1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #include "src/codegen/mips64/assembler-mips64.h"
36 
37 #if V8_TARGET_ARCH_MIPS64
38 
39 #include "src/base/cpu.h"
40 #include "src/codegen/mips64/assembler-mips64-inl.h"
41 #include "src/codegen/safepoint-table.h"
42 #include "src/codegen/string-constants.h"
43 #include "src/deoptimizer/deoptimizer.h"
44 #include "src/objects/heap-number-inl.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 // Get the CPU features enabled by the build. For cross compilation the
50 // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
51 // can be defined to enable FPU instructions when building the
52 // snapshot.
CpuFeaturesImpliedByCompiler()53 static unsigned CpuFeaturesImpliedByCompiler() {
54   unsigned answer = 0;
55 #ifdef CAN_USE_FPU_INSTRUCTIONS
56   answer |= 1u << FPU;
57 #endif  // def CAN_USE_FPU_INSTRUCTIONS
58 
59   // If the compiler is allowed to use FPU then we can use FPU too in our code
60   // generation even when generating snapshots.  This won't work for cross
61   // compilation.
62 #if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
63   answer |= 1u << FPU;
64 #endif
65 
66   return answer;
67 }
68 
ProbeImpl(bool cross_compile)69 void CpuFeatures::ProbeImpl(bool cross_compile) {
70   supported_ |= CpuFeaturesImpliedByCompiler();
71 
72   // Only use statically determined features for cross compile (snapshot).
73   if (cross_compile) return;
74 
75     // If the compiler is allowed to use fpu then we can use fpu too in our
76     // code generation.
77 #ifndef __mips__
78   // For the simulator build, use FPU.
79   supported_ |= 1u << FPU;
80 #if defined(_MIPS_ARCH_MIPS64R6) && defined(_MIPS_MSA)
81   supported_ |= 1u << MIPS_SIMD;
82 #endif
83 #else
84   // Probe for additional features at runtime.
85   base::CPU cpu;
86   if (cpu.has_fpu()) supported_ |= 1u << FPU;
87 #if defined(_MIPS_ARCH_MIPS64R6)
88 #if defined(_MIPS_MSA)
89   supported_ |= 1u << MIPS_SIMD;
90 #else
91   if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD;
92 #endif
93 #endif
94 #endif
95 }
96 
PrintTarget()97 void CpuFeatures::PrintTarget() {}
PrintFeatures()98 void CpuFeatures::PrintFeatures() {}
99 
ToNumber(Register reg)100 int ToNumber(Register reg) {
101   DCHECK(reg.is_valid());
102   const int kNumbers[] = {
103       0,   // zero_reg
104       1,   // at
105       2,   // v0
106       3,   // v1
107       4,   // a0
108       5,   // a1
109       6,   // a2
110       7,   // a3
111       8,   // a4
112       9,   // a5
113       10,  // a6
114       11,  // a7
115       12,  // t0
116       13,  // t1
117       14,  // t2
118       15,  // t3
119       16,  // s0
120       17,  // s1
121       18,  // s2
122       19,  // s3
123       20,  // s4
124       21,  // s5
125       22,  // s6
126       23,  // s7
127       24,  // t8
128       25,  // t9
129       26,  // k0
130       27,  // k1
131       28,  // gp
132       29,  // sp
133       30,  // fp
134       31,  // ra
135   };
136   return kNumbers[reg.code()];
137 }
138 
ToRegister(int num)139 Register ToRegister(int num) {
140   DCHECK(num >= 0 && num < kNumRegisters);
141   const Register kRegisters[] = {
142       zero_reg, at, v0, v1, a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t2, t3,
143       s0,       s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra};
144   return kRegisters[num];
145 }
146 
147 // -----------------------------------------------------------------------------
148 // Implementation of RelocInfo.
149 
150 const int RelocInfo::kApplyMask =
151     RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
152     RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
153 
IsCodedSpecially()154 bool RelocInfo::IsCodedSpecially() {
155   // The deserializer needs to know whether a pointer is specially coded.  Being
156   // specially coded on MIPS means that it is a lui/ori instruction, and that is
157   // always the case inside code objects.
158   return true;
159 }
160 
IsInConstantPool()161 bool RelocInfo::IsInConstantPool() { return false; }
162 
wasm_call_tag() const163 uint32_t RelocInfo::wasm_call_tag() const {
164   DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
165   return static_cast<uint32_t>(
166       Assembler::target_address_at(pc_, constant_pool_));
167 }
168 
169 // -----------------------------------------------------------------------------
170 // Implementation of Operand and MemOperand.
171 // See assembler-mips-inl.h for inlined constructors.
172 
Operand(Handle<HeapObject> handle)173 Operand::Operand(Handle<HeapObject> handle)
174     : rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) {
175   value_.immediate = static_cast<intptr_t>(handle.address());
176 }
177 
EmbeddedNumber(double value)178 Operand Operand::EmbeddedNumber(double value) {
179   int32_t smi;
180   if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
181   Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
182   result.is_heap_object_request_ = true;
183   result.value_.heap_object_request = HeapObjectRequest(value);
184   return result;
185 }
186 
EmbeddedStringConstant(const StringConstantBase * str)187 Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) {
188   Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
189   result.is_heap_object_request_ = true;
190   result.value_.heap_object_request = HeapObjectRequest(str);
191   return result;
192 }
193 
MemOperand(Register rm,int32_t offset)194 MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
195   offset_ = offset;
196 }
197 
MemOperand(Register rm,int32_t unit,int32_t multiplier,OffsetAddend offset_addend)198 MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
199                        OffsetAddend offset_addend)
200     : Operand(rm) {
201   offset_ = unit * multiplier + offset_addend;
202 }
203 
AllocateAndInstallRequestedHeapObjects(Isolate * isolate)204 void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
205   DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty());
206   for (auto& request : heap_object_requests_) {
207     Handle<HeapObject> object;
208     switch (request.kind()) {
209       case HeapObjectRequest::kHeapNumber:
210         object = isolate->factory()->NewHeapNumber<AllocationType::kOld>(
211             request.heap_number());
212         break;
213       case HeapObjectRequest::kStringConstant:
214         const StringConstantBase* str = request.string();
215         CHECK_NOT_NULL(str);
216         object = str->AllocateStringConstant(isolate);
217         break;
218     }
219     Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
220     set_target_value_at(pc, reinterpret_cast<uint64_t>(object.location()));
221   }
222 }
223 
224 // -----------------------------------------------------------------------------
225 // Specific instructions, constants, and masks.
226 
227 // daddiu(sp, sp, 8) aka Pop() operation or part of Pop(r)
228 // operations as post-increment of sp.
229 const Instr kPopInstruction = DADDIU | (sp.code() << kRsShift) |
230                               (sp.code() << kRtShift) |
231                               (kPointerSize & kImm16Mask);  // NOLINT
232 // daddiu(sp, sp, -8) part of Push(r) operation as pre-decrement of sp.
233 const Instr kPushInstruction = DADDIU | (sp.code() << kRsShift) |
234                                (sp.code() << kRtShift) |
235                                (-kPointerSize & kImm16Mask);  // NOLINT
236 // Sd(r, MemOperand(sp, 0))
237 const Instr kPushRegPattern =
238     SD | (sp.code() << kRsShift) | (0 & kImm16Mask);  // NOLINT
239 //  Ld(r, MemOperand(sp, 0))
240 const Instr kPopRegPattern =
241     LD | (sp.code() << kRsShift) | (0 & kImm16Mask);  // NOLINT
242 
243 const Instr kLwRegFpOffsetPattern =
244     LW | (fp.code() << kRsShift) | (0 & kImm16Mask);  // NOLINT
245 
246 const Instr kSwRegFpOffsetPattern =
247     SW | (fp.code() << kRsShift) | (0 & kImm16Mask);  // NOLINT
248 
249 const Instr kLwRegFpNegOffsetPattern =
250     LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);  // NOLINT
251 
252 const Instr kSwRegFpNegOffsetPattern =
253     SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);  // NOLINT
254 // A mask for the Rt register for push, pop, lw, sw instructions.
255 const Instr kRtMask = kRtFieldMask;
256 const Instr kLwSwInstrTypeMask = 0xFFE00000;
257 const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
258 const Instr kLwSwOffsetMask = kImm16Mask;
259 
Assembler(const AssemblerOptions & options,std::unique_ptr<AssemblerBuffer> buffer)260 Assembler::Assembler(const AssemblerOptions& options,
261                      std::unique_ptr<AssemblerBuffer> buffer)
262     : AssemblerBase(options, std::move(buffer)),
263       scratch_register_list_(at.bit()) {
264   reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
265 
266   last_trampoline_pool_end_ = 0;
267   no_trampoline_pool_before_ = 0;
268   trampoline_pool_blocked_nesting_ = 0;
269   // We leave space (16 * kTrampolineSlotsSize)
270   // for BlockTrampolinePoolScope buffer.
271   next_buffer_check_ = FLAG_force_long_branches
272                            ? kMaxInt
273                            : kMaxBranchOffset - kTrampolineSlotsSize * 16;
274   internal_trampoline_exception_ = false;
275   last_bound_pos_ = 0;
276 
277   trampoline_emitted_ = FLAG_force_long_branches;
278   unbound_labels_count_ = 0;
279   block_buffer_growth_ = false;
280 }
281 
GetCode(Isolate * isolate,CodeDesc * desc,SafepointTableBuilder * safepoint_table_builder,int handler_table_offset)282 void Assembler::GetCode(Isolate* isolate, CodeDesc* desc,
283                         SafepointTableBuilder* safepoint_table_builder,
284                         int handler_table_offset) {
285   EmitForbiddenSlotInstruction();
286 
287   int code_comments_size = WriteCodeComments();
288 
289   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
290 
291   AllocateAndInstallRequestedHeapObjects(isolate);
292 
293   // Set up code descriptor.
294   // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
295   // this point to make CodeDesc initialization less fiddly.
296 
297   static constexpr int kConstantPoolSize = 0;
298   const int instruction_size = pc_offset();
299   const int code_comments_offset = instruction_size - code_comments_size;
300   const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
301   const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
302                                         ? constant_pool_offset
303                                         : handler_table_offset;
304   const int safepoint_table_offset =
305       (safepoint_table_builder == kNoSafepointTable)
306           ? handler_table_offset2
307           : safepoint_table_builder->GetCodeOffset();
308   const int reloc_info_offset =
309       static_cast<int>(reloc_info_writer.pos() - buffer_->start());
310   CodeDesc::Initialize(desc, this, safepoint_table_offset,
311                        handler_table_offset2, constant_pool_offset,
312                        code_comments_offset, reloc_info_offset);
313 }
314 
Align(int m)315 void Assembler::Align(int m) {
316   DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
317   EmitForbiddenSlotInstruction();
318   while ((pc_offset() & (m - 1)) != 0) {
319     nop();
320   }
321 }
322 
CodeTargetAlign()323 void Assembler::CodeTargetAlign() {
324   // No advantage to aligning branch/call targets to more than
325   // single instruction, that I am aware of.
326   Align(4);
327 }
328 
GetRtReg(Instr instr)329 Register Assembler::GetRtReg(Instr instr) {
330   return Register::from_code((instr & kRtFieldMask) >> kRtShift);
331 }
332 
GetRsReg(Instr instr)333 Register Assembler::GetRsReg(Instr instr) {
334   return Register::from_code((instr & kRsFieldMask) >> kRsShift);
335 }
336 
GetRdReg(Instr instr)337 Register Assembler::GetRdReg(Instr instr) {
338   return Register::from_code((instr & kRdFieldMask) >> kRdShift);
339 }
340 
GetRt(Instr instr)341 uint32_t Assembler::GetRt(Instr instr) {
342   return (instr & kRtFieldMask) >> kRtShift;
343 }
344 
GetRtField(Instr instr)345 uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; }
346 
GetRs(Instr instr)347 uint32_t Assembler::GetRs(Instr instr) {
348   return (instr & kRsFieldMask) >> kRsShift;
349 }
350 
GetRsField(Instr instr)351 uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; }
352 
GetRd(Instr instr)353 uint32_t Assembler::GetRd(Instr instr) {
354   return (instr & kRdFieldMask) >> kRdShift;
355 }
356 
GetRdField(Instr instr)357 uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; }
358 
GetSa(Instr instr)359 uint32_t Assembler::GetSa(Instr instr) {
360   return (instr & kSaFieldMask) >> kSaShift;
361 }
362 
GetSaField(Instr instr)363 uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; }
364 
GetOpcodeField(Instr instr)365 uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; }
366 
GetFunction(Instr instr)367 uint32_t Assembler::GetFunction(Instr instr) {
368   return (instr & kFunctionFieldMask) >> kFunctionShift;
369 }
370 
GetFunctionField(Instr instr)371 uint32_t Assembler::GetFunctionField(Instr instr) {
372   return instr & kFunctionFieldMask;
373 }
374 
GetImmediate16(Instr instr)375 uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; }
376 
GetLabelConst(Instr instr)377 uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; }
378 
IsPop(Instr instr)379 bool Assembler::IsPop(Instr instr) {
380   return (instr & ~kRtMask) == kPopRegPattern;
381 }
382 
IsPush(Instr instr)383 bool Assembler::IsPush(Instr instr) {
384   return (instr & ~kRtMask) == kPushRegPattern;
385 }
386 
IsSwRegFpOffset(Instr instr)387 bool Assembler::IsSwRegFpOffset(Instr instr) {
388   return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
389 }
390 
IsLwRegFpOffset(Instr instr)391 bool Assembler::IsLwRegFpOffset(Instr instr) {
392   return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
393 }
394 
IsSwRegFpNegOffset(Instr instr)395 bool Assembler::IsSwRegFpNegOffset(Instr instr) {
396   return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
397           kSwRegFpNegOffsetPattern);
398 }
399 
IsLwRegFpNegOffset(Instr instr)400 bool Assembler::IsLwRegFpNegOffset(Instr instr) {
401   return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
402           kLwRegFpNegOffsetPattern);
403 }
404 
405 // Labels refer to positions in the (to be) generated code.
406 // There are bound, linked, and unused labels.
407 //
408 // Bound labels refer to known positions in the already
409 // generated code. pos() is the position the label refers to.
410 //
411 // Linked labels refer to unknown positions in the code
412 // to be generated; pos() is the position of the last
413 // instruction using the label.
414 
415 // The link chain is terminated by a value in the instruction of -1,
416 // which is an otherwise illegal value (branch -1 is inf loop).
417 // The instruction 16-bit offset field addresses 32-bit words, but in
418 // code is conv to an 18-bit value addressing bytes, hence the -4 value.
419 
420 const int kEndOfChain = -4;
421 // Determines the end of the Jump chain (a subset of the label link chain).
422 const int kEndOfJumpChain = 0;
423 
IsMsaBranch(Instr instr)424 bool Assembler::IsMsaBranch(Instr instr) {
425   uint32_t opcode = GetOpcodeField(instr);
426   uint32_t rs_field = GetRsField(instr);
427   if (opcode == COP1) {
428     switch (rs_field) {
429       case BZ_V:
430       case BZ_B:
431       case BZ_H:
432       case BZ_W:
433       case BZ_D:
434       case BNZ_V:
435       case BNZ_B:
436       case BNZ_H:
437       case BNZ_W:
438       case BNZ_D:
439         return true;
440       default:
441         return false;
442     }
443   } else {
444     return false;
445   }
446 }
447 
IsBranch(Instr instr)448 bool Assembler::IsBranch(Instr instr) {
449   uint32_t opcode = GetOpcodeField(instr);
450   uint32_t rt_field = GetRtField(instr);
451   uint32_t rs_field = GetRsField(instr);
452   // Checks if the instruction is a branch.
453   bool isBranch =
454       opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
455       opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
456       (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
457                             rt_field == BLTZAL || rt_field == BGEZAL)) ||
458       (opcode == COP1 && rs_field == BC1) ||  // Coprocessor branch.
459       (opcode == COP1 && rs_field == BC1EQZ) ||
460       (opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr);
461   if (!isBranch && kArchVariant == kMips64r6) {
462     // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
463     // POP30 (BNVC, BNEC, BNEZALC) are branch ops.
464     isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
465                 opcode == BALC ||
466                 (opcode == POP66 && rs_field != 0) ||  // BEQZC
467                 (opcode == POP76 && rs_field != 0);    // BNEZC
468   }
469   return isBranch;
470 }
471 
IsBc(Instr instr)472 bool Assembler::IsBc(Instr instr) {
473   uint32_t opcode = GetOpcodeField(instr);
474   // Checks if the instruction is a BC or BALC.
475   return opcode == BC || opcode == BALC;
476 }
477 
IsNal(Instr instr)478 bool Assembler::IsNal(Instr instr) {
479   uint32_t opcode = GetOpcodeField(instr);
480   uint32_t rt_field = GetRtField(instr);
481   uint32_t rs_field = GetRsField(instr);
482   return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0;
483 }
484 
IsBzc(Instr instr)485 bool Assembler::IsBzc(Instr instr) {
486   uint32_t opcode = GetOpcodeField(instr);
487   // Checks if the instruction is BEQZC or BNEZC.
