1 /*
2  * Copyright 2019 Google LLC
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/geometry/GrQuadUtils.h"
9 
10 #include "include/core/SkRect.h"
11 #include "include/private/GrTypesPriv.h"
12 #include "include/private/SkVx.h"
13 #include "src/core/SkPathPriv.h"
14 #include "src/gpu/geometry/GrQuad.h"
15 
16 using V4f = skvx::Vec<4, float>;
17 using M4f = skvx::Vec<4, int32_t>;
18 
19 #define AI SK_ALWAYS_INLINE
20 
21 // General tolerance used for denominators, checking div-by-0
22 static constexpr float kTolerance = 1e-9f;
23 // Increased slop when comparing signed distances / lengths
24 static constexpr float kDistTolerance = 1e-2f;
25 static constexpr float kDist2Tolerance = kDistTolerance * kDistTolerance;
26 static constexpr float kInvDistTolerance = 1.f / kDistTolerance;
27 
28 // These rotate the points/edge values either clockwise or counterclockwise assuming tri strip
29 // order.
next_cw(const V4f & v)30 static AI V4f next_cw(const V4f& v) {
31     return skvx::shuffle<2, 0, 3, 1>(v);
32 }
33 
next_ccw(const V4f & v)34 static AI V4f next_ccw(const V4f& v) {
35     return skvx::shuffle<1, 3, 0, 2>(v);
36 }
37 
next_diag(const V4f & v)38 static AI V4f next_diag(const V4f& v) {
39     // Same as next_ccw(next_ccw(v)), or next_cw(next_cw(v)), e.g. two rotations either direction.
40     return skvx::shuffle<3, 2, 1, 0>(v);
41 }
42 
43 // Replaces zero-length 'bad' edge vectors with the reversed opposite edge vector.
44 // e3 may be null if only 2D edges need to be corrected for.
correct_bad_edges(const M4f & bad,V4f * e1,V4f * e2,V4f * e3)45 static AI void correct_bad_edges(const M4f& bad, V4f* e1, V4f* e2, V4f* e3) {
46     if (any(bad)) {
47         // Want opposite edges, L B T R -> R T B L but with flipped sign to preserve winding
48         *e1 = if_then_else(bad, -next_diag(*e1), *e1);
49         *e2 = if_then_else(bad, -next_diag(*e2), *e2);
50         if (e3) {
51             *e3 = if_then_else(bad, -next_diag(*e3), *e3);
52         }
53     }
54 }
55 
56 // Replace 'bad' coordinates by rotating CCW to get the next point. c3 may be null for 2D points.
correct_bad_coords(const M4f & bad,V4f * c1,V4f * c2,V4f * c3)57 static AI void correct_bad_coords(const M4f& bad, V4f* c1, V4f* c2, V4f* c3) {
58     if (any(bad)) {
59         *c1 = if_then_else(bad, next_ccw(*c1), *c1);
60         *c2 = if_then_else(bad, next_ccw(*c2), *c2);
61         if (c3) {
62             *c3 = if_then_else(bad, next_ccw(*c3), *c3);
63         }
64     }
65 }
66 
67 // Since the local quad may not be type kRect, this uses the opposites for each vertex when
68 // interpolating, and calculates new ws in addition to new xs, ys.
interpolate_local(float alpha,int v0,int v1,int v2,int v3,float lx[4],float ly[4],float lw[4])69 static void interpolate_local(float alpha, int v0, int v1, int v2, int v3,
70                               float lx[4], float ly[4], float lw[4]) {
71     SkASSERT(v0 >= 0 && v0 < 4);
72     SkASSERT(v1 >= 0 && v1 < 4);
73     SkASSERT(v2 >= 0 && v2 < 4);
74     SkASSERT(v3 >= 0 && v3 < 4);
75 
76     float beta = 1.f - alpha;
77     lx[v0] = alpha * lx[v0] + beta * lx[v2];
78     ly[v0] = alpha * ly[v0] + beta * ly[v2];
79     lw[v0] = alpha * lw[v0] + beta * lw[v2];
80 
81     lx[v1] = alpha * lx[v1] + beta * lx[v3];
82     ly[v1] = alpha * ly[v1] + beta * ly[v3];
83     lw[v1] = alpha * lw[v1] + beta * lw[v3];
84 }
85 
86 // Crops v0 to v1 based on the clipDevRect. v2 is opposite of v0, v3 is opposite of v1.
87 // It is written to not modify coordinates if there's no intersection along the edge.
88 // Ideally this would have been detected earlier and the entire draw is skipped.
crop_rect_edge(const SkRect & clipDevRect,int v0,int v1,int v2,int v3,float x[4],float y[4],float lx[4],float ly[4],float lw[4])89 static bool crop_rect_edge(const SkRect& clipDevRect, int v0, int v1, int v2, int v3,
90                            float x[4], float y[4], float lx[4], float ly[4], float lw[4]) {
91     SkASSERT(v0 >= 0 && v0 < 4);
92     SkASSERT(v1 >= 0 && v1 < 4);
93     SkASSERT(v2 >= 0 && v2 < 4);
94     SkASSERT(v3 >= 0 && v3 < 4);
95 
96     if (SkScalarNearlyEqual(x[v0], x[v1])) {
97         // A vertical edge
98         if (x[v0] < clipDevRect.fLeft && x[v2] >= clipDevRect.fLeft) {
99             // Overlapping with left edge of clipDevRect
100             if (lx) {
101                 float alpha = (x[v2] - clipDevRect.fLeft) / (x[v2] - x[v0]);
102                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
103             }
104             x[v0] = clipDevRect.fLeft;
105             x[v1] = clipDevRect.fLeft;
106             return true;
107         } else if (x[v0] > clipDevRect.fRight && x[v2] <= clipDevRect.fRight) {
108             // Overlapping with right edge of clipDevRect
109             if (lx) {
110                 float alpha = (clipDevRect.fRight - x[v2]) / (x[v0] - x[v2]);
111                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
112             }
113             x[v0] = clipDevRect.fRight;
114             x[v1] = clipDevRect.fRight;
115             return true;
116         }
117     } else {
118         // A horizontal edge
119         SkASSERT(SkScalarNearlyEqual(y[v0], y[v1]));
120         if (y[v0] < clipDevRect.fTop && y[v2] >= clipDevRect.fTop) {
121             // Overlapping with top edge of clipDevRect
122             if (lx) {
123                 float alpha = (y[v2] - clipDevRect.fTop) / (y[v2] - y[v0]);
124                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
125             }
126             y[v0] = clipDevRect.fTop;
127             y[v1] = clipDevRect.fTop;
128             return true;
129         } else if (y[v0] > clipDevRect.fBottom && y[v2] <= clipDevRect.fBottom) {
130             // Overlapping with bottom edge of clipDevRect
131             if (lx) {
132                 float alpha = (clipDevRect.fBottom - y[v2]) / (y[v0] - y[v2]);
133                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
134             }
135             y[v0] = clipDevRect.fBottom;
136             y[v1] = clipDevRect.fBottom;
137             return true;
138         }
139     }
140 
141     // No overlap so don't crop it
142     return false;
143 }
144 
145 // Updates x and y to intersect with clipDevRect.  lx, ly, and lw are updated appropriately and may
146 // be null to skip calculations. Returns bit mask of edges that were clipped.
crop_rect(const SkRect & clipDevRect,float x[4],float y[4],float lx[4],float ly[4],float lw[4])147 static GrQuadAAFlags crop_rect(const SkRect& clipDevRect, float x[4], float y[4],
148                                float lx[4], float ly[4], float lw[4]) {
149     GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone;
150 
151     // The quad's left edge may not align with the SkRect notion of left due to 90 degree rotations
152     // or mirrors. So, this processes the logical edges of the quad and clamps it to the 4 sides of
153     // clipDevRect.
