1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "modules/audio_coding/neteq/dsp_helper.h"
12 
13 #include <assert.h>
14 #include <string.h>  // Access to memset.
15 
16 #include <algorithm>  // Access to min, max.
17 
18 #include "common_audio/signal_processing/include/signal_processing_library.h"
19 
20 namespace webrtc {
21 
22 // Table of constants used in method DspHelper::ParabolicFit().
23 const int16_t DspHelper::kParabolaCoefficients[17][3] = {
24     {120, 32, 64},   {140, 44, 75},   {150, 50, 80},   {160, 57, 85},
25     {180, 72, 96},   {200, 89, 107},  {210, 98, 112},  {220, 108, 117},
26     {240, 128, 128}, {260, 150, 139}, {270, 162, 144}, {280, 174, 149},
27     {300, 200, 160}, {320, 228, 171}, {330, 242, 176}, {340, 257, 181},
28     {360, 288, 192}};
29 
30 // Filter coefficients used when downsampling from the indicated sample rates
31 // (8, 16, 32, 48 kHz) to 4 kHz. Coefficients are in Q12. The corresponding Q0
32 // values are provided in the comments before each array.
33 
34 // Q0 values: {0.3, 0.4, 0.3}.
35 const int16_t DspHelper::kDownsample8kHzTbl[3] = {1229, 1638, 1229};
36 
37 // Q0 values: {0.15, 0.2, 0.3, 0.2, 0.15}.
38 const int16_t DspHelper::kDownsample16kHzTbl[5] = {614, 819, 1229, 819, 614};
39 
40 // Q0 values: {0.1425, 0.1251, 0.1525, 0.1628, 0.1525, 0.1251, 0.1425}.
41 const int16_t DspHelper::kDownsample32kHzTbl[7] = {584, 512, 625, 667,
42                                                    625, 512, 584};
43 
44 // Q0 values: {0.2487, 0.0952, 0.1042, 0.1074, 0.1042, 0.0952, 0.2487}.
45 const int16_t DspHelper::kDownsample48kHzTbl[7] = {1019, 390, 427, 440,
46                                                    427,  390, 1019};
47 
RampSignal(const int16_t * input,size_t length,int factor,int increment,int16_t * output)48 int DspHelper::RampSignal(const int16_t* input,
49                           size_t length,
50                           int factor,
51                           int increment,
52                           int16_t* output) {
53   int factor_q20 = (factor << 6) + 32;
54   // TODO(hlundin): Add 32 to factor_q20 when converting back to Q14?
55   for (size_t i = 0; i < length; ++i) {
56     output[i] = (factor * input[i] + 8192) >> 14;
57     factor_q20 += increment;
58     factor_q20 = std::max(factor_q20, 0);  // Never go negative.
59     factor = std::min(factor_q20 >> 6, 16384);
60   }
61   return factor;
62 }
63 
RampSignal(int16_t * signal,size_t length,int factor,int increment)64 int DspHelper::RampSignal(int16_t* signal,
65                           size_t length,
66                           int factor,
67                           int increment) {
68   return RampSignal(signal, length, factor, increment, signal);
69 }
70 
RampSignal(AudioVector * signal,size_t start_index,size_t length,int factor,int increment)71 int DspHelper::RampSignal(AudioVector* signal,
72                           size_t start_index,
73                           size_t length,
74                           int factor,
75                           int increment) {
76   int factor_q20 = (factor << 6) + 32;
77   // TODO(hlundin): Add 32 to factor_q20 when converting back to Q14?
78   for (size_t i = start_index; i < start_index + length; ++i) {
79     (*signal)[i] = (factor * (*signal)[i] + 8192) >> 14;
80     factor_q20 += increment;
81     factor_q20 = std::max(factor_q20, 0);  // Never go negative.
