151  public:
152   explicit GoogleTestFailureException(const TestPartResult& failure);
153 };
154 
155 #endif  // GTEST_HAS_EXCEPTIONS
156 
157 // A helper class for creating scoped traces in user programs.
158 class GTEST_API_ ScopedTrace {
159  public:
160   // The c'tor pushes the given source file location and message onto
161   // a trace stack maintained by Google Test.
162   ScopedTrace(const char* file, int line, const Message& message);
163 
164   // The d'tor pops the info pushed by the c'tor.
165   //
166   // Note that the d'tor is not virtual in order to be efficient.
167   // Don't inherit from ScopedTrace!
168   ~ScopedTrace();
169 
170  private:
171   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
172 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
173                             // c'tor and d'tor.  Therefore it doesn't
174                             // need to be used otherwise.
175 
176 namespace edit_distance {
177 // Returns the optimal edits to go from 'left' to 'right'.
178 // All edits cost the same, with replace having lower priority than
179 // add/remove.
180 // Simple implementation of the Wagner–Fischer algorithm.
181 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
182 enum EditType { kMatch, kAdd, kRemove, kReplace };
183 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
184     const std::vector<size_t>& left, const std::vector<size_t>& right);
185 
186 // Same as above, but the input is represented as strings.
187 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
188     const std::vector<std::string>& left,
189     const std::vector<std::string>& right);
190 
191 // Create a diff of the input strings in Unified diff format.
192 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
193                                          const std::vector<std::string>& right,
194                                          size_t context = 2);
195 
196 }  // namespace edit_distance
197 
198 // Calculate the diff between 'left' and 'right' and return it in unified diff
199 // format.
200 // If not null, stores in 'total_line_count' the total number of lines found
201 // in left + right.
202 GTEST_API_ std::string DiffStrings(const std::string& left,
203                                    const std::string& right,
204                                    size_t* total_line_count);
205 
206 // Constructs and returns the message for an equality assertion
207 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
208 //
209 // The first four parameters are the expressions used in the assertion
210 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
211 // where foo is 5 and bar is 6, we have:
212 //
213 //   expected_expression: "foo"
214 //   actual_expression:   "bar"
215 //   expected_value:      "5"
216 //   actual_value:        "6"
217 //
218 // The ignoring_case parameter is true iff the assertion is a
219 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
220 // be inserted into the message.
221 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
222                                      const char* actual_expression,
223                                      const std::string& expected_value,
224                                      const std::string& actual_value,
225                                      bool ignoring_case);
226 
227 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
228 GTEST_API_ std::string GetBoolAssertionFailureMessage(
229     const AssertionResult& assertion_result,
230     const char* expression_text,
231     const char* actual_predicate_value,
232     const char* expected_predicate_value);
233 
234 // This template class represents an IEEE floating-point number
235 // (either single-precision or double-precision, depending on the
236 // template parameters).
237 //
238 // The purpose of this class is to do more sophisticated number
239 // comparison.  (Due to round-off error, etc, it's very unlikely that
240 // two floating-points will be equal exactly.  Hence a naive
241 // comparison by the == operation often doesn't work.)
242 //
243 // Format of IEEE floating-point:
244 //
245 //   The most-significant bit being the leftmost, an IEEE
246 //   floating-point looks like
247 //
248 //     sign_bit exponent_bits fraction_bits
249 //
250 //   Here, sign_bit is a single bit that designates the sign of the
251 //   number.
252 //
253 //   For float, there are 8 exponent bits and 23 fraction bits.
254 //
255 //   For double, there are 11 exponent bits and 52 fraction bits.
256 //
257 //   More details can be found at
258 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
259 //
260 // Template parameter:
261 //
262 //   RawType: the raw floating-point type (either float or double)
263 template <typename RawType>
264 class FloatingPoint {
265  public:
266   // Defines the unsigned integer type that has the same size as the
267   // floating point number.
268   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
269 
270   // Constants.
271 
272   // # of bits in a number.
273   static const size_t kBitCount = 8*sizeof(RawType);
274 
275   // # of fraction bits in a number.
276   static const size_t kFractionBitCount =
277     std::numeric_limits<RawType>::digits - 1;
278 
279   // # of exponent bits in a number.
280   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
281 
282   // The mask for the sign bit.
283   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
284 
285   // The mask for the fraction bits.