154 
155     // Quad's left is v0 to v1 (op. v2 and v3)
156     if (crop_rect_edge(clipDevRect, 0, 1, 2, 3, x, y, lx, ly, lw)) {
157         clipEdgeFlags |= GrQuadAAFlags::kLeft;
158     }
159     // Quad's top edge is v0 to v2 (op. v1 and v3)
160     if (crop_rect_edge(clipDevRect, 0, 2, 1, 3, x, y, lx, ly, lw)) {
161         clipEdgeFlags |= GrQuadAAFlags::kTop;
162     }
163     // Quad's right edge is v2 to v3 (op. v0 and v1)
164     if (crop_rect_edge(clipDevRect, 2, 3, 0, 1, x, y, lx, ly, lw)) {
165         clipEdgeFlags |= GrQuadAAFlags::kRight;
166     }
167     // Quad's bottom edge is v1 to v3 (op. v0 and v2)
168     if (crop_rect_edge(clipDevRect, 1, 3, 0, 2, x, y, lx, ly, lw)) {
169         clipEdgeFlags |= GrQuadAAFlags::kBottom;
170     }
171 
172     return clipEdgeFlags;
173 }
174 
175 // Similar to crop_rect, but assumes that both the device coordinates and optional local coordinates
176 // geometrically match the TL, BL, TR, BR vertex ordering, i.e. axis-aligned but not flipped, etc.
crop_simple_rect(const SkRect & clipDevRect,float x[4],float y[4],float lx[4],float ly[4])177 static GrQuadAAFlags crop_simple_rect(const SkRect& clipDevRect, float x[4], float y[4],
178                                       float lx[4], float ly[4]) {
179     GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone;
180 
181     // Update local coordinates proportionately to how much the device rect edge was clipped
182     const SkScalar dx = lx ? (lx[2] - lx[0]) / (x[2] - x[0]) : 0.f;
183     const SkScalar dy = ly ? (ly[1] - ly[0]) / (y[1] - y[0]) : 0.f;
184     if (clipDevRect.fLeft > x[0]) {
185         if (lx) {
186             lx[0] += (clipDevRect.fLeft - x[0]) * dx;
187             lx[1] = lx[0];
188         }
189         x[0] = clipDevRect.fLeft;
190         x[1] = clipDevRect.fLeft;
191         clipEdgeFlags |= GrQuadAAFlags::kLeft;
192     }
193     if (clipDevRect.fTop > y[0]) {
194         if (ly) {
195             ly[0] += (clipDevRect.fTop - y[0]) * dy;
196             ly[2] = ly[0];
197         }
198         y[0] = clipDevRect.fTop;
199         y[2] = clipDevRect.fTop;
200         clipEdgeFlags |= GrQuadAAFlags::kTop;
201     }
202     if (clipDevRect.fRight < x[2]) {
203         if (lx) {
204             lx[2] -= (x[2] - clipDevRect.fRight) * dx;
205             lx[3] = lx[2];
206         }
207         x[2] = clipDevRect.fRight;
208         x[3] = clipDevRect.fRight;
209         clipEdgeFlags |= GrQuadAAFlags::kRight;
210     }
211     if (clipDevRect.fBottom < y[1]) {
212         if (ly) {
213             ly[1] -= (y[1] - clipDevRect.fBottom) * dy;
214             ly[3] = ly[1];
215         }
216         y[1] = clipDevRect.fBottom;
217         y[3] = clipDevRect.fBottom;
218         clipEdgeFlags |= GrQuadAAFlags::kBottom;
219     }
220 
221     return clipEdgeFlags;
222 }
223 // Consistent with GrQuad::asRect()'s return value but requires fewer operations since we don't need
224 // to calculate the bounds of the quad.
is_simple_rect(const GrQuad & quad)225 static bool is_simple_rect(const GrQuad& quad) {
226     if (quad.quadType() != GrQuad::Type::kAxisAligned) {
227         return false;
228     }
229     // v0 at the geometric top-left is unique, so we only need to compare x[0] < x[2] for left
230     // and y[0] < y[1] for top, but add a little padding to protect against numerical precision
231     // on R90 and R270 transforms tricking this check.
232     return ((quad.x(0) + SK_ScalarNearlyZero) < quad.x(2)) &&
233            ((quad.y(0) + SK_ScalarNearlyZero) < quad.y(1));
234 }
235 
236 // Calculates barycentric coordinates for each point in (testX, testY) in the triangle formed by
237 // (x0,y0) - (x1,y1) - (x2, y2) and stores them in u, v, w.
barycentric_coords(float x0,float y0,float x1,float y1,float x2,float y2,const V4f & testX,const V4f & testY,V4f * u,V4f * v,V4f * w)238 static bool barycentric_coords(float x0, float y0, float x1, float y1, float x2, float y2,
239                                const V4f& testX, const V4f& testY,
240                                V4f* u, V4f* v, V4f* w) {
241     // The 32-bit calculations can have catastrophic cancellation if the device-space coordinates
242     // are really big, and this code needs to handle that because we evaluate barycentric coords
243     // pre-cropping to the render target bounds. This preserves some precision by shrinking the
244     // coordinate space if the bounds are large.
245     static constexpr float kCoordLimit = 1e7f; // Big but somewhat arbitrary, fixes crbug:10141204
246     float scaleX = std::max(std::max(x0, x1), x2) - std::min(std::min(x0, x1), x2);
247     float scaleY = std::max(std::max(y0, y1), y2) - std::min(std::min(y0, y1), y2);
248     if (scaleX > kCoordLimit) {
249         scaleX = kCoordLimit / scaleX;
250         x0 *= scaleX;
251         x1 *= scaleX;
252         x2 *= scaleX;
253     } else {
254         // Don't scale anything
255         scaleX = 1.f;
256     }
257     if (scaleY > kCoordLimit) {
258         scaleY = kCoordLimit / scaleY;
259         y0 *= scaleY;
260         y1 *= scaleY;
261         y2 *= scaleY;
262     } else {
263         scaleY = 1.f;
264     }
265 
266     // Modeled after SkPathOpsQuad::pointInTriangle() but uses float instead of double, is
267     // vectorized and outputs normalized barycentric coordinates instead of inside/outside test
268     float v0x = x2 - x0;
269     float v0y = y2 - y0;
270     float v1x = x1 - x0;
271     float v1y = y1 - y0;
272 
273     float dot00 = v0x * v0x + v0y * v0y;
274     float dot01 = v0x * v1x + v0y * v1y;
275     float dot11 = v1x * v1x + v1y * v1y;
276 
277     // Not yet 1/d, first check d != 0 with a healthy tolerance (worst case is we end up not
278     // cropping something we could have, which is better than cropping something we shouldn't have).
279     // The tolerance is partly so large because these comparisons operate in device px^4 units,
280     // with plenty of subtractions thrown in. The SkPathOpsQuad code's use of doubles helped, and
281     // because it only needed to return "inside triangle", it could compare against [0, denom] and
282     // skip the normalization entirely.
283     float invDenom = dot00 * dot11 - dot01 * dot01;
284     static constexpr SkScalar kEmptyTriTolerance = SK_Scalar1 / (1 << 5);
285     if (SkScalarNearlyZero(invDenom, kEmptyTriTolerance)) {
286         // The triangle was degenerate/empty, which can cause the following UVW calculations to
287         // return (0,0,1) for every test point. This in turn makes the cropping code think that the
288         // empty triangle contains the crop rect and we turn the draw into a fullscreen clear, which
289         // is definitely the utter opposite of what we'd expect for an empty shape.
290         return false;
291     } else {
292         // Safe to divide
293         invDenom = sk_ieee_float_divide(1.f, invDenom);
294     }
295 
296     V4f v2x = (scaleX * testX) - x0;
297     V4f v2y = (scaleY * testY) - y0;
298 
299     V4f dot02 = v0x * v2x + v0y * v2y;
300     V4f dot12 = v1x * v2x + v1y * v2y;
301 
302     // These are relative to the vertices, so there's no need to undo the scale factor
303     *u = (dot11 * dot02 - dot01 * dot12) * invDenom;
304     *v = (dot00 * dot12 - dot01 * dot02) * invDenom;
305     *w = 1.f - *u - *v;
306 
307     return true;
308 }
309 
inside_triangle(const V4f & u,const V4f & v,const V4f & w)310 static M4f inside_triangle(const V4f& u, const V4f& v, const V4f& w) {
311     return ((u >= 0.f) & (u <= 1.f)) & ((v >= 0.f) & (v <= 1.f)) & ((w >= 0.f) & (w <= 1.f));
312 }
313 
314 ///////////////////////////////////////////////////////////////////////////////////////////////////
315 
projectedBounds() const316 SkRect GrQuad::projectedBounds() const {
317     V4f xs = this->x4f();
318     V4f ys = this->y4f();
319     V4f ws = this->w4f();
320     M4f clipW = ws < SkPathPriv::kW0PlaneDistance;
321     if (any(clipW)) {
322         V4f x2d = xs / ws;
323         V4f y2d = ys / ws;
324         // Bounds of just the projected points in front of w = epsilon
325         SkRect frontBounds = {
326             min(if_then_else(clipW, V4f(SK_ScalarInfinity), x2d)),
327             min(if_then_else(clipW, V4f(SK_ScalarInfinity), y2d)),
328             max(if_then_else(clipW, V4f(SK_ScalarNegativeInfinity), x2d)),
329             max(if_then_else(clipW, V4f(SK_ScalarNegativeInfinity), y2d))
330         };
331         // Calculate clipped coordinates by following CCW edges, only keeping points where the w
332         // actually changes sign between the vertices.