82     factor = std::min(factor_q20 >> 6, 16384);
83   }
84   return factor;
85 }
86 
RampSignal(AudioMultiVector * signal,size_t start_index,size_t length,int factor,int increment)87 int DspHelper::RampSignal(AudioMultiVector* signal,
88                           size_t start_index,
89                           size_t length,
90                           int factor,
91                           int increment) {
92   assert(start_index + length <= signal->Size());
93   if (start_index + length > signal->Size()) {
94     // Wrong parameters. Do nothing and return the scale factor unaltered.
95     return factor;
96   }
97   int end_factor = 0;
98   // Loop over the channels, starting at the same |factor| each time.
99   for (size_t channel = 0; channel < signal->Channels(); ++channel) {
100     end_factor =
101         RampSignal(&(*signal)[channel], start_index, length, factor, increment);
102   }
103   return end_factor;
104 }
105 
PeakDetection(int16_t * data,size_t data_length,size_t num_peaks,int fs_mult,size_t * peak_index,int16_t * peak_value)106 void DspHelper::PeakDetection(int16_t* data,
107                               size_t data_length,
108                               size_t num_peaks,
109                               int fs_mult,
110                               size_t* peak_index,
111                               int16_t* peak_value) {
112   size_t min_index = 0;
113   size_t max_index = 0;
114 
115   for (size_t i = 0; i <= num_peaks - 1; i++) {
116     if (num_peaks == 1) {
117       // Single peak.  The parabola fit assumes that an extra point is
118       // available; worst case it gets a zero on the high end of the signal.
119       // TODO(hlundin): This can potentially get much worse. It breaks the
120       // API contract, that the length of |data| is |data_length|.
121       data_length++;
122     }
123 
124     peak_index[i] = WebRtcSpl_MaxIndexW16(data, data_length - 1);
125 
126     if (i != num_peaks - 1) {
127       min_index = (peak_index[i] > 2) ? (peak_index[i] - 2) : 0;
128       max_index = std::min(data_length - 1, peak_index[i] + 2);
129     }
130 
131     if ((peak_index[i] != 0) && (peak_index[i] != (data_length - 2))) {
132       ParabolicFit(&data[peak_index[i] - 1], fs_mult, &peak_index[i],
133                    &peak_value[i]);
134     } else {
135       if (peak_index[i] == data_length - 2) {
136         if (data[peak_index[i]] > data[peak_index[i] + 1]) {
137           ParabolicFit(&data[peak_index[i] - 1], fs_mult, &peak_index[i],
138                        &peak_value[i]);
139         } else if (data[peak_index[i]] <= data[peak_index[i] + 1]) {
140           // Linear approximation.
141           peak_value[i] = (data[peak_index[i]] + data[peak_index[i] + 1]) >> 1;
142           peak_index[i] = (peak_index[i] * 2 + 1) * fs_mult;
143         }
144       } else {
145         peak_value[i] = data[peak_index[i]];
146         peak_index[i] = peak_index[i] * 2 * fs_mult;
147       }
148     }
149 
150     if (i != num_peaks - 1) {
151       memset(&data[min_index], 0,
152              sizeof(data[0]) * (max_index - min_index + 1));
153     }
154   }
155 }
156 
ParabolicFit(int16_t * signal_points,int fs_mult,size_t * peak_index,int16_t * peak_value)157 void DspHelper::ParabolicFit(int16_t* signal_points,
158                              int fs_mult,
159                              size_t* peak_index,
160                              int16_t* peak_value) {
161   uint16_t fit_index[13];
162   if (fs_mult == 1) {
163     fit_index[0] = 0;
164     fit_index[1] = 8;
165     fit_index[2] = 16;
166   } else if (fs_mult == 2) {