286   static const Bits kFractionBitMask =
287     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
288 
289   // The mask for the exponent bits.
290   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
291 
292   // How many ULP's (Units in the Last Place) we want to tolerate when
293   // comparing two numbers.  The larger the value, the more error we
294   // allow.  A 0 value means that two numbers must be exactly the same
295   // to be considered equal.
296   //
297   // The maximum error of a single floating-point operation is 0.5
298   // units in the last place.  On Intel CPU's, all floating-point
299   // calculations are done with 80-bit precision, while double has 64
300   // bits.  Therefore, 4 should be enough for ordinary use.
301   //
302   // See the following article for more details on ULP:
303   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
304   static const size_t kMaxUlps = 4;
305 
306   // Constructs a FloatingPoint from a raw floating-point number.
307   //
308   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
309   // around may change its bits, although the new value is guaranteed
310   // to be also a NAN.  Therefore, don't expect this constructor to
311   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)312   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
313 
314   // Static methods
315 
316   // Reinterprets a bit pattern as a floating-point number.
317   //
318   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)319   static RawType ReinterpretBits(const Bits bits) {
320     FloatingPoint fp(0);
321     fp.u_.bits_ = bits;
322     return fp.u_.value_;
323   }
324 
325   // Returns the floating-point number that represent positive infinity.
Infinity()326   static RawType Infinity() {
327     return ReinterpretBits(kExponentBitMask);
328   }
329 
330   // Returns the maximum representable finite floating-point number.
331   static RawType Max();
332 
333   // Non-static methods
334 
335   // Returns the bits that represents this number.
bits()336   const Bits &bits() const { return u_.bits_; }
337 
338   // Returns the exponent bits of this number.
exponent_bits()339   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
340 
341   // Returns the fraction bits of this number.
fraction_bits()342   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
343 
344   // Returns the sign bit of this number.
sign_bit()345   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
346 
347   // Returns true iff this is NAN (not a number).
is_nan()348   bool is_nan() const {
349     // It's a NAN if the exponent bits are all ones and the fraction
350     // bits are not entirely zeros.
351     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
352   }
353 
354   // Returns true iff this number is at most kMaxUlps ULP's away from
355   // rhs.  In particular, this function:
356   //
357   //   - returns false if either number is (or both are) NAN.
358   //   - treats really large numbers as almost equal to infinity.
359   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)360   bool AlmostEquals(const FloatingPoint& rhs) const {
361     // The IEEE standard says that any comparison operation involving
362     // a NAN must return false.
363     if (is_nan() || rhs.is_nan()) return false;
364 
365     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
366         <= kMaxUlps;
367   }
368 
369  private:
370   // The data type used to store the actual floating-point number.
371   union FloatingPointUnion {
372     RawType value_;  // The raw floating-point number.
373     Bits bits_;      // The bits that represent the number.
374   };
375 
376   // Converts an integer from the sign-and-magnitude representation to
377   // the biased representation.  More precisely, let N be 2 to the
378   // power of (kBitCount - 1), an integer x is represented by the
379   // unsigned number x + N.
380   //
381   // For instance,
382   //
383   //   -N + 1 (the most negative number representable using
384   //          sign-and-magnitude) is represented by 1;
385   //   0      is represented by N; and
386   //   N - 1  (the biggest number representable using
387   //          sign-and-magnitude) is represented by 2N - 1.
388   //
389   // Read http://en.wikipedia.org/wiki/Signed_number_representations
390   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)391   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
392     if (kSignBitMask & sam) {
393       // sam represents a negative number.
394       return ~sam + 1;
395     } else {
396       // sam represents a positive number.
397       return kSignBitMask | sam;
398     }
399   }
400 
401   // Given two numbers in the sign-and-magnitude representation,
402   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)403   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
404                                                      const Bits &sam2) {
405     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
406     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
407     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
408   }
409 
410   FloatingPointUnion u_;
411 };
412 
413 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
414 // macro defined by <windows.h>.
415 template <>
Max()416 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
417 template <>
Max()418 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
419 
420 // Typedefs the instances of the FloatingPoint template class that we
421 // care to use.
422 typedef FloatingPoint<float> Float;
423 typedef FloatingPoint<double> Double;
424 
425 // In order to catch the mistake of putting tests that use different
426 // test fixture classes in the same test case, we need to assign
427 // unique IDs to fixture classes and compare them.  The TypeId type is
428 // used to hold such IDs.  The user should treat TypeId as an opaque
429 // type: the only operation allowed on TypeId values is to compare
430 // them for equality using the == operator.