333         V4f t = (SkPathPriv::kW0PlaneDistance - ws) / (next_ccw(ws) - ws);
334         x2d = (t * next_ccw(xs) + (1.f - t) * xs) / SkPathPriv::kW0PlaneDistance;
335         y2d = (t * next_ccw(ys) + (1.f - t) * ys) / SkPathPriv::kW0PlaneDistance;
336         // True if (w < e) xor (ccw(w) < e), i.e. crosses the w = epsilon plane
337         clipW = clipW ^ (next_ccw(ws) < SkPathPriv::kW0PlaneDistance);
338         return {
339             min(if_then_else(clipW, x2d, V4f(frontBounds.fLeft))),
340             min(if_then_else(clipW, y2d, V4f(frontBounds.fTop))),
341             max(if_then_else(clipW, x2d, V4f(frontBounds.fRight))),
342             max(if_then_else(clipW, y2d, V4f(frontBounds.fBottom)))
343         };
344     } else {
345         // Nothing is behind the viewer, so the projection is straight forward and valid
346         ws = 1.f / ws;
347         V4f x2d = xs * ws;
348         V4f y2d = ys * ws;
349         return {min(x2d), min(y2d), max(x2d), max(y2d)};
350     }
351 }
352 
353 ///////////////////////////////////////////////////////////////////////////////////////////////////
354 
355 namespace GrQuadUtils {
356 
ResolveAAType(GrAAType requestedAAType,GrQuadAAFlags requestedEdgeFlags,const GrQuad & quad,GrAAType * outAAType,GrQuadAAFlags * outEdgeFlags)357 void ResolveAAType(GrAAType requestedAAType, GrQuadAAFlags requestedEdgeFlags, const GrQuad& quad,
358                    GrAAType* outAAType, GrQuadAAFlags* outEdgeFlags) {
359     // Most cases will keep the requested types unchanged
360     *outAAType = requestedAAType;
361     *outEdgeFlags = requestedEdgeFlags;
362 
363     switch (requestedAAType) {
364         // When aa type is coverage, disable AA if the edge configuration doesn't actually need it
365         case GrAAType::kCoverage:
366             if (requestedEdgeFlags == GrQuadAAFlags::kNone) {
367                 // Turn off anti-aliasing
368                 *outAAType = GrAAType::kNone;
369             } else {
370                 // For coverage AA, if the quad is a rect and it lines up with pixel boundaries
371                 // then overall aa and per-edge aa can be completely disabled
372                 if (quad.quadType() == GrQuad::Type::kAxisAligned && !quad.aaHasEffectOnRect()) {
373                     *outAAType = GrAAType::kNone;
374                     *outEdgeFlags = GrQuadAAFlags::kNone;
375                 }
376             }
377             break;
378         // For no or msaa anti aliasing, override the edge flags since edge flags only make sense
379         // when coverage aa is being used.
380         case GrAAType::kNone:
381             *outEdgeFlags = GrQuadAAFlags::kNone;
382             break;
383         case GrAAType::kMSAA:
384             *outEdgeFlags = GrQuadAAFlags::kAll;
385             break;
386     }
387 }
388 
ClipToW0(DrawQuad * quad,DrawQuad * extraVertices)389 int ClipToW0(DrawQuad* quad, DrawQuad* extraVertices) {
390     using Vertices = TessellationHelper::Vertices;
391 
392     SkASSERT(quad && extraVertices);
393 
394     if (quad->fDevice.quadType() < GrQuad::Type::kPerspective) {
395         // W implicitly 1s for each vertex, so nothing to do but draw unmodified 'quad'
396         return 1;
397     }
398 
399     M4f validW = quad->fDevice.w4f() >= SkPathPriv::kW0PlaneDistance;
400     if (all(validW)) {
401         // Nothing to clip, can proceed normally drawing just 'quad'
402         return 1;
403     } else if (!any(validW)) {
404         // Everything is clipped, so draw nothing
405         return 0;
406     }
407 
408     // The clipped local coordinates will most likely not remain rectilinear
409     GrQuad::Type localType = quad->fLocal.quadType();
410     if (localType < GrQuad::Type::kGeneral) {
411         localType = GrQuad::Type::kGeneral;
412     }
413 
414     // If we got here, there are 1, 2, or 3 points behind the w = 0 plane. If 2 or 3 points are
415     // clipped we can define a new quad that covers the clipped shape directly. If there's 1 clipped
416     // out, the new geometry is a pentagon.
417     Vertices v;
418     v.reset(quad->fDevice, &quad->fLocal);
419 
420     int clipCount = (validW[0] ? 0 : 1) + (validW[1] ? 0 : 1) +
421                     (validW[2] ? 0 : 1) + (validW[3] ? 0 : 1);
422     SkASSERT(clipCount >= 1 && clipCount <= 3);
423 
424     // FIXME de-duplicate from the projectedBounds() calculations.
425     V4f t = (SkPathPriv::kW0PlaneDistance - v.fW) / (next_ccw(v.fW) - v.fW);
426 
427     Vertices clip;
428     clip.fX = (t * next_ccw(v.fX) + (1.f - t) * v.fX);
429     clip.fY = (t * next_ccw(v.fY) + (1.f - t) * v.fY);
430     clip.fW = SkPathPriv::kW0PlaneDistance;
431 
432     clip.fU = (t * next_ccw(v.fU) + (1.f - t) * v.fU);
433     clip.fV = (t * next_ccw(v.fV) + (1.f - t) * v.fV);
434     clip.fR = (t * next_ccw(v.fR) + (1.f - t) * v.fR);
435 
436     M4f ccwValid = next_ccw(v.fW) >= SkPathPriv::kW0PlaneDistance;
437     M4f cwValid  = next_cw(v.fW)  >= SkPathPriv::kW0PlaneDistance;
438 
439     if (clipCount != 1) {
440         // Simplest case, replace behind-w0 points with their clipped points by following CCW edge
441         // or CW edge, depending on if the edge crosses from neg. to pos. w or pos. to neg.
442         SkASSERT(clipCount == 2 || clipCount == 3);
443 
444         // NOTE: when 3 vertices are clipped, this results in a degenerate quad where one vertex
445         // is replicated. This is preferably to inserting a 3rd vertex on the w = 0 intersection
446         // line because two parallel edges make inset/outset math unstable for large quads.
447         v.fX = if_then_else(validW, v.fX,
448                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fX),
449                                if_then_else(ccwValid, clip.fX, /* cwValid */ next_cw(clip.fX))));
450         v.fY = if_then_else(validW, v.fY,
451                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fY),
452                                if_then_else(ccwValid, clip.fY, /* cwValid */ next_cw(clip.fY))));
453         v.fW = if_then_else(validW, v.fW, clip.fW);
454 
455         v.fU = if_then_else(validW, v.fU,
456                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fU),
457                                if_then_else(ccwValid, clip.fU, /* cwValid */ next_cw(clip.fU))));
458         v.fV = if_then_else(validW, v.fV,
459                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fV),
460                                if_then_else(ccwValid, clip.fV, /* cwValid */ next_cw(clip.fV))));
461         v.fR = if_then_else(validW, v.fR,
462                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fR),
463                                if_then_else(ccwValid, clip.fR, /* cwValid */ next_cw(clip.fR))));
464 
465         // For 2 or 3 clipped vertices, the resulting shape is a quad or a triangle, so it can be
466         // entirely represented in 'quad'.