488   return (opcode == POP66 && GetRsField(instr) != 0) ||
489          (opcode == POP76 && GetRsField(instr) != 0);
490 }
491 
IsEmittedConstant(Instr instr)492 bool Assembler::IsEmittedConstant(Instr instr) {
493   uint32_t label_constant = GetLabelConst(instr);
494   return label_constant == 0;  // Emitted label const in reg-exp engine.
495 }
496 
IsBeq(Instr instr)497 bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; }
498 
IsBne(Instr instr)499 bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; }
500 
IsBeqzc(Instr instr)501 bool Assembler::IsBeqzc(Instr instr) {
502   uint32_t opcode = GetOpcodeField(instr);
503   return opcode == POP66 && GetRsField(instr) != 0;
504 }
505 
IsBnezc(Instr instr)506 bool Assembler::IsBnezc(Instr instr) {
507   uint32_t opcode = GetOpcodeField(instr);
508   return opcode == POP76 && GetRsField(instr) != 0;
509 }
510 
IsBeqc(Instr instr)511 bool Assembler::IsBeqc(Instr instr) {
512   uint32_t opcode = GetOpcodeField(instr);
513   uint32_t rs = GetRsField(instr);
514   uint32_t rt = GetRtField(instr);
515   return opcode == POP10 && rs != 0 && rs < rt;  // && rt != 0
516 }
517 
IsBnec(Instr instr)518 bool Assembler::IsBnec(Instr instr) {
519   uint32_t opcode = GetOpcodeField(instr);
520   uint32_t rs = GetRsField(instr);
521   uint32_t rt = GetRtField(instr);
522   return opcode == POP30 && rs != 0 && rs < rt;  // && rt != 0
523 }
524 
IsMov(Instr instr,Register rd,Register rs)525 bool Assembler::IsMov(Instr instr, Register rd, Register rs) {
526   uint32_t opcode = GetOpcodeField(instr);
527   uint32_t rd_field = GetRd(instr);
528   uint32_t rs_field = GetRs(instr);
529   uint32_t rt_field = GetRt(instr);
530   uint32_t rd_reg = static_cast<uint32_t>(rd.code());
531   uint32_t rs_reg = static_cast<uint32_t>(rs.code());
532   uint32_t function_field = GetFunctionField(instr);
533   // Checks if the instruction is a OR with zero_reg argument (aka MOV).
534   bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg &&
535              rs_field == rs_reg && rt_field == 0;
536   return res;
537 }
538 
IsJump(Instr instr)539 bool Assembler::IsJump(Instr instr) {
540   uint32_t opcode = GetOpcodeField(instr);
541   uint32_t rt_field = GetRtField(instr);
542   uint32_t rd_field = GetRdField(instr);
543   uint32_t function_field = GetFunctionField(instr);
544   // Checks if the instruction is a jump.
545   return opcode == J || opcode == JAL ||
546          (opcode == SPECIAL && rt_field == 0 &&
547           ((function_field == JALR) ||
548            (rd_field == 0 && (function_field == JR))));
549 }
550 
IsJ(Instr instr)551 bool Assembler::IsJ(Instr instr) {
552   uint32_t opcode = GetOpcodeField(instr);
553   // Checks if the instruction is a jump.
554   return opcode == J;
555 }
556 
IsJal(Instr instr)557 bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; }
558 
IsJr(Instr instr)559 bool Assembler::IsJr(Instr instr) {
560   return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
561 }
562 
IsJalr(Instr instr)563 bool Assembler::IsJalr(Instr instr) {
564   return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR;
565 }
566 
IsLui(Instr instr)567 bool Assembler::IsLui(Instr instr) {
568   uint32_t opcode = GetOpcodeField(instr);
569   // Checks if the instruction is a load upper immediate.
570   return opcode == LUI;
571 }
572 
IsOri(Instr instr)573 bool Assembler::IsOri(Instr instr) {
574   uint32_t opcode = GetOpcodeField(instr);
575   // Checks if the instruction is a load upper immediate.
576   return opcode == ORI;
577 }
578 
IsNop(Instr instr,unsigned int type)579 bool Assembler::IsNop(Instr instr, unsigned int type) {
580   // See Assembler::nop(type).
581   DCHECK_LT(type, 32);
582   uint32_t opcode = GetOpcodeField(instr);
583   uint32_t function = GetFunctionField(instr);
584   uint32_t rt = GetRt(instr);
585   uint32_t rd = GetRd(instr);
586   uint32_t sa = GetSa(instr);
587 
588   // Traditional mips nop == sll(zero_reg, zero_reg, 0)
589   // When marking non-zero type, use sll(zero_reg, at, type)
590   // to avoid use of mips ssnop and ehb special encodings
591   // of the sll instruction.
592 
593   Register nop_rt_reg = (type == 0) ? zero_reg : at;
594   bool ret = (opcode == SPECIAL && function == SLL &&
595               rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
596               rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) && sa == type);
597 
598   return ret;
599 }
600 
GetBranchOffset(Instr instr)601 int32_t Assembler::GetBranchOffset(Instr instr) {
602   DCHECK(IsBranch(instr));
603   return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
604 }
605 
IsLw(Instr instr)606 bool Assembler::IsLw(Instr instr) {
607   return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
608 }
609 
GetLwOffset(Instr instr)610 int16_t Assembler::GetLwOffset(Instr instr) {
611   DCHECK(IsLw(instr));
612   return ((instr & kImm16Mask));
613 }
614 
SetLwOffset(Instr instr,int16_t offset)615 Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
616   DCHECK(IsLw(instr));
617 
618   // We actually create a new lw instruction based on the original one.
619   Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
620                      (offset & kImm16Mask);
621 
622   return temp_instr;
623 }
624 
IsSw(Instr instr)625 bool Assembler::IsSw(Instr instr) {
626   return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
627 }
628 
SetSwOffset(Instr instr,int16_t offset)629 Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
630   DCHECK(IsSw(instr));
631   return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
632 }
633 
IsAddImmediate(Instr instr)634 bool Assembler::IsAddImmediate(Instr instr) {
635   return ((instr & kOpcodeMask) == ADDIU || (instr & kOpcodeMask) == DADDIU);
636 }
637 
SetAddImmediateOffset(Instr instr,int16_t offset)638 Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
639   DCHECK(IsAddImmediate(instr));
640   return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
641 }
642 
IsAndImmediate(Instr instr)643 bool Assembler::IsAndImmediate(Instr instr) {
644   return GetOpcodeField(instr) == ANDI;
645 }
646 
OffsetSizeInBits(Instr instr)647 static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
648   if (kArchVariant == kMips64r6) {
649     if (Assembler::IsBc(instr)) {
650       return Assembler::OffsetSize::kOffset26;
651     } else if (Assembler::IsBzc(instr)) {
652       return Assembler::OffsetSize::kOffset21;
653     }
654   }
655   return Assembler::OffsetSize::kOffset16;
656 }
657 
AddBranchOffset(int pos,Instr instr)658 static inline int32_t AddBranchOffset(int pos, Instr instr) {
659   int bits = OffsetSizeInBits(instr);
660   const int32_t mask = (1 << bits) - 1;
661   bits = 32 - bits;
662 
663   // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
664   // the compiler uses arithmetic shifts for signed integers.
665   int32_t imm = ((instr & mask) << bits) >> (bits - 2);
666 
667   if (imm == kEndOfChain) {
668     // EndOfChain sentinel is returned directly, not relative to pc or pos.
669     return kEndOfChain;
670   } else {
671     return pos + Assembler::kBranchPCOffset + imm;
672   }
673 }
674 
target_at(int pos,bool is_internal)675 int Assembler::target_at(int pos, bool is_internal) {
676   if (is_internal) {
677     int64_t* p = reinterpret_cast<int64_t*>(buffer_start_ + pos);
678     int64_t address = *p;
679     if (address == kEndOfJumpChain) {
680       return kEndOfChain;
681     } else {
682       int64_t instr_address = reinterpret_cast<int64_t>(p);
683       DCHECK(instr_address - address < INT_MAX);
684       int delta = static_cast<int>(instr_address - address);
685       DCHECK(pos > delta);
686       return pos - delta;
687     }
688   }
689   Instr instr = instr_at(pos);
690   if ((instr & ~kImm16Mask) == 0) {
691     // Emitted label constant, not part of a branch.
692     if (instr == 0) {
693       return kEndOfChain;
694     } else {
695       int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
696       return (imm18 + pos);
697     }
698   }
699   // Check we have a branch or jump instruction.
700   DCHECK(IsBranch(instr) || IsJ(instr) || IsJal(instr) || IsLui(instr) ||
701          IsMov(instr, t8, ra));
702   // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
703   // the compiler uses arithmetic shifts for signed integers.
704   if (IsBranch(instr)) {
705     return AddBranchOffset(pos, instr);
706   } else if (IsMov(instr, t8, ra)) {
707     int32_t imm32;
708     Instr instr_lui = instr_at(pos + 2 * kInstrSize);
709     Instr instr_ori = instr_at(pos + 3 * kInstrSize);
710     DCHECK(IsLui(instr_lui));
711     DCHECK(IsOri(instr_ori));
712     imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
713     imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
714     if (imm32 == kEndOfJumpChain) {
715       // EndOfChain sentinel is returned directly, not relative to pc or pos.
716       return kEndOfChain;
717     }
718     return pos + Assembler::kLongBranchPCOffset + imm32;
719   } else if (IsLui(instr)) {
720     if (IsNal(instr_at(pos + kInstrSize))) {
721       int32_t imm32;
722       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
723       Instr instr_ori = instr_at(pos + 2 * kInstrSize);
724       DCHECK(IsLui(instr_lui));
725       DCHECK(IsOri(instr_ori));
726       imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
727       imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
728       if (imm32 == kEndOfJumpChain) {
729         // EndOfChain sentinel is returned directly, not relative to pc or pos.
730         return kEndOfChain;
731       }
732       return pos + Assembler::kLongBranchPCOffset + imm32;
733     } else {
734       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
735       Instr instr_ori = instr_at(pos + 1 * kInstrSize);
736       Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
737       DCHECK(IsOri(instr_ori));
738       DCHECK(IsOri(instr_ori2));
739 
740       // TODO(plind) create named constants for shift values.
741       int64_t imm = static_cast<int64_t>(instr_lui & kImm16Mask) << 48;
742       imm |= static_cast<int64_t>(instr_ori & kImm16Mask) << 32;
743       imm |= static_cast<int64_t>(instr_ori2 & kImm16Mask) << 16;
744       // Sign extend address;
745       imm >>= 16;
746 
747       if (imm == kEndOfJumpChain) {
748         // EndOfChain sentinel is returned directly, not relative to pc or pos.
749         return kEndOfChain;
750       } else {
751         uint64_t instr_address = reinterpret_cast<int64_t>(buffer_start_ + pos);
752         DCHECK(instr_address - imm < INT_MAX);
753         int delta = static_cast<int>(instr_address - imm);
754         DCHECK(pos > delta);
755         return pos - delta;
756       }
757     }
758   } else {
759     DCHECK(IsJ(instr) || IsJal(instr));
760     int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
761     if (imm28 == kEndOfJumpChain) {
762       // EndOfChain sentinel is returned directly, not relative to pc or pos.
763       return kEndOfChain;
764     } else {
765       // Sign extend 28-bit offset.
766       int32_t delta = static_cast<int32_t>((imm28 << 4) >> 4);
767       return pos + delta;
768     }
769   }
770 }
771 
SetBranchOffset(int32_t pos,int32_t target_pos,Instr instr)772 static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
773                                     Instr instr) {
774   int32_t bits = OffsetSizeInBits(instr);
775   int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
776   DCHECK_EQ(imm & 3, 0);
777   imm >>= 2;
778 
779   const int32_t mask = (1 << bits) - 1;
780   instr &= ~mask;
781   DCHECK(is_intn(imm, bits));
782 
783   return instr | (imm & mask);
784 }
785 
target_at_put(int pos,int target_pos,bool is_internal)786 void Assembler::target_at_put(int pos, int target_pos, bool is_internal) {
787   if (is_internal) {
788     uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
789     *reinterpret_cast<uint64_t*>(buffer_start_ + pos) = imm;
790     return;
791   }
792   Instr instr = instr_at(pos);
793   if ((instr & ~kImm16Mask) == 0) {
794     DCHECK(target_pos == kEndOfChain || target_pos >= 0);
795     // Emitted label constant, not part of a branch.
796     // Make label relative to Code pointer of generated Code object.
797     instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
798     return;
799   }
800 
801   if (IsBranch(instr)) {
802     instr = SetBranchOffset(pos, target_pos, instr);
803     instr_at_put(pos, instr);
804   } else if (IsLui(instr)) {
805     if (IsNal(instr_at(pos + kInstrSize))) {
806       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
807       Instr instr_ori = instr_at(pos + 2 * kInstrSize);
808       DCHECK(IsLui(instr_lui));
809       DCHECK(IsOri(instr_ori));
810       int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
811       DCHECK_EQ(imm & 3, 0);
812       if (is_int16(imm + Assembler::kLongBranchPCOffset -
813                    Assembler::kBranchPCOffset)) {
814         // Optimize by converting to regular branch and link with 16-bit
815         // offset.
816         Instr instr_b = REGIMM | BGEZAL;  // Branch and link.
817         instr_b = SetBranchOffset(pos, target_pos, instr_b);
818         // Correct ra register to point to one instruction after jalr from
819         // TurboAssembler::BranchAndLinkLong.
820         Instr instr_a = DADDIU | ra.code() << kRsShift | ra.code() << kRtShift |
821                         kOptimizedBranchAndLinkLongReturnOffset;
822 
823         instr_at_put(pos, instr_b);
824         instr_at_put(pos + 1 * kInstrSize, instr_a);
825       } else {
826         instr_lui &= ~kImm16Mask;
827         instr_ori &= ~kImm16Mask;
828 
829         instr_at_put(pos + 0 * kInstrSize,
830                      instr_lui | ((imm >> kLuiShift) & kImm16Mask));
831         instr_at_put(pos + 2 * kInstrSize, instr_ori | (imm & kImm16Mask));
832       }
833     } else {
834       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
835       Instr instr_ori = instr_at(pos + 1 * kInstrSize);
836       Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
837       DCHECK(IsOri(instr_ori));
838       DCHECK(IsOri(instr_ori2));
839 
840       uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
841       DCHECK_EQ(imm & 3, 0);
842 
843       instr_lui &= ~kImm16Mask;
844       instr_ori &= ~kImm16Mask;
845       instr_ori2 &= ~kImm16Mask;
846 
847       instr_at_put(pos + 0 * kInstrSize,
848                    instr_lui | ((imm >> 32) & kImm16Mask));
849       instr_at_put(pos + 1 * kInstrSize,
850                    instr_ori | ((imm >> 16) & kImm16Mask));
851       instr_at_put(pos + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask));
852     }
853   } else if (IsMov(instr, t8, ra)) {
854     Instr instr_lui = instr_at(pos + 2 * kInstrSize);
855     Instr instr_ori = instr_at(pos + 3 * kInstrSize);
856     DCHECK(IsLui(instr_lui));
857     DCHECK(IsOri(instr_ori));
858 
859     int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset);
860 
861     if (is_int16(imm_short)) {
862       // Optimize by converting to regular branch with 16-bit
863       // offset
864       Instr instr_b = BEQ;
865       instr_b = SetBranchOffset(pos, target_pos, instr_b);
866 
867       Instr instr_j = instr_at(pos + 5 * kInstrSize);
868       Instr instr_branch_delay;
869 
870       if (IsJump(instr_j)) {
871         instr_branch_delay = instr_at(pos + 6 * kInstrSize);
872       } else {
873         instr_branch_delay = instr_at(pos + 7 * kInstrSize);
874       }
875       instr_at_put(pos, instr_b);
876       instr_at_put(pos + 1 * kInstrSize, instr_branch_delay);
877     } else {
878       int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
879       DCHECK_EQ(imm & 3, 0);
880 
881       instr_lui &= ~kImm16Mask;
882       instr_ori &= ~kImm16Mask;
883 
884       instr_at_put(pos + 2 * kInstrSize,
885                    instr_lui | ((imm >> kLuiShift) & kImm16Mask));
886       instr_at_put(pos + 3 * kInstrSize, instr_ori | (imm & kImm16Mask));
887     }
888   } else if (IsJ(instr) || IsJal(instr)) {
889     int32_t imm28 = target_pos - pos;
890     DCHECK_EQ(imm28 & 3, 0);
891 
892     uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
893     DCHECK(is_uint26(imm26));
894     // Place 26-bit signed offset with markings.
895     // When code is committed it will be resolved to j/jal.