431 typedef const void* TypeId;
432 
433 template <typename T>
434 class TypeIdHelper {
435  public:
436   // dummy_ must not have a const type.  Otherwise an overly eager
437   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
438   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
439   static bool dummy_;
440 };
441 
442 template <typename T>
443 bool TypeIdHelper<T>::dummy_ = false;
444 
445 // GetTypeId<T>() returns the ID of type T.  Different values will be
446 // returned for different types.  Calling the function twice with the
447 // same type argument is guaranteed to return the same ID.
448 template <typename T>
GetTypeId()449 TypeId GetTypeId() {
450   // The compiler is required to allocate a different
451   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
452   // the template.  Therefore, the address of dummy_ is guaranteed to
453   // be unique.
454   return &(TypeIdHelper<T>::dummy_);
455 }
456 
457 // Returns the type ID of ::testing::Test.  Always call this instead
458 // of GetTypeId< ::testing::Test>() to get the type ID of
459 // ::testing::Test, as the latter may give the wrong result due to a
460 // suspected linker bug when compiling Google Test as a Mac OS X
461 // framework.
462 GTEST_API_ TypeId GetTestTypeId();
463 
464 // Defines the abstract factory interface that creates instances
465 // of a Test object.
466 class TestFactoryBase {
467  public:
~TestFactoryBase()468   virtual ~TestFactoryBase() {}
469 
470   // Creates a test instance to run. The instance is both created and destroyed
471   // within TestInfoImpl::Run()
472   virtual Test* CreateTest() = 0;
473 
474  protected:
TestFactoryBase()475   TestFactoryBase() {}
476 
477  private:
478   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
479 };
480 
481 // This class provides implementation of TeastFactoryBase interface.
482 // It is used in TEST and TEST_F macros.
483 template <class TestClass>
484 class TestFactoryImpl : public TestFactoryBase {
485  public:
CreateTest()486   virtual Test* CreateTest() { return new TestClass; }
487 };
488 
489 #if GTEST_OS_WINDOWS
490 
491 // Predicate-formatters for implementing the HRESULT checking macros
492 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
493 // We pass a long instead of HRESULT to avoid causing an
494 // include dependency for the HRESULT type.
495 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
496                                             long hr);  // NOLINT
497 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
498                                             long hr);  // NOLINT
499 
500 #endif  // GTEST_OS_WINDOWS
501 
502 // Types of SetUpTestCase() and TearDownTestCase() functions.
503 typedef void (*SetUpTestCaseFunc)();
504 typedef void (*TearDownTestCaseFunc)();
505 
506 // Creates a new TestInfo object and registers it with Google Test;
507 // returns the created object.
508 //
509 // Arguments:
510 //
511 //   test_case_name:   name of the test case
512 //   name:             name of the test
513 //   type_param        the name of the test's type parameter, or NULL if
514 //                     this is not a typed or a type-parameterized test.
515 //   value_param       text representation of the test's value parameter,
516 //                     or NULL if this is not a type-parameterized test.
517 //   fixture_class_id: ID of the test fixture class
518 //   set_up_tc:        pointer to the function that sets up the test case
519 //   tear_down_tc:     pointer to the function that tears down the test case
520 //   factory:          pointer to the factory that creates a test object.
521 //                     The newly created TestInfo instance will assume
522 //                     ownership of the factory object.
523 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
524     const char* test_case_name,
525     const char* name,
526     const char* type_param,
527     const char* value_param,
528     TypeId fixture_class_id,
529     SetUpTestCaseFunc set_up_tc,
530     TearDownTestCaseFunc tear_down_tc,
531     TestFactoryBase* factory);
532 
533 // If *pstr starts with the given prefix, modifies *pstr to be right
534 // past the prefix and returns true; otherwise leaves *pstr unchanged
535 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
536 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
537 
538 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
539 
540 // State of the definition of a type-parameterized test case.