167     fit_index[0] = 0;
168     fit_index[1] = 4;
169     fit_index[2] = 8;
170     fit_index[3] = 12;
171     fit_index[4] = 16;
172   } else if (fs_mult == 4) {
173     fit_index[0] = 0;
174     fit_index[1] = 2;
175     fit_index[2] = 4;
176     fit_index[3] = 6;
177     fit_index[4] = 8;
178     fit_index[5] = 10;
179     fit_index[6] = 12;
180     fit_index[7] = 14;
181     fit_index[8] = 16;
182   } else {
183     fit_index[0] = 0;
184     fit_index[1] = 1;
185     fit_index[2] = 3;
186     fit_index[3] = 4;
187     fit_index[4] = 5;
188     fit_index[5] = 7;
189     fit_index[6] = 8;
190     fit_index[7] = 9;
191     fit_index[8] = 11;
192     fit_index[9] = 12;
193     fit_index[10] = 13;
194     fit_index[11] = 15;
195     fit_index[12] = 16;
196   }
197 
198   //  num = -3 * signal_points[0] + 4 * signal_points[1] - signal_points[2];
199   //  den =      signal_points[0] - 2 * signal_points[1] + signal_points[2];
200   int32_t num =
201       (signal_points[0] * -3) + (signal_points[1] * 4) - signal_points[2];
202   int32_t den = signal_points[0] + (signal_points[1] * -2) + signal_points[2];
203   int32_t temp = num * 120;
204   int flag = 1;
205   int16_t stp = kParabolaCoefficients[fit_index[fs_mult]][0] -
206                 kParabolaCoefficients[fit_index[fs_mult - 1]][0];
207   int16_t strt = (kParabolaCoefficients[fit_index[fs_mult]][0] +
208                   kParabolaCoefficients[fit_index[fs_mult - 1]][0]) /
209                  2;
210   int16_t lmt;
211   if (temp < -den * strt) {
212     lmt = strt - stp;
213     while (flag) {
214       if ((flag == fs_mult) || (temp > -den * lmt)) {
215         *peak_value =
216             (den * kParabolaCoefficients[fit_index[fs_mult - flag]][1] +
217              num * kParabolaCoefficients[fit_index[fs_mult - flag]][2] +
218              signal_points[0] * 256) /
219             256;
220         *peak_index = *peak_index * 2 * fs_mult - flag;
221         flag = 0;
222       } else {
223         flag++;
224         lmt -= stp;
225       }
226     }
227   } else if (temp > -den * (strt + stp)) {
228     lmt = strt + 2 * stp;
229     while (flag) {
230       if ((flag == fs_mult) || (temp < -den * lmt)) {
231         int32_t temp_term_1 =
232             den * kParabolaCoefficients[fit_index[fs_mult + flag]][1];
233         int32_t temp_term_2 =
234             num * kParabolaCoefficients[fit_index[fs_mult + flag]][2];
235         int32_t temp_term_3 = signal_points[0] * 256;
236         *peak_value = (temp_term_1 + temp_term_2 + temp_term_3) / 256;
237         *peak_index = *peak_index * 2 * fs_mult + flag;
238         flag = 0;
239       } else {
240         flag++;
241         lmt += stp;
242       }
243     }
244   } else {
245     *peak_value = signal_points[1];
246     *peak_index = *peak_index * 2 * fs_mult;
247   }
248 }
249 
MinDistortion(const int16_t * signal,size_t min_lag,size_t max_lag,size_t length,int32_t * distortion_value)250 size_t DspHelper::MinDistortion(const int16_t* signal,
251                                 size_t min_lag,
252                                 size_t max_lag,
253                                 size_t length,
254                                 int32_t* distortion_value) {
255   size_t best_index = 0;
256   int32_t min_distortion = WEBRTC_SPL_WORD32_MAX;
257   for (size_t i = min_lag; i <= max_lag; i++) {
258     int32_t sum_diff = 0;
259     const int16_t* data1 = signal;
260     const int16_t* data2 = signal - i;
261     for (size_t j = 0; j < length; j++) {
262       sum_diff += WEBRTC_SPL_ABS_W32(data1[j] - data2[j]);
263     }
264     // Compare with previous minimum.
