1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/sksl/SkSLMetalCodeGenerator.h"
9 
10 #include "src/sksl/SkSLCompiler.h"
11 #include "src/sksl/ir/SkSLExpressionStatement.h"
12 #include "src/sksl/ir/SkSLExtension.h"
13 #include "src/sksl/ir/SkSLIndexExpression.h"
14 #include "src/sksl/ir/SkSLModifiersDeclaration.h"
15 #include "src/sksl/ir/SkSLNop.h"
16 #include "src/sksl/ir/SkSLVariableReference.h"
17 
18 namespace SkSL {
19 
setupIntrinsics()20 void MetalCodeGenerator::setupIntrinsics() {
21 #define METAL(x) std::make_pair(kMetal_IntrinsicKind, k ## x ## _MetalIntrinsic)
22 #define SPECIAL(x) std::make_pair(kSpecial_IntrinsicKind, k ## x ## _SpecialIntrinsic)
23     fIntrinsicMap[String("sample")]             = SPECIAL(Texture);
24     fIntrinsicMap[String("mod")]                = SPECIAL(Mod);
25     fIntrinsicMap[String("equal")]              = METAL(Equal);
26     fIntrinsicMap[String("notEqual")]           = METAL(NotEqual);
27     fIntrinsicMap[String("lessThan")]           = METAL(LessThan);
28     fIntrinsicMap[String("lessThanEqual")]      = METAL(LessThanEqual);
29     fIntrinsicMap[String("greaterThan")]        = METAL(GreaterThan);
30     fIntrinsicMap[String("greaterThanEqual")]   = METAL(GreaterThanEqual);
31 }
32 
write(const char * s)33 void MetalCodeGenerator::write(const char* s) {
34     if (!s[0]) {
35         return;
36     }
37     if (fAtLineStart) {
38         for (int i = 0; i < fIndentation; i++) {
39             fOut->writeText("    ");
40         }
41     }
42     fOut->writeText(s);
43     fAtLineStart = false;
44 }
45 
writeLine(const char * s)46 void MetalCodeGenerator::writeLine(const char* s) {
47     this->write(s);
48     fOut->writeText(fLineEnding);
49     fAtLineStart = true;
50 }
51 
write(const String & s)52 void MetalCodeGenerator::write(const String& s) {
53     this->write(s.c_str());
54 }
55 
writeLine(const String & s)56 void MetalCodeGenerator::writeLine(const String& s) {
57     this->writeLine(s.c_str());
58 }
59 
writeLine()60 void MetalCodeGenerator::writeLine() {
61     this->writeLine("");
62 }
63 
writeExtension(const Extension & ext)64 void MetalCodeGenerator::writeExtension(const Extension& ext) {
65     this->writeLine("#extension " + ext.fName + " : enable");
66 }
67 
typeName(const Type & type)68 String MetalCodeGenerator::typeName(const Type& type) {
69     switch (type.kind()) {
70         case Type::kVector_Kind:
71             return this->typeName(type.componentType()) + to_string(type.columns());
72         case Type::kMatrix_Kind:
73             return this->typeName(type.componentType()) + to_string(type.columns()) + "x" +
74                                   to_string(type.rows());
75         case Type::kSampler_Kind:
76             return "texture2d<float>"; // FIXME - support other texture types;
77         default:
78             if (type == *fContext.fHalf_Type) {
79                 // FIXME - Currently only supporting floats in MSL to avoid type coercion issues.
80                 return fContext.fFloat_Type->name();
81             } else if (type == *fContext.fByte_Type) {
82                 return "char";
83             } else if (type == *fContext.fUByte_Type) {
84                 return "uchar";
85             } else {
86                 return type.name();
87             }
88     }
89 }
90 
writeType(const Type & type)91 void MetalCodeGenerator::writeType(const Type& type) {
92     if (type.kind() == Type::kStruct_Kind) {
93         for (const Type* search : fWrittenStructs) {
94             if (*search == type) {
95                 // already written
96                 this->write(type.name());
97                 return;
98             }
99         }
100         fWrittenStructs.push_back(&type);
101         this->writeLine("struct " + type.name() + " {");
102         fIndentation++;
103         this->writeFields(type.fields(), type.fOffset);
104         fIndentation--;
105         this->write("}");
106     } else {
107         this->write(this->typeName(type));
108     }
109 }
110 
writeExpression(const Expression & expr,Precedence parentPrecedence)111 void MetalCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) {
112     switch (expr.fKind) {
113         case Expression::kBinary_Kind:
114             this->writeBinaryExpression((BinaryExpression&) expr, parentPrecedence);
115             break;
116         case Expression::kBoolLiteral_Kind:
117             this->writeBoolLiteral((BoolLiteral&) expr);
118             break;
119         case Expression::kConstructor_Kind:
120             this->writeConstructor((Constructor&) expr, parentPrecedence);
121             break;
122         case Expression::kIntLiteral_Kind:
123             this->writeIntLiteral((IntLiteral&) expr);
124             break;
125         case Expression::kFieldAccess_Kind:
126             this->writeFieldAccess(((FieldAccess&) expr));
127             break;
128         case Expression::kFloatLiteral_Kind:
129             this->writeFloatLiteral(((FloatLiteral&) expr));
130             break;
131         case Expression::kFunctionCall_Kind:
132             this->writeFunctionCall((FunctionCall&) expr);
133             break;
134         case Expression::kPrefix_Kind:
135             this->writePrefixExpression((PrefixExpression&) expr, parentPrecedence);
136             break;
137         case Expression::kPostfix_Kind:
138             this->writePostfixExpression((PostfixExpression&) expr, parentPrecedence);
139             break;
140         case Expression::kSetting_Kind:
141             this->writeSetting((Setting&) expr);
142             break;
143         case Expression::kSwizzle_Kind:
144             this->writeSwizzle((Swizzle&) expr);
145             break;
146         case Expression::kVariableReference_Kind:
147             this->writeVariableReference((VariableReference&) expr);
148             break;
149         case Expression::kTernary_Kind:
150             this->writeTernaryExpression((TernaryExpression&) expr, parentPrecedence);
151             break;
152         case Expression::kIndex_Kind:
153             this->writeIndexExpression((IndexExpression&) expr);
154             break;
155         default:
156 #ifdef SK_DEBUG
157             ABORT("unsupported expression: %s", expr.description().c_str());
158 #endif
159             break;
160     }
161 }
162 
writeIntrinsicCall(const FunctionCall & c)163 void MetalCodeGenerator::writeIntrinsicCall(const FunctionCall& c) {
164     auto i = fIntrinsicMap.find(c.fFunction.fName);
165     SkASSERT(i != fIntrinsicMap.end());
166     Intrinsic intrinsic = i->second;
167     int32_t intrinsicId = intrinsic.second;
168     switch (intrinsic.first) {
169         case kSpecial_IntrinsicKind:
170             return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId);
171             break;
172         case kMetal_IntrinsicKind:
173             this->writeExpression(*c.fArguments[0], kSequence_Precedence);
174             switch ((MetalIntrinsic) intrinsicId) {
175                 case kEqual_MetalIntrinsic:
176                     this->write(" == ");
177                     break;
178                 case kNotEqual_MetalIntrinsic:
179                     this->write(" != ");
180                     break;
181                 case kLessThan_MetalIntrinsic:
182                     this->write(" < ");
183                     break;
184                 case kLessThanEqual_MetalIntrinsic:
185                     this->write(" <= ");
186                     break;
187                 case kGreaterThan_MetalIntrinsic:
188                     this->write(" > ");
189                     break;
190                 case kGreaterThanEqual_MetalIntrinsic:
191                     this->write(" >= ");
192                     break;
193                 default:
194                     ABORT("unsupported metal intrinsic kind");
195             }
196             this->writeExpression(*c.fArguments[1], kSequence_Precedence);
197             break;
198         default:
199             ABORT("unsupported intrinsic kind");
200     }
201 }
202 
writeFunctionCall(const FunctionCall & c)203 void MetalCodeGenerator::writeFunctionCall(const FunctionCall& c) {
204     const auto& entry = fIntrinsicMap.find(c.fFunction.fName);
205     if (entry != fIntrinsicMap.end()) {
206         this->writeIntrinsicCall(c);
207         return;
208     }
209     if (c.fFunction.fBuiltin && "atan" == c.fFunction.fName && 2 == c.fArguments.size()) {
210         this->write("atan2");
211     } else if (c.fFunction.fBuiltin && "inversesqrt" == c.fFunction.fName) {
212         this->write("rsqrt");
213     } else if (c.fFunction.fBuiltin && "inverse" == c.fFunction.fName) {
214         SkASSERT(c.fArguments.size() == 1);
215         this->writeInverseHack(*c.fArguments[0]);
216     } else if (c.fFunction.fBuiltin && "dFdx" == c.fFunction.fName) {
217         this->write("dfdx");
218     } else if (c.fFunction.fBuiltin && "dFdy" == c.fFunction.fName) {
219         // Flipping Y also negates the Y derivatives.