896     int32_t mark = IsJ(instr) ? kJRawMark : kJalRawMark;
897     instr_at_put(pos, mark | (imm26 & kImm26Mask));
898   } else {
899     int32_t imm28 = target_pos - pos;
900     DCHECK_EQ(imm28 & 3, 0);
901 
902     uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
903     DCHECK(is_uint26(imm26));
904     // Place raw 26-bit signed offset.
905     // When code is committed it will be resolved to j/jal.
906     instr &= ~kImm26Mask;
907     instr_at_put(pos, instr | (imm26 & kImm26Mask));
908   }
909 }
910 
print(const Label * L)911 void Assembler::print(const Label* L) {
912   if (L->is_unused()) {
913     PrintF("unused label\n");
914   } else if (L->is_bound()) {
915     PrintF("bound label to %d\n", L->pos());
916   } else if (L->is_linked()) {
917     Label l;
918     l.link_to(L->pos());
919     PrintF("unbound label");
920     while (l.is_linked()) {
921       PrintF("@ %d ", l.pos());
922       Instr instr = instr_at(l.pos());
923       if ((instr & ~kImm16Mask) == 0) {
924         PrintF("value\n");
925       } else {
926         PrintF("%d\n", instr);
927       }
928       next(&l, is_internal_reference(&l));
929     }
930   } else {
931     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
932   }
933 }
934 
bind_to(Label * L,int pos)935 void Assembler::bind_to(Label* L, int pos) {
936   DCHECK(0 <= pos && pos <= pc_offset());  // Must have valid binding position.
937   int trampoline_pos = kInvalidSlotPos;
938   bool is_internal = false;
939   if (L->is_linked() && !trampoline_emitted_) {
940     unbound_labels_count_--;
941     if (!is_internal_reference(L)) {
942       next_buffer_check_ += kTrampolineSlotsSize;
943     }
944   }
945 
946   while (L->is_linked()) {
947     int fixup_pos = L->pos();
948     int dist = pos - fixup_pos;
949     is_internal = is_internal_reference(L);
950     next(L, is_internal);  // Call next before overwriting link with target at
951                            // fixup_pos.
952     Instr instr = instr_at(fixup_pos);
953     if (is_internal) {
954       target_at_put(fixup_pos, pos, is_internal);
955     } else {
956       if (IsBranch(instr)) {
957         int branch_offset = BranchOffset(instr);
958         if (dist > branch_offset) {
959           if (trampoline_pos == kInvalidSlotPos) {
960             trampoline_pos = get_trampoline_entry(fixup_pos);
961             CHECK_NE(trampoline_pos, kInvalidSlotPos);
962           }
963           CHECK((trampoline_pos - fixup_pos) <= branch_offset);
964           target_at_put(fixup_pos, trampoline_pos, false);
965           fixup_pos = trampoline_pos;
966         }
967         target_at_put(fixup_pos, pos, false);
968       } else {
969         DCHECK(IsJ(instr) || IsJal(instr) || IsLui(instr) ||
970                IsEmittedConstant(instr) || IsMov(instr, t8, ra));
971         target_at_put(fixup_pos, pos, false);
972       }
973     }
974   }
975   L->bind_to(pos);
976 
977   // Keep track of the last bound label so we don't eliminate any instructions
978   // before a bound label.
979   if (pos > last_bound_pos_) last_bound_pos_ = pos;
980 }
981 
bind(Label * L)982 void Assembler::bind(Label* L) {
983   DCHECK(!L->is_bound());  // Label can only be bound once.
984   bind_to(L, pc_offset());
985 }
986 
next(Label * L,bool is_internal)987 void Assembler::next(Label* L, bool is_internal) {
988   DCHECK(L->is_linked());
989   int link = target_at(L->pos(), is_internal);
990   if (link == kEndOfChain) {
991     L->Unuse();
992   } else {
993     DCHECK_GE(link, 0);
994     L->link_to(link);
995   }
996 }
997 
is_near(Label * L)998 bool Assembler::is_near(Label* L) {
999   DCHECK(L->is_bound());
1000   return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
1001 }
1002 
is_near(Label * L,OffsetSize bits)1003 bool Assembler::is_near(Label* L, OffsetSize bits) {
1004   if (L == nullptr || !L->is_bound()) return true;
1005   return ((pc_offset() - L->pos()) <
1006           (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize);
1007 }
1008 
is_near_branch(Label * L)1009 bool Assembler::is_near_branch(Label* L) {
1010   DCHECK(L->is_bound());
1011   return kArchVariant == kMips64r6 ? is_near_r6(L) : is_near_pre_r6(L);
1012 }
1013 
BranchOffset(Instr instr)1014 int Assembler::BranchOffset(Instr instr) {
1015   // At pre-R6 and for other R6 branches the offset is 16 bits.
1016   int bits = OffsetSize::kOffset16;
1017 
1018   if (kArchVariant == kMips64r6) {
1019     uint32_t opcode = GetOpcodeField(instr);
1020     switch (opcode) {
1021       // Checks BC or BALC.
1022       case BC:
1023       case BALC:
1024         bits = OffsetSize::kOffset26;
1025         break;
1026 
1027       // Checks BEQZC or BNEZC.
1028       case POP66:
1029       case POP76:
1030         if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
1031         break;
1032       default:
1033         break;
1034     }
1035   }
1036 
1037   return (1 << (bits + 2 - 1)) - 1;
1038 }
1039 
1040 // We have to use a temporary register for things that can be relocated even
1041 // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
1042 // space.  There is no guarantee that the relocated location can be similarly
1043 // encoded.
MustUseReg(RelocInfo::Mode rmode)1044 bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
1045   return !RelocInfo::IsNone(rmode);
1046 }
1047 
GenInstrRegister(Opcode opcode,Register rs,Register rt,Register rd,uint16_t sa,SecondaryField func)1048 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1049                                  Register rd, uint16_t sa,
1050                                  SecondaryField func) {
1051   DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
1052   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1053                 (rd.code() << kRdShift) | (sa << kSaShift) | func;
1054   emit(instr);
1055 }
1056 
GenInstrRegister(Opcode opcode,Register rs,Register rt,uint16_t msb,uint16_t lsb,SecondaryField func)1057 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1058                                  uint16_t msb, uint16_t lsb,
1059                                  SecondaryField func) {
1060   DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
1061   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1062                 (msb << kRdShift) | (lsb << kSaShift) | func;
1063   emit(instr);
1064 }
1065 
GenInstrRegister(Opcode opcode,SecondaryField fmt,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1066 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt,
1067                                  FPURegister ft, FPURegister fs, FPURegister fd,
1068                                  SecondaryField func) {
1069   DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
1070   Instr instr = opcode | fmt | (ft.code() << kFtShift) |
1071                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1072   emit(instr);
1073 }
1074 
GenInstrRegister(Opcode opcode,FPURegister fr,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1075 void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1076                                  FPURegister fs, FPURegister fd,
1077                                  SecondaryField func) {
1078   DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
1079   Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) |
1080                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1081   emit(instr);
1082 }
1083 
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPURegister fs,FPURegister fd,SecondaryField func)1084 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1085                                  FPURegister fs, FPURegister fd,
1086                                  SecondaryField func) {
1087   DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
1088   Instr instr = opcode | fmt | (rt.code() << kRtShift) |
1089                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1090   emit(instr);
1091 }
1092 
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPUControlRegister fs,SecondaryField func)1093 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1094                                  FPUControlRegister fs, SecondaryField func) {
1095   DCHECK(fs.is_valid() && rt.is_valid());
1096   Instr instr =
1097       opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
1098   emit(instr);
1099 }
1100 
1101 // Instructions with immediate value.
1102 // Registers are in the order of the instruction encoding, from left to right.
GenInstrImmediate(Opcode opcode,Register rs,Register rt,int32_t j,CompactBranchType is_compact_branch)1103 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
1104                                   int32_t j,
1105                                   CompactBranchType is_compact_branch) {
1106   DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
1107   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1108                 (j & kImm16Mask);
1109   emit(instr, is_compact_branch);
1110 }
1111 
GenInstrImmediate(Opcode opcode,Register base,Register rt,int32_t offset9,int bit6,SecondaryField func)1112 void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt,
1113                                   int32_t offset9, int bit6,
1114                                   SecondaryField func) {
1115   DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) &&
1116          is_uint1(bit6));
1117   Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) |
1118                 ((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift |
1119                 func;
1120   emit(instr);
1121 }
1122 
GenInstrImmediate(Opcode opcode,Register rs,SecondaryField SF,int32_t j,CompactBranchType is_compact_branch)1123 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
1124                                   int32_t j,
1125                                   CompactBranchType is_compact_branch) {
1126   DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
1127   Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
1128   emit(instr, is_compact_branch);
1129 }
1130 
GenInstrImmediate(Opcode opcode,Register rs,FPURegister ft,int32_t j,CompactBranchType is_compact_branch)1131 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
1132                                   int32_t j,
1133                                   CompactBranchType is_compact_branch) {
1134   DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
1135   Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
1136                 (j & kImm16Mask);
1137   emit(instr, is_compact_branch);
1138 }
1139 
GenInstrImmediate(Opcode opcode,Register rs,int32_t offset21,CompactBranchType is_compact_branch)1140 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
1141                                   CompactBranchType is_compact_branch) {
1142   DCHECK(rs.is_valid() && (is_int21(offset21)));
1143   Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1144   emit(instr, is_compact_branch);
1145 }
1146 
GenInstrImmediate(Opcode opcode,Register rs,uint32_t offset21)1147 void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
1148                                   uint32_t offset21) {
1149   DCHECK(rs.is_valid() && (is_uint21(offset21)));
1150   Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1151   emit(instr);
1152 }
1153 
GenInstrImmediate(Opcode opcode,int32_t offset26,CompactBranchType is_compact_branch)1154 void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
1155                                   CompactBranchType is_compact_branch) {
1156   DCHECK(is_int26(offset26));
1157   Instr instr = opcode | (offset26 & kImm26Mask);
1158   emit(instr, is_compact_branch);
1159 }
1160 
GenInstrJump(Opcode opcode,uint32_t address)1161 void Assembler::GenInstrJump(Opcode opcode, uint32_t address) {
1162   BlockTrampolinePoolScope block_trampoline_pool(this);
1163   DCHECK(is_uint26(address));
1164   Instr instr = opcode | address;
1165   emit(instr);
1166   BlockTrampolinePoolFor(1);  // For associated delay slot.
1167 }
1168 
1169 // MSA instructions
GenInstrMsaI8(SecondaryField operation,uint32_t imm8,MSARegister ws,MSARegister wd)1170 void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8,
1171                               MSARegister ws, MSARegister wd) {
1172   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1173   DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8));
1174   Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) |
1175                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1176   emit(instr);
1177 }
1178 
GenInstrMsaI5(SecondaryField operation,SecondaryField df,int32_t imm5,MSARegister ws,MSARegister wd)1179 void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df,
1180                               int32_t imm5, MSARegister ws, MSARegister wd) {
1181   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1182   DCHECK(ws.is_valid() && wd.is_valid());
1183   DCHECK((operation == MAXI_S) || (operation == MINI_S) ||
1184                  (operation == CEQI) || (operation == CLTI_S) ||
1185                  (operation == CLEI_S)
1186              ? is_int5(imm5)
1187              : is_uint5(imm5));
1188   Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) |
1189                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1190   emit(instr);
1191 }
1192 
GenInstrMsaBit(SecondaryField operation,SecondaryField df,uint32_t m,MSARegister ws,MSARegister wd)1193 void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df,
1194                                uint32_t m, MSARegister ws, MSARegister wd) {
1195   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1196   DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m));
1197   Instr instr = MSA | operation | df | (m << kWtShift) |
1198                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1199   emit(instr);
1200 }
1201 
GenInstrMsaI10(SecondaryField operation,SecondaryField df,int32_t imm10,MSARegister wd)1202 void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1203                                int32_t imm10, MSARegister wd) {
1204   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1205   DCHECK(wd.is_valid() && is_int10(imm10));
1206   Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) |
1207                 (wd.code() << kWdShift);
1208   emit(instr);
1209 }
1210 
1211 template <typename RegType>
GenInstrMsa3R(SecondaryField operation,SecondaryField df,RegType t,MSARegister ws,MSARegister wd)1212 void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df,
1213                               RegType t, MSARegister ws, MSARegister wd) {
1214   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1215   DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid());
1216   Instr instr = MSA | operation | df | (t.code() << kWtShift) |
1217                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1218   emit(instr);
1219 }
1220 
1221 template <typename DstType, typename SrcType>
GenInstrMsaElm(SecondaryField operation,SecondaryField df,uint32_t n,SrcType src,DstType dst)1222 void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df,
1223                                uint32_t n, SrcType src, DstType dst) {
1224   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1225   DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n));
1226   Instr instr = MSA | operation | df | (n << kWtShift) |
1227                 (src.code() << kWsShift) | (dst.code() << kWdShift) |
1228                 MSA_ELM_MINOR;
1229   emit(instr);
1230 }
1231 
GenInstrMsa3RF(SecondaryField operation,uint32_t df,MSARegister wt,MSARegister ws,MSARegister wd)1232 void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df,
1233                                MSARegister wt, MSARegister ws, MSARegister wd) {
1234   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1235   DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1236   DCHECK_LT(df, 2);
1237   Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) |
1238                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1239   emit(instr);
1240 }
1241 
GenInstrMsaVec(SecondaryField operation,MSARegister wt,MSARegister ws,MSARegister wd)1242 void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt,
1243                                MSARegister ws, MSARegister wd) {
1244   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1245   DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1246   Instr instr = MSA | operation | (wt.code() << kWtShift) |
1247                 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1248                 MSA_VEC_2R_2RF_MINOR;
1249   emit(instr);
1250 }
1251 
GenInstrMsaMI10(SecondaryField operation,int32_t s10,Register rs,MSARegister wd)1252 void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10,
1253                                 Register rs, MSARegister wd) {
1254   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1255   DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10));
1256   Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) |
1257                 (rs.code() << kWsShift) | (wd.code() << kWdShift);
1258   emit(instr);
1259 }
1260 
GenInstrMsa2R(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1261 void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1262                               MSARegister ws, MSARegister wd) {
1263   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1264   DCHECK(ws.is_valid() && wd.is_valid());
1265   Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) |
1266                 (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR;
1267   emit(instr);
1268 }
1269 
GenInstrMsa2RF(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1270 void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1271                                MSARegister ws, MSARegister wd) {
1272   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1273   DCHECK(ws.is_valid() && wd.is_valid());
1274   Instr instr = MSA | MSA_2RF_FORMAT | operation | df |
1275                 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1276                 MSA_VEC_2R_2RF_MINOR;
1277   emit(instr);
1278 }
1279 
GenInstrMsaBranch(SecondaryField operation,MSARegister wt,int32_t offset16)1280 void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1281                                   int32_t offset16) {
1282   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
1283   DCHECK(wt.is_valid() && is_int16(offset16));
1284   BlockTrampolinePoolScope block_trampoline_pool(this);
1285   Instr instr =
1286       COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask);
1287   emit(instr);
1288   BlockTrampolinePoolFor(1);  // For associated delay slot.
1289 }
1290 
1291 // Returns the next free trampoline entry.
get_trampoline_entry(int32_t pos)1292 int32_t Assembler::get_trampoline_entry(int32_t pos) {
1293   int32_t trampoline_entry = kInvalidSlotPos;
1294   if (!internal_trampoline_exception_) {
1295     if (trampoline_.start() > pos) {
1296       trampoline_entry = trampoline_.take_slot();
1297     }
1298 
1299     if (kInvalidSlotPos == trampoline_entry) {
1300       internal_trampoline_exception_ = true;
1301     }
1302   }
1303   return trampoline_entry;
1304 }
1305 
jump_address(Label * L)1306 uint64_t Assembler::jump_address(Label* L) {
1307   int64_t target_pos;
1308   if (L->is_bound()) {
1309     target_pos = L->pos();
1310   } else {
1311     if (L->is_linked()) {
1312       target_pos = L->pos();  // L's link.
1313       L->link_to(pc_offset());
1314     } else {
1315       L->link_to(pc_offset());
1316       return kEndOfJumpChain;
1317     }
1318   }
1319   uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
1320   DCHECK_EQ(imm & 3, 0);
1321 
1322   return imm;
1323 }
1324 
jump_offset(Label * L)1325 uint64_t Assembler::jump_offset(Label* L) {
1326   int64_t target_pos;
1327   int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1328 
1329   if (L->is_bound()) {
1330     target_pos = L->pos();
1331   } else {
1332     if (L->is_linked()) {
1333       target_pos = L->pos();  // L's link.
1334       L->link_to(pc_offset() + pad);
1335     } else {
1336       L->link_to(pc_offset() + pad);
1337       return kEndOfJumpChain;
1338     }
1339   }
1340   int64_t imm = target_pos - (pc_offset() + pad);
1341   DCHECK_EQ(imm & 3, 0);
1342 
1343   return static_cast<uint64_t>(imm);
1344 }
1345 
branch_long_offset(Label * L)1346 uint64_t Assembler::branch_long_offset(Label* L) {
1347   int64_t target_pos;
1348 
1349   if (L->is_bound()) {
1350     target_pos = L->pos();
1351   } else {
1352     if (L->is_linked()) {
1353       target_pos = L->pos();  // L's link.