541 class GTEST_API_ TypedTestCasePState {
542  public:
TypedTestCasePState()543   TypedTestCasePState() : registered_(false) {}
544 
545   // Adds the given test name to defined_test_names_ and return true
546   // if the test case hasn't been registered; otherwise aborts the
547   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)548   bool AddTestName(const char* file, int line, const char* case_name,
549                    const char* test_name) {
550     if (registered_) {
551       fprintf(stderr, "%s Test %s must be defined before "
552               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
553               FormatFileLocation(file, line).c_str(), test_name, case_name);
554       fflush(stderr);
555       posix::Abort();
556     }
557     defined_test_names_.insert(test_name);
558     return true;
559   }
560 
561   // Verifies that registered_tests match the test names in
562   // defined_test_names_; returns registered_tests if successful, or
563   // aborts the program otherwise.
564   const char* VerifyRegisteredTestNames(
565       const char* file, int line, const char* registered_tests);
566 
567  private:
568   bool registered_;
569   ::std::set<const char*> defined_test_names_;
570 };
571 
572 // Skips to the first non-space char after the first comma in 'str';
573 // returns NULL if no comma is found in 'str'.
SkipComma(const char * str)574 inline const char* SkipComma(const char* str) {
575   const char* comma = strchr(str, ',');
576   if (comma == NULL) {
577     return NULL;
578   }
579   while (IsSpace(*(++comma))) {}
580   return comma;
581 }
582 
583 // Returns the prefix of 'str' before the first comma in it; returns
584 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)585 inline std::string GetPrefixUntilComma(const char* str) {
586   const char* comma = strchr(str, ',');
587   return comma == NULL ? str : std::string(str, comma);
588 }
589 
590 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
591 // registers a list of type-parameterized tests with Google Test.  The
592 // return value is insignificant - we just need to return something
593 // such that we can call this function in a namespace scope.
594 //
595 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
596 // template parameter.  It's defined in gtest-type-util.h.
597 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
598 class TypeParameterizedTest {
599  public:
600   // 'index' is the index of the test in the type list 'Types'
601   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
602   // Types).  Valid values for 'index' are [0, N - 1] where N is the
603   // length of Types.
Register(const char * prefix,const char * case_name,const char * test_names,int index)604   static bool Register(const char* prefix, const char* case_name,
605                        const char* test_names, int index) {
606     typedef typename Types::Head Type;
607     typedef Fixture<Type> FixtureClass;
608     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
609 
610     // First, registers the first type-parameterized test in the type
611     // list.
612     MakeAndRegisterTestInfo(
613         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
614          + StreamableToString(index)).c_str(),
615         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
616         GetTypeName<Type>().c_str(),
617         NULL,  // No value parameter.
618         GetTypeId<FixtureClass>(),
619         TestClass::SetUpTestCase,
620         TestClass::TearDownTestCase,
621         new TestFactoryImpl<TestClass>);
622 
623     // Next, recurses (at compile time) with the tail of the type list.
624     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
625         ::Register(prefix, case_name, test_names, index + 1);
626   }
627 };
628 
629 // The base case for the compile time recursion.
630 template <GTEST_TEMPLATE_ Fixture, class TestSel>
631 class TypeParameterizedTest<Fixture, TestSel, Types0> {
632  public:
Register(const char *,const char *,const char *,int)633   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
634                        const char* /*test_names*/, int /*index*/) {
635     return true;
636   }
637 };
638 
639 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
640 // registers *all combinations* of 'Tests' and 'Types' with Google
641 // Test.  The return value is insignificant - we just need to return
642 // something such that we can call this function in a namespace scope.
643 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
644 class TypeParameterizedTestCase {
645  public:
Register(const char * prefix,const char * case_name,const char * test_names)646   static bool Register(const char* prefix, const char* case_name,
647                        const char* test_names) {
648     typedef typename Tests::Head Head;
649 
650     // First, register the first test in 'Test' for each type in 'Types'.
651     TypeParameterizedTest<Fixture, Head, Types>::Register(
652         prefix, case_name, test_names, 0);
653 
654     // Next, recurses (at compile time) with the tail of the test list.
655     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
656         ::Register(prefix, case_name, SkipComma(test_names));
657   }
658 };
659 
660 // The base case for the compile time recursion.
661 template <GTEST_TEMPLATE_ Fixture, typename Types>
662 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
663  public:
Register(const char *,const char *,const char *)664   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
665                        const char* /*test_names*/) {
666     return true;
667   }
668 };
669 
670 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
671 
672 // Returns the current OS stack trace as an std::string.
673 //
674 // The maximum number of stack frames to be included is specified by
675 // the gtest_stack_trace_depth flag.  The skip_count parameter
676 // specifies the number of top frames to be skipped, which doesn't
677 // count against the number of frames to be included.