220         this->write((fProgram.fSettings.fFlipY) ? "-dfdy" : "dfdy");
221     } else {
222         this->writeName(c.fFunction.fName);
223     }
224     this->write("(");
225     const char* separator = "";
226     if (this->requirements(c.fFunction) & kInputs_Requirement) {
227         this->write("_in");
228         separator = ", ";
229     }
230     if (this->requirements(c.fFunction) & kOutputs_Requirement) {
231         this->write(separator);
232         this->write("_out");
233         separator = ", ";
234     }
235     if (this->requirements(c.fFunction) & kUniforms_Requirement) {
236         this->write(separator);
237         this->write("_uniforms");
238         separator = ", ";
239     }
240     if (this->requirements(c.fFunction) & kGlobals_Requirement) {
241         this->write(separator);
242         this->write("_globals");
243         separator = ", ";
244     }
245     if (this->requirements(c.fFunction) & kFragCoord_Requirement) {
246         this->write(separator);
247         this->write("_fragCoord");
248         separator = ", ";
249     }
250     for (size_t i = 0; i < c.fArguments.size(); ++i) {
251         const Expression& arg = *c.fArguments[i];
252         this->write(separator);
253         separator = ", ";
254         if (c.fFunction.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) {
255             this->write("&");
256         }
257         this->writeExpression(arg, kSequence_Precedence);
258     }
259     this->write(")");
260 }
261 
writeInverseHack(const Expression & mat)262 void MetalCodeGenerator::writeInverseHack(const Expression& mat) {
263     String typeName = mat.fType.name();
264     String name = typeName + "_inverse";
265     if (mat.fType == *fContext.fFloat2x2_Type || mat.fType == *fContext.fHalf2x2_Type) {
266         if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
267             fWrittenIntrinsics.insert(name);
268             fExtraFunctions.writeText((
269                 typeName + " " + name + "(" + typeName + " m) {"
270                 "    return float2x2(m[1][1], -m[0][1], -m[1][0], m[0][0]) * (1/determinant(m));"
271                 "}"
272             ).c_str());
273         }
274     }
275     else if (mat.fType == *fContext.fFloat3x3_Type || mat.fType == *fContext.fHalf3x3_Type) {
276         if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
277             fWrittenIntrinsics.insert(name);
278             fExtraFunctions.writeText((
279                 typeName + " " +  name + "(" + typeName + " m) {"
280                 "    float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];"
281                 "    float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];"
282                 "    float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];"
283                 "    float b01 = a22 * a11 - a12 * a21;"
284                 "    float b11 = -a22 * a10 + a12 * a20;"
285                 "    float b21 = a21 * a10 - a11 * a20;"
286                 "    float det = a00 * b01 + a01 * b11 + a02 * b21;"
287                 "    return " + typeName +
288                 "                   (b01, (-a22 * a01 + a02 * a21), (a12 * a01 - a02 * a11),"
289                 "                    b11, (a22 * a00 - a02 * a20), (-a12 * a00 + a02 * a10),"
290                 "                    b21, (-a21 * a00 + a01 * a20), (a11 * a00 - a01 * a10)) * "
291                 "                   (1/det);"
292                 "}"
293             ).c_str());
294         }
295     }
296     else if (mat.fType == *fContext.fFloat4x4_Type || mat.fType == *fContext.fHalf4x4_Type) {
297         if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
298             fWrittenIntrinsics.insert(name);
299             fExtraFunctions.writeText((
300                 typeName + " " +  name + "(" + typeName + " m) {"
301                 "    float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3];"
302                 "    float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3];"
303                 "    float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3];"
304                 "    float a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3];"
305                 "    float b00 = a00 * a11 - a01 * a10;"
306                 "    float b01 = a00 * a12 - a02 * a10;"
307                 "    float b02 = a00 * a13 - a03 * a10;"
308                 "    float b03 = a01 * a12 - a02 * a11;"
309                 "    float b04 = a01 * a13 - a03 * a11;"
310                 "    float b05 = a02 * a13 - a03 * a12;"
311                 "    float b06 = a20 * a31 - a21 * a30;"
312                 "    float b07 = a20 * a32 - a22 * a30;"
313                 "    float b08 = a20 * a33 - a23 * a30;"
314                 "    float b09 = a21 * a32 - a22 * a31;"
315                 "    float b10 = a21 * a33 - a23 * a31;"
316                 "    float b11 = a22 * a33 - a23 * a32;"
317                 "    float det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - "
318                 "                b04 * b07 + b05 * b06;"
319                 "    return " + typeName + "(a11 * b11 - a12 * b10 + a13 * b09,"
320                 "                            a02 * b10 - a01 * b11 - a03 * b09,"
321                 "                            a31 * b05 - a32 * b04 + a33 * b03,"
322                 "                            a22 * b04 - a21 * b05 - a23 * b03,"
323                 "                            a12 * b08 - a10 * b11 - a13 * b07,"
324                 "                            a00 * b11 - a02 * b08 + a03 * b07,"
325                 "                            a32 * b02 - a30 * b05 - a33 * b01,"
326                 "                            a20 * b05 - a22 * b02 + a23 * b01,"
327                 "                            a10 * b10 - a11 * b08 + a13 * b06,"
328                 "                            a01 * b08 - a00 * b10 - a03 * b06,"
329                 "                            a30 * b04 - a31 * b02 + a33 * b00,"
330                 "                            a21 * b02 - a20 * b04 - a23 * b00,"
331                 "                            a11 * b07 - a10 * b09 - a12 * b06,"
332                 "                            a00 * b09 - a01 * b07 + a02 * b06,"
333                 "                            a31 * b01 - a30 * b03 - a32 * b00,"
334                 "                            a20 * b03 - a21 * b01 + a22 * b00) / det;"
335                 "}"
336             ).c_str());
337         }
338     }
339     this->write(name);
340 }
341 
writeSpecialIntrinsic(const FunctionCall & c,SpecialIntrinsic kind)342 void MetalCodeGenerator::writeSpecialIntrinsic(const FunctionCall & c, SpecialIntrinsic kind) {
343     switch (kind) {
344         case kTexture_SpecialIntrinsic:
345             this->writeExpression(*c.fArguments[0], kSequence_Precedence);
346             this->write(".sample(");
347             this->writeExpression(*c.fArguments[0], kSequence_Precedence);
348             this->write(SAMPLER_SUFFIX);
349             this->write(", ");
350             if (c.fArguments[1]->fType == *fContext.fFloat3_Type) {
351                 // have to store the vector in a temp variable to avoid double evaluating it
352                 String tmpVar = "tmpCoord" + to_string(fVarCount++);
353                 this->fFunctionHeader += "    " + this->typeName(c.fArguments[1]->fType) + " " +
354                                          tmpVar + ";\n";
355                 this->write("(" + tmpVar + " = ");
356                 this->writeExpression(*c.fArguments[1], kSequence_Precedence);
357                 this->write(", " + tmpVar + ".xy / " + tmpVar + ".z))");
358             } else {
359                 SkASSERT(c.fArguments[1]->fType == *fContext.fFloat2_Type);
360                 this->writeExpression(*c.fArguments[1], kSequence_Precedence);
361                 this->write(")");
362             }
363             break;
364         case kMod_SpecialIntrinsic: {
365             // fmod(x, y) in metal calculates x - y * trunc(x / y) instead of x - y * floor(x / y)
366             String tmpX = "tmpX" + to_string(fVarCount++);
367             String tmpY = "tmpY" + to_string(fVarCount++);
368             this->fFunctionHeader += "    " + this->typeName(c.fArguments[0]->fType) + " " + tmpX +
369                                      ", " + tmpY + ";\n";
370             this->write("(" + tmpX + " = ");
371             this->writeExpression(*c.fArguments[0], kSequence_Precedence);
372             this->write(", " + tmpY + " = ");
373             this->writeExpression(*c.fArguments[1], kSequence_Precedence);
374             this->write(", " + tmpX + " - " + tmpY + " * floor(" + tmpX + " / " + tmpY + "))");
375             break;
376         }
377         default:
378             ABORT("unsupported special intrinsic kind");
379     }
380 }
381 
382 // If it hasn't already been written, writes a constructor for 'matrix' which takes a single value
383 // of type 'arg'.