265     if (sum_diff < min_distortion) {
266       min_distortion = sum_diff;
267       best_index = i;
268     }
269   }
270   *distortion_value = min_distortion;
271   return best_index;
272 }
273 
CrossFade(const int16_t * input1,const int16_t * input2,size_t length,int16_t * mix_factor,int16_t factor_decrement,int16_t * output)274 void DspHelper::CrossFade(const int16_t* input1,
275                           const int16_t* input2,
276                           size_t length,
277                           int16_t* mix_factor,
278                           int16_t factor_decrement,
279                           int16_t* output) {
280   int16_t factor = *mix_factor;
281   int16_t complement_factor = 16384 - factor;
282   for (size_t i = 0; i < length; i++) {
283     output[i] =
284         (factor * input1[i] + complement_factor * input2[i] + 8192) >> 14;
285     factor -= factor_decrement;
286     complement_factor += factor_decrement;
287   }
288   *mix_factor = factor;
289 }
290 
UnmuteSignal(const int16_t * input,size_t length,int16_t * factor,int increment,int16_t * output)291 void DspHelper::UnmuteSignal(const int16_t* input,
292                              size_t length,
293                              int16_t* factor,
294                              int increment,
295                              int16_t* output) {
296   uint16_t factor_16b = *factor;
297   int32_t factor_32b = (static_cast<int32_t>(factor_16b) << 6) + 32;
298   for (size_t i = 0; i < length; i++) {
299     output[i] = (factor_16b * input[i] + 8192) >> 14;
300     factor_32b = std::max(factor_32b + increment, 0);
301     factor_16b = std::min(16384, factor_32b >> 6);
302   }
303   *factor = factor_16b;
304 }
305 
MuteSignal(int16_t * signal,int mute_slope,size_t length)306 void DspHelper::MuteSignal(int16_t* signal, int mute_slope, size_t length) {
307   int32_t factor = (16384 << 6) + 32;
308   for (size_t i = 0; i < length; i++) {
309     signal[i] = ((factor >> 6) * signal[i] + 8192) >> 14;
310     factor -= mute_slope;
311   }
312 }
313 
DownsampleTo4kHz(const int16_t * input,size_t input_length,size_t output_length,int input_rate_hz,bool compensate_delay,int16_t * output)314 int DspHelper::DownsampleTo4kHz(const int16_t* input,
315                                 size_t input_length,
316                                 size_t output_length,
317                                 int input_rate_hz,
318                                 bool compensate_delay,
319                                 int16_t* output) {
320   // Set filter parameters depending on input frequency.
321   // NOTE: The phase delay values are wrong compared to the true phase delay
322   // of the filters. However, the error is preserved (through the +1 term) for
323   // consistency.
324   const int16_t* filter_coefficients;  // Filter coefficients.
325   size_t filter_length;                // Number of coefficients.
326   size_t filter_delay;                 // Phase delay in samples.
327   int16_t factor;                      // Conversion rate (inFsHz / 8000).
328   switch (input_rate_hz) {
329     case 8000: {
330       filter_length = 3;
331       factor = 2;
332       filter_coefficients = kDownsample8kHzTbl;
333       filter_delay = 1 + 1;
334       break;
335     }
336     case 16000: {
337       filter_length = 5;
338       factor = 4;
339       filter_coefficients = kDownsample16kHzTbl;
340       filter_delay = 2 + 1;
341       break;
342     }
343     case 32000: {
344       filter_length = 7;
345       factor = 8;
346       filter_coefficients = kDownsample32kHzTbl;
347       filter_delay = 3 + 1;
348       break;
349     }
350     case 48000: {
351       filter_length = 7;
352       factor = 12;
353       filter_coefficients = kDownsample48kHzTbl;
354       filter_delay = 3 + 1;
355       break;
356     }
357     default: {
358       assert(false);
359       return -1;
360     }
361   }
362 
363   if (!compensate_delay) {
364     // Disregard delay compensation.
365     filter_delay = 0;
366   }
367 
368   // Returns -1 if input signal is too short; 0 otherwise.
369   return WebRtcSpl_DownsampleFast(
370       &input[filter_length - 1], input_length - filter_length + 1, output,
371       output_length, filter_coefficients, filter_length, factor, filter_delay);
372 }
373 
374 }  // namespace webrtc
375