678 //
679 // For example, if Foo() calls Bar(), which in turn calls
680 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
681 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
682 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
683     UnitTest* unit_test, int skip_count);
684 
685 // Helpers for suppressing warnings on unreachable code or constant
686 // condition.
687 
688 // Always returns true.
689 GTEST_API_ bool AlwaysTrue();
690 
691 // Always returns false.
AlwaysFalse()692 inline bool AlwaysFalse() { return !AlwaysTrue(); }
693 
694 // Helper for suppressing false warning from Clang on a const char*
695 // variable declared in a conditional expression always being NULL in
696 // the else branch.
697 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr698   ConstCharPtr(const char* str) : value(str) {}
699   operator bool() const { return true; }
700   const char* value;
701 };
702 
703 // A simple Linear Congruential Generator for generating random
704 // numbers with a uniform distribution.  Unlike rand() and srand(), it
705 // doesn't use global state (and therefore can't interfere with user
706 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
707 // but it's good enough for our purposes.
708 class GTEST_API_ Random {
709  public:
710   static const UInt32 kMaxRange = 1u << 31;
711 
Random(UInt32 seed)712   explicit Random(UInt32 seed) : state_(seed) {}
713 
Reseed(UInt32 seed)714   void Reseed(UInt32 seed) { state_ = seed; }
715 
716   // Generates a random number from [0, range).  Crashes if 'range' is
717   // 0 or greater than kMaxRange.
718   UInt32 Generate(UInt32 range);
719 
720  private:
721   UInt32 state_;
722   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
723 };
724 
725 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
726 // compiler error iff T1 and T2 are different types.
727 template <typename T1, typename T2>
728 struct CompileAssertTypesEqual;
729 
730 template <typename T>
731 struct CompileAssertTypesEqual<T, T> {
732 };
733 
734 // Removes the reference from a type if it is a reference type,
735 // otherwise leaves it unchanged.  This is the same as
736 // tr1::remove_reference, which is not widely available yet.
737 template <typename T>
738 struct RemoveReference { typedef T type; };  // NOLINT
739 template <typename T>
740 struct RemoveReference<T&> { typedef T type; };  // NOLINT
741 
742 // A handy wrapper around RemoveReference that works when the argument
743 // T depends on template parameters.
744 #define GTEST_REMOVE_REFERENCE_(T) \
745     typename ::testing::internal::RemoveReference<T>::type
746 
747 // Removes const from a type if it is a const type, otherwise leaves
748 // it unchanged.  This is the same as tr1::remove_const, which is not
749 // widely available yet.
750 template <typename T>
751 struct RemoveConst { typedef T type; };  // NOLINT
752 template <typename T>
753 struct RemoveConst<const T> { typedef T type; };  // NOLINT
754 
755 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
756 // definition to fail to remove the const in 'const int[3]' and 'const
757 // char[3][4]'.  The following specialization works around the bug.
758 template <typename T, size_t N>
759 struct RemoveConst<const T[N]> {
760   typedef typename RemoveConst<T>::type type[N];
761 };
762 
763 #if defined(_MSC_VER) && _MSC_VER < 1400
764 // This is the only specialization that allows VC++ 7.1 to remove const in
765 // 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
766 // and thus needs to be conditionally compiled.
767 template <typename T, size_t N>
768 struct RemoveConst<T[N]> {
769   typedef typename RemoveConst<T>::type type[N];
770 };
771 #endif
772 
773 // A handy wrapper around RemoveConst that works when the argument
774 // T depends on template parameters.
775 #define GTEST_REMOVE_CONST_(T) \
776     typename ::testing::internal::RemoveConst<T>::type
777 
778 // Turns const U&, U&, const U, and U all into U.
779 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
780     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
781 
782 // Adds reference to a type if it is not a reference type,
783 // otherwise leaves it unchanged.  This is the same as
784 // tr1::add_reference, which is not widely available yet.
785 template <typename T>
786 struct AddReference { typedef T& type; };  // NOLINT
787 template <typename T>
788 struct AddReference<T&> { typedef T& type; };  // NOLINT
789 
790 // A handy wrapper around AddReference that works when the argument T
791 // depends on template parameters.