getMatrixConstructHelper(const Type & matrix,const Type & arg)384 String MetalCodeGenerator::getMatrixConstructHelper(const Type& matrix, const Type& arg) {
385     String key = matrix.name() + arg.name();
386     auto found = fHelpers.find(key);
387     if (found != fHelpers.end()) {
388         return found->second;
389     }
390     String name;
391     int columns = matrix.columns();
392     int rows = matrix.rows();
393     if (arg.isNumber()) {
394         // creating a matrix from a single scalar value
395         name = "float" + to_string(columns) + "x" + to_string(rows) + "_from_float";
396         fExtraFunctions.printf("float%dx%d %s(float x) {\n",
397                                columns, rows, name.c_str());
398         fExtraFunctions.printf("    return float%dx%d(", columns, rows);
399         for (int i = 0; i < columns; ++i) {
400             if (i > 0) {
401                 fExtraFunctions.writeText(", ");
402             }
403             fExtraFunctions.printf("float%d(", rows);
404             for (int j = 0; j < rows; ++j) {
405                 if (j > 0) {
406                     fExtraFunctions.writeText(", ");
407                 }
408                 if (i == j) {
409                     fExtraFunctions.writeText("x");
410                 } else {
411                     fExtraFunctions.writeText("0");
412                 }
413             }
414             fExtraFunctions.writeText(")");
415         }
416         fExtraFunctions.writeText(");\n}\n");
417     } else if (arg.kind() == Type::kMatrix_Kind) {
418         // creating a matrix from another matrix
419         int argColumns = arg.columns();
420         int argRows = arg.rows();
421         name = "float" + to_string(columns) + "x" + to_string(rows) + "_from_float" +
422                to_string(argColumns) + "x" + to_string(argRows);
423         fExtraFunctions.printf("float%dx%d %s(float%dx%d m) {\n",
424                                columns, rows, name.c_str(), argColumns, argRows);
425         fExtraFunctions.printf("    return float%dx%d(", columns, rows);
426         for (int i = 0; i < columns; ++i) {
427             if (i > 0) {
428                 fExtraFunctions.writeText(", ");
429             }
430             fExtraFunctions.printf("float%d(", rows);
431             for (int j = 0; j < rows; ++j) {
432                 if (j > 0) {
433                     fExtraFunctions.writeText(", ");
434                 }
435                 if (i < argColumns && j < argRows) {
436                     fExtraFunctions.printf("m[%d][%d]", i, j);
437                 } else {
438                     fExtraFunctions.writeText("0");
439                 }
440             }
441             fExtraFunctions.writeText(")");
442         }
443         fExtraFunctions.writeText(");\n}\n");
444     } else if (matrix.rows() == 2 && matrix.columns() == 2 && arg == *fContext.fFloat4_Type) {
445         // float2x2(float4) doesn't work, need to split it into float2x2(float2, float2)
446         name = "float2x2_from_float4";
447         fExtraFunctions.printf(
448             "float2x2 %s(float4 v) {\n"
449             "    return float2x2(float2(v[0], v[1]), float2(v[2], v[3]));\n"
450             "}\n",
451             name.c_str()
452         );
453     } else {
454         SkASSERT(false);
455         name = "<error>";
456     }
457     fHelpers[key] = name;
458     return name;
459 }
460 
canCoerce(const Type & t1,const Type & t2)461 bool MetalCodeGenerator::canCoerce(const Type& t1, const Type& t2) {
462     if (t1.columns() != t2.columns() || t1.rows() != t2.rows()) {
463         return false;
464     }
465     if (t1.columns() > 1) {
466         return this->canCoerce(t1.componentType(), t2.componentType());
467     }
468     return t1.isFloat() && t2.isFloat();
469 }
470 
writeConstructor(const Constructor & c,Precedence parentPrecedence)471 void MetalCodeGenerator::writeConstructor(const Constructor& c, Precedence parentPrecedence) {
472     if (c.fArguments.size() == 1 && this->canCoerce(c.fType, c.fArguments[0]->fType)) {
473         this->writeExpression(*c.fArguments[0], parentPrecedence);
474         return;
475     }
476     if (c.fType.kind() == Type::kMatrix_Kind && c.fArguments.size() == 1) {
477         const Expression& arg = *c.fArguments[0];
478         String name = this->getMatrixConstructHelper(c.fType, arg.fType);
479         this->write(name);
480         this->write("(");
481         this->writeExpression(arg, kSequence_Precedence);
482         this->write(")");
483     } else {
484         this->writeType(c.fType);
485         this->write("(");
486         const char* separator = "";
487         int scalarCount = 0;
488         for (const auto& arg : c.fArguments) {
489             this->write(separator);
490             separator = ", ";
491             if (Type::kMatrix_Kind == c.fType.kind() && arg->fType.columns() != c.fType.rows()) {
492                 // merge scalars and smaller vectors together
493                 if (!scalarCount) {
494                     this->writeType(c.fType.componentType());
495                     this->write(to_string(c.fType.rows()));
496                     this->write("(");
497                 }
498                 scalarCount += arg->fType.columns();
499             }
500             this->writeExpression(*arg, kSequence_Precedence);
501             if (scalarCount && scalarCount == c.fType.rows()) {
502                 this->write(")");
503                 scalarCount = 0;
504             }
505         }
506         this->write(")");
507     }
508 }
509 
writeFragCoord()510 void MetalCodeGenerator::writeFragCoord() {
511     if (fRTHeightName.length()) {
512         this->write("float4(_fragCoord.x, ");
513         this->write(fRTHeightName.c_str());
514         this->write(" - _fragCoord.y, 0.0, _fragCoord.w)");
515     } else {
516         this->write("float4(_fragCoord.x, _fragCoord.y, 0.0, _fragCoord.w)");
517     }
518 }
519 
writeVariableReference(const VariableReference & ref)520 void MetalCodeGenerator::writeVariableReference(const VariableReference& ref) {
521     switch (ref.fVariable.fModifiers.fLayout.fBuiltin) {
522         case SK_FRAGCOLOR_BUILTIN:
523             this->write("_out->sk_FragColor");
524             break;
525         case SK_FRAGCOORD_BUILTIN:
526             this->writeFragCoord();
527             break;
528         case SK_VERTEXID_BUILTIN:
529             this->write("sk_VertexID");
530             break;
531         case SK_INSTANCEID_BUILTIN:
532             this->write("sk_InstanceID");
533             break;
534         case SK_CLOCKWISE_BUILTIN:
535             // We'd set the front facing winding in the MTLRenderCommandEncoder to be counter
536             // clockwise to match Skia convention.
537             this->write(fProgram.fSettings.fFlipY ? "_frontFacing" : "(!_frontFacing)");
538             break;
539         default:
540             if (Variable::kGlobal_Storage == ref.fVariable.fStorage) {
541                 if (ref.fVariable.fModifiers.fFlags & Modifiers::kIn_Flag) {
542                     this->write("_in.");
543                 } else if (ref.fVariable.fModifiers.fFlags & Modifiers::kOut_Flag) {
544                     this->write("_out->");
545                 } else if (ref.fVariable.fModifiers.fFlags & Modifiers::kUniform_Flag &&
546                            ref.fVariable.fType.kind() != Type::kSampler_Kind) {
547                     this->write("_uniforms.");
548                 } else {
549                     this->write("_globals->");
550                 }
551             }
552             this->writeName(ref.fVariable.fName);
553     }
554 }
555 
writeIndexExpression(const IndexExpression & expr)556 void MetalCodeGenerator::writeIndexExpression(const IndexExpression& expr) {
557     this->writeExpression(*expr.fBase, kPostfix_Precedence);
558     this->write("[");
559     this->writeExpression(*expr.fIndex, kTopLevel_Precedence);
560     this->write("]");
561 }
562 
writeFieldAccess(const FieldAccess & f)563 void MetalCodeGenerator::writeFieldAccess(const FieldAccess& f) {
564     const Type::Field* field = &f.fBase->fType.fields()[f.fFieldIndex];
565     if (FieldAccess::kDefault_OwnerKind == f.fOwnerKind) {
566         this->writeExpression(*f.fBase, kPostfix_Precedence);
567         this->write(".");
568     }
569     switch (field->fModifiers.fLayout.fBuiltin) {
570         case SK_CLIPDISTANCE_BUILTIN:
571             this->write("gl_ClipDistance");
572             break;
573         case SK_POSITION_BUILTIN:
574             this->write("_out->sk_Position");
575             break;
576         default:
577             if (field->fName == "sk_PointSize") {
578                 this->write("_out->sk_PointSize");
579             } else {
580                 if (FieldAccess::kAnonymousInterfaceBlock_OwnerKind == f.fOwnerKind) {
581                     this->write("_globals->");
582                     this->write(fInterfaceBlockNameMap[fInterfaceBlockMap[field]]);
583                     this->write("->");
584                 }
585                 this->writeName(field->fName);
586             }
587     }
588 }
589 
writeSwizzle(const Swizzle & swizzle)590 void MetalCodeGenerator::writeSwizzle(const Swizzle& swizzle) {
591     int last = swizzle.fComponents.back();
592     if (last == SKSL_SWIZZLE_0 || last == SKSL_SWIZZLE_1) {
593         this->writeType(swizzle.fType);
594         this->write("(");
595     }
596     this->writeExpression(*swizzle.fBase, kPostfix_Precedence);
597     this->write(".");