1354       L->link_to(pc_offset());
1355     } else {
1356       L->link_to(pc_offset());
1357       return kEndOfJumpChain;
1358     }
1359   }
1360   int64_t offset = target_pos - (pc_offset() + kLongBranchPCOffset);
1361   DCHECK_EQ(offset & 3, 0);
1362 
1363   return static_cast<uint64_t>(offset);
1364 }
1365 
branch_offset_helper(Label * L,OffsetSize bits)1366 int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
1367   int32_t target_pos;
1368   int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1369 
1370   if (L->is_bound()) {
1371     target_pos = L->pos();
1372   } else {
1373     if (L->is_linked()) {
1374       target_pos = L->pos();
1375       L->link_to(pc_offset() + pad);
1376     } else {
1377       L->link_to(pc_offset() + pad);
1378       if (!trampoline_emitted_) {
1379         unbound_labels_count_++;
1380         next_buffer_check_ -= kTrampolineSlotsSize;
1381       }
1382       return kEndOfChain;
1383     }
1384   }
1385 
1386   int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
1387   DCHECK(is_intn(offset, bits + 2));
1388   DCHECK_EQ(offset & 3, 0);
1389 
1390   return offset;
1391 }
1392 
label_at_put(Label * L,int at_offset)1393 void Assembler::label_at_put(Label* L, int at_offset) {
1394   int target_pos;
1395   if (L->is_bound()) {
1396     target_pos = L->pos();
1397     instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1398   } else {
1399     if (L->is_linked()) {
1400       target_pos = L->pos();  // L's link.
1401       int32_t imm18 = target_pos - at_offset;
1402       DCHECK_EQ(imm18 & 3, 0);
1403       int32_t imm16 = imm18 >> 2;
1404       DCHECK(is_int16(imm16));
1405       instr_at_put(at_offset, (imm16 & kImm16Mask));
1406     } else {
1407       target_pos = kEndOfChain;
1408       instr_at_put(at_offset, 0);
1409       if (!trampoline_emitted_) {
1410         unbound_labels_count_++;
1411         next_buffer_check_ -= kTrampolineSlotsSize;
1412       }
1413     }
1414     L->link_to(at_offset);
1415   }
1416 }
1417 
1418 //------- Branch and jump instructions --------
1419 
b(int16_t offset)1420 void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); }
1421 
bal(int16_t offset)1422 void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); }
1423 
bc(int32_t offset)1424 void Assembler::bc(int32_t offset) {
1425   DCHECK_EQ(kArchVariant, kMips64r6);
1426   GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
1427 }
1428 
balc(int32_t offset)1429 void Assembler::balc(int32_t offset) {
1430   DCHECK_EQ(kArchVariant, kMips64r6);
1431   GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
1432 }
1433 
beq(Register rs,Register rt,int16_t offset)1434 void Assembler::beq(Register rs, Register rt, int16_t offset) {
1435   BlockTrampolinePoolScope block_trampoline_pool(this);
1436   GenInstrImmediate(BEQ, rs, rt, offset);
1437   BlockTrampolinePoolFor(1);  // For associated delay slot.
1438 }
1439 
bgez(Register rs,int16_t offset)1440 void Assembler::bgez(Register rs, int16_t offset) {
1441   BlockTrampolinePoolScope block_trampoline_pool(this);
1442   GenInstrImmediate(REGIMM, rs, BGEZ, offset);
1443   BlockTrampolinePoolFor(1);  // For associated delay slot.
1444 }
1445 
bgezc(Register rt,int16_t offset)1446 void Assembler::bgezc(Register rt, int16_t offset) {
1447   DCHECK_EQ(kArchVariant, kMips64r6);
1448   DCHECK(rt != zero_reg);
1449   GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1450 }
1451 
bgeuc(Register rs,Register rt,int16_t offset)1452 void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
1453   DCHECK_EQ(kArchVariant, kMips64r6);
1454   DCHECK(rs != zero_reg);
1455   DCHECK(rt != zero_reg);
1456   DCHECK(rs.code() != rt.code());
1457   GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1458 }
1459 
bgec(Register rs,Register rt,int16_t offset)1460 void Assembler::bgec(Register rs, Register rt, int16_t offset) {
1461   DCHECK_EQ(kArchVariant, kMips64r6);
1462   DCHECK(rs != zero_reg);
1463   DCHECK(rt != zero_reg);
1464   DCHECK(rs.code() != rt.code());
1465   GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1466 }
1467 
bgezal(Register rs,int16_t offset)1468 void Assembler::bgezal(Register rs, int16_t offset) {
1469   DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
1470   DCHECK(rs != ra);
1471   BlockTrampolinePoolScope block_trampoline_pool(this);
1472   GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
1473   BlockTrampolinePoolFor(1);  // For associated delay slot.
1474 }
1475 
bgtz(Register rs,int16_t offset)1476 void Assembler::bgtz(Register rs, int16_t offset) {
1477   BlockTrampolinePoolScope block_trampoline_pool(this);
1478   GenInstrImmediate(BGTZ, rs, zero_reg, offset);
1479   BlockTrampolinePoolFor(1);  // For associated delay slot.
1480 }
1481 
bgtzc(Register rt,int16_t offset)1482 void Assembler::bgtzc(Register rt, int16_t offset) {
1483   DCHECK_EQ(kArchVariant, kMips64r6);
1484   DCHECK(rt != zero_reg);
1485   GenInstrImmediate(BGTZL, zero_reg, rt, offset,
1486                     CompactBranchType::COMPACT_BRANCH);
1487 }
1488 
blez(Register rs,int16_t offset)1489 void Assembler::blez(Register rs, int16_t offset) {
1490   BlockTrampolinePoolScope block_trampoline_pool(this);
1491   GenInstrImmediate(BLEZ, rs, zero_reg, offset);
1492   BlockTrampolinePoolFor(1);  // For associated delay slot.
1493 }
1494 
blezc(Register rt,int16_t offset)1495 void Assembler::blezc(Register rt, int16_t offset) {
1496   DCHECK_EQ(kArchVariant, kMips64r6);
1497   DCHECK(rt != zero_reg);
1498   GenInstrImmediate(BLEZL, zero_reg, rt, offset,
1499                     CompactBranchType::COMPACT_BRANCH);
1500 }
1501 
bltzc(Register rt,int16_t offset)1502 void Assembler::bltzc(Register rt, int16_t offset) {
1503   DCHECK_EQ(kArchVariant, kMips64r6);
1504   DCHECK(rt != zero_reg);
1505   GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1506 }
1507 
bltuc(Register rs,Register rt,int16_t offset)1508 void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
1509   DCHECK_EQ(kArchVariant, kMips64r6);
1510   DCHECK(rs != zero_reg);
1511   DCHECK(rt != zero_reg);
1512   DCHECK(rs.code() != rt.code());
1513   GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1514 }
1515 
bltc(Register rs,Register rt,int16_t offset)1516 void Assembler::bltc(Register rs, Register rt, int16_t offset) {
1517   DCHECK_EQ(kArchVariant, kMips64r6);
1518   DCHECK(rs != zero_reg);
1519   DCHECK(rt != zero_reg);
1520   DCHECK(rs.code() != rt.code());
1521   GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1522 }
1523 
bltz(Register rs,int16_t offset)1524 void Assembler::bltz(Register rs, int16_t offset) {
1525   BlockTrampolinePoolScope block_trampoline_pool(this);
1526   GenInstrImmediate(REGIMM, rs, BLTZ, offset);
1527   BlockTrampolinePoolFor(1);  // For associated delay slot.
1528 }
1529 
bltzal(Register rs,int16_t offset)1530 void Assembler::bltzal(Register rs, int16_t offset) {
1531   DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
1532   DCHECK(rs != ra);
1533   BlockTrampolinePoolScope block_trampoline_pool(this);
1534   GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
1535   BlockTrampolinePoolFor(1);  // For associated delay slot.
1536 }
1537 
bne(Register rs,Register rt,int16_t offset)1538 void Assembler::bne(Register rs, Register rt, int16_t offset) {
1539   BlockTrampolinePoolScope block_trampoline_pool(this);
1540   GenInstrImmediate(BNE, rs, rt, offset);
1541   BlockTrampolinePoolFor(1);  // For associated delay slot.
1542 }
1543 
bovc(Register rs,Register rt,int16_t offset)1544 void Assembler::bovc(Register rs, Register rt, int16_t offset) {
1545   DCHECK_EQ(kArchVariant, kMips64r6);
1546   if (rs.code() >= rt.code()) {
1547     GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1548   } else {
1549     GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1550   }
1551 }
1552 
bnvc(Register rs,Register rt,int16_t offset)1553 void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
1554   DCHECK_EQ(kArchVariant, kMips64r6);
1555   if (rs.code() >= rt.code()) {
1556     GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1557   } else {
1558     GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1559   }
1560 }
1561 
blezalc(Register rt,int16_t offset)1562 void Assembler::blezalc(Register rt, int16_t offset) {
1563   DCHECK_EQ(kArchVariant, kMips64r6);
1564   DCHECK(rt != zero_reg);
1565   DCHECK(rt != ra);
1566   GenInstrImmediate(BLEZ, zero_reg, rt, offset,
1567                     CompactBranchType::COMPACT_BRANCH);
1568 }
1569 
bgezalc(Register rt,int16_t offset)1570 void Assembler::bgezalc(Register rt, int16_t offset) {
1571   DCHECK_EQ(kArchVariant, kMips64r6);
1572   DCHECK(rt != zero_reg);
1573   DCHECK(rt != ra);
1574   GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1575 }
1576 
bgezall(Register rs,int16_t offset)1577 void Assembler::bgezall(Register rs, int16_t offset) {
1578   DCHECK_NE(kArchVariant, kMips64r6);
1579   DCHECK(rs != zero_reg);
1580   DCHECK(rs != ra);
1581   BlockTrampolinePoolScope block_trampoline_pool(this);
1582   GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
1583   BlockTrampolinePoolFor(1);  // For associated delay slot.
1584 }
1585 
bltzalc(Register rt,int16_t offset)1586 void Assembler::bltzalc(Register rt, int16_t offset) {
1587   DCHECK_EQ(kArchVariant, kMips64r6);
1588   DCHECK(rt != zero_reg);
1589   DCHECK(rt != ra);
1590   GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1591 }
1592 
bgtzalc(Register rt,int16_t offset)1593 void Assembler::bgtzalc(Register rt, int16_t offset) {
1594   DCHECK_EQ(kArchVariant, kMips64r6);
1595   DCHECK(rt != zero_reg);
1596   DCHECK(rt != ra);
1597   GenInstrImmediate(BGTZ, zero_reg, rt, offset,
1598                     CompactBranchType::COMPACT_BRANCH);
1599 }
1600 
beqzalc(Register rt,int16_t offset)1601 void Assembler::beqzalc(Register rt, int16_t offset) {
1602   DCHECK_EQ(kArchVariant, kMips64r6);
1603   DCHECK(rt != zero_reg);
1604   DCHECK(rt != ra);
1605   GenInstrImmediate(ADDI, zero_reg, rt, offset,
1606                     CompactBranchType::COMPACT_BRANCH);
1607 }
1608 
bnezalc(Register rt,int16_t offset)1609 void Assembler::bnezalc(Register rt, int16_t offset) {
1610   DCHECK_EQ(kArchVariant, kMips64r6);
1611   DCHECK(rt != zero_reg);
1612   DCHECK(rt != ra);
1613   GenInstrImmediate(DADDI, zero_reg, rt, offset,
1614                     CompactBranchType::COMPACT_BRANCH);
1615 }
1616 
beqc(Register rs,Register rt,int16_t offset)1617 void Assembler::beqc(Register rs, Register rt, int16_t offset) {
1618   DCHECK_EQ(kArchVariant, kMips64r6);
1619   DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1620   if (rs.code() < rt.code()) {
1621     GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1622   } else {
1623     GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1624   }
1625 }
1626 
beqzc(Register rs,int32_t offset)1627 void Assembler::beqzc(Register rs, int32_t offset) {
1628   DCHECK_EQ(kArchVariant, kMips64r6);
1629   DCHECK(rs != zero_reg);
1630   GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
1631 }
1632 
bnec(Register rs,Register rt,int16_t offset)1633 void Assembler::bnec(Register rs, Register rt, int16_t offset) {
1634   DCHECK_EQ(kArchVariant, kMips64r6);
1635   DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1636   if (rs.code() < rt.code()) {
1637     GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1638   } else {
1639     GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1640   }
1641 }
1642 
bnezc(Register rs,int32_t offset)1643 void Assembler::bnezc(Register rs, int32_t offset) {
1644   DCHECK_EQ(kArchVariant, kMips64r6);
1645   DCHECK(rs != zero_reg);
1646   GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
1647 }
1648 
j(int64_t target)1649 void Assembler::j(int64_t target) {
1650   // Deprecated. Use PC-relative jumps instead.
1651   UNREACHABLE();
1652 }
1653 
j(Label * target)1654 void Assembler::j(Label* target) {
1655   // Deprecated. Use PC-relative jumps instead.
1656   UNREACHABLE();
1657 }
1658 
jal(Label * target)1659 void Assembler::jal(Label* target) {
1660   // Deprecated. Use PC-relative jumps instead.
1661   UNREACHABLE();
1662 }
1663 
jal(int64_t target)1664 void Assembler::jal(int64_t target) {
1665   // Deprecated. Use PC-relative jumps instead.
1666   UNREACHABLE();
1667 }
1668 
jr(Register rs)1669 void Assembler::jr(Register rs) {
1670   if (kArchVariant != kMips64r6) {
1671     BlockTrampolinePoolScope block_trampoline_pool(this);
1672     GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
1673     BlockTrampolinePoolFor(1);  // For associated delay slot.
1674   } else {
1675     jalr(rs, zero_reg);
1676   }
1677 }
1678 
jalr(Register rs,Register rd)1679 void Assembler::jalr(Register rs, Register rd) {
1680   DCHECK(rs.code() != rd.code());
1681   BlockTrampolinePoolScope block_trampoline_pool(this);
1682   GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
1683   BlockTrampolinePoolFor(1);  // For associated delay slot.
1684 }
1685 
jic(Register rt,int16_t offset)1686 void Assembler::jic(Register rt, int16_t offset) {
1687   DCHECK_EQ(kArchVariant, kMips64r6);
1688   GenInstrImmediate(POP66, zero_reg, rt, offset);
1689 }
1690 
jialc(Register rt,int16_t offset)1691 void Assembler::jialc(Register rt, int16_t offset) {
1692   DCHECK_EQ(kArchVariant, kMips64r6);
1693   GenInstrImmediate(POP76, zero_reg, rt, offset);
1694 }
1695 
1696 // -------Data-processing-instructions---------
1697 
1698 // Arithmetic.