467         v.asGrQuads(&quad->fDevice, GrQuad::Type::kPerspective,
468                     &quad->fLocal, localType);
469         return 1;
470     } else {
471         // The clipped geometry is a pentagon, so it will be represented as two quads connected by
472         // a new non-AA edge. Use the midpoint along one of the unclipped edges as a split vertex.
473         Vertices mid;
474         mid.fX = 0.5f * (v.fX + next_ccw(v.fX));
475         mid.fY = 0.5f * (v.fY + next_ccw(v.fY));
476         mid.fW = 0.5f * (v.fW + next_ccw(v.fW));
477 
478         mid.fU = 0.5f * (v.fU + next_ccw(v.fU));
479         mid.fV = 0.5f * (v.fV + next_ccw(v.fV));
480         mid.fR = 0.5f * (v.fR + next_ccw(v.fR));
481 
482         // Make a quad formed by the 2 clipped points, the inserted mid point, and the good vertex
483         // that is CCW rotated from the clipped vertex.
484         Vertices v2;
485         v2.fUVRCount = v.fUVRCount;
486         v2.fX = if_then_else((!validW) | (!ccwValid), clip.fX,
487                         if_then_else(cwValid, next_cw(mid.fX), v.fX));
488         v2.fY = if_then_else((!validW) | (!ccwValid), clip.fY,
489                         if_then_else(cwValid, next_cw(mid.fY), v.fY));
490         v2.fW = if_then_else((!validW) | (!ccwValid), clip.fW,
491                         if_then_else(cwValid, next_cw(mid.fW), v.fW));
492 
493         v2.fU = if_then_else((!validW) | (!ccwValid), clip.fU,
494                         if_then_else(cwValid, next_cw(mid.fU), v.fU));
495         v2.fV = if_then_else((!validW) | (!ccwValid), clip.fV,
496                         if_then_else(cwValid, next_cw(mid.fV), v.fV));
497         v2.fR = if_then_else((!validW) | (!ccwValid), clip.fR,
498                         if_then_else(cwValid, next_cw(mid.fR), v.fR));
499         // The non-AA edge for this quad is the opposite of the clipped vertex's edge
500         GrQuadAAFlags v2EdgeFlag = (!validW[0] ? GrQuadAAFlags::kRight  : // left clipped -> right
501                                    (!validW[1] ? GrQuadAAFlags::kTop    : // bottom clipped -> top
502                                    (!validW[2] ? GrQuadAAFlags::kBottom : // top clipped -> bottom
503                                                  GrQuadAAFlags::kLeft))); // right clipped -> left
504         extraVertices->fEdgeFlags = quad->fEdgeFlags & ~v2EdgeFlag;
505 
506         // Make a quad formed by the remaining two good vertices, one clipped point, and the
507         // inserted mid point.
508         v.fX = if_then_else(!validW, next_cw(clip.fX),
509                        if_then_else(!cwValid, mid.fX, v.fX));
510         v.fY = if_then_else(!validW, next_cw(clip.fY),
511                        if_then_else(!cwValid, mid.fY, v.fY));
512         v.fW = if_then_else(!validW, clip.fW,
513                        if_then_else(!cwValid, mid.fW, v.fW));
514 
515         v.fU = if_then_else(!validW, next_cw(clip.fU),
516                        if_then_else(!cwValid, mid.fU, v.fU));
517         v.fV = if_then_else(!validW, next_cw(clip.fV),
518                        if_then_else(!cwValid, mid.fV, v.fV));
519         v.fR = if_then_else(!validW, next_cw(clip.fR),
520                        if_then_else(!cwValid, mid.fR, v.fR));
521         // The non-AA edge for this quad is the clipped vertex's edge
522         GrQuadAAFlags v1EdgeFlag = (!validW[0] ? GrQuadAAFlags::kLeft   :
523                                    (!validW[1] ? GrQuadAAFlags::kBottom :
524                                    (!validW[2] ? GrQuadAAFlags::kTop    :
525                                                  GrQuadAAFlags::kRight)));
526 
527         v.asGrQuads(&quad->fDevice, GrQuad::Type::kPerspective,
528                     &quad->fLocal, localType);
529         quad->fEdgeFlags &= ~v1EdgeFlag;
530 
531         v2.asGrQuads(&extraVertices->fDevice, GrQuad::Type::kPerspective,
532                      &extraVertices->fLocal, localType);
533         // Caller must draw both 'quad' and 'extraVertices' to cover the clipped geometry
534         return 2;
535     }
536 }
537 
CropToRect(const SkRect & cropRect,GrAA cropAA,DrawQuad * quad,bool computeLocal)538 bool CropToRect(const SkRect& cropRect, GrAA cropAA, DrawQuad* quad, bool computeLocal) {
539     SkASSERT(quad->fDevice.isFinite());
540 
541     if (quad->fDevice.quadType() == GrQuad::Type::kAxisAligned) {
542         // crop_rect and crop_rect_simple keep the rectangles as rectangles, so the intersection
543         // of the crop and quad can be calculated exactly. Some care must be taken if the quad
544         // is axis-aligned but does not satisfy asRect() due to flips, etc.
545         GrQuadAAFlags clippedEdges;
546         if (computeLocal) {
547             if (is_simple_rect(quad->fDevice) && is_simple_rect(quad->fLocal)) {
548                 clippedEdges = crop_simple_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
549                                                 quad->fLocal.xs(), quad->fLocal.ys());
550             } else {
551                 clippedEdges = crop_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
552                                          quad->fLocal.xs(), quad->fLocal.ys(), quad->fLocal.ws());
553             }
554         } else {
555             if (is_simple_rect(quad->fDevice)) {
556                 clippedEdges = crop_simple_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
557                                                 nullptr, nullptr);
558             } else {
559                 clippedEdges = crop_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
560                                          nullptr, nullptr, nullptr);
561             }
562         }
563 
564         // Apply the clipped edge updates to the original edge flags
565         if (cropAA == GrAA::kYes) {
566             // Turn on all edges that were clipped
567             quad->fEdgeFlags |= clippedEdges;
568         } else {
569             // Turn off all edges that were clipped
570             quad->fEdgeFlags &= ~clippedEdges;
571         }
572         return true;
573     }
574 
575     if (computeLocal) {
576         // FIXME (michaelludwig) Calculate cropped local coordinates when not kAxisAligned
577         return false;
578     }
579 
580     V4f devX = quad->fDevice.x4f();
581     V4f devY = quad->fDevice.y4f();
582     // Project the 3D coordinates to 2D
583     if (quad->fDevice.quadType() == GrQuad::Type::kPerspective) {
584         V4f devW = quad->fDevice.w4f();
585         if (any(devW < SkPathPriv::kW0PlaneDistance)) {
586             // The rest of this function assumes the quad is in front of w = 0
587             return false;
588         }
589         devW = 1.f / devW;
590         devX *= devW;
591         devY *= devW;
592     }
593 
594     V4f clipX = {cropRect.fLeft, cropRect.fLeft, cropRect.fRight, cropRect.fRight};
595     V4f clipY = {cropRect.fTop, cropRect.fBottom, cropRect.fTop, cropRect.fBottom};
596 
597     // Calculate barycentric coordinates for the 4 rect corners in the 2 triangles that the quad
598     // is tessellated into when drawn.
599     V4f u1, v1, w1;
600     V4f u2, v2, w2;
601     if (!barycentric_coords(devX[0], devY[0], devX[1], devY[1], devX[2], devY[2], clipX, clipY,
602                             &u1, &v1, &w1) ||
603         !barycentric_coords(devX[1], devY[1], devX[3], devY[3], devX[2], devY[2], clipX, clipY,
604                             &u2, &v2, &w2)) {
605         // Bad triangles, skip cropping
606         return false;
607     }
608 
609     // clipDevRect is completely inside this quad if each corner is in at least one of two triangles
610     M4f inTri1 = inside_triangle(u1, v1, w1);
611     M4f inTri2 = inside_triangle(u2, v2, w2);
612     if (all(inTri1 | inTri2)) {
613         // We can crop to exactly the clipDevRect.