598     for (int c : swizzle.fComponents) {
599         if (c >= 0) {
600             this->write(&("x\0y\0z\0w\0"[c * 2]));
601         }
602     }
603     if (last == SKSL_SWIZZLE_0) {
604         this->write(", 0)");
605     }
606     else if (last == SKSL_SWIZZLE_1) {
607         this->write(", 1)");
608     }
609 }
610 
GetBinaryPrecedence(Token::Kind op)611 MetalCodeGenerator::Precedence MetalCodeGenerator::GetBinaryPrecedence(Token::Kind op) {
612     switch (op) {
613         case Token::STAR:         // fall through
614         case Token::SLASH:        // fall through
615         case Token::PERCENT:      return MetalCodeGenerator::kMultiplicative_Precedence;
616         case Token::PLUS:         // fall through
617         case Token::MINUS:        return MetalCodeGenerator::kAdditive_Precedence;
618         case Token::SHL:          // fall through
619         case Token::SHR:          return MetalCodeGenerator::kShift_Precedence;
620         case Token::LT:           // fall through
621         case Token::GT:           // fall through
622         case Token::LTEQ:         // fall through
623         case Token::GTEQ:         return MetalCodeGenerator::kRelational_Precedence;
624         case Token::EQEQ:         // fall through
625         case Token::NEQ:          return MetalCodeGenerator::kEquality_Precedence;
626         case Token::BITWISEAND:   return MetalCodeGenerator::kBitwiseAnd_Precedence;
627         case Token::BITWISEXOR:   return MetalCodeGenerator::kBitwiseXor_Precedence;
628         case Token::BITWISEOR:    return MetalCodeGenerator::kBitwiseOr_Precedence;
629         case Token::LOGICALAND:   return MetalCodeGenerator::kLogicalAnd_Precedence;
630         case Token::LOGICALXOR:   return MetalCodeGenerator::kLogicalXor_Precedence;
631         case Token::LOGICALOR:    return MetalCodeGenerator::kLogicalOr_Precedence;
632         case Token::EQ:           // fall through
633         case Token::PLUSEQ:       // fall through
634         case Token::MINUSEQ:      // fall through
635         case Token::STAREQ:       // fall through
636         case Token::SLASHEQ:      // fall through
637         case Token::PERCENTEQ:    // fall through
638         case Token::SHLEQ:        // fall through
639         case Token::SHREQ:        // fall through
640         case Token::LOGICALANDEQ: // fall through
641         case Token::LOGICALXOREQ: // fall through
642         case Token::LOGICALOREQ:  // fall through
643         case Token::BITWISEANDEQ: // fall through
644         case Token::BITWISEXOREQ: // fall through
645         case Token::BITWISEOREQ:  return MetalCodeGenerator::kAssignment_Precedence;
646         case Token::COMMA:        return MetalCodeGenerator::kSequence_Precedence;
647         default: ABORT("unsupported binary operator");
648     }
649 }
650 
writeMatrixTimesEqualHelper(const Type & left,const Type & right,const Type & result)651 void MetalCodeGenerator::writeMatrixTimesEqualHelper(const Type& left, const Type& right,
652                                                      const Type& result) {
653     String key = "TimesEqual" + left.name() + right.name();
654     if (fHelpers.find(key) == fHelpers.end()) {
655         fExtraFunctions.printf("%s operator*=(thread %s& left, thread const %s& right) {\n"
656                                "    left = left * right;\n"
657                                "    return left;\n"
658                                "}", result.name().c_str(), left.name().c_str(),
659                                     right.name().c_str());
660     }
661 }
662 
writeBinaryExpression(const BinaryExpression & b,Precedence parentPrecedence)663 void MetalCodeGenerator::writeBinaryExpression(const BinaryExpression& b,
664                                                Precedence parentPrecedence) {
665     Precedence precedence = GetBinaryPrecedence(b.fOperator);
666     bool needParens = precedence >= parentPrecedence;
667     switch (b.fOperator) {
668         case Token::EQEQ:
669             if (b.fLeft->fType.kind() == Type::kVector_Kind) {
670                 this->write("all");
671                 needParens = true;
672             }
673             break;
674         case Token::NEQ:
675             if (b.fLeft->fType.kind() == Type::kVector_Kind) {
676                 this->write("any");
677                 needParens = true;
678             }
679             break;
680         default:
681             break;
682     }
683     if (needParens) {
684         this->write("(");
685     }
686     if (Compiler::IsAssignment(b.fOperator) &&
687         Expression::kVariableReference_Kind == b.fLeft->fKind &&
688         Variable::kParameter_Storage == ((VariableReference&) *b.fLeft).fVariable.fStorage &&
689         (((VariableReference&) *b.fLeft).fVariable.fModifiers.fFlags & Modifiers::kOut_Flag)) {
690         // writing to an out parameter. Since we have to turn those into pointers, we have to
691         // dereference it here.
692         this->write("*");
693     }
694     if (b.fOperator == Token::STAREQ && b.fLeft->fType.kind() == Type::kMatrix_Kind &&
695         b.fRight->fType.kind() == Type::kMatrix_Kind) {
696         this->writeMatrixTimesEqualHelper(b.fLeft->fType, b.fRight->fType, b.fType);
697     }
698     this->writeExpression(*b.fLeft, precedence);
699     if (b.fOperator != Token::EQ && Compiler::IsAssignment(b.fOperator) &&
700         Expression::kSwizzle_Kind == b.fLeft->fKind && !b.fLeft->hasSideEffects()) {
701         // This doesn't compile in Metal:
702         // float4 x = float4(1);
703         // x.xy *= float2x2(...);
704         // with the error message "non-const reference cannot bind to vector element",
705         // but switching it to x.xy = x.xy * float2x2(...) fixes it. We perform this tranformation
706         // as long as the LHS has no side effects, and hope for the best otherwise.
707         this->write(" = ");
708         this->writeExpression(*b.fLeft, kAssignment_Precedence);
709         this->write(" ");
710         String op = Compiler::OperatorName(b.fOperator);
711         SkASSERT(op.endsWith("="));
712         this->write(op.substr(0, op.size() - 1).c_str());
713         this->write(" ");
714     } else {
715         this->write(String(" ") + Compiler::OperatorName(b.fOperator) + " ");
716     }
717     this->writeExpression(*b.fRight, precedence);
718     if (needParens) {
719         this->write(")");
720     }
721 }
722 
writeTernaryExpression(const TernaryExpression & t,Precedence parentPrecedence)723 void MetalCodeGenerator::writeTernaryExpression(const TernaryExpression& t,
724                                                Precedence parentPrecedence) {
725     if (kTernary_Precedence >= parentPrecedence) {
726         this->write("(");
727     }
728     this->writeExpression(*t.fTest, kTernary_Precedence);
729     this->write(" ? ");
730     this->writeExpression(*t.fIfTrue, kTernary_Precedence);
731     this->write(" : ");
732     this->writeExpression(*t.fIfFalse, kTernary_Precedence);
733     if (kTernary_Precedence >= parentPrecedence) {
734         this->write(")");
735     }
736 }
737 
writePrefixExpression(const PrefixExpression & p,Precedence parentPrecedence)738 void MetalCodeGenerator::writePrefixExpression(const PrefixExpression& p,
739                                               Precedence parentPrecedence) {
740     if (kPrefix_Precedence >= parentPrecedence) {
741         this->write("(");
742     }
743     this->write(Compiler::OperatorName(p.fOperator));
744     this->writeExpression(*p.fOperand, kPrefix_Precedence);
745     if (kPrefix_Precedence >= parentPrecedence) {
746         this->write(")");
747     }
748 }
749 
writePostfixExpression(const PostfixExpression & p,Precedence parentPrecedence)750 void MetalCodeGenerator::writePostfixExpression(const PostfixExpression& p,
751                                                Precedence parentPrecedence) {
752     if (kPostfix_Precedence >= parentPrecedence) {
753         this->write("(");
754     }
755     this->writeExpression(*p.fOperand, kPostfix_Precedence);
756     this->write(Compiler::OperatorName(p.fOperator));
757     if (kPostfix_Precedence >= parentPrecedence) {
758         this->write(")");
759     }
760 }
761 
writeBoolLiteral(const BoolLiteral & b)762 void MetalCodeGenerator::writeBoolLiteral(const BoolLiteral& b) {
763     this->write(b.fValue ? "true" : "false");
764 }
765 
writeIntLiteral(const IntLiteral & i)766 void MetalCodeGenerator::writeIntLiteral(const IntLiteral& i) {
767     if (i.fType == *fContext.fUInt_Type) {
768         this->write(to_string(i.fValue & 0xffffffff) + "u");
769     } else {
770         this->write(to_string((int32_t) i.fValue));
771     }
772 }
773 
writeFloatLiteral(const FloatLiteral & f)774 void MetalCodeGenerator::writeFloatLiteral(const FloatLiteral& f) {
775     this->write(to_string(f.fValue));
776 }
777 
writeSetting(const Setting & s)778 void MetalCodeGenerator::writeSetting(const Setting& s) {
779     ABORT("internal error; setting was not folded to a constant during compilation\n");
780 }
781 
writeFunction(const FunctionDefinition & f)782 void MetalCodeGenerator::writeFunction(const FunctionDefinition& f) {
783     fRTHeightName = fProgram.fInputs.fRTHeight ? "_globals->_anonInterface0->u_skRTHeight" : "";
784     const char* separator = "";
785     if ("main" == f.fDeclaration.fName) {
786         switch (fProgram.fKind) {
787             case Program::kFragment_Kind:
788                 this->write("fragment Outputs fragmentMain");