1699 
addu(Register rd,Register rs,Register rt)1700 void Assembler::addu(Register rd, Register rs, Register rt) {
1701   GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
1702 }
1703 
addiu(Register rd,Register rs,int32_t j)1704 void Assembler::addiu(Register rd, Register rs, int32_t j) {
1705   GenInstrImmediate(ADDIU, rs, rd, j);
1706 }
1707 
subu(Register rd,Register rs,Register rt)1708 void Assembler::subu(Register rd, Register rs, Register rt) {
1709   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
1710 }
1711 
mul(Register rd,Register rs,Register rt)1712 void Assembler::mul(Register rd, Register rs, Register rt) {
1713   if (kArchVariant == kMips64r6) {
1714     GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
1715   } else {
1716     GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
1717   }
1718 }
1719 
muh(Register rd,Register rs,Register rt)1720 void Assembler::muh(Register rd, Register rs, Register rt) {
1721   DCHECK_EQ(kArchVariant, kMips64r6);
1722   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
1723 }
1724 
mulu(Register rd,Register rs,Register rt)1725 void Assembler::mulu(Register rd, Register rs, Register rt) {
1726   DCHECK_EQ(kArchVariant, kMips64r6);
1727   GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
1728 }
1729 
muhu(Register rd,Register rs,Register rt)1730 void Assembler::muhu(Register rd, Register rs, Register rt) {
1731   DCHECK_EQ(kArchVariant, kMips64r6);
1732   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
1733 }
1734 
dmul(Register rd,Register rs,Register rt)1735 void Assembler::dmul(Register rd, Register rs, Register rt) {
1736   DCHECK_EQ(kArchVariant, kMips64r6);
1737   GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH);
1738 }
1739 
dmuh(Register rd,Register rs,Register rt)1740 void Assembler::dmuh(Register rd, Register rs, Register rt) {
1741   DCHECK_EQ(kArchVariant, kMips64r6);
1742   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH);
1743 }
1744 
dmulu(Register rd,Register rs,Register rt)1745 void Assembler::dmulu(Register rd, Register rs, Register rt) {
1746   DCHECK_EQ(kArchVariant, kMips64r6);
1747   GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH_U);
1748 }
1749 
dmuhu(Register rd,Register rs,Register rt)1750 void Assembler::dmuhu(Register rd, Register rs, Register rt) {
1751   DCHECK_EQ(kArchVariant, kMips64r6);
1752   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH_U);
1753 }
1754 
mult(Register rs,Register rt)1755 void Assembler::mult(Register rs, Register rt) {
1756   DCHECK_NE(kArchVariant, kMips64r6);
1757   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
1758 }
1759 
multu(Register rs,Register rt)1760 void Assembler::multu(Register rs, Register rt) {
1761   DCHECK_NE(kArchVariant, kMips64r6);
1762   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
1763 }
1764 
daddiu(Register rd,Register rs,int32_t j)1765 void Assembler::daddiu(Register rd, Register rs, int32_t j) {
1766   GenInstrImmediate(DADDIU, rs, rd, j);
1767 }
1768 
div(Register rs,Register rt)1769 void Assembler::div(Register rs, Register rt) {
1770   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
1771 }
1772 
div(Register rd,Register rs,Register rt)1773 void Assembler::div(Register rd, Register rs, Register rt) {
1774   DCHECK_EQ(kArchVariant, kMips64r6);
1775   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
1776 }
1777 
mod(Register rd,Register rs,Register rt)1778 void Assembler::mod(Register rd, Register rs, Register rt) {
1779   DCHECK_EQ(kArchVariant, kMips64r6);
1780   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
1781 }
1782 
divu(Register rs,Register rt)1783 void Assembler::divu(Register rs, Register rt) {
1784   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
1785 }
1786 
divu(Register rd,Register rs,Register rt)1787 void Assembler::divu(Register rd, Register rs, Register rt) {
1788   DCHECK_EQ(kArchVariant, kMips64r6);
1789   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
1790 }
1791 
modu(Register rd,Register rs,Register rt)1792 void Assembler::modu(Register rd, Register rs, Register rt) {
1793   DCHECK_EQ(kArchVariant, kMips64r6);
1794   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
1795 }
1796 
daddu(Register rd,Register rs,Register rt)1797 void Assembler::daddu(Register rd, Register rs, Register rt) {
1798   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DADDU);
1799 }
1800 
dsubu(Register rd,Register rs,Register rt)1801 void Assembler::dsubu(Register rd, Register rs, Register rt) {
1802   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSUBU);
1803 }
1804 
dmult(Register rs,Register rt)1805 void Assembler::dmult(Register rs, Register rt) {
1806   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULT);
1807 }
1808 
dmultu(Register rs,Register rt)1809 void Assembler::dmultu(Register rs, Register rt) {
1810   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULTU);
1811 }
1812 
ddiv(Register rs,Register rt)1813 void Assembler::ddiv(Register rs, Register rt) {
1814   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIV);
1815 }
1816 
ddiv(Register rd,Register rs,Register rt)1817 void Assembler::ddiv(Register rd, Register rs, Register rt) {
1818   DCHECK_EQ(kArchVariant, kMips64r6);
1819   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD);
1820 }
1821 
dmod(Register rd,Register rs,Register rt)1822 void Assembler::dmod(Register rd, Register rs, Register rt) {
1823   DCHECK_EQ(kArchVariant, kMips64r6);
1824   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD);
1825 }
1826 
ddivu(Register rs,Register rt)1827 void Assembler::ddivu(Register rs, Register rt) {
1828   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIVU);
1829 }
1830 
ddivu(Register rd,Register rs,Register rt)1831 void Assembler::ddivu(Register rd, Register rs, Register rt) {
1832   DCHECK_EQ(kArchVariant, kMips64r6);
1833   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD_U);
1834 }
1835 
dmodu(Register rd,Register rs,Register rt)1836 void Assembler::dmodu(Register rd, Register rs, Register rt) {
1837   DCHECK_EQ(kArchVariant, kMips64r6);
1838   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD_U);
1839 }
1840 
1841 // Logical.
1842 
and_(Register rd,Register rs,Register rt)1843 void Assembler::and_(Register rd, Register rs, Register rt) {
1844   GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
1845 }
1846 
andi(Register rt,Register rs,int32_t j)1847 void Assembler::andi(Register rt, Register rs, int32_t j) {
1848   DCHECK(is_uint16(j));
1849   GenInstrImmediate(ANDI, rs, rt, j);
1850 }
1851 
or_(Register rd,Register rs,Register rt)1852 void Assembler::or_(Register rd, Register rs, Register rt) {
1853   GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
1854 }
1855 
ori(Register rt,Register rs,int32_t j)1856 void Assembler::ori(Register rt, Register rs, int32_t j) {
1857   DCHECK(is_uint16(j));
1858   GenInstrImmediate(ORI, rs, rt, j);
1859 }
1860 
xor_(Register rd,Register rs,Register rt)1861 void Assembler::xor_(Register rd, Register rs, Register rt) {
1862   GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
1863 }
1864 
xori(Register rt,Register rs,int32_t j)1865 void Assembler::xori(Register rt, Register rs, int32_t j) {
1866   DCHECK(is_uint16(j));
1867   GenInstrImmediate(XORI, rs, rt, j);
1868 }
1869 
nor(Register rd,Register rs,Register rt)1870 void Assembler::nor(Register rd, Register rs, Register rt) {
1871   GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
1872 }
1873 
1874 // Shifts.
sll(Register rd,Register rt,uint16_t sa,bool coming_from_nop)1875 void Assembler::sll(Register rd, Register rt, uint16_t sa,
1876                     bool coming_from_nop) {
1877   // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
1878   // generated using the sll instruction. They must be generated using
1879   // nop(int/NopMarkerTypes).
1880   DCHECK(coming_from_nop || (rd != zero_reg && rt != zero_reg));
1881   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
1882 }
1883 
sllv(Register rd,Register rt,Register rs)1884 void Assembler::sllv(Register rd, Register rt, Register rs) {
1885   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
1886 }
1887 
srl(Register rd,Register rt,uint16_t sa)1888 void Assembler::srl(Register rd, Register rt, uint16_t sa) {
1889   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
1890 }
1891 
srlv(Register rd,Register rt,Register rs)1892 void Assembler::srlv(Register rd, Register rt, Register rs) {
1893   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
1894 }
1895 
sra(Register rd,Register rt,uint16_t sa)1896 void Assembler::sra(Register rd, Register rt, uint16_t sa) {
1897   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
1898 }
1899 
srav(Register rd,Register rt,Register rs)1900 void Assembler::srav(Register rd, Register rt, Register rs) {
1901   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
1902 }
1903 
rotr(Register rd,Register rt,uint16_t sa)1904 void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
1905   // Should be called via MacroAssembler::Ror.
1906   DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1907   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
1908   Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1909                 (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
1910   emit(instr);
1911 }
1912 
rotrv(Register rd,Register rt,Register rs)1913 void Assembler::rotrv(Register rd, Register rt, Register rs) {
1914   // Should be called via MacroAssembler::Ror.
1915   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1916   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
1917   Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1918                 (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
1919   emit(instr);
1920 }
1921 
dsll(Register rd,Register rt,uint16_t sa)1922 void Assembler::dsll(Register rd, Register rt, uint16_t sa) {
1923   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL);
1924 }
1925 
dsllv(Register rd,Register rt,Register rs)1926 void Assembler::dsllv(Register rd, Register rt, Register rs) {
1927   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSLLV);
1928 }
1929 
dsrl(Register rd,Register rt,uint16_t sa)1930 void Assembler::dsrl(Register rd, Register rt, uint16_t sa) {
1931   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL);
1932 }
1933 
dsrlv(Register rd,Register rt,Register rs)1934 void Assembler::dsrlv(Register rd, Register rt, Register rs) {
1935   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRLV);
1936 }
1937 
drotr(Register rd,Register rt,uint16_t sa)1938 void Assembler::drotr(Register rd, Register rt, uint16_t sa) {
1939   DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1940   Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1941                 (rd.code() << kRdShift) | (sa << kSaShift) | DSRL;
1942   emit(instr);
1943 }
1944 
drotr32(Register rd,Register rt,uint16_t sa)1945 void Assembler::drotr32(Register rd, Register rt, uint16_t sa) {
1946   DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1947   Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1948                 (rd.code() << kRdShift) | (sa << kSaShift) | DSRL32;
1949   emit(instr);
1950 }
1951 
drotrv(Register rd,Register rt,Register rs)1952 void Assembler::drotrv(Register rd, Register rt, Register rs) {
1953   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1954   Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1955                 (rd.code() << kRdShift) | (1 << kSaShift) | DSRLV;
1956   emit(instr);
1957 }
1958 
dsra(Register rd,Register rt,uint16_t sa)1959 void Assembler::dsra(Register rd, Register rt, uint16_t sa) {
1960   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA);
1961 }
1962 
dsrav(Register rd,Register rt,Register rs)1963 void Assembler::dsrav(Register rd, Register rt, Register rs) {
1964   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRAV);
1965 }
1966 
dsll32(Register rd,Register rt,uint16_t sa)1967 void Assembler::dsll32(Register rd, Register rt, uint16_t sa) {
1968   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL32);
1969 }
1970 
dsrl32(Register rd,Register rt,uint16_t sa)1971 void Assembler::dsrl32(Register rd, Register rt, uint16_t sa) {
1972   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL32);
1973 }
1974 
dsra32(Register rd,Register rt,uint16_t sa)1975 void Assembler::dsra32(Register rd, Register rt, uint16_t sa) {
1976   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA32);
1977 }
1978 
lsa(Register rd,Register rt,Register rs,uint8_t sa)1979 void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
1980   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1981   DCHECK_LE(sa, 3);
1982   DCHECK_EQ(kArchVariant, kMips64r6);
1983   Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
1984                 rd.code() << kRdShift | sa << kSaShift | LSA;
1985   emit(instr);
1986 }
1987 
dlsa(Register rd,Register rt,Register rs,uint8_t sa)1988 void Assembler::dlsa(Register rd, Register rt, Register rs, uint8_t sa) {
1989   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1990   DCHECK_LE(sa, 3);
1991   DCHECK_EQ(kArchVariant, kMips64r6);
1992   Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
1993                 rd.code() << kRdShift | sa << kSaShift | DLSA;
1994   emit(instr);
1995 }
1996 
1997 // ------------Memory-instructions-------------
1998 
AdjustBaseAndOffset(MemOperand * src,OffsetAccessType access_type,int second_access_add_to_offset)1999 void Assembler::AdjustBaseAndOffset(MemOperand* src,
2000                                     OffsetAccessType access_type,
2001                                     int second_access_add_to_offset) {
2002   // This method is used to adjust the base register and offset pair
2003   // for a load/store when the offset doesn't fit into int16_t.
2004   // It is assumed that 'base + offset' is sufficiently aligned for memory
2005   // operands that are machine word in size or smaller. For doubleword-sized
2006   // operands it's assumed that 'base' is a multiple of 8, while 'offset'
2007   // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
2008   // and spilled variables on the stack accessed relative to the stack
2009   // pointer register).
2010   // We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8.
2011 
2012   bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0;
2013   bool two_accesses = static_cast<bool>(access_type) || !doubleword_aligned;
2014   DCHECK_LE(second_access_add_to_offset, 7);  // Must be <= 7.
2015 
2016   // is_int16 must be passed a signed value, hence the static cast below.
2017   if (is_int16(src->offset()) &&
2018       (!two_accesses || is_int16(static_cast<int32_t>(
2019                             src->offset() + second_access_add_to_offset)))) {
2020     // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified
2021     // value) fits into int16_t.
2022     return;
2023   }
2024 
2025   DCHECK(src->rm() !=
2026          at);  // Must not overwrite the register 'base' while loading 'offset'.
2027 
2028 #ifdef DEBUG
2029   // Remember the "(mis)alignment" of 'offset', it will be checked at the end.
2030   uint32_t misalignment = src->offset() & (kDoubleSize - 1);
2031 #endif
2032 
2033   // Do not load the whole 32-bit 'offset' if it can be represented as
2034   // a sum of two 16-bit signed offsets. This can save an instruction or two.
2035   // To simplify matters, only do this for a symmetric range of offsets from
2036   // about -64KB to about +64KB, allowing further addition of 4 when accessing
2037   // 64-bit variables with two 32-bit accesses.
2038   constexpr int32_t kMinOffsetForSimpleAdjustment =
2039       0x7FF8;  // Max int16_t that's a multiple of 8.
2040   constexpr int32_t kMaxOffsetForSimpleAdjustment =
2041       2 * kMinOffsetForSimpleAdjustment;
2042 
2043   UseScratchRegisterScope temps(this);
2044   Register scratch = temps.Acquire();
2045   if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) {
2046     daddiu(scratch, src->rm(), kMinOffsetForSimpleAdjustment);
2047     src->offset_ -= kMinOffsetForSimpleAdjustment;
2048   } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() &&
2049              src->offset() < 0) {
2050     daddiu(scratch, src->rm(), -kMinOffsetForSimpleAdjustment);
2051     src->offset_ += kMinOffsetForSimpleAdjustment;
2052   } else if (kArchVariant == kMips64r6) {
2053     // On r6 take advantage of the daui instruction, e.g.:
2054     //    daui   at, base, offset_high
2055     //   [dahi   at, 1]                       // When `offset` is close to +2GB.
2056     //    lw     reg_lo, offset_low(at)
2057     //   [lw     reg_hi, (offset_low+4)(at)]  // If misaligned 64-bit load.
2058     // or when offset_low+4 overflows int16_t:
2059     //    daui   at, base, offset_high
2060     //    daddiu at, at, 8
2061     //    lw     reg_lo, (offset_low-8)(at)
2062     //    lw     reg_hi, (offset_low-4)(at)
2063     int16_t offset_low = static_cast<uint16_t>(src->offset());
2064     int32_t offset_low32 = offset_low;
2065     int16_t offset_high = static_cast<uint16_t>(src->offset() >> 16);
2066     bool increment_hi16 = offset_low < 0;
2067     bool overflow_hi16 = false;
2068 
2069     if (increment_hi16) {
2070       offset_high++;
2071       overflow_hi16 = (offset_high == -32768);
2072     }
2073     daui(scratch, src->rm(), static_cast<uint16_t>(offset_high));
2074 
2075     if (overflow_hi16) {
2076       dahi(scratch, 1);
2077     }
2078 
2079     if (two_accesses && !is_int16(static_cast<int32_t>(
2080                             offset_low32 + second_access_add_to_offset))) {
2081       // Avoid overflow in the 16-bit offset of the load/store instruction when
2082       // adding 4.
2083       daddiu(scratch, scratch, kDoubleSize);
2084       offset_low32 -= kDoubleSize;
2085     }
2086 
2087     src->offset_ = offset_low32;
2088   } else {
2089     // Do not load the whole 32-bit 'offset' if it can be represented as
2090     // a sum of three 16-bit signed offsets. This can save an instruction.
2091     // To simplify matters, only do this for a symmetric range of offsets from
2092     // about -96KB to about +96KB, allowing further addition of 4 when accessing
2093     // 64-bit variables with two 32-bit accesses.
2094     constexpr int32_t kMinOffsetForMediumAdjustment =
2095         2 * kMinOffsetForSimpleAdjustment;
2096     constexpr int32_t kMaxOffsetForMediumAdjustment =
2097         3 * kMinOffsetForSimpleAdjustment;
2098     if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) {
2099       daddiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2);
2100       daddiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2);
2101       src->offset_ -= kMinOffsetForMediumAdjustment;
2102     } else if (-kMaxOffsetForMediumAdjustment <= src->offset() &&
2103                src->offset() < 0) {
2104       daddiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2);
2105       daddiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2);
2106       src->offset_ += kMinOffsetForMediumAdjustment;
2107     } else {
2108       // Now that all shorter options have been exhausted, load the full 32-bit
2109       // offset.
2110       int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize);
2111       lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask);
2112       ori(scratch, scratch, loaded_offset & kImm16Mask);  // Load 32-bit offset.