614         // FIXME (michaelludwig) - there are other ways to have determined quad covering the clip
615         // rect, but the barycentric coords will be useful to derive local coordinates in the future
616 
617         // Since we are cropped to exactly clipDevRect, we have discarded any perspective and the
618         // type becomes kRect. If updated locals were requested, they will incorporate perspective.
619         // FIXME (michaelludwig) - once we have local coordinates handled, it may be desirable to
620         // keep the draw as perspective so that the hardware does perspective interpolation instead
621         // of pushing it into a local coord w and having the shader do an extra divide.
622         clipX.store(quad->fDevice.xs());
623         clipY.store(quad->fDevice.ys());
624         quad->fDevice.setQuadType(GrQuad::Type::kAxisAligned);
625 
626         // Update the edge flags to match the clip setting since all 4 edges have been clipped
627         quad->fEdgeFlags = cropAA == GrAA::kYes ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone;
628 
629         return true;
630     }
631 
632     // FIXME (michaelludwig) - use TessellationHelper's inset/outset math to move
633     // edges to the closest clip corner they are outside of
634 
635     return false;
636 }
637 
638 ///////////////////////////////////////////////////////////////////////////////////////////////////
639 // TessellationHelper implementation and helper struct implementations
640 ///////////////////////////////////////////////////////////////////////////////////////////////////
641 
642 //** EdgeVectors implementation
643 
reset(const skvx::Vec<4,float> & xs,const skvx::Vec<4,float> & ys,const skvx::Vec<4,float> & ws,GrQuad::Type quadType)644 void TessellationHelper::EdgeVectors::reset(const skvx::Vec<4, float>& xs,
645                                             const skvx::Vec<4, float>& ys,
646                                             const skvx::Vec<4, float>& ws,
647                                             GrQuad::Type quadType) {
648     // Calculate all projected edge vector values for this quad.
649     if (quadType == GrQuad::Type::kPerspective) {
650         V4f iw = 1.f / ws;
651         fX2D = xs * iw;
652         fY2D = ys * iw;
653     } else {
654         fX2D = xs;
655         fY2D = ys;
656     }
657 
658     fDX = next_ccw(fX2D) - fX2D;
659     fDY = next_ccw(fY2D) - fY2D;
660     fInvLengths = 1.f / sqrt(mad(fDX, fDX, fDY * fDY));
661 
662     // Normalize edge vectors
663     fDX *= fInvLengths;
664     fDY *= fInvLengths;
665 
666     // Calculate angles between vectors
667     if (quadType <= GrQuad::Type::kRectilinear) {
668         fCosTheta = 0.f;
669         fInvSinTheta = 1.f;
670     } else {
671         fCosTheta = mad(fDX, next_cw(fDX), fDY * next_cw(fDY));
672         // NOTE: if cosTheta is close to 1, inset/outset math will avoid the fast paths that rely
673         // on thefInvSinTheta since it will approach infinity.
674         fInvSinTheta = 1.f / sqrt(1.f - fCosTheta * fCosTheta);
675     }
676 }
677 
678 //** EdgeEquations implementation
679 
reset(const EdgeVectors & edgeVectors)680 void TessellationHelper::EdgeEquations::reset(const EdgeVectors& edgeVectors) {
681     V4f dx = edgeVectors.fDX;
682     V4f dy = edgeVectors.fDY;
683     // Correct for bad edges by copying adjacent edge information into the bad component
684     correct_bad_edges(edgeVectors.fInvLengths >= kInvDistTolerance, &dx, &dy, nullptr);
685 
686     V4f c = mad(dx, edgeVectors.fY2D, -dy * edgeVectors.fX2D);
687     // Make sure normals point into the shape
688     V4f test = mad(dy, next_cw(edgeVectors.fX2D), mad(-dx, next_cw(edgeVectors.fY2D), c));
689     if (any(test < -kDistTolerance)) {
690         fA = -dy;
691         fB = dx;
692         fC = -c;
693     } else {
694         fA = dy;
695         fB = -dx;
696         fC = c;
697     }
698 }
699 
estimateCoverage(const V4f & x2d,const V4f & y2d) const700 V4f TessellationHelper::EdgeEquations::estimateCoverage(const V4f& x2d, const V4f& y2d) const {
701     // Calculate distance of the 4 inset points (px, py) to the 4 edges
702     V4f d0 = mad(fA[0], x2d, mad(fB[0], y2d, fC[0]));
703     V4f d1 = mad(fA[1], x2d, mad(fB[1], y2d, fC[1]));
704     V4f d2 = mad(fA[2], x2d, mad(fB[2], y2d, fC[2]));
705     V4f d3 = mad(fA[3], x2d, mad(fB[3], y2d, fC[3]));
706 
707     // For each point, pretend that there's a rectangle that touches e0 and e3 on the horizontal
708     // axis, so its width is "approximately" d0 + d3, and it touches e1 and e2 on the vertical axis
709     // so its height is d1 + d2. Pin each of these dimensions to [0, 1] and approximate the coverage
710     // at each point as clamp(d0+d3, 0, 1) x clamp(d1+d2, 0, 1). For rectilinear quads this is an
711     // accurate calculation of its area clipped to an aligned pixel. For arbitrary quads it is not
712     // mathematically accurate but qualitatively provides a stable value proportional to the size of
713     // the shape.
714     V4f w = max(0.f, min(1.f, d0 + d3));
715     V4f h = max(0.f, min(1.f, d1 + d2));
716     return w * h;
717 }
718 
computeDegenerateQuad(const V4f & signedEdgeDistances,V4f * x2d,V4f * y2d) const719 int TessellationHelper::EdgeEquations::computeDegenerateQuad(const V4f& signedEdgeDistances,
720                                                              V4f* x2d, V4f* y2d) const {
721     // Move the edge by the signed edge adjustment.
722     V4f oc = fC + signedEdgeDistances;
723 
724     // There are 6 points that we care about to determine the final shape of the polygon, which
725     // are the intersections between (e0,e2), (e1,e0), (e2,e3), (e3,e1) (corresponding to the
726     // 4 corners), and (e1, e2), (e0, e3) (representing the intersections of opposite edges).
727     V4f denom = fA * next_cw(fB) - fB * next_cw(fA);
728     V4f px = (fB * next_cw(oc) - oc * next_cw(fB)) / denom;
729     V4f py = (oc * next_cw(fA) - fA * next_cw(oc)) / denom;
730     correct_bad_coords(abs(denom) < kTolerance, &px, &py, nullptr);
731 
732     // Calculate the signed distances from these 4 corners to the other two edges that did not
733     // define the intersection. So p(0) is compared to e3,e1, p(1) to e3,e2 , p(2) to e0,e1, and
734     // p(3) to e0,e2
735     V4f dists1 = px * skvx::shuffle<3, 3, 0, 0>(fA) +
736                  py * skvx::shuffle<3, 3, 0, 0>(fB) +
737                  skvx::shuffle<3, 3, 0, 0>(oc);
738     V4f dists2 = px * skvx::shuffle<1, 2, 1, 2>(fA) +
739                  py * skvx::shuffle<1, 2, 1, 2>(fB) +
740                  skvx::shuffle<1, 2, 1, 2>(oc);
741 
742     // If all the distances are >= 0, the 4 corners form a valid quadrilateral, so use them as
743     // the 4 points. If any point is on the wrong side of both edges, the interior has collapsed
744     // and we need to use a central point to represent it. If all four points are only on the
745     // wrong side of 1 edge, one edge has crossed over another and we use a line to represent it.
746     // Otherwise, use a triangle that replaces the bad points with the intersections of
747     // (e1, e2) or (e0, e3) as needed.
748     M4f d1v0 = dists1 < kDistTolerance;
749     M4f d2v0 = dists2 < kDistTolerance;
750     M4f d1And2 = d1v0 & d2v0;
751     M4f d1Or2 = d1v0 | d2v0;
752 
753     if (!any(d1Or2)) {
754         // Every dists1 and dists2 >= kTolerance so it's not degenerate, use all 4 corners as-is
755         // and use full coverage
756         *x2d = px;
757         *y2d = py;
758         return 4;
759     } else if (any(d1And2)) {
760         // A point failed against two edges, so reduce the shape to a single point, which we take as
761         // the center of the original quad to ensure it is contained in the intended geometry. Since
762         // it has collapsed, we know the shape cannot cover a pixel so update the coverage.