789                 break;
790             case Program::kVertex_Kind:
791                 this->write("vertex Outputs vertexMain");
792                 break;
793             default:
794                 SkASSERT(false);
795         }
796         this->write("(Inputs _in [[stage_in]]");
797         if (-1 != fUniformBuffer) {
798             this->write(", constant Uniforms& _uniforms [[buffer(" +
799                         to_string(fUniformBuffer) + ")]]");
800         }
801         for (const auto& e : fProgram) {
802             if (ProgramElement::kVar_Kind == e.fKind) {
803                 VarDeclarations& decls = (VarDeclarations&) e;
804                 if (!decls.fVars.size()) {
805                     continue;
806                 }
807                 for (const auto& stmt: decls.fVars) {
808                     VarDeclaration& var = (VarDeclaration&) *stmt;
809                     if (var.fVar->fType.kind() == Type::kSampler_Kind) {
810                         this->write(", texture2d<float> "); // FIXME - support other texture types
811                         this->writeName(var.fVar->fName);
812                         this->write("[[texture(");
813                         this->write(to_string(var.fVar->fModifiers.fLayout.fBinding));
814                         this->write(")]]");
815                         this->write(", sampler ");
816                         this->writeName(var.fVar->fName);
817                         this->write(SAMPLER_SUFFIX);
818                         this->write("[[sampler(");
819                         this->write(to_string(var.fVar->fModifiers.fLayout.fBinding));
820                         this->write(")]]");
821                     }
822                 }
823             } else if (ProgramElement::kInterfaceBlock_Kind == e.fKind) {
824                 InterfaceBlock& intf = (InterfaceBlock&) e;
825                 if ("sk_PerVertex" == intf.fTypeName) {
826                     continue;
827                 }
828                 this->write(", constant ");
829                 this->writeType(intf.fVariable.fType);
830                 this->write("& " );
831                 this->write(fInterfaceBlockNameMap[&intf]);
832                 this->write(" [[buffer(");
833                 this->write(to_string(intf.fVariable.fModifiers.fLayout.fBinding));
834                 this->write(")]]");
835             }
836         }
837         if (fProgram.fKind == Program::kFragment_Kind) {
838             if (fProgram.fInputs.fRTHeight && fInterfaceBlockNameMap.empty()) {
839                 this->write(", constant sksl_synthetic_uniforms& _anonInterface0 [[buffer(1)]]");
840                 fRTHeightName = "_anonInterface0.u_skRTHeight";
841             }
842             this->write(", bool _frontFacing [[front_facing]]");
843             this->write(", float4 _fragCoord [[position]]");
844         } else if (fProgram.fKind == Program::kVertex_Kind) {
845             this->write(", uint sk_VertexID [[vertex_id]], uint sk_InstanceID [[instance_id]]");
846         }
847         separator = ", ";
848     } else {
849         this->writeType(f.fDeclaration.fReturnType);
850         this->write(" ");
851         this->writeName(f.fDeclaration.fName);
852         this->write("(");
853         Requirements requirements = this->requirements(f.fDeclaration);
854         if (requirements & kInputs_Requirement) {
855             this->write("Inputs _in");
856             separator = ", ";
857         }
858         if (requirements & kOutputs_Requirement) {
859             this->write(separator);
860             this->write("thread Outputs* _out");
861             separator = ", ";
862         }
863         if (requirements & kUniforms_Requirement) {
864             this->write(separator);
865             this->write("Uniforms _uniforms");
866             separator = ", ";
867         }
868         if (requirements & kGlobals_Requirement) {
869             this->write(separator);
870             this->write("thread Globals* _globals");
871             separator = ", ";
872         }
873         if (requirements & kFragCoord_Requirement) {
874             this->write(separator);
875             this->write("float4 _fragCoord");
876             separator = ", ";
877         }
878     }
879     for (const auto& param : f.fDeclaration.fParameters) {
880         this->write(separator);
881         separator = ", ";
882         this->writeModifiers(param->fModifiers, false);
883         std::vector<int> sizes;
884         const Type* type = &param->fType;
885         while (Type::kArray_Kind == type->kind()) {
886             sizes.push_back(type->columns());
887             type = &type->componentType();
888         }
889         this->writeType(*type);
890         if (param->fModifiers.fFlags & Modifiers::kOut_Flag) {
891             this->write("*");
892         }
893         this->write(" ");
894         this->writeName(param->fName);
895         for (int s : sizes) {
896             if (s <= 0) {
897                 this->write("[]");
898             } else {
899                 this->write("[" + to_string(s) + "]");
900             }
901         }
902     }
903     this->writeLine(") {");
904 
905     SkASSERT(!fProgram.fSettings.fFragColorIsInOut);
906 
907     if ("main" == f.fDeclaration.fName) {
908         if (fNeedsGlobalStructInit) {
909             this->writeLine("    Globals globalStruct{");
910             const char* separator = "";
911             for (const auto& intf: fInterfaceBlockNameMap) {
912                 const auto& intfName = intf.second;
913                 this->write(separator);
914                 separator = ", ";
915                 this->write("&");
916                 this->writeName(intfName);
917             }
918             for (const auto& var: fInitNonConstGlobalVars) {
919                 this->write(separator);
920                 separator = ", ";
921                 this->writeVarInitializer(*var->fVar, *var->fValue);
922             }
923             for (const auto& texture: fTextures) {
924                 this->write(separator);
925                 separator = ", ";
926                 this->writeName(texture->fName);
927                 this->write(separator);
928                 this->writeName(texture->fName);
929                 this->write(SAMPLER_SUFFIX);
930             }
931             this->writeLine("};");
932             this->writeLine("    thread Globals* _globals = &globalStruct;");
933             this->writeLine("    (void)_globals;");
934         }
935         this->writeLine("    Outputs _outputStruct;");
936         this->writeLine("    thread Outputs* _out = &_outputStruct;");
937     }
938     fFunctionHeader = "";
939     OutputStream* oldOut = fOut;
940     StringStream buffer;
941     fOut = &buffer;
942     fIndentation++;
943     this->writeStatements(((Block&) *f.fBody).fStatements);
944     if ("main" == f.fDeclaration.fName) {
945         switch (fProgram.fKind) {
946             case Program::kFragment_Kind:
947                 this->writeLine("return *_out;");
948                 break;
949             case Program::kVertex_Kind:
950                 this->writeLine("_out->sk_Position.y = -_out->sk_Position.y;");
951                 this->writeLine("return *_out;"); // FIXME - detect if function already has return
952                 break;
953             default:
954                 SkASSERT(false);
955         }
956     }
957     fIndentation--;
958     this->writeLine("}");
959 
960     fOut = oldOut;
961     this->write(fFunctionHeader);
962     this->write(buffer.str());
963 }
964 
writeModifiers(const Modifiers & modifiers,bool globalContext)965 void MetalCodeGenerator::writeModifiers(const Modifiers& modifiers,
966                                        bool globalContext) {
967     if (modifiers.fFlags & Modifiers::kOut_Flag) {
968         this->write("thread ");
969     }
970     if (modifiers.fFlags & Modifiers::kConst_Flag) {
971         this->write("constant ");
972     }
973 }
974 
writeInterfaceBlock(const InterfaceBlock & intf)975 void MetalCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) {
976     if ("sk_PerVertex" == intf.fTypeName) {
977         return;
978     }
979     this->writeModifiers(intf.fVariable.fModifiers, true);
980     this->write("struct ");
981     this->writeLine(intf.fTypeName + " {");
982     const Type* structType = &intf.fVariable.fType;
983     fWrittenStructs.push_back(structType);
984     while (Type::kArray_Kind == structType->kind()) {
985         structType = &structType->componentType();
986     }
987     fIndentation++;
988     writeFields(structType->fields(), structType->fOffset, &intf);
989     if (fProgram.fInputs.fRTHeight) {
990         this->writeLine("float u_skRTHeight;");
991     }
992     fIndentation--;
993     this->write("}");
994     if (intf.fInstanceName.size()) {
995         this->write(" ");
996         this->write(intf.fInstanceName);
997         for (const auto& size : intf.fSizes) {
998             this->write("[");
999             if (size) {
1000                 this->writeExpression(*size, kTopLevel_Precedence);
1001             }
1002             this->write("]");
1003         }
1004         fInterfaceBlockNameMap[&intf] = intf.fInstanceName;
1005     } else {
1006         fInterfaceBlockNameMap[&intf] = "_anonInterface" +  to_string(fAnonInterfaceCount++);
1007     }
1008     this->writeLine(";");
1009 }
1010 