2113       daddu(scratch, scratch, src->rm());
2114       src->offset_ -= loaded_offset;
2115     }
2116   }
2117   src->rm_ = scratch;
2118 
2119   DCHECK(is_int16(src->offset()));
2120   if (two_accesses) {
2121     DCHECK(is_int16(
2122         static_cast<int32_t>(src->offset() + second_access_add_to_offset)));
2123   }
2124   DCHECK(misalignment == (src->offset() & (kDoubleSize - 1)));
2125 }
2126 
lb(Register rd,const MemOperand & rs)2127 void Assembler::lb(Register rd, const MemOperand& rs) {
2128   GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
2129 }
2130 
lbu(Register rd,const MemOperand & rs)2131 void Assembler::lbu(Register rd, const MemOperand& rs) {
2132   GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
2133 }
2134 
lh(Register rd,const MemOperand & rs)2135 void Assembler::lh(Register rd, const MemOperand& rs) {
2136   GenInstrImmediate(LH, rs.rm(), rd, rs.offset_);
2137 }
2138 
lhu(Register rd,const MemOperand & rs)2139 void Assembler::lhu(Register rd, const MemOperand& rs) {
2140   GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_);
2141 }
2142 
lw(Register rd,const MemOperand & rs)2143 void Assembler::lw(Register rd, const MemOperand& rs) {
2144   GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
2145 }
2146 
lwu(Register rd,const MemOperand & rs)2147 void Assembler::lwu(Register rd, const MemOperand& rs) {
2148   GenInstrImmediate(LWU, rs.rm(), rd, rs.offset_);
2149 }
2150 
lwl(Register rd,const MemOperand & rs)2151 void Assembler::lwl(Register rd, const MemOperand& rs) {
2152   DCHECK(is_int16(rs.offset_));
2153   DCHECK_EQ(kArchVariant, kMips64r2);
2154   GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
2155 }
2156 
lwr(Register rd,const MemOperand & rs)2157 void Assembler::lwr(Register rd, const MemOperand& rs) {
2158   DCHECK(is_int16(rs.offset_));
2159   DCHECK_EQ(kArchVariant, kMips64r2);
2160   GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
2161 }
2162 
sb(Register rd,const MemOperand & rs)2163 void Assembler::sb(Register rd, const MemOperand& rs) {
2164   GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
2165 }
2166 
sh(Register rd,const MemOperand & rs)2167 void Assembler::sh(Register rd, const MemOperand& rs) {
2168   GenInstrImmediate(SH, rs.rm(), rd, rs.offset_);
2169 }
2170 
sw(Register rd,const MemOperand & rs)2171 void Assembler::sw(Register rd, const MemOperand& rs) {
2172   GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
2173 }
2174 
swl(Register rd,const MemOperand & rs)2175 void Assembler::swl(Register rd, const MemOperand& rs) {
2176   DCHECK(is_int16(rs.offset_));
2177   DCHECK_EQ(kArchVariant, kMips64r2);
2178   GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
2179 }
2180 
swr(Register rd,const MemOperand & rs)2181 void Assembler::swr(Register rd, const MemOperand& rs) {
2182   DCHECK(is_int16(rs.offset_));
2183   DCHECK_EQ(kArchVariant, kMips64r2);
2184   GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
2185 }
2186 
ll(Register rd,const MemOperand & rs)2187 void Assembler::ll(Register rd, const MemOperand& rs) {
2188   if (kArchVariant == kMips64r6) {
2189     DCHECK(is_int9(rs.offset_));
2190     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6);
2191   } else {
2192     DCHECK_EQ(kArchVariant, kMips64r2);
2193     DCHECK(is_int16(rs.offset_));
2194     GenInstrImmediate(LL, rs.rm(), rd, rs.offset_);
2195   }
2196 }
2197 
lld(Register rd,const MemOperand & rs)2198 void Assembler::lld(Register rd, const MemOperand& rs) {
2199   if (kArchVariant == kMips64r6) {
2200     DCHECK(is_int9(rs.offset_));
2201     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LLD_R6);
2202   } else {
2203     DCHECK_EQ(kArchVariant, kMips64r2);
2204     DCHECK(is_int16(rs.offset_));
2205     GenInstrImmediate(LLD, rs.rm(), rd, rs.offset_);
2206   }
2207 }
2208 
sc(Register rd,const MemOperand & rs)2209 void Assembler::sc(Register rd, const MemOperand& rs) {
2210   if (kArchVariant == kMips64r6) {
2211     DCHECK(is_int9(rs.offset_));
2212     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6);
2213   } else {
2214     DCHECK_EQ(kArchVariant, kMips64r2);
2215     GenInstrImmediate(SC, rs.rm(), rd, rs.offset_);
2216   }
2217 }
2218 
scd(Register rd,const MemOperand & rs)2219 void Assembler::scd(Register rd, const MemOperand& rs) {
2220   if (kArchVariant == kMips64r6) {
2221     DCHECK(is_int9(rs.offset_));
2222     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SCD_R6);
2223   } else {
2224     DCHECK_EQ(kArchVariant, kMips64r2);
2225     GenInstrImmediate(SCD, rs.rm(), rd, rs.offset_);
2226   }
2227 }
2228 
lui(Register rd,int32_t j)2229 void Assembler::lui(Register rd, int32_t j) {
2230   DCHECK(is_uint16(j) || is_int16(j));
2231   GenInstrImmediate(LUI, zero_reg, rd, j);
2232 }
2233 
aui(Register rt,Register rs,int32_t j)2234 void Assembler::aui(Register rt, Register rs, int32_t j) {
2235   // This instruction uses same opcode as 'lui'. The difference in encoding is
2236   // 'lui' has zero reg. for rs field.
2237   DCHECK(is_uint16(j));
2238   GenInstrImmediate(LUI, rs, rt, j);
2239 }
2240 
daui(Register rt,Register rs,int32_t j)2241 void Assembler::daui(Register rt, Register rs, int32_t j) {
2242   DCHECK(is_uint16(j));
2243   DCHECK(rs != zero_reg);
2244   GenInstrImmediate(DAUI, rs, rt, j);
2245 }
2246 
dahi(Register rs,int32_t j)2247 void Assembler::dahi(Register rs, int32_t j) {
2248   DCHECK(is_uint16(j));
2249   GenInstrImmediate(REGIMM, rs, DAHI, j);
2250 }
2251 
dati(Register rs,int32_t j)2252 void Assembler::dati(Register rs, int32_t j) {
2253   DCHECK(is_uint16(j));
2254   GenInstrImmediate(REGIMM, rs, DATI, j);
2255 }
2256 
ldl(Register rd,const MemOperand & rs)2257 void Assembler::ldl(Register rd, const MemOperand& rs) {
2258   DCHECK(is_int16(rs.offset_));
2259   DCHECK_EQ(kArchVariant, kMips64r2);
2260   GenInstrImmediate(LDL, rs.rm(), rd, rs.offset_);
2261 }
2262 
ldr(Register rd,const MemOperand & rs)2263 void Assembler::ldr(Register rd, const MemOperand& rs) {
2264   DCHECK(is_int16(rs.offset_));
2265   DCHECK_EQ(kArchVariant, kMips64r2);
2266   GenInstrImmediate(LDR, rs.rm(), rd, rs.offset_);
2267 }
2268 
sdl(Register rd,const MemOperand & rs)2269 void Assembler::sdl(Register rd, const MemOperand& rs) {
2270   DCHECK(is_int16(rs.offset_));
2271   DCHECK_EQ(kArchVariant, kMips64r2);
2272   GenInstrImmediate(SDL, rs.rm(), rd, rs.offset_);
2273 }
2274 
sdr(Register rd,const MemOperand & rs)2275 void Assembler::sdr(Register rd, const MemOperand& rs) {
2276   DCHECK(is_int16(rs.offset_));
2277   DCHECK_EQ(kArchVariant, kMips64r2);
2278   GenInstrImmediate(SDR, rs.rm(), rd, rs.offset_);
2279 }
2280 
ld(Register rd,const MemOperand & rs)2281 void Assembler::ld(Register rd, const MemOperand& rs) {
2282   GenInstrImmediate(LD, rs.rm(), rd, rs.offset_);
2283 }
2284 
sd(Register rd,const MemOperand & rs)2285 void Assembler::sd(Register rd, const MemOperand& rs) {
2286   GenInstrImmediate(SD, rs.rm(), rd, rs.offset_);
2287 }
2288 
2289 // ---------PC-Relative instructions-----------
2290 
addiupc(Register rs,int32_t imm19)2291 void Assembler::addiupc(Register rs, int32_t imm19) {
2292   DCHECK_EQ(kArchVariant, kMips64r6);
2293   DCHECK(rs.is_valid() && is_int19(imm19));
2294   uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
2295   GenInstrImmediate(PCREL, rs, imm21);
2296 }
2297 
lwpc(Register rs,int32_t offset19)2298 void Assembler::lwpc(Register rs, int32_t offset19) {
2299   DCHECK_EQ(kArchVariant, kMips64r6);
2300   DCHECK(rs.is_valid() && is_int19(offset19));
2301   uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
2302   GenInstrImmediate(PCREL, rs, imm21);
2303 }
2304 
lwupc(Register rs,int32_t offset19)2305 void Assembler::lwupc(Register rs, int32_t offset19) {
2306   DCHECK_EQ(kArchVariant, kMips64r6);
2307   DCHECK(rs.is_valid() && is_int19(offset19));
2308   uint32_t imm21 = LWUPC << kImm19Bits | (offset19 & kImm19Mask);
2309   GenInstrImmediate(PCREL, rs, imm21);
2310 }
2311 
ldpc(Register rs,int32_t offset18)2312 void Assembler::ldpc(Register rs, int32_t offset18) {
2313   DCHECK_EQ(kArchVariant, kMips64r6);
2314   DCHECK(rs.is_valid() && is_int18(offset18));
2315   uint32_t imm21 = LDPC << kImm18Bits | (offset18 & kImm18Mask);
2316   GenInstrImmediate(PCREL, rs, imm21);
2317 }
2318 
auipc(Register rs,int16_t imm16)2319 void Assembler::auipc(Register rs, int16_t imm16) {
2320   DCHECK_EQ(kArchVariant, kMips64r6);
2321   DCHECK(rs.is_valid());
2322   uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
2323   GenInstrImmediate(PCREL, rs, imm21);
2324 }
2325 
aluipc(Register rs,int16_t imm16)2326 void Assembler::aluipc(Register rs, int16_t imm16) {
2327   DCHECK_EQ(kArchVariant, kMips64r6);
2328   DCHECK(rs.is_valid());
2329   uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
2330   GenInstrImmediate(PCREL, rs, imm21);
2331 }
2332 
2333 // -------------Misc-instructions--------------
2334 
2335 // Break / Trap instructions.
break_(uint32_t code,bool break_as_stop)2336 void Assembler::break_(uint32_t code, bool break_as_stop) {
2337   DCHECK_EQ(code & ~0xFFFFF, 0);
2338   // We need to invalidate breaks that could be stops as well because the
2339   // simulator expects a char pointer after the stop instruction.
2340   // See constants-mips.h for explanation.
2341   DCHECK(
2342       (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) ||
2343       (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode)));
2344   Instr break_instr = SPECIAL | BREAK | (code << 6);
2345   emit(break_instr);
2346 }
2347 
stop(uint32_t code)2348 void Assembler::stop(uint32_t code) {
2349   DCHECK_GT(code, kMaxWatchpointCode);
2350   DCHECK_LE(code, kMaxStopCode);
2351 #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
2352   break_(0x54321);
2353 #else  // V8_HOST_ARCH_MIPS
2354   break_(code, true);
2355 #endif
2356 }
2357 
tge(Register rs,Register rt,uint16_t code)2358 void Assembler::tge(Register rs, Register rt, uint16_t code) {
2359   DCHECK(is_uint10(code));
2360   Instr instr =
2361       SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2362   emit(instr);
2363 }
2364 
tgeu(Register rs,Register rt,uint16_t code)2365 void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
2366   DCHECK(is_uint10(code));
2367   Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift |
2368                 code << 6;
2369   emit(instr);
2370 }
2371 
tlt(Register rs,Register rt,uint16_t code)2372 void Assembler::tlt(Register rs, Register rt, uint16_t code) {
2373   DCHECK(is_uint10(code));
2374   Instr instr =
2375       SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2376   emit(instr);
2377 }
2378 
tltu(Register rs,Register rt,uint16_t code)2379 void Assembler::tltu(Register rs, Register rt, uint16_t code) {
2380   DCHECK(is_uint10(code));
2381   Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift |
2382                 code << 6;
2383   emit(instr);
2384 }
2385 
teq(Register rs,Register rt,uint16_t code)2386 void Assembler::teq(Register rs, Register rt, uint16_t code) {
2387   DCHECK(is_uint10(code));
2388   Instr instr =
2389       SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2390   emit(instr);
2391 }
2392 
tne(Register rs,Register rt,uint16_t code)2393 void Assembler::tne(Register rs, Register rt, uint16_t code) {
2394   DCHECK(is_uint10(code));
2395   Instr instr =
2396       SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2397   emit(instr);
2398 }
2399 
sync()2400 void Assembler::sync() {
2401   Instr sync_instr = SPECIAL | SYNC;
2402   emit(sync_instr);
2403 }
2404 
2405 // Move from HI/LO register.
2406 
mfhi(Register rd)2407 void Assembler::mfhi(Register rd) {
2408   GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
2409 }
2410 
mflo(Register rd)2411 void Assembler::mflo(Register rd) {
2412   GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
2413 }
2414 
2415 // Set on less than instructions.
slt(Register rd,Register rs,Register rt)2416 void Assembler::slt(Register rd, Register rs, Register rt) {
2417   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
2418 }
2419 
sltu(Register rd,Register rs,Register rt)2420 void Assembler::sltu(Register rd, Register rs, Register rt) {
2421   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
2422 }
2423 
slti(Register rt,Register rs,int32_t j)2424 void Assembler::slti(Register rt, Register rs, int32_t j) {
2425   GenInstrImmediate(SLTI, rs, rt, j);
2426 }
2427 
sltiu(Register rt,Register rs,int32_t j)2428 void Assembler::sltiu(Register rt, Register rs, int32_t j) {
2429   GenInstrImmediate(SLTIU, rs, rt, j);
2430 }
2431 
2432 // Conditional move.
movz(Register rd,Register rs,Register rt)2433 void Assembler::movz(Register rd, Register rs, Register rt) {
2434   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
2435 }
2436 
movn(Register rd,Register rs,Register rt)2437 void Assembler::movn(Register rd, Register rs, Register rt) {
2438   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
2439 }
2440 
movt(Register rd,Register rs,uint16_t cc)2441 void Assembler::movt(Register rd, Register rs, uint16_t cc) {
2442   Register rt = Register::from_code((cc & 0x0007) << 2 | 1);
2443   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2444 }
2445 
movf(Register rd,Register rs,uint16_t cc)2446 void Assembler::movf(Register rd, Register rs, uint16_t cc) {
2447   Register rt = Register::from_code((cc & 0x0007) << 2 | 0);
2448   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2449 }
2450 
min_s(FPURegister fd,FPURegister fs,FPURegister ft)2451 void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2452   min(S, fd, fs, ft);
2453 }
2454 
min_d(FPURegister fd,FPURegister fs,FPURegister ft)2455 void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2456   min(D, fd, fs, ft);
2457 }
2458 
max_s(FPURegister fd,FPURegister fs,FPURegister ft)2459 void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2460   max(S, fd, fs, ft);
2461 }
2462 
max_d(FPURegister fd,FPURegister fs,FPURegister ft)2463 void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2464   max(D, fd, fs, ft);
2465 }
2466 
mina_s(FPURegister fd,FPURegister fs,FPURegister ft)2467 void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2468   mina(S, fd, fs, ft);
2469 }
2470 
mina_d(FPURegister fd,FPURegister fs,FPURegister ft)2471 void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2472   mina(D, fd, fs, ft);
2473 }
2474 
maxa_s(FPURegister fd,FPURegister fs,FPURegister ft)2475 void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2476   maxa(S, fd, fs, ft);
2477 }
2478 
maxa_d(FPURegister fd,FPURegister fs,FPURegister ft)2479 void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2480   maxa(D, fd, fs, ft);
2481 }
2482 
max(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2483 void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
2484                     FPURegister ft) {
2485   DCHECK_EQ(kArchVariant, kMips64r6);
2486   DCHECK((fmt == D) || (fmt == S));
2487   GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
2488 }
2489 
min(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2490 void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
2491                     FPURegister ft) {
2492   DCHECK_EQ(kArchVariant, kMips64r6);
2493   DCHECK((fmt == D) || (fmt == S));
2494   GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
2495 }
2496 
2497 // GPR.
seleqz(Register rd,Register rs,Register rt)2498 void Assembler::seleqz(Register rd, Register rs, Register rt) {
2499   DCHECK_EQ(kArchVariant, kMips64r6);
2500   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
2501 }
2502 
2503 // GPR.
selnez(Register rd,Register rs,Register rt)2504 void Assembler::selnez(Register rd, Register rs, Register rt) {
2505   DCHECK_EQ(kArchVariant, kMips64r6);
2506   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
2507 }
2508 
2509 // Bit twiddling.
clz(Register rd,Register rs)2510 void Assembler::clz(Register rd, Register rs) {
2511   if (kArchVariant != kMips64r6) {
2512     // clz instr requires same GPR number in 'rd' and 'rt' fields.
2513     GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
2514   } else {
2515     GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
2516   }
2517 }
2518 
dclz(Register rd,Register rs)2519 void Assembler::dclz(Register rd, Register rs) {
2520   if (kArchVariant != kMips64r6) {
2521     // dclz instr requires same GPR number in 'rd' and 'rt' fields.