763         SkPoint center = {0.25f * ((*x2d)[0] + (*x2d)[1] + (*x2d)[2] + (*x2d)[3]),
764                           0.25f * ((*y2d)[0] + (*y2d)[1] + (*y2d)[2] + (*y2d)[3])};
765         *x2d = center.fX;
766         *y2d = center.fY;
767         return 1;
768     } else if (all(d1Or2)) {
769         // Degenerates to a line. Compare p[2] and p[3] to edge 0. If they are on the wrong side,
770         // that means edge 0 and 3 crossed, and otherwise edge 1 and 2 crossed.
771         if (dists1[2] < kDistTolerance && dists1[3] < kDistTolerance) {
772             // Edges 0 and 3 have crossed over, so make the line from average of (p0,p2) and (p1,p3)
773             *x2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(px) + skvx::shuffle<2, 3, 2, 3>(px));
774             *y2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(py) + skvx::shuffle<2, 3, 2, 3>(py));
775         } else {
776             // Edges 1 and 2 have crossed over, so make the line from average of (p0,p1) and (p2,p3)
777             *x2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(px) + skvx::shuffle<1, 1, 3, 3>(px));
778             *y2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(py) + skvx::shuffle<1, 1, 3, 3>(py));
779         }
780         return 2;
781     } else {
782         // This turns into a triangle. Replace corners as needed with the intersections between
783         // (e0,e3) and (e1,e2), which must now be calculated
784         using V2f = skvx::Vec<2, float>;
785         V2f eDenom = skvx::shuffle<0, 1>(fA) * skvx::shuffle<3, 2>(fB) -
786                      skvx::shuffle<0, 1>(fB) * skvx::shuffle<3, 2>(fA);
787         V2f ex = (skvx::shuffle<0, 1>(fB) * skvx::shuffle<3, 2>(oc) -
788                   skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(fB)) / eDenom;
789         V2f ey = (skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(fA) -
790                   skvx::shuffle<0, 1>(fA) * skvx::shuffle<3, 2>(oc)) / eDenom;
791 
792         if (SkScalarAbs(eDenom[0]) > kTolerance) {
793             px = if_then_else(d1v0, V4f(ex[0]), px);
794             py = if_then_else(d1v0, V4f(ey[0]), py);
795         }
796         if (SkScalarAbs(eDenom[1]) > kTolerance) {
797             px = if_then_else(d2v0, V4f(ex[1]), px);
798             py = if_then_else(d2v0, V4f(ey[1]), py);
799         }
800 
801         *x2d = px;
802         *y2d = py;
803         return 3;
804     }
805 }
806 
807 //** OutsetRequest implementation
808 
reset(const EdgeVectors & edgeVectors,GrQuad::Type quadType,const skvx::Vec<4,float> & edgeDistances)809 void TessellationHelper::OutsetRequest::reset(const EdgeVectors& edgeVectors, GrQuad::Type quadType,
810                                               const skvx::Vec<4, float>& edgeDistances) {
811     fEdgeDistances = edgeDistances;
812 
813     // Based on the edge distances, determine if it's acceptable to use fInvSinTheta to
814     // calculate the inset or outset geometry.
815     if (quadType <= GrQuad::Type::kRectilinear) {
816         // Since it's rectangular, the width (edge[1] or edge[2]) collapses if subtracting
817         // (dist[0] + dist[3]) makes the new width negative (minus for inset, outsetting will
818         // never be degenerate in this case). The same applies for height (edge[0] or edge[3])
819         // and (dist[1] + dist[2]).
820         fOutsetDegenerate = false;
821         float widthChange = edgeDistances[0] + edgeDistances[3];
822         float heightChange = edgeDistances[1] + edgeDistances[2];
823         // (1/len > 1/(edge sum) implies len - edge sum < 0.
824         fInsetDegenerate =
825                 (widthChange > 0.f  && edgeVectors.fInvLengths[1] > 1.f / widthChange) ||
826                 (heightChange > 0.f && edgeVectors.fInvLengths[0] > 1.f / heightChange);
827     } else if (any(edgeVectors.fInvLengths >= kInvDistTolerance)) {
828         // Have an edge that is effectively length 0, so we're dealing with a triangle, which
829         // must always go through the degenerate code path.
830         fOutsetDegenerate = true;
831         fInsetDegenerate = true;
832     } else {
833         // If possible, the corners will move +/-edgeDistances * 1/sin(theta). The entire
834         // request is degenerate if 1/sin(theta) -> infinity (or cos(theta) -> 1).
835         if (any(abs(edgeVectors.fCosTheta) >= 0.9f)) {
836             fOutsetDegenerate = true;
837             fInsetDegenerate = true;
838         } else {
839             // With an edge-centric view, an edge's length changes by
840             // edgeDistance * cos(pi - theta) / sin(theta) for each of its corners (the second
841             // corner uses ccw theta value). An edge's length also changes when its adjacent
842             // edges move, in which case it's updated by edgeDistance / sin(theta)
843             // (or cos(theta) for the other edge).
844 
845             // cos(pi - theta) = -cos(theta)
846             V4f halfTanTheta = -edgeVectors.fCosTheta * edgeVectors.fInvSinTheta;
847             V4f edgeAdjust = edgeDistances * (halfTanTheta + next_ccw(halfTanTheta)) +
848                              next_ccw(edgeDistances) * next_ccw(edgeVectors.fInvSinTheta) +
849                              next_cw(edgeDistances) * edgeVectors.fInvSinTheta;
850 
851             // If either outsetting (plus edgeAdjust) or insetting (minus edgeAdjust) make
852             // the edge lengths negative, then it's degenerate.
853             V4f threshold = 0.1f - (1.f / edgeVectors.fInvLengths);
854             fOutsetDegenerate = any(edgeAdjust < threshold);
855             fInsetDegenerate = any(edgeAdjust > -threshold);
856         }
857     }
858 }
859 
860 //** Vertices implementation
861 
reset(const GrQuad & deviceQuad,const GrQuad * localQuad)862 void TessellationHelper::Vertices::reset(const GrQuad& deviceQuad, const GrQuad* localQuad) {
863     // Set vertices to match the device and local quad
864     fX = deviceQuad.x4f();
865     fY = deviceQuad.y4f();
866     fW = deviceQuad.w4f();
867 
868     if (localQuad) {
869         fU = localQuad->x4f();
870         fV = localQuad->y4f();
871         fR = localQuad->w4f();
872         fUVRCount = localQuad->hasPerspective() ? 3 : 2;
873     } else {
874         fUVRCount = 0;
875     }
876 }
877 
asGrQuads(GrQuad * deviceOut,GrQuad::Type deviceType,GrQuad * localOut,GrQuad::Type localType) const878 void TessellationHelper::Vertices::asGrQuads(GrQuad* deviceOut, GrQuad::Type deviceType,
879                                              GrQuad* localOut, GrQuad::Type localType) const {
880     SkASSERT(deviceOut);
881     SkASSERT(fUVRCount == 0 || localOut);
882 
883     fX.store(deviceOut->xs());
884     fY.store(deviceOut->ys());
885     if (deviceType == GrQuad::Type::kPerspective) {
886         fW.store(deviceOut->ws());
887     }
888     deviceOut->setQuadType(deviceType); // This sets ws == 1 when device type != perspective
889 
890     if (fUVRCount > 0) {
891         fU.store(localOut->xs());
892         fV.store(localOut->ys());
893         if (fUVRCount == 3) {
894             fR.store(localOut->ws());
895         }
896         localOut->setQuadType(localType);
897     }
898 }
899 
moveAlong(const EdgeVectors & edgeVectors,const V4f & signedEdgeDistances)900 void TessellationHelper::Vertices::moveAlong(const EdgeVectors& edgeVectors,
901                                              const V4f& signedEdgeDistances) {
902     // This shouldn't be called if fInvSinTheta is close to infinity (cosTheta close to 1).