writeFields(const std::vector<Type::Field> & fields,int parentOffset,const InterfaceBlock * parentIntf)1011 void MetalCodeGenerator::writeFields(const std::vector<Type::Field>& fields, int parentOffset,
1012                                      const InterfaceBlock* parentIntf) {
1013     MemoryLayout memoryLayout(MemoryLayout::kMetal_Standard);
1014     int currentOffset = 0;
1015     for (const auto& field: fields) {
1016         int fieldOffset = field.fModifiers.fLayout.fOffset;
1017         const Type* fieldType = field.fType;
1018         if (fieldOffset != -1) {
1019             if (currentOffset > fieldOffset) {
1020                 fErrors.error(parentOffset,
1021                                 "offset of field '" + field.fName + "' must be at least " +
1022                                 to_string((int) currentOffset));
1023             } else if (currentOffset < fieldOffset) {
1024                 this->write("char pad");
1025                 this->write(to_string(fPaddingCount++));
1026                 this->write("[");
1027                 this->write(to_string(fieldOffset - currentOffset));
1028                 this->writeLine("];");
1029                 currentOffset = fieldOffset;
1030             }
1031             int alignment = memoryLayout.alignment(*fieldType);
1032             if (fieldOffset % alignment) {
1033                 fErrors.error(parentOffset,
1034                               "offset of field '" + field.fName + "' must be a multiple of " +
1035                               to_string((int) alignment));
1036             }
1037         }
1038         currentOffset += memoryLayout.size(*fieldType);
1039         std::vector<int> sizes;
1040         while (fieldType->kind() == Type::kArray_Kind) {
1041             sizes.push_back(fieldType->columns());
1042             fieldType = &fieldType->componentType();
1043         }
1044         this->writeModifiers(field.fModifiers, false);
1045         this->writeType(*fieldType);
1046         this->write(" ");
1047         this->writeName(field.fName);
1048         for (int s : sizes) {
1049             if (s <= 0) {
1050                 this->write("[]");
1051             } else {
1052                 this->write("[" + to_string(s) + "]");
1053             }
1054         }
1055         this->writeLine(";");
1056         if (parentIntf) {
1057             fInterfaceBlockMap[&field] = parentIntf;
1058         }
1059     }
1060 }
1061 
writeVarInitializer(const Variable & var,const Expression & value)1062 void MetalCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) {
1063     this->writeExpression(value, kTopLevel_Precedence);
1064 }
1065 
writeName(const String & name)1066 void MetalCodeGenerator::writeName(const String& name) {
1067     if (fReservedWords.find(name) != fReservedWords.end()) {
1068         this->write("_"); // adding underscore before name to avoid conflict with reserved words
1069     }
1070     this->write(name);
1071 }
1072 
writeVarDeclarations(const VarDeclarations & decl,bool global)1073 void MetalCodeGenerator::writeVarDeclarations(const VarDeclarations& decl, bool global) {
1074     SkASSERT(decl.fVars.size() > 0);
1075     bool wroteType = false;
1076     for (const auto& stmt : decl.fVars) {
1077         VarDeclaration& var = (VarDeclaration&) *stmt;
1078         if (global && !(var.fVar->fModifiers.fFlags & Modifiers::kConst_Flag)) {
1079             continue;
1080         }
1081         if (wroteType) {
1082             this->write(", ");
1083         } else {
1084             this->writeModifiers(var.fVar->fModifiers, global);
1085             this->writeType(decl.fBaseType);
1086             this->write(" ");
1087             wroteType = true;
1088         }
1089         this->writeName(var.fVar->fName);
1090         for (const auto& size : var.fSizes) {
1091             this->write("[");
1092             if (size) {
1093                 this->writeExpression(*size, kTopLevel_Precedence);
1094             }
1095             this->write("]");
1096         }
1097         if (var.fValue) {
1098             this->write(" = ");
1099             this->writeVarInitializer(*var.fVar, *var.fValue);
1100         }
1101     }
1102     if (wroteType) {
1103         this->write(";");
1104     }
1105 }
1106 
writeStatement(const Statement & s)1107 void MetalCodeGenerator::writeStatement(const Statement& s) {
1108     switch (s.fKind) {
1109         case Statement::kBlock_Kind:
1110             this->writeBlock((Block&) s);
1111             break;
1112         case Statement::kExpression_Kind:
1113             this->writeExpression(*((ExpressionStatement&) s).fExpression, kTopLevel_Precedence);
1114             this->write(";");
1115             break;
1116         case Statement::kReturn_Kind:
1117             this->writeReturnStatement((ReturnStatement&) s);
1118             break;
1119         case Statement::kVarDeclarations_Kind:
1120             this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration, false);
1121             break;
1122         case Statement::kIf_Kind:
1123             this->writeIfStatement((IfStatement&) s);
1124             break;
1125         case Statement::kFor_Kind:
1126             this->writeForStatement((ForStatement&) s);
1127             break;
1128         case Statement::kWhile_Kind:
1129             this->writeWhileStatement((WhileStatement&) s);
1130             break;
1131         case Statement::kDo_Kind:
1132             this->writeDoStatement((DoStatement&) s);
1133             break;
1134         case Statement::kSwitch_Kind:
1135             this->writeSwitchStatement((SwitchStatement&) s);
1136             break;
1137         case Statement::kBreak_Kind:
1138             this->write("break;");
1139             break;
1140         case Statement::kContinue_Kind:
1141             this->write("continue;");
1142             break;
1143         case Statement::kDiscard_Kind:
1144             this->write("discard_fragment();");
1145             break;
1146         case Statement::kNop_Kind:
1147             this->write(";");
1148             break;
1149         default:
1150 #ifdef SK_DEBUG
1151             ABORT("unsupported statement: %s", s.description().c_str());
1152 #endif
1153             break;
1154     }
1155 }
1156 
writeStatements(const std::vector<std::unique_ptr<Statement>> & statements)1157 void MetalCodeGenerator::writeStatements(const std::vector<std::unique_ptr<Statement>>& statements) {
1158     for (const auto& s : statements) {
1159         if (!s->isEmpty()) {
1160             this->writeStatement(*s);
1161             this->writeLine();
1162         }
1163     }
1164 }
1165 
writeBlock(const Block & b)1166 void MetalCodeGenerator::writeBlock(const Block& b) {
1167     this->writeLine("{");
1168     fIndentation++;
1169     this->writeStatements(b.fStatements);
1170     fIndentation--;
1171     this->write("}");
1172 }
1173 
writeIfStatement(const IfStatement & stmt)1174 void MetalCodeGenerator::writeIfStatement(const IfStatement& stmt) {
1175     this->write("if (");
1176     this->writeExpression(*stmt.fTest, kTopLevel_Precedence);
1177     this->write(") ");
1178     this->writeStatement(*stmt.fIfTrue);
1179     if (stmt.fIfFalse) {
1180         this->write(" else ");
1181         this->writeStatement(*stmt.fIfFalse);
1182     }
1183 }
1184 
writeForStatement(const ForStatement & f)1185 void MetalCodeGenerator::writeForStatement(const ForStatement& f) {
1186     this->write("for (");
1187     if (f.fInitializer && !f.fInitializer->isEmpty()) {
1188         this->writeStatement(*f.fInitializer);
1189     } else {
1190         this->write("; ");
1191     }
1192     if (f.fTest) {
1193         this->writeExpression(*f.fTest, kTopLevel_Precedence);
1194     }
1195     this->write("; ");
1196     if (f.fNext) {
1197         this->writeExpression(*f.fNext, kTopLevel_Precedence);
1198     }
1199     this->write(") ");
1200     this->writeStatement(*f.fStatement);
1201 }
1202 
writeWhileStatement(const WhileStatement & w)1203 void MetalCodeGenerator::writeWhileStatement(const WhileStatement& w) {
1204     this->write("while (");
1205     this->writeExpression(*w.fTest, kTopLevel_Precedence);
1206     this->write(") ");
1207     this->writeStatement(*w.fStatement);
1208 }
1209 
writeDoStatement(const DoStatement & d)1210 void MetalCodeGenerator::writeDoStatement(const DoStatement& d) {
1211     this->write("do ");
1212     this->writeStatement(*d.fStatement);
1213     this->write(" while (");
1214     this->writeExpression(*d.fTest, kTopLevel_Precedence);
1215     this->write(");");
1216 }
1217 
writeSwitchStatement(const SwitchStatement & s)1218 void MetalCodeGenerator::writeSwitchStatement(const SwitchStatement& s) {
1219     this->write("switch (");
1220     this->writeExpression(*s.fValue, kTopLevel_Precedence);
1221     this->writeLine(") {");
1222     fIndentation++;
1223     for (const auto& c : s.fCases) {
1224         if (c->fValue) {
1225             this->write("case ");
1226             this->writeExpression(*c->fValue, kTopLevel_Precedence);
1227             this->writeLine(":");
1228         } else {
1229             this->writeLine("default:");
1230         }
1231         fIndentation++;
1232         for (const auto& stmt : c->fStatements) {
1233             this->writeStatement(*stmt);
1234             this->writeLine();
1235         }
1236         fIndentation--;
1237     }
1238     fIndentation--;
1239     this->write("}");
1240 }
1241 
writeReturnStatement(const ReturnStatement & r)1242 void MetalCodeGenerator::writeReturnStatement(const ReturnStatement& r) {
1243     this->write("return");
1244     if (r.fExpression) {