2522     GenInstrRegister(SPECIAL2, rs, rd, rd, 0, DCLZ);
2523   } else {
2524     GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, DCLZ_R6);
2525   }
2526 }
2527 
ins_(Register rt,Register rs,uint16_t pos,uint16_t size)2528 void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2529   // Should be called via MacroAssembler::Ins.
2530   // ins instr has 'rt' field as dest, and two uint5: msb, lsb.
2531   DCHECK((kArchVariant == kMips64r2) || (kArchVariant == kMips64r6));
2532   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
2533 }
2534 
dins_(Register rt,Register rs,uint16_t pos,uint16_t size)2535 void Assembler::dins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2536   // Should be called via MacroAssembler::Dins.
2537   // dins instr has 'rt' field as dest, and two uint5: msb, lsb.
2538   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2539   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, DINS);
2540 }
2541 
dinsm_(Register rt,Register rs,uint16_t pos,uint16_t size)2542 void Assembler::dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2543   // Should be called via MacroAssembler::Dins.
2544   // dinsm instr has 'rt' field as dest, and two uint5: msbminus32, lsb.
2545   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2546   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos, DINSM);
2547 }
2548 
dinsu_(Register rt,Register rs,uint16_t pos,uint16_t size)2549 void Assembler::dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2550   // Should be called via MacroAssembler::Dins.
2551   // dinsu instr has 'rt' field as dest, and two uint5: msbminus32, lsbminus32.
2552   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2553   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos - 32, DINSU);
2554 }
2555 
ext_(Register rt,Register rs,uint16_t pos,uint16_t size)2556 void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2557   // Should be called via MacroAssembler::Ext.
2558   // ext instr has 'rt' field as dest, and two uint5: msbd, lsb.
2559   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2560   GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
2561 }
2562 
dext_(Register rt,Register rs,uint16_t pos,uint16_t size)2563 void Assembler::dext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2564   // Should be called via MacroAssembler::Dext.
2565   // dext instr has 'rt' field as dest, and two uint5: msbd, lsb.
2566   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2567   GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, DEXT);
2568 }
2569 
dextm_(Register rt,Register rs,uint16_t pos,uint16_t size)2570 void Assembler::dextm_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2571   // Should be called via MacroAssembler::Dextm.
2572   // dextm instr has 'rt' field as dest, and two uint5: msbdminus32, lsb.
2573   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2574   GenInstrRegister(SPECIAL3, rs, rt, size - 1 - 32, pos, DEXTM);
2575 }
2576 
dextu_(Register rt,Register rs,uint16_t pos,uint16_t size)2577 void Assembler::dextu_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2578   // Should be called via MacroAssembler::Dextu.
2579   // dextu instr has 'rt' field as dest, and two uint5: msbd, lsbminus32.
2580   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2581   GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos - 32, DEXTU);
2582 }
2583 
bitswap(Register rd,Register rt)2584 void Assembler::bitswap(Register rd, Register rt) {
2585   DCHECK_EQ(kArchVariant, kMips64r6);
2586   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL);
2587 }
2588 
dbitswap(Register rd,Register rt)2589 void Assembler::dbitswap(Register rd, Register rt) {
2590   DCHECK_EQ(kArchVariant, kMips64r6);
2591   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, DBSHFL);
2592 }
2593 
pref(int32_t hint,const MemOperand & rs)2594 void Assembler::pref(int32_t hint, const MemOperand& rs) {
2595   DCHECK(is_uint5(hint) && is_uint16(rs.offset_));
2596   Instr instr =
2597       PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift) | (rs.offset_);
2598   emit(instr);
2599 }
2600 
align(Register rd,Register rs,Register rt,uint8_t bp)2601 void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) {
2602   DCHECK_EQ(kArchVariant, kMips64r6);
2603   DCHECK(is_uint3(bp));
2604   uint16_t sa = (ALIGN << kBp2Bits) | bp;
2605   GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL);
2606 }
2607 
dalign(Register rd,Register rs,Register rt,uint8_t bp)2608 void Assembler::dalign(Register rd, Register rs, Register rt, uint8_t bp) {
2609   DCHECK_EQ(kArchVariant, kMips64r6);
2610   DCHECK(is_uint3(bp));
2611   uint16_t sa = (DALIGN << kBp3Bits) | bp;
2612   GenInstrRegister(SPECIAL3, rs, rt, rd, sa, DBSHFL);
2613 }
2614 
wsbh(Register rd,Register rt)2615 void Assembler::wsbh(Register rd, Register rt) {
2616   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2617   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, WSBH, BSHFL);
2618 }
2619 
dsbh(Register rd,Register rt)2620 void Assembler::dsbh(Register rd, Register rt) {
2621   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2622   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSBH, DBSHFL);
2623 }
2624 
dshd(Register rd,Register rt)2625 void Assembler::dshd(Register rd, Register rt) {
2626   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2627   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSHD, DBSHFL);
2628 }
2629 
seh(Register rd,Register rt)2630 void Assembler::seh(Register rd, Register rt) {
2631   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2632   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEH, BSHFL);
2633 }
2634 
seb(Register rd,Register rt)2635 void Assembler::seb(Register rd, Register rt) {
2636   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2637   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEB, BSHFL);
2638 }
2639 
2640 // --------Coprocessor-instructions----------------
2641 
2642 // Load, store, move.
lwc1(FPURegister fd,const MemOperand & src)2643 void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
2644   GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
2645 }
2646 
ldc1(FPURegister fd,const MemOperand & src)2647 void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
2648   GenInstrImmediate(LDC1, src.rm(), fd, src.offset_);
2649 }
2650 
swc1(FPURegister fs,const MemOperand & src)2651 void Assembler::swc1(FPURegister fs, const MemOperand& src) {
2652   GenInstrImmediate(SWC1, src.rm(), fs, src.offset_);
2653 }
2654 
sdc1(FPURegister fs,const MemOperand & src)2655 void Assembler::sdc1(FPURegister fs, const MemOperand& src) {
2656   GenInstrImmediate(SDC1, src.rm(), fs, src.offset_);
2657 }
2658 
mtc1(Register rt,FPURegister fs)2659 void Assembler::mtc1(Register rt, FPURegister fs) {
2660   GenInstrRegister(COP1, MTC1, rt, fs, f0);
2661 }
2662 
mthc1(Register rt,FPURegister fs)2663 void Assembler::mthc1(Register rt, FPURegister fs) {
2664   GenInstrRegister(COP1, MTHC1, rt, fs, f0);
2665 }
2666 
dmtc1(Register rt,FPURegister fs)2667 void Assembler::dmtc1(Register rt, FPURegister fs) {
2668   GenInstrRegister(COP1, DMTC1, rt, fs, f0);
2669 }
2670 
mfc1(Register rt,FPURegister fs)2671 void Assembler::mfc1(Register rt, FPURegister fs) {
2672   GenInstrRegister(COP1, MFC1, rt, fs, f0);
2673 }
2674 
mfhc1(Register rt,FPURegister fs)2675 void Assembler::mfhc1(Register rt, FPURegister fs) {
2676   GenInstrRegister(COP1, MFHC1, rt, fs, f0);
2677 }
2678 
dmfc1(Register rt,FPURegister fs)2679 void Assembler::dmfc1(Register rt, FPURegister fs) {
2680   GenInstrRegister(COP1, DMFC1, rt, fs, f0);
2681 }
2682 
ctc1(Register rt,FPUControlRegister fs)2683 void Assembler::ctc1(Register rt, FPUControlRegister fs) {
2684   GenInstrRegister(COP1, CTC1, rt, fs);
2685 }
2686 
cfc1(Register rt,FPUControlRegister fs)2687 void Assembler::cfc1(Register rt, FPUControlRegister fs) {
2688   GenInstrRegister(COP1, CFC1, rt, fs);
2689 }
2690 
sel(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2691 void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs,
2692                     FPURegister ft) {
2693   DCHECK_EQ(kArchVariant, kMips64r6);
2694   DCHECK((fmt == D) || (fmt == S));
2695 
2696   GenInstrRegister(COP1, fmt, ft, fs, fd, SEL);
2697 }
2698 
sel_s(FPURegister fd,FPURegister fs,FPURegister ft)2699 void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2700   sel(S, fd, fs, ft);
2701 }
2702 
sel_d(FPURegister fd,FPURegister fs,FPURegister ft)2703 void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2704   sel(D, fd, fs, ft);
2705 }
2706 
2707 // FPR.
seleqz(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2708 void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
2709                        FPURegister ft) {
2710   DCHECK((fmt == D) || (fmt == S));
2711   GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C);
2712 }
2713 
seleqz_d(FPURegister fd,FPURegister fs,FPURegister ft)2714 void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2715   seleqz(D, fd, fs, ft);
2716 }
2717 
seleqz_s(FPURegister fd,FPURegister fs,FPURegister ft)2718 void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2719   seleqz(S, fd, fs, ft);
2720 }
2721 
selnez_d(FPURegister fd,FPURegister fs,FPURegister ft)2722 void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2723   selnez(D, fd, fs, ft);
2724 }
2725 
selnez_s(FPURegister fd,FPURegister fs,FPURegister ft)2726 void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2727   selnez(S, fd, fs, ft);
2728 }
2729 
movz_s(FPURegister fd,FPURegister fs,Register rt)2730 void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) {
2731   DCHECK_EQ(kArchVariant, kMips64r2);
2732   GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C);
2733 }
2734 
movz_d(FPURegister fd,FPURegister fs,Register rt)2735 void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) {
2736   DCHECK_EQ(kArchVariant, kMips64r2);
2737   GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C);
2738 }
2739 
movt_s(FPURegister fd,FPURegister fs,uint16_t cc)2740 void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2741   DCHECK_EQ(kArchVariant, kMips64r2);
2742   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2743   GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2744 }
2745 
movt_d(FPURegister fd,FPURegister fs,uint16_t cc)2746 void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2747   DCHECK_EQ(kArchVariant, kMips64r2);
2748   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2749   GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2750 }
2751 
movf_s(FPURegister fd,FPURegister fs,uint16_t cc)2752 void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2753   DCHECK_EQ(kArchVariant, kMips64r2);
2754   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2755   GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2756 }
2757 
movf_d(FPURegister fd,FPURegister fs,uint16_t cc)2758 void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2759   DCHECK_EQ(kArchVariant, kMips64r2);
2760   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2761   GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2762 }
2763 
movn_s(FPURegister fd,FPURegister fs,Register rt)2764 void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) {
2765   DCHECK_EQ(kArchVariant, kMips64r2);
2766   GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C);
2767 }
2768 
movn_d(FPURegister fd,FPURegister fs,Register rt)2769 void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) {
2770   DCHECK_EQ(kArchVariant, kMips64r2);
2771   GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C);
2772 }
2773 
2774 // FPR.
selnez(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2775 void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
2776                        FPURegister ft) {
2777   DCHECK_EQ(kArchVariant, kMips64r6);
2778   DCHECK((fmt == D) || (fmt == S));
2779   GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C);
2780 }
2781 
2782 // Arithmetic.
2783 
add_s(FPURegister fd,FPURegister fs,FPURegister ft)2784 void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2785   GenInstrRegister(COP1, S, ft, fs, fd, ADD_D);
2786 }
2787 
add_d(FPURegister fd,FPURegister fs,FPURegister ft)2788 void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2789   GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
2790 }
2791 
sub_s(FPURegister fd,FPURegister fs,FPURegister ft)2792 void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2793   GenInstrRegister(COP1, S, ft, fs, fd, SUB_D);
2794 }
2795 
sub_d(FPURegister fd,FPURegister fs,FPURegister ft)2796 void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2797   GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
2798 }
2799 
mul_s(FPURegister fd,FPURegister fs,FPURegister ft)2800 void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2801   GenInstrRegister(COP1, S, ft, fs, fd, MUL_D);
2802 }
2803 
mul_d(FPURegister fd,FPURegister fs,FPURegister ft)2804 void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2805   GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
2806 }
2807 
madd_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2808 void Assembler::madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
2809                        FPURegister ft) {
2810   // On Loongson 3A (MIPS64R2), MADD.S instruction is actually fused MADD.S and
2811   // this causes failure in some of the tests. Since this optimization is rarely
2812   // used, and not used at all on MIPS64R6, this isntruction is removed.
2813   UNREACHABLE();
2814 }
2815 
madd_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2816 void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
2817                        FPURegister ft) {
2818   // On Loongson 3A (MIPS64R2), MADD.D instruction is actually fused MADD.D and
2819   // this causes failure in some of the tests. Since this optimization is rarely
2820   // used, and not used at all on MIPS64R6, this isntruction is removed.
2821   UNREACHABLE();
2822 }
2823 
msub_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2824 void Assembler::msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
2825                        FPURegister ft) {
2826   // See explanation for instruction madd_s.
2827   UNREACHABLE();
2828 }
2829 
msub_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2830 void Assembler::msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
2831                        FPURegister ft) {
2832   // See explanation for instruction madd_d.
2833   UNREACHABLE();
2834 }
2835 
maddf_s(FPURegister fd,FPURegister fs,FPURegister ft)2836 void Assembler::maddf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2837   DCHECK_EQ(kArchVariant, kMips64r6);
2838   GenInstrRegister(COP1, S, ft, fs, fd, MADDF_S);
2839 }
2840 
maddf_d(FPURegister fd,FPURegister fs,FPURegister ft)2841 void Assembler::maddf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2842   DCHECK_EQ(kArchVariant, kMips64r6);
2843   GenInstrRegister(COP1, D, ft, fs, fd, MADDF_D);
2844 }
2845 
msubf_s(FPURegister fd,FPURegister fs,FPURegister ft)2846 void Assembler::msubf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2847   DCHECK_EQ(kArchVariant, kMips64r6);
2848   GenInstrRegister(COP1, S, ft, fs, fd, MSUBF_S);
2849 }
2850 
msubf_d(FPURegister fd,FPURegister fs,FPURegister ft)2851 void Assembler::msubf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2852   DCHECK_EQ(kArchVariant, kMips64r6);
2853   GenInstrRegister(COP1, D, ft, fs, fd, MSUBF_D);
2854 }
2855 
div_s(FPURegister fd,FPURegister fs,FPURegister ft)2856 void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2857   GenInstrRegister(COP1, S, ft, fs, fd, DIV_D);
2858 }
2859 
div_d(FPURegister fd,FPURegister fs,FPURegister ft)2860 void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2861   GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
2862 }
2863 
abs_s(FPURegister fd,FPURegister fs)2864 void Assembler::abs_s(FPURegister fd, FPURegister fs) {
2865   GenInstrRegister(COP1, S, f0, fs, fd, ABS_D);
2866 }
2867 
abs_d(FPURegister fd,FPURegister fs)2868 void Assembler::abs_d(FPURegister fd, FPURegister fs) {
2869   GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
2870 }
2871 
mov_d(FPURegister fd,FPURegister fs)2872 void Assembler::mov_d(FPURegister fd, FPURegister fs) {
2873   GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
2874 }
2875 
mov_s(FPURegister fd,FPURegister fs)2876 void Assembler::mov_s(FPURegister fd, FPURegister fs) {
2877   GenInstrRegister(COP1, S, f0, fs, fd, MOV_S);
2878 }
2879 
neg_s(FPURegister fd,FPURegister fs)2880 void Assembler::neg_s(FPURegister fd, FPURegister fs) {
2881   GenInstrRegister(COP1, S, f0, fs, fd, NEG_D);
2882 }
2883 
neg_d(FPURegister fd,FPURegister fs)2884 void Assembler::neg_d(FPURegister fd, FPURegister fs) {
2885   GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
2886 }
2887 
sqrt_s(FPURegister fd,FPURegister fs)2888 void Assembler::sqrt_s(FPURegister fd, FPURegister fs) {
2889   GenInstrRegister(COP1, S, f0, fs, fd, SQRT_D);
2890 }
2891 
sqrt_d(FPURegister fd,FPURegister fs)2892 void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
2893   GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
2894 }
2895 
rsqrt_s(FPURegister fd,FPURegister fs)2896 void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) {
2897   GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S);
2898 }
2899 
rsqrt_d(FPURegister fd,FPURegister fs)2900 void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) {
2901   GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D);
2902 }
2903 
recip_d(FPURegister fd,FPURegister fs)2904 void Assembler::recip_d(FPURegister fd, FPURegister fs) {
2905   GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D);
2906 }
2907 
recip_s(FPURegister fd,FPURegister fs)2908 void Assembler::recip_s(FPURegister fd, FPURegister fs) {
2909   GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S);
2910 }
2911 
2912 // Conversions.