903     // FIXME (michaelludwig) - Temporarily allow NaNs on debug builds here, for crbug:224618's GM
904     // Once W clipping is implemented, shouldn't see NaNs unless it's actually time to fail.
905     SkASSERT(all(abs(edgeVectors.fCosTheta) < 0.9f) ||
906              any(edgeVectors.fCosTheta != edgeVectors.fCosTheta));
907 
908     // When the projected device quad is not degenerate, the vertex corners can move
909     // cornerOutsetLen along their edge and their cw-rotated edge. The vertex's edge points
910     // inwards and the cw-rotated edge points outwards, hence the minus-sign.
911     // The edge distances are rotated compared to the corner outsets and (dx, dy), since if
912     // the edge is "on" both its corners need to be moved along their other edge vectors.
913     V4f signedOutsets = -edgeVectors.fInvSinTheta * next_cw(signedEdgeDistances);
914     V4f signedOutsetsCW = edgeVectors.fInvSinTheta * signedEdgeDistances;
915 
916     // x = x + outset * mask * next_cw(xdiff) - outset * next_cw(mask) * xdiff
917     fX += mad(signedOutsetsCW, next_cw(edgeVectors.fDX), signedOutsets * edgeVectors.fDX);
918     fY += mad(signedOutsetsCW, next_cw(edgeVectors.fDY), signedOutsets * edgeVectors.fDY);
919     if (fUVRCount > 0) {
920         // We want to extend the texture coords by the same proportion as the positions.
921         signedOutsets *= edgeVectors.fInvLengths;
922         signedOutsetsCW *= next_cw(edgeVectors.fInvLengths);
923         V4f du = next_ccw(fU) - fU;
924         V4f dv = next_ccw(fV) - fV;
925         fU += mad(signedOutsetsCW, next_cw(du), signedOutsets * du);
926         fV += mad(signedOutsetsCW, next_cw(dv), signedOutsets * dv);
927         if (fUVRCount == 3) {
928             V4f dr = next_ccw(fR) - fR;
929             fR += mad(signedOutsetsCW, next_cw(dr), signedOutsets * dr);
930         }
931     }
932 }
933 
moveTo(const V4f & x2d,const V4f & y2d,const M4f & mask)934 void TessellationHelper::Vertices::moveTo(const V4f& x2d, const V4f& y2d, const M4f& mask) {
935     // Left to right, in device space, for each point
936     V4f e1x = skvx::shuffle<2, 3, 2, 3>(fX) - skvx::shuffle<0, 1, 0, 1>(fX);
937     V4f e1y = skvx::shuffle<2, 3, 2, 3>(fY) - skvx::shuffle<0, 1, 0, 1>(fY);
938     V4f e1w = skvx::shuffle<2, 3, 2, 3>(fW) - skvx::shuffle<0, 1, 0, 1>(fW);
939     M4f e1Bad = mad(e1x, e1x, e1y * e1y) < kDist2Tolerance;
940     correct_bad_edges(e1Bad, &e1x, &e1y, &e1w);
941 
942     // // Top to bottom, in device space, for each point
943     V4f e2x = skvx::shuffle<1, 1, 3, 3>(fX) - skvx::shuffle<0, 0, 2, 2>(fX);
944     V4f e2y = skvx::shuffle<1, 1, 3, 3>(fY) - skvx::shuffle<0, 0, 2, 2>(fY);
945     V4f e2w = skvx::shuffle<1, 1, 3, 3>(fW) - skvx::shuffle<0, 0, 2, 2>(fW);
946     M4f e2Bad = mad(e2x, e2x, e2y * e2y) < kDist2Tolerance;
947     correct_bad_edges(e2Bad, &e2x, &e2y, &e2w);
948 
949     // Can only move along e1 and e2 to reach the new 2D point, so we have
950     // x2d = (x + a*e1x + b*e2x) / (w + a*e1w + b*e2w) and
951     // y2d = (y + a*e1y + b*e2y) / (w + a*e1w + b*e2w) for some a, b
952     // This can be rewritten to a*c1x + b*c2x + c3x = 0; a * c1y + b*c2y + c3y = 0, where
953     // the cNx and cNy coefficients are:
954     V4f c1x = e1w * x2d - e1x;
955     V4f c1y = e1w * y2d - e1y;
956     V4f c2x = e2w * x2d - e2x;
957     V4f c2y = e2w * y2d - e2y;
958     V4f c3x = fW * x2d - fX;
959     V4f c3y = fW * y2d - fY;
960 
961     // Solve for a and b
962     V4f a, b, denom;
963     if (all(mask)) {
964         // When every edge is outset/inset, each corner can use both edge vectors
965         denom = c1x * c2y - c2x * c1y;
966         a = (c2x * c3y - c3x * c2y) / denom;
967         b = (c3x * c1y - c1x * c3y) / denom;
968     } else {
969         // Force a or b to be 0 if that edge cannot be used due to non-AA
970         M4f aMask = skvx::shuffle<0, 0, 3, 3>(mask);
971         M4f bMask = skvx::shuffle<2, 1, 2, 1>(mask);
972 
973         // When aMask[i]&bMask[i], then a[i], b[i], denom[i] match the kAll case.
974         // When aMask[i]&!bMask[i], then b[i] = 0, a[i] = -c3x/c1x or -c3y/c1y, using better denom
975         // When !aMask[i]&bMask[i], then a[i] = 0, b[i] = -c3x/c2x or -c3y/c2y, ""
976         // When !aMask[i]&!bMask[i], then both a[i] = 0 and b[i] = 0
977         M4f useC1x = abs(c1x) > abs(c1y);
978         M4f useC2x = abs(c2x) > abs(c2y);
979 
980         denom = if_then_else(aMask,
981                         if_then_else(bMask,
982                                 c1x * c2y - c2x * c1y,            /* A & B   */
983                                 if_then_else(useC1x, c1x, c1y)),  /* A & !B  */
984                         if_then_else(bMask,
985                                 if_then_else(useC2x, c2x, c2y),   /* !A & B  */
986                                 V4f(1.f)));                       /* !A & !B */
987 
988         a = if_then_else(aMask,
989                     if_then_else(bMask,
990                             c2x * c3y - c3x * c2y,                /* A & B   */
991                             if_then_else(useC1x, -c3x, -c3y)),    /* A & !B  */
992                     V4f(0.f)) / denom;                            /* !A      */
993         b = if_then_else(bMask,
994                     if_then_else(aMask,
995                             c3x * c1y - c1x * c3y,                /* A & B   */
996                             if_then_else(useC2x, -c3x, -c3y)),    /* !A & B  */
997                     V4f(0.f)) / denom;                            /* !B      */
998     }
999 
1000     fX += a * e1x + b * e2x;
1001     fY += a * e1y + b * e2y;
1002     fW += a * e1w + b * e2w;
1003 
1004     // If fW has gone negative, flip the point to the other side of w=0. This only happens if the
1005     // edge was approaching a vanishing point and it was physically impossible to outset 1/2px in
1006     // screen space w/o going behind the viewer and being mirrored. Scaling by -1 preserves the
1007     // computed screen space position but moves the 3D point off of the original quad. So far, this
1008     // seems to be a reasonable compromise.