1245         this->write(" ");
1246         this->writeExpression(*r.fExpression, kTopLevel_Precedence);
1247     }
1248     this->write(";");
1249 }
1250 
writeHeader()1251 void MetalCodeGenerator::writeHeader() {
1252     this->write("#include <metal_stdlib>\n");
1253     this->write("#include <simd/simd.h>\n");
1254     this->write("using namespace metal;\n");
1255 }
1256 
writeUniformStruct()1257 void MetalCodeGenerator::writeUniformStruct() {
1258     for (const auto& e : fProgram) {
1259         if (ProgramElement::kVar_Kind == e.fKind) {
1260             VarDeclarations& decls = (VarDeclarations&) e;
1261             if (!decls.fVars.size()) {
1262                 continue;
1263             }
1264             const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar;
1265             if (first.fModifiers.fFlags & Modifiers::kUniform_Flag &&
1266                 first.fType.kind() != Type::kSampler_Kind) {
1267                 if (-1 == fUniformBuffer) {
1268                     this->write("struct Uniforms {\n");
1269                     fUniformBuffer = first.fModifiers.fLayout.fSet;
1270                     if (-1 == fUniformBuffer) {
1271                         fErrors.error(decls.fOffset, "Metal uniforms must have 'layout(set=...)'");
1272                     }
1273                 } else if (first.fModifiers.fLayout.fSet != fUniformBuffer) {
1274                     if (-1 == fUniformBuffer) {
1275                         fErrors.error(decls.fOffset, "Metal backend requires all uniforms to have "
1276                                     "the same 'layout(set=...)'");
1277                     }
1278                 }
1279                 this->write("    ");
1280                 this->writeType(first.fType);
1281                 this->write(" ");
1282                 for (const auto& stmt : decls.fVars) {
1283                     VarDeclaration& var = (VarDeclaration&) *stmt;
1284                     this->writeName(var.fVar->fName);
1285                 }
1286                 this->write(";\n");
1287             }
1288         }
1289     }
1290     if (-1 != fUniformBuffer) {
1291         this->write("};\n");
1292     }
1293 }
1294 
writeInputStruct()1295 void MetalCodeGenerator::writeInputStruct() {
1296     this->write("struct Inputs {\n");
1297     for (const auto& e : fProgram) {
1298         if (ProgramElement::kVar_Kind == e.fKind) {
1299             VarDeclarations& decls = (VarDeclarations&) e;
1300             if (!decls.fVars.size()) {
1301                 continue;
1302             }
1303             const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar;
1304             if (first.fModifiers.fFlags & Modifiers::kIn_Flag &&
1305                 -1 == first.fModifiers.fLayout.fBuiltin) {
1306                 this->write("    ");
1307                 this->writeType(first.fType);
1308                 this->write(" ");
1309                 for (const auto& stmt : decls.fVars) {
1310                     VarDeclaration& var = (VarDeclaration&) *stmt;
1311                     this->writeName(var.fVar->fName);
1312                     if (-1 != var.fVar->fModifiers.fLayout.fLocation) {
1313                         if (fProgram.fKind == Program::kVertex_Kind) {
1314                             this->write("  [[attribute(" +
1315                                         to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]");
1316                         } else if (fProgram.fKind == Program::kFragment_Kind) {
1317                             this->write("  [[user(locn" +
1318                                         to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]");
1319                         }
1320                     }
1321                 }
1322                 this->write(";\n");
1323             }
1324         }
1325     }
1326     this->write("};\n");
1327 }
1328 
writeOutputStruct()1329 void MetalCodeGenerator::writeOutputStruct() {
1330     this->write("struct Outputs {\n");
1331     if (fProgram.fKind == Program::kVertex_Kind) {
1332         this->write("    float4 sk_Position [[position]];\n");
1333     } else if (fProgram.fKind == Program::kFragment_Kind) {
1334         this->write("    float4 sk_FragColor [[color(0)]];\n");
1335     }
1336     for (const auto& e : fProgram) {
1337         if (ProgramElement::kVar_Kind == e.fKind) {
1338             VarDeclarations& decls = (VarDeclarations&) e;
1339             if (!decls.fVars.size()) {
1340                 continue;
1341             }
1342             const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar;
1343             if (first.fModifiers.fFlags & Modifiers::kOut_Flag &&
1344                 -1 == first.fModifiers.fLayout.fBuiltin) {
1345                 this->write("    ");
1346                 this->writeType(first.fType);
1347                 this->write(" ");
1348                 for (const auto& stmt : decls.fVars) {
1349                     VarDeclaration& var = (VarDeclaration&) *stmt;
1350                     this->writeName(var.fVar->fName);
1351                     if (fProgram.fKind == Program::kVertex_Kind) {
1352                         this->write("  [[user(locn" +
1353                                     to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]");
1354                     } else if (fProgram.fKind == Program::kFragment_Kind) {
1355                         this->write(" [[color(" +
1356                                     to_string(var.fVar->fModifiers.fLayout.fLocation) +")");
1357                         int colorIndex = var.fVar->fModifiers.fLayout.fIndex;
1358                         if (colorIndex) {
1359                             this->write(", index(" + to_string(colorIndex) + ")");
1360                         }
1361                         this->write("]]");
1362                     }
1363                 }
1364                 this->write(";\n");
1365             }
1366         }
1367     }
1368     if (fProgram.fKind == Program::kVertex_Kind) {
1369         this->write("    float sk_PointSize;\n");
1370     }
1371     this->write("};\n");
1372 }
1373 
writeInterfaceBlocks()1374 void MetalCodeGenerator::writeInterfaceBlocks() {
1375     bool wroteInterfaceBlock = false;
1376     for (const auto& e : fProgram) {
1377         if (ProgramElement::kInterfaceBlock_Kind == e.fKind) {
1378             this->writeInterfaceBlock((InterfaceBlock&) e);
1379             wroteInterfaceBlock = true;
1380         }
1381     }
1382     if (!wroteInterfaceBlock && fProgram.fInputs.fRTHeight) {
1383         this->writeLine("struct sksl_synthetic_uniforms {");
1384         this->writeLine("    float u_skRTHeight;");
1385         this->writeLine("};");
1386     }
1387 }
1388 
writeGlobalStruct()1389 void MetalCodeGenerator::writeGlobalStruct() {
1390     bool wroteStructDecl = false;
1391     for (const auto& intf : fInterfaceBlockNameMap) {
1392         if (!wroteStructDecl) {
1393             this->write("struct Globals {\n");
1394             wroteStructDecl = true;
1395         }
1396         fNeedsGlobalStructInit = true;
1397         const auto& intfType = intf.first;
1398         const auto& intfName = intf.second;
1399         this->write("    constant ");
1400         this->write(intfType->fTypeName);
1401         this->write("* ");
1402         this->writeName(intfName);
1403         this->write(";\n");
1404     }
1405     for (const auto& e : fProgram) {
1406         if (ProgramElement::kVar_Kind == e.fKind) {
1407             VarDeclarations& decls = (VarDeclarations&) e;
1408             if (!decls.fVars.size()) {
1409                 continue;
1410             }
1411             const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar;
1412             if ((!first.fModifiers.fFlags && -1 == first.fModifiers.fLayout.fBuiltin) ||
1413                 first.fType.kind() == Type::kSampler_Kind) {
1414                 if (!wroteStructDecl) {
1415                     this->write("struct Globals {\n");
1416                     wroteStructDecl = true;
1417                 }
1418                 fNeedsGlobalStructInit = true;
1419                 this->write("    ");
1420                 this->writeType(first.fType);
1421                 this->write(" ");
1422                 for (const auto& stmt : decls.fVars) {
1423                     VarDeclaration& var = (VarDeclaration&) *stmt;
1424                     this->writeName(var.fVar->fName);
1425                     if (var.fVar->fType.kind() == Type::kSampler_Kind) {
1426                         fTextures.push_back(var.fVar);
1427                         this->write(";\n");
1428                         this->write("    sampler ");
1429                         this->writeName(var.fVar->fName);
1430                         this->write(SAMPLER_SUFFIX);
1431                     }
1432                     if (var.fValue) {
1433                         fInitNonConstGlobalVars.push_back(&var);
1434                     }
1435                 }
1436                 this->write(";\n");
1437             }
1438         }
1439     }
1440     if (wroteStructDecl) {
1441         this->write("};\n");
1442     }
1443 }
1444 
writeProgramElement(const ProgramElement & e)1445 void MetalCodeGenerator::writeProgramElement(const ProgramElement& e) {
1446     switch (e.fKind) {
1447         case ProgramElement::kExtension_Kind:
1448             break;
1449         case ProgramElement::kVar_Kind: {
1450             VarDeclarations& decl = (VarDeclarations&) e;
1451             if (decl.fVars.size() > 0) {