792 #define GTEST_ADD_REFERENCE_(T) \
793     typename ::testing::internal::AddReference<T>::type
794 
795 // Adds a reference to const on top of T as necessary.  For example,
796 // it transforms
797 //
798 //   char         ==> const char&
799 //   const char   ==> const char&
800 //   char&        ==> const char&
801 //   const char&  ==> const char&
802 //
803 // The argument T must depend on some template parameters.
804 #define GTEST_REFERENCE_TO_CONST_(T) \
805     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
806 
807 // ImplicitlyConvertible<From, To>::value is a compile-time bool
808 // constant that's true iff type From can be implicitly converted to
809 // type To.
810 template <typename From, typename To>
811 class ImplicitlyConvertible {
812  private:
813   // We need the following helper functions only for their types.
814   // They have no implementations.
815 
816   // MakeFrom() is an expression whose type is From.  We cannot simply
817   // use From(), as the type From may not have a public default
818   // constructor.
819   static typename AddReference<From>::type MakeFrom();
820 
821   // These two functions are overloaded.  Given an expression
822   // Helper(x), the compiler will pick the first version if x can be
823   // implicitly converted to type To; otherwise it will pick the
824   // second version.
825   //
826   // The first version returns a value of size 1, and the second
827   // version returns a value of size 2.  Therefore, by checking the
828   // size of Helper(x), which can be done at compile time, we can tell
829   // which version of Helper() is used, and hence whether x can be
830   // implicitly converted to type To.
831   static char Helper(To);
832   static char (&Helper(...))[2];  // NOLINT
833 
834   // We have to put the 'public' section after the 'private' section,
835   // or MSVC refuses to compile the code.
836  public:
837 #if defined(__BORLANDC__)
838   // C++Builder cannot use member overload resolution during template
839   // instantiation.  The simplest workaround is to use its C++0x type traits
840   // functions (C++Builder 2009 and above only).
841   static const bool value = __is_convertible(From, To);
842 #else
843   // MSVC warns about implicitly converting from double to int for
844   // possible loss of data, so we need to temporarily disable the
845   // warning.
846   GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244)
847   static const bool value =
848       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
849   GTEST_DISABLE_MSC_WARNINGS_POP_()
850 #endif  // __BORLANDC__
851 };
852 template <typename From, typename To>
853 const bool ImplicitlyConvertible<From, To>::value;
854 
855 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
856 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
857 // of those.
858 template <typename T>
859 struct IsAProtocolMessage
860     : public bool_constant<
861   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
862   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
863 };
864 
865 // When the compiler sees expression IsContainerTest<C>(0), if C is an
866 // STL-style container class, the first overload of IsContainerTest
867 // will be viable (since both C::iterator* and C::const_iterator* are
868 // valid types and NULL can be implicitly converted to them).  It will
869 // be picked over the second overload as 'int' is a perfect match for
870 // the type of argument 0.  If C::iterator or C::const_iterator is not
871 // a valid type, the first overload is not viable, and the second
872 // overload will be picked.  Therefore, we can determine whether C is
873 // a container class by checking the type of IsContainerTest<C>(0).
874 // The value of the expression is insignificant.
875 //
876 // Note that we look for both C::iterator and C::const_iterator.  The
877 // reason is that C++ injects the name of a class as a member of the
878 // class itself (e.g. you can refer to class iterator as either
879 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
880 // only, for example, we would mistakenly think that a class named
881 // iterator is an STL container.
882 //
883 // Also note that the simpler approach of overloading
884 // IsContainerTest(typename C::const_iterator*) and
885 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
886 typedef int IsContainer;
887 template <class C>
888 IsContainer IsContainerTest(int /* dummy */,
889                             typename C::iterator* /* it */ = NULL,
890                             typename C::const_iterator* /* const_it */ = NULL) {
891   return 0;
892 }
893 
894 typedef char IsNotContainer;
895 template <class C>
896 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
897 
898 // EnableIf<condition>::type is void when 'Cond' is true, and
899 // undefined when 'Cond' is false.  To use SFINAE to make a function
900 // overload only apply when a particular expression is true, add
901 // "typename EnableIf<expression>::type* = 0" as the last parameter.
902 template<bool> struct EnableIf;
903 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
904 
905 // Utilities for native arrays.
906 
907 // ArrayEq() compares two k-dimensional native arrays using the
908 // elements' operator==, where k can be any integer >= 0.  When k is
909 // 0, ArrayEq() degenerates into comparing a single pair of values.