1009     if (any(fW < 0.f)) {
1010         V4f scale = if_then_else(fW < 0.f, V4f(-1.f), V4f(1.f));
1011         fX *= scale;
1012         fY *= scale;
1013         fW *= scale;
1014     }
1015 
1016     correct_bad_coords(abs(denom) < kTolerance, &fX, &fY, &fW);
1017 
1018     if (fUVRCount > 0) {
1019         // Calculate R here so it can be corrected with U and V in case it's needed later
1020         V4f e1u = skvx::shuffle<2, 3, 2, 3>(fU) - skvx::shuffle<0, 1, 0, 1>(fU);
1021         V4f e1v = skvx::shuffle<2, 3, 2, 3>(fV) - skvx::shuffle<0, 1, 0, 1>(fV);
1022         V4f e1r = skvx::shuffle<2, 3, 2, 3>(fR) - skvx::shuffle<0, 1, 0, 1>(fR);
1023         correct_bad_edges(e1Bad, &e1u, &e1v, &e1r);
1024 
1025         V4f e2u = skvx::shuffle<1, 1, 3, 3>(fU) - skvx::shuffle<0, 0, 2, 2>(fU);
1026         V4f e2v = skvx::shuffle<1, 1, 3, 3>(fV) - skvx::shuffle<0, 0, 2, 2>(fV);
1027         V4f e2r = skvx::shuffle<1, 1, 3, 3>(fR) - skvx::shuffle<0, 0, 2, 2>(fR);
1028         correct_bad_edges(e2Bad, &e2u, &e2v, &e2r);
1029 
1030         fU += a * e1u + b * e2u;
1031         fV += a * e1v + b * e2v;
1032         if (fUVRCount == 3) {
1033             fR += a * e1r + b * e2r;
1034             correct_bad_coords(abs(denom) < kTolerance, &fU, &fV, &fR);
1035         } else {
1036             correct_bad_coords(abs(denom) < kTolerance, &fU, &fV, nullptr);
1037         }
1038     }
1039 }
1040 
1041 //** TessellationHelper implementation
1042 
reset(const GrQuad & deviceQuad,const GrQuad * localQuad)1043 void TessellationHelper::reset(const GrQuad& deviceQuad, const GrQuad* localQuad) {
1044     // Record basic state that isn't recorded on the Vertices struct itself
1045     fDeviceType = deviceQuad.quadType();
1046     fLocalType = localQuad ? localQuad->quadType() : GrQuad::Type::kAxisAligned;
1047 
1048     // Reset metadata validity
1049     fOutsetRequestValid = false;
1050     fEdgeEquationsValid = false;
1051 
1052     // Compute vertex properties that are always needed for a quad, so no point in doing it lazily.
1053     fOriginal.reset(deviceQuad, localQuad);
1054     fEdgeVectors.reset(fOriginal.fX, fOriginal.fY, fOriginal.fW, fDeviceType);
1055 
1056     fVerticesValid = true;
1057 }
1058 
inset(const skvx::Vec<4,float> & edgeDistances,GrQuad * deviceInset,GrQuad * localInset)1059 V4f TessellationHelper::inset(const skvx::Vec<4, float>& edgeDistances,
1060                               GrQuad* deviceInset, GrQuad* localInset) {
1061     SkASSERT(fVerticesValid);
1062 
1063     Vertices inset = fOriginal;
1064     const OutsetRequest& request = this->getOutsetRequest(edgeDistances);
1065     int vertexCount;
1066     if (request.fInsetDegenerate) {
1067         vertexCount = this->adjustDegenerateVertices(-request.fEdgeDistances, &inset);
1068     } else {
1069         this->adjustVertices(-request.fEdgeDistances, &inset);
1070         vertexCount = 4;
1071     }
1072 
1073     inset.asGrQuads(deviceInset, fDeviceType, localInset, fLocalType);
1074     if (vertexCount < 3) {
1075         // The interior has less than a full pixel's area so estimate reduced coverage using
1076         // the distance of the inset's projected corners to the original edges.
1077         return this->getEdgeEquations().estimateCoverage(inset.fX / inset.fW,
1078                                                          inset.fY / inset.fW);
1079     } else {
1080         return 1.f;
1081     }
1082 }
1083 
outset(const skvx::Vec<4,float> & edgeDistances,GrQuad * deviceOutset,GrQuad * localOutset)1084 void TessellationHelper::outset(const skvx::Vec<4, float>& edgeDistances,
1085                                 GrQuad* deviceOutset, GrQuad* localOutset) {
1086     SkASSERT(fVerticesValid);
1087 
1088     Vertices outset = fOriginal;
1089     const OutsetRequest& request = this->getOutsetRequest(edgeDistances);
1090     if (request.fOutsetDegenerate) {
1091         this->adjustDegenerateVertices(request.fEdgeDistances, &outset);
1092     } else {
1093         this->adjustVertices(request.fEdgeDistances, &outset);
1094     }
1095 
1096     outset.asGrQuads(deviceOutset, fDeviceType, localOutset, fLocalType);
1097 }
1098 
getOutsetRequest(const skvx::Vec<4,float> & edgeDistances)1099 const TessellationHelper::OutsetRequest& TessellationHelper::getOutsetRequest(
1100         const skvx::Vec<4, float>& edgeDistances) {
1101     // Much of the code assumes that we start from positive distances and apply it unmodified to
1102     // create an outset; knowing that it's outset simplifies degeneracy checking.
1103     SkASSERT(all(edgeDistances >= 0.f));
1104 
1105     // Rebuild outset request if invalid or if the edge distances have changed.
1106     if (!fOutsetRequestValid || any(edgeDistances != fOutsetRequest.fEdgeDistances)) {
1107         fOutsetRequest.reset(fEdgeVectors, fDeviceType, edgeDistances);
1108         fOutsetRequestValid = true;
1109     }
1110     return fOutsetRequest;
1111 }
1112 
getEdgeEquations()1113 const TessellationHelper::EdgeEquations& TessellationHelper::getEdgeEquations() {
1114     if (!fEdgeEquationsValid) {
1115         fEdgeEquations.reset(fEdgeVectors);
1116         fEdgeEquationsValid = true;
1117     }
1118     return fEdgeEquations;
1119 }
1120 
adjustVertices(const skvx::Vec<4,float> & signedEdgeDistances,Vertices * vertices)1121 void TessellationHelper::adjustVertices(const skvx::Vec<4, float>& signedEdgeDistances,
1122                                         Vertices* vertices) {
1123     SkASSERT(vertices);
1124     SkASSERT(vertices->fUVRCount == 0 || vertices->fUVRCount == 2 || vertices->fUVRCount == 3);
1125 
1126     if (fDeviceType < GrQuad::Type::kPerspective) {
1127         // For non-perspective, non-degenerate quads, moveAlong is correct and most efficient
1128         vertices->moveAlong(fEdgeVectors, signedEdgeDistances);
1129     } else {
1130         // For perspective, non-degenerate quads, use moveAlong for the projected points and then
1131         // reconstruct Ws with moveTo.
1132         Vertices projected = { fEdgeVectors.fX2D, fEdgeVectors.fY2D, /*w*/ 1.f, 0.f, 0.f, 0.f, 0 };
1133         projected.moveAlong(fEdgeVectors, signedEdgeDistances);
1134         vertices->moveTo(projected.fX, projected.fY, signedEdgeDistances != 0.f);
1135     }
1136 }
1137 
adjustDegenerateVertices(const skvx::Vec<4,float> & signedEdgeDistances,Vertices * vertices)1138 int TessellationHelper::adjustDegenerateVertices(const skvx::Vec<4, float>& signedEdgeDistances,
1139                                                  Vertices* vertices) {
1140     SkASSERT(vertices);
1141     SkASSERT(vertices->fUVRCount == 0 || vertices->fUVRCount == 2 || vertices->fUVRCount == 3);
1142 
1143     if (fDeviceType <= GrQuad::Type::kRectilinear) {
1144         // For rectilinear, degenerate quads, can use moveAlong if the edge distances are adjusted
1145         // to not cross over each other.
1146         SkASSERT(all(signedEdgeDistances <= 0.f)); // Only way rectilinear can degenerate is insets
1147         V4f halfLengths = -0.5f / next_cw(fEdgeVectors.fInvLengths); // Negate to inset
1148         M4f crossedEdges = halfLengths > signedEdgeDistances;
1149         V4f safeInsets = if_then_else(crossedEdges, halfLengths, signedEdgeDistances);
1150         vertices->moveAlong(fEdgeVectors, safeInsets);
1151 
1152         // A degenerate rectilinear quad is either a point (both w and h crossed), or a line
1153         return all(crossedEdges) ? 1 : 2;
1154     } else {
1155         // Degenerate non-rectangular shape, must go through slowest path (which automatically
1156         // handles perspective).
1157         V4f x2d = fEdgeVectors.fX2D;
1158         V4f y2d = fEdgeVectors.fY2D;
1159         int vertexCount = this->getEdgeEquations().computeDegenerateQuad(signedEdgeDistances,
1160                                                                          &x2d, &y2d);
1161         vertices->moveTo(x2d, y2d, signedEdgeDistances != 0.f);
1162         return vertexCount;
1163     }
1164 }
1165 
1166 }; // namespace GrQuadUtils
1167