1452                 int builtin = ((VarDeclaration&) *decl.fVars[0]).fVar->fModifiers.fLayout.fBuiltin;
1453                 if (-1 == builtin) {
1454                     // normal var
1455                     this->writeVarDeclarations(decl, true);
1456                     this->writeLine();
1457                 } else if (SK_FRAGCOLOR_BUILTIN == builtin) {
1458                     // ignore
1459                 }
1460             }
1461             break;
1462         }
1463         case ProgramElement::kInterfaceBlock_Kind:
1464             // handled in writeInterfaceBlocks, do nothing
1465             break;
1466         case ProgramElement::kFunction_Kind:
1467             this->writeFunction((FunctionDefinition&) e);
1468             break;
1469         case ProgramElement::kModifiers_Kind:
1470             this->writeModifiers(((ModifiersDeclaration&) e).fModifiers, true);
1471             this->writeLine(";");
1472             break;
1473         default:
1474 #ifdef SK_DEBUG
1475             ABORT("unsupported program element: %s\n", e.description().c_str());
1476 #endif
1477             break;
1478     }
1479 }
1480 
requirements(const Expression & e)1481 MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Expression& e) {
1482     switch (e.fKind) {
1483         case Expression::kFunctionCall_Kind: {
1484             const FunctionCall& f = (const FunctionCall&) e;
1485             Requirements result = this->requirements(f.fFunction);
1486             for (const auto& e : f.fArguments) {
1487                 result |= this->requirements(*e);
1488             }
1489             return result;
1490         }
1491         case Expression::kConstructor_Kind: {
1492             const Constructor& c = (const Constructor&) e;
1493             Requirements result = kNo_Requirements;
1494             for (const auto& e : c.fArguments) {
1495                 result |= this->requirements(*e);
1496             }
1497             return result;
1498         }
1499         case Expression::kFieldAccess_Kind: {
1500             const FieldAccess& f = (const FieldAccess&) e;
1501             if (FieldAccess::kAnonymousInterfaceBlock_OwnerKind == f.fOwnerKind) {
1502                 return kGlobals_Requirement;
1503             }
1504             return this->requirements(*((const FieldAccess&) e).fBase);
1505         }
1506         case Expression::kSwizzle_Kind:
1507             return this->requirements(*((const Swizzle&) e).fBase);
1508         case Expression::kBinary_Kind: {
1509             const BinaryExpression& b = (const BinaryExpression&) e;
1510             return this->requirements(*b.fLeft) | this->requirements(*b.fRight);
1511         }
1512         case Expression::kIndex_Kind: {
1513             const IndexExpression& idx = (const IndexExpression&) e;
1514             return this->requirements(*idx.fBase) | this->requirements(*idx.fIndex);
1515         }
1516         case Expression::kPrefix_Kind:
1517             return this->requirements(*((const PrefixExpression&) e).fOperand);
1518         case Expression::kPostfix_Kind:
1519             return this->requirements(*((const PostfixExpression&) e).fOperand);
1520         case Expression::kTernary_Kind: {
1521             const TernaryExpression& t = (const TernaryExpression&) e;
1522             return this->requirements(*t.fTest) | this->requirements(*t.fIfTrue) |
1523                    this->requirements(*t.fIfFalse);
1524         }
1525         case Expression::kVariableReference_Kind: {
1526             const VariableReference& v = (const VariableReference&) e;
1527             Requirements result = kNo_Requirements;
1528             if (v.fVariable.fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) {
1529                 result = kGlobals_Requirement | kFragCoord_Requirement;
1530             } else if (Variable::kGlobal_Storage == v.fVariable.fStorage) {
1531                 if (v.fVariable.fModifiers.fFlags & Modifiers::kIn_Flag) {
1532                     result = kInputs_Requirement;
1533                 } else if (v.fVariable.fModifiers.fFlags & Modifiers::kOut_Flag) {
1534                     result = kOutputs_Requirement;
1535                 } else if (v.fVariable.fModifiers.fFlags & Modifiers::kUniform_Flag &&
1536                            v.fVariable.fType.kind() != Type::kSampler_Kind) {
1537                     result = kUniforms_Requirement;
1538                 } else {
1539                     result = kGlobals_Requirement;
1540                 }
1541             }
1542             return result;
1543         }
1544         default:
1545             return kNo_Requirements;
1546     }
1547 }
1548 
requirements(const Statement & s)1549 MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Statement& s) {
1550     switch (s.fKind) {
1551         case Statement::kBlock_Kind: {
1552             Requirements result = kNo_Requirements;
1553             for (const auto& child : ((const Block&) s).fStatements) {
1554                 result |= this->requirements(*child);
1555             }
1556             return result;
1557         }
1558         case Statement::kVarDeclaration_Kind: {
1559             Requirements result = kNo_Requirements;
1560             const VarDeclaration& var = (const VarDeclaration&) s;
1561             if (var.fValue) {
1562                 result = this->requirements(*var.fValue);
1563             }
1564             return result;
1565         }
1566         case Statement::kVarDeclarations_Kind: {
1567             Requirements result = kNo_Requirements;
1568             const VarDeclarations& decls = *((const VarDeclarationsStatement&) s).fDeclaration;
1569             for (const auto& stmt : decls.fVars) {
1570                 result |= this->requirements(*stmt);
1571             }
1572             return result;
1573         }
1574         case Statement::kExpression_Kind:
1575             return this->requirements(*((const ExpressionStatement&) s).fExpression);
1576         case Statement::kReturn_Kind: {
1577             const ReturnStatement& r = (const ReturnStatement&) s;
1578             if (r.fExpression) {
1579                 return this->requirements(*r.fExpression);
1580             }
1581             return kNo_Requirements;
1582         }
1583         case Statement::kIf_Kind: {
1584             const IfStatement& i = (const IfStatement&) s;
1585             return this->requirements(*i.fTest) |
1586                    this->requirements(*i.fIfTrue) |
1587                    (i.fIfFalse ? this->requirements(*i.fIfFalse) : 0);
1588         }
1589         case Statement::kFor_Kind: {
1590             const ForStatement& f = (const ForStatement&) s;
1591             return this->requirements(*f.fInitializer) |
1592                    this->requirements(*f.fTest) |
1593                    this->requirements(*f.fNext) |
1594                    this->requirements(*f.fStatement);
1595         }
1596         case Statement::kWhile_Kind: {
1597             const WhileStatement& w = (const WhileStatement&) s;
1598             return this->requirements(*w.fTest) |
1599                    this->requirements(*w.fStatement);
1600         }
1601         case Statement::kDo_Kind: {
1602             const DoStatement& d = (const DoStatement&) s;
1603             return this->requirements(*d.fTest) |
1604                    this->requirements(*d.fStatement);
1605         }
1606         case Statement::kSwitch_Kind: {
1607             const SwitchStatement& sw = (const SwitchStatement&) s;
1608             Requirements result = this->requirements(*sw.fValue);
1609             for (const auto& c : sw.fCases) {
1610                 for (const auto& st : c->fStatements) {
1611                     result |= this->requirements(*st);
1612                 }
1613             }
1614             return result;
1615         }
1616         default:
1617             return kNo_Requirements;
1618     }
1619 }
1620 
requirements(const FunctionDeclaration & f)1621 MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const FunctionDeclaration& f) {
1622     if (f.fBuiltin) {
1623         return kNo_Requirements;
1624     }
1625     auto found = fRequirements.find(&f);
1626     if (found == fRequirements.end()) {
1627         fRequirements[&f] = kNo_Requirements;
1628         for (const auto& e : fProgram) {
1629             if (ProgramElement::kFunction_Kind == e.fKind) {
1630                 const FunctionDefinition& def = (const FunctionDefinition&) e;
1631                 if (&def.fDeclaration == &f) {
1632                     Requirements reqs = this->requirements(*def.fBody);
1633                     fRequirements[&f] = reqs;
1634                     return reqs;
1635                 }
1636             }
1637         }
1638     }
1639     return found->second;
1640 }
1641 
generateCode()1642 bool MetalCodeGenerator::generateCode() {
1643     OutputStream* rawOut = fOut;
1644     fOut = &fHeader;
1645     fProgramKind = fProgram.fKind;
1646     this->writeHeader();
1647     this->writeUniformStruct();
1648     this->writeInputStruct();
1649     this->writeOutputStruct();
1650     this->writeInterfaceBlocks();
1651     this->writeGlobalStruct();
1652     StringStream body;
1653     fOut = &body;
1654     for (const auto& e : fProgram) {
1655         this->writeProgramElement(e);
1656     }
1657     fOut = rawOut;
1658 
1659     write_stringstream(fHeader, *rawOut);
1660     write_stringstream(fExtraFunctions, *rawOut);
1661     write_stringstream(body, *rawOut);
1662     return true;
1663 }
1664 
1665 }
1666