910 
911 template <typename T, typename U>
912 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
913 
914 // This generic version is used when k is 0.
915 template <typename T, typename U>
916 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
917 
918 // This overload is used when k >= 1.
919 template <typename T, typename U, size_t N>
920 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
921   return internal::ArrayEq(lhs, N, rhs);
922 }
923 
924 // This helper reduces code bloat.  If we instead put its logic inside
925 // the previous ArrayEq() function, arrays with different sizes would
926 // lead to different copies of the template code.
927 template <typename T, typename U>
928 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
929   for (size_t i = 0; i != size; i++) {
930     if (!internal::ArrayEq(lhs[i], rhs[i]))
931       return false;
932   }
933   return true;
934 }
935 
936 // Finds the first element in the iterator range [begin, end) that
937 // equals elem.  Element may be a native array type itself.
938 template <typename Iter, typename Element>
939 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
940   for (Iter it = begin; it != end; ++it) {
941     if (internal::ArrayEq(*it, elem))
942       return it;
943   }
944   return end;
945 }
946 
947 // CopyArray() copies a k-dimensional native array using the elements'
948 // operator=, where k can be any integer >= 0.  When k is 0,
949 // CopyArray() degenerates into copying a single value.
950 
951 template <typename T, typename U>
952 void CopyArray(const T* from, size_t size, U* to);
953 
954 // This generic version is used when k is 0.
955 template <typename T, typename U>
956 inline void CopyArray(const T& from, U* to) { *to = from; }
957 
958 // This overload is used when k >= 1.
959 template <typename T, typename U, size_t N>
960 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
961   internal::CopyArray(from, N, *to);
962 }
963 
964 // This helper reduces code bloat.  If we instead put its logic inside
965 // the previous CopyArray() function, arrays with different sizes
966 // would lead to different copies of the template code.
967 template <typename T, typename U>
968 void CopyArray(const T* from, size_t size, U* to) {
969   for (size_t i = 0; i != size; i++) {
970     internal::CopyArray(from[i], to + i);
971   }
972 }
973 
974 // The relation between an NativeArray object (see below) and the
975 // native array it represents.
976 // We use 2 different structs to allow non-copyable types to be used, as long
977 // as RelationToSourceReference() is passed.
978 struct RelationToSourceReference {};
979 struct RelationToSourceCopy {};
980 
981 // Adapts a native array to a read-only STL-style container.  Instead
982 // of the complete STL container concept, this adaptor only implements
983 // members useful for Google Mock's container matchers.  New members
984 // should be added as needed.  To simplify the implementation, we only
985 // support Element being a raw type (i.e. having no top-level const or
986 // reference modifier).  It's the client's responsibility to satisfy
987 // this requirement.  Element can be an array type itself (hence
988 // multi-dimensional arrays are supported).
989 template <typename Element>
990 class NativeArray {
991  public:
992   // STL-style container typedefs.
993   typedef Element value_type;
994   typedef Element* iterator;
995   typedef const Element* const_iterator;
996 
997   // Constructs from a native array. References the source.
998   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
999     InitRef(array, count);
1000   }
1001 
1002   // Constructs from a native array. Copies the source.
1003   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1004     InitCopy(array, count);
1005   }
1006 
1007   // Copy constructor.
1008   NativeArray(const NativeArray& rhs) {
1009     (this->*rhs.clone_)(rhs.array_, rhs.size_);
1010   }
1011 
1012   ~NativeArray() {
1013     if (clone_ != &NativeArray::InitRef)
1014       delete[] array_;
1015   }
1016 
1017   // STL-style container methods.
1018   size_t size() const { return size_; }
1019   const_iterator begin() const { return array_; }
1020   const_iterator end() const { return array_ + size_; }
1021   bool operator==(const NativeArray& rhs) const {
1022     return size() == rhs.size() &&
1023         ArrayEq(begin(), size(), rhs.begin());
1024   }
1025 
1026  private:
1027   enum {
1028     kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
1029         Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value,
1030   };
1031 
1032   // Initializes this object with a copy of the input.
1033   void InitCopy(const Element* array, size_t a_size) {
1034     Element* const copy = new Element[a_size];
1035     CopyArray(array, a_size, copy);
1036     array_ = copy;
1037     size_ = a_size;
1038     clone_ = &NativeArray::InitCopy;
1039   }
1040 
1041   // Initializes this object with a reference of the input.
1042   void InitRef(const Element* array, size_t a_size) {
1043     array_ = array;
1044     size_ = a_size;
1045     clone_ = &NativeArray::InitRef;
1046   }
1047 
1048   const Element* array_;
1049   size_t size_;
1050   void (NativeArray::*clone_)(const Element*, size_t);
1051 
1052   GTEST_DISALLOW_ASSIGN_(NativeArray);
1053 };
1054 
1055 }  // namespace internal
1056 }  // namespace testing
1057 
1058 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1059   ::testing::internal::AssertHelper(result_type, file, line, message) \
1060     = ::testing::Message()
1061 
1062 #define GTEST_MESSAGE_(message, result_type) \
1063   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1064 
1065 #define GTEST_FATAL_FAILURE_(message) \
1066   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1067 
1068 #define GTEST_NONFATAL_FAILURE_(message) \
1069   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1070 
1071 #define GTEST_SUCCESS_(message) \
1072   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1073 
1074 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
1075 // statement if it returns or throws (or doesn't return or throw in some
1076 // situations).
1077 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1078   if (::testing::internal::AlwaysTrue()) { statement; }
1079 
1080 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1081   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1082   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1083     bool gtest_caught_expected = false; \
1084     try { \
1085       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1086     } \
1087     catch (expected_exception const&) { \
1088       gtest_caught_expected = true; \
1089     } \
1090     catch (...) { \
1091       gtest_msg.value = \
1092           "Expected: " #statement " throws an exception of type " \
1093           #expected_exception ".\n  Actual: it throws a different type."; \
1094       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1095     } \
1096     if (!gtest_caught_expected) { \
1097       gtest_msg.value = \
1098           "Expected: " #statement " throws an exception of type " \
1099           #expected_exception ".\n  Actual: it throws nothing."; \
1100       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1101     } \
1102   } else \
1103     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1104       fail(gtest_msg.value)
1105 
1106 #define GTEST_TEST_NO_THROW_(statement, fail) \
1107   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1108   if (::testing::internal::AlwaysTrue()) { \
1109     try { \
1110       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1111     } \
1112     catch (...) { \
1113       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1114     } \
1115   } else \
1116     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1117       fail("Expected: " #statement " doesn't throw an exception.\n" \
1118            "  Actual: it throws.")
1119 
1120 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1121   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1122   if (::testing::internal::AlwaysTrue()) { \
1123     bool gtest_caught_any = false; \
1124     try { \
1125       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1126     } \
1127     catch (...) { \
1128       gtest_caught_any = true; \
1129     } \
1130     if (!gtest_caught_any) { \
1131       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1132     } \
1133   } else \
1134     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1135       fail("Expected: " #statement " throws an exception.\n" \
1136            "  Actual: it doesn't.")
1137 
1138 
1139 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1140 // either a boolean expression or an AssertionResult. text is a textual
1141 // represenation of expression as it was passed into the EXPECT_TRUE.
1142 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1143   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1144   if (const ::testing::AssertionResult gtest_ar_ = \
1145       ::testing::AssertionResult(expression)) \
1146     ; \
1147   else \
1148     fail(::testing::internal::GetBoolAssertionFailureMessage(\
1149         gtest_ar_, text, #actual, #expected).c_str())
1150 
1151 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1152   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1153   if (::testing::internal::AlwaysTrue()) { \
1154     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1155     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1156     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1157       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1158     } \
1159   } else \
1160     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1161       fail("Expected: " #statement " doesn't generate new fatal " \
1162            "failures in the current thread.\n" \
1163            "  Actual: it does.")
1164 
1165 // Expands to the name of the class that implements the given test.
1166 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1167   test_case_name##_##test_name##_Test
1168 
1169 // Helper macro for defining tests.
1170 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1171 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1172  public:\
1173   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1174  private:\
1175   virtual void TestBody();\
1176   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1177   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1178       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1179 };\
1180 \
1181 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1182   ::test_info_ =\
1183     ::testing::internal::MakeAndRegisterTestInfo(\
1184         #test_case_name, #test_name, NULL, NULL, \
1185         (parent_id), \
1186         parent_class::SetUpTestCase, \
1187         parent_class::TearDownTestCase, \
1188         new ::testing::internal::TestFactoryImpl<\
1189             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1190 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1191 
1192 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1193 
1194