cvt_w_s(FPURegister fd,FPURegister fs)2913 void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
2914   GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
2915 }
2916 
cvt_w_d(FPURegister fd,FPURegister fs)2917 void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
2918   GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
2919 }
2920 
trunc_w_s(FPURegister fd,FPURegister fs)2921 void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
2922   GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
2923 }
2924 
trunc_w_d(FPURegister fd,FPURegister fs)2925 void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
2926   GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
2927 }
2928 
round_w_s(FPURegister fd,FPURegister fs)2929 void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
2930   GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
2931 }
2932 
round_w_d(FPURegister fd,FPURegister fs)2933 void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
2934   GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
2935 }
2936 
floor_w_s(FPURegister fd,FPURegister fs)2937 void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
2938   GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
2939 }
2940 
floor_w_d(FPURegister fd,FPURegister fs)2941 void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
2942   GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
2943 }
2944 
ceil_w_s(FPURegister fd,FPURegister fs)2945 void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
2946   GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
2947 }
2948 
ceil_w_d(FPURegister fd,FPURegister fs)2949 void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
2950   GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
2951 }
2952 
rint_s(FPURegister fd,FPURegister fs)2953 void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); }
2954 
rint_d(FPURegister fd,FPURegister fs)2955 void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); }
2956 
rint(SecondaryField fmt,FPURegister fd,FPURegister fs)2957 void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) {
2958   DCHECK_EQ(kArchVariant, kMips64r6);
2959   GenInstrRegister(COP1, fmt, f0, fs, fd, RINT);
2960 }
2961 
cvt_l_s(FPURegister fd,FPURegister fs)2962 void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
2963   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2964   GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
2965 }
2966 
cvt_l_d(FPURegister fd,FPURegister fs)2967 void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
2968   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2969   GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
2970 }
2971 
trunc_l_s(FPURegister fd,FPURegister fs)2972 void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
2973   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2974   GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
2975 }
2976 
trunc_l_d(FPURegister fd,FPURegister fs)2977 void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
2978   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2979   GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
2980 }
2981 
round_l_s(FPURegister fd,FPURegister fs)2982 void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
2983   GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
2984 }
2985 
round_l_d(FPURegister fd,FPURegister fs)2986 void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
2987   GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
2988 }
2989 
floor_l_s(FPURegister fd,FPURegister fs)2990 void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
2991   GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
2992 }
2993 
floor_l_d(FPURegister fd,FPURegister fs)2994 void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
2995   GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
2996 }
2997 
ceil_l_s(FPURegister fd,FPURegister fs)2998 void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
2999   GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
3000 }
3001 
ceil_l_d(FPURegister fd,FPURegister fs)3002 void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
3003   GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
3004 }
3005 
class_s(FPURegister fd,FPURegister fs)3006 void Assembler::class_s(FPURegister fd, FPURegister fs) {
3007   DCHECK_EQ(kArchVariant, kMips64r6);
3008   GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S);
3009 }
3010 
class_d(FPURegister fd,FPURegister fs)3011 void Assembler::class_d(FPURegister fd, FPURegister fs) {
3012   DCHECK_EQ(kArchVariant, kMips64r6);
3013   GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D);
3014 }
3015 
mina(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3016 void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs,
3017                      FPURegister ft) {
3018   DCHECK_EQ(kArchVariant, kMips64r6);
3019   DCHECK((fmt == D) || (fmt == S));
3020   GenInstrRegister(COP1, fmt, ft, fs, fd, MINA);
3021 }
3022 
maxa(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3023 void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs,
3024                      FPURegister ft) {
3025   DCHECK_EQ(kArchVariant, kMips64r6);
3026   DCHECK((fmt == D) || (fmt == S));
3027   GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA);
3028 }
3029 
cvt_s_w(FPURegister fd,FPURegister fs)3030 void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
3031   GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
3032 }
3033 
cvt_s_l(FPURegister fd,FPURegister fs)3034 void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
3035   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
3036   GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
3037 }
3038 
cvt_s_d(FPURegister fd,FPURegister fs)3039 void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
3040   GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
3041 }
3042 
cvt_d_w(FPURegister fd,FPURegister fs)3043 void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
3044   GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
3045 }
3046 
cvt_d_l(FPURegister fd,FPURegister fs)3047 void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
3048   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
3049   GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
3050 }
3051 
cvt_d_s(FPURegister fd,FPURegister fs)3052 void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
3053   GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
3054 }
3055 
3056 // Conditions for >= MIPSr6.
cmp(FPUCondition cond,SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3057 void Assembler::cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
3058                     FPURegister fs, FPURegister ft) {
3059   DCHECK_EQ(kArchVariant, kMips64r6);
3060   DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
3061   Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
3062                 fd.code() << kFdShift | (0 << 5) | cond;
3063   emit(instr);
3064 }
3065 
cmp_s(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)3066 void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs,
3067                       FPURegister ft) {
3068   cmp(cond, W, fd, fs, ft);
3069 }
3070 
cmp_d(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)3071 void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs,
3072                       FPURegister ft) {
3073   cmp(cond, L, fd, fs, ft);
3074 }
3075 
bc1eqz(int16_t offset,FPURegister ft)3076 void Assembler::bc1eqz(int16_t offset, FPURegister ft) {
3077   DCHECK_EQ(kArchVariant, kMips64r6);
3078   BlockTrampolinePoolScope block_trampoline_pool(this);
3079   Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask);
3080   emit(instr);
3081   BlockTrampolinePoolFor(1);  // For associated delay slot.
3082 }
3083 
bc1nez(int16_t offset,FPURegister ft)3084 void Assembler::bc1nez(int16_t offset, FPURegister ft) {
3085   DCHECK_EQ(kArchVariant, kMips64r6);
3086   BlockTrampolinePoolScope block_trampoline_pool(this);
3087   Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask);
3088   emit(instr);
3089   BlockTrampolinePoolFor(1);  // For associated delay slot.
3090 }
3091 
3092 // Conditions for < MIPSr6.
c(FPUCondition cond,SecondaryField fmt,FPURegister fs,FPURegister ft,uint16_t cc)3093 void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs,
3094                   FPURegister ft, uint16_t cc) {
3095   DCHECK_NE(kArchVariant, kMips64r6);
3096   DCHECK(is_uint3(cc));
3097   DCHECK(fmt == S || fmt == D);
3098   DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
3099   Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
3100                 cc << 8 | 3 << 4 | cond;
3101   emit(instr);
3102 }
3103 
c_s(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)3104 void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft,
3105                     uint16_t cc) {
3106   c(cond, S, fs, ft, cc);
3107 }
3108 
c_d(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)3109 void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft,
3110                     uint16_t cc) {
3111   c(cond, D, fs, ft, cc);
3112 }
3113 
fcmp(FPURegister src1,const double src2,FPUCondition cond)3114 void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) {
3115   DCHECK_EQ(src2, 0.0);
3116   mtc1(zero_reg, f14);
3117   cvt_d_w(f14, f14);
3118   c(cond, D, src1, f14, 0);
3119 }
3120 
bc1f(int16_t offset,uint16_t cc)3121 void Assembler::bc1f(int16_t offset, uint16_t cc) {
3122   BlockTrampolinePoolScope block_trampoline_pool(this);
3123   DCHECK(is_uint3(cc));
3124   Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
3125   emit(instr);
3126   BlockTrampolinePoolFor(1);  // For associated delay slot.
3127 }
3128 
bc1t(int16_t offset,uint16_t cc)3129 void Assembler::bc1t(int16_t offset, uint16_t cc) {
3130   BlockTrampolinePoolScope block_trampoline_pool(this);
3131   DCHECK(is_uint3(cc));
3132   Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
3133   emit(instr);
3134   BlockTrampolinePoolFor(1);  // For associated delay slot.
3135 }
3136 
3137 // ---------- MSA instructions ------------
3138 #define MSA_BRANCH_LIST(V) \
3139   V(bz_v, BZ_V)            \
3140   V(bz_b, BZ_B)            \
3141   V(bz_h, BZ_H)            \
3142   V(bz_w, BZ_W)            \
3143   V(bz_d, BZ_D)            \
3144   V(bnz_v, BNZ_V)          \
3145   V(bnz_b, BNZ_B)          \
3146   V(bnz_h, BNZ_H)          \
3147   V(bnz_w, BNZ_W)          \
3148   V(bnz_d, BNZ_D)
3149 
3150 #define MSA_BRANCH(name, opcode)                         \
3151   void Assembler::name(MSARegister wt, int16_t offset) { \
3152     GenInstrMsaBranch(opcode, wt, offset);               \
3153   }
3154 
3155 MSA_BRANCH_LIST(MSA_BRANCH)
3156 #undef MSA_BRANCH
3157 #undef MSA_BRANCH_LIST
3158 
3159 #define MSA_LD_ST_LIST(V) \
3160   V(ld_b, LD_B)           \
3161   V(ld_h, LD_H)           \
3162   V(ld_w, LD_W)           \
3163   V(ld_d, LD_D)           \
3164   V(st_b, ST_B)           \
3165   V(st_h, ST_H)           \
3166   V(st_w, ST_W)           \
3167   V(st_d, ST_D)
3168 
3169 #define MSA_LD_ST(name, opcode)                                  \
3170   void Assembler::name(MSARegister wd, const MemOperand& rs) {   \
3171     MemOperand source = rs;                                      \
3172     AdjustBaseAndOffset(&source);                                 \
3173     if (is_int10(source.offset())) {                             \
3174       GenInstrMsaMI10(opcode, source.offset(), source.rm(), wd); \
3175     } else {                                                     \
3176       UseScratchRegisterScope temps(this);                       \
3177       Register scratch = temps.Acquire();                        \
3178       DCHECK(rs.rm() != scratch);                                \
3179       daddiu(scratch, source.rm(), source.offset());             \
3180       GenInstrMsaMI10(opcode, 0, scratch, wd);                   \
3181     }                                                            \
3182   }
3183 
MSA_LD_ST_LIST(MSA_LD_ST)3184 MSA_LD_ST_LIST(MSA_LD_ST)
3185 #undef MSA_LD_ST
3186 #undef MSA_LD_ST_LIST
3187 
3188 #define MSA_I10_LIST(V) \
3189   V(ldi_b, I5_DF_b)     \
3190   V(ldi_h, I5_DF_h)     \
3191   V(ldi_w, I5_DF_w)     \
3192   V(ldi_d, I5_DF_d)
3193 
3194 #define MSA_I10(name, format)                           \
3195   void Assembler::name(MSARegister wd, int32_t imm10) { \
3196     GenInstrMsaI10(LDI, format, imm10, wd);             \
3197   }
3198 MSA_I10_LIST(MSA_I10)
3199 #undef MSA_I10
3200 #undef MSA_I10_LIST
3201 
3202 #define MSA_I5_LIST(V) \
3203   V(addvi, ADDVI)      \
3204   V(subvi, SUBVI)      \
3205   V(maxi_s, MAXI_S)    \
3206   V(maxi_u, MAXI_U)    \
3207   V(mini_s, MINI_S)    \
3208   V(mini_u, MINI_U)    \
3209   V(ceqi, CEQI)        \
3210   V(clti_s, CLTI_S)    \
3211   V(clti_u, CLTI_U)    \
3212   V(clei_s, CLEI_S)    \
3213   V(clei_u, CLEI_U)
3214 
3215 #define MSA_I5_FORMAT(name, opcode, format)                       \
3216   void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3217                                   uint32_t imm5) {                \
3218     GenInstrMsaI5(opcode, I5_DF_##format, imm5, ws, wd);          \
3219   }
3220 
3221 #define MSA_I5(name, opcode)     \
3222   MSA_I5_FORMAT(name, opcode, b) \
3223   MSA_I5_FORMAT(name, opcode, h) \
3224   MSA_I5_FORMAT(name, opcode, w) \
3225   MSA_I5_FORMAT(name, opcode, d)
3226 
3227 MSA_I5_LIST(MSA_I5)
3228 #undef MSA_I5
3229 #undef MSA_I5_FORMAT
3230 #undef MSA_I5_LIST
3231 
3232 #define MSA_I8_LIST(V) \
3233   V(andi_b, ANDI_B)    \
3234   V(ori_b, ORI_B)      \
3235   V(nori_b, NORI_B)    \
3236   V(xori_b, XORI_B)    \
3237   V(bmnzi_b, BMNZI_B)  \
3238   V(bmzi_b, BMZI_B)    \
3239   V(bseli_b, BSELI_B)  \
3240   V(shf_b, SHF_B)      \
3241   V(shf_h, SHF_H)      \
3242   V(shf_w, SHF_W)
3243 
3244 #define MSA_I8(name, opcode)                                            \
3245   void Assembler::name(MSARegister wd, MSARegister ws, uint32_t imm8) { \
3246     GenInstrMsaI8(opcode, imm8, ws, wd);                                \
3247   }
3248 
3249 MSA_I8_LIST(MSA_I8)
3250 #undef MSA_I8
3251 #undef MSA_I8_LIST
3252 
3253 #define MSA_VEC_LIST(V) \
3254   V(and_v, AND_V)       \
3255   V(or_v, OR_V)         \
3256   V(nor_v, NOR_V)       \
3257   V(xor_v, XOR_V)       \
3258   V(bmnz_v, BMNZ_V)     \
3259   V(bmz_v, BMZ_V)       \
3260   V(bsel_v, BSEL_V)
3261 
3262 #define MSA_VEC(name, opcode)                                            \
3263   void Assembler::name(MSARegister wd, MSARegister ws, MSARegister wt) { \
3264     GenInstrMsaVec(opcode, wt, ws, wd);                                  \
3265   }
3266 
3267 MSA_VEC_LIST(MSA_VEC)
3268 #undef MSA_VEC
3269 #undef MSA_VEC_LIST
3270 
3271 #define MSA_2R_LIST(V) \
3272   V(pcnt, PCNT)        \
3273   V(nloc, NLOC)        \
3274   V(nlzc, NLZC)
3275 
3276 #define MSA_2R_FORMAT(name, opcode, format)                         \
3277   void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3278     GenInstrMsa2R(opcode, MSA_2R_DF_##format, ws, wd);              \
3279   }
3280 
3281 #define MSA_2R(name, opcode)     \
3282   MSA_2R_FORMAT(name, opcode, b) \
3283   MSA_2R_FORMAT(name, opcode, h) \
3284   MSA_2R_FORMAT(name, opcode, w) \
3285   MSA_2R_FORMAT(name, opcode, d)
3286 
3287 MSA_2R_LIST(MSA_2R)
3288 #undef MSA_2R
3289 #undef MSA_2R_FORMAT
3290 #undef MSA_2R_LIST
3291 
3292 #define MSA_FILL(format)                                              \
3293   void Assembler::fill_##format(MSARegister wd, Register rs) {        \
3294     DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));      \
3295     DCHECK(rs.is_valid() && wd.is_valid());                           \
3296     Instr instr = MSA | MSA_2R_FORMAT | FILL | MSA_2R_DF_##format |   \
3297                   (rs.code() << kWsShift) | (wd.code() << kWdShift) | \
3298                   MSA_VEC_2R_2RF_MINOR;                               \
3299     emit(instr);                                                      \
3300   }
3301 
3302 MSA_FILL(b)
3303 MSA_FILL(h)
3304 MSA_FILL(w)
3305 MSA_FILL(d)
3306 #undef MSA_FILL
3307 
3308 #define MSA_2RF_LIST(V) \
3309   V(fclass, FCLASS)     \
3310   V(ftrunc_s, FTRUNC_S) \
3311   V(ftrunc_u, FTRUNC_U) \
3312   V(fsqrt, FSQRT)       \
3313   V(frsqrt, FRSQRT)     \
3314   V(frcp, FRCP)         \
3315   V(frint, FRINT)       \
3316   V(flog2, FLOG2)       \
3317   V(fexupl, FEXUPL)     \
3318   V(fexupr, FEXUPR)     \
3319   V(ffql, FFQL)         \
3320   V(ffqr, FFQR)         \
3321   V(ftint_s, FTINT_S)   \
3322   V(ftint_u, FTINT_U)   \
3323   V(ffint_s, FFINT_S)   \
3324   V(ffint_u, FFINT_U)
3325 
3326 #define MSA_2RF_FORMAT(name, opcode, format)                        \
3327   void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3328     GenInstrMsa2RF(opcode, MSA_2RF_DF_##format, ws, wd);            \
3329   }
3330 
3331 #define MSA_2RF(name, opcode)     \
3332   MSA_2RF_FORMAT(name, opcode, w) \
3333   MSA_2RF_FORMAT(name, opcode, d)
3334 
3335 MSA_2RF_LIST(MSA_2RF)
3336 #undef MSA_2RF
3337 #undef MSA_2RF_FORMAT
3338 #undef MSA_2RF_LIST
3339 
3340 #define MSA_3R_LIST(V)  \
3341   V(sll, SLL_MSA)       \
3342   V(sra, SRA_MSA)       \
3343   V(srl, SRL_MSA)       \
3344   V(bclr, BCLR)         \
3345   V(bset, BSET)         \
3346   V(bneg, BNEG)         \
3347   V(binsl, BINSL)       \
3348   V(binsr, BINSR)       \
3349   V(addv, ADDV)         \
3350   V(subv, SUBV)         \
3351   V(max_s, MAX_S)       \
3352   V(max_u, MAX_U)       \
3353   V(min_s, MIN_S)       \
3354   V(min_u, MIN_U)       \
3355   V(max_a, MAX_A)       \
3356   V(min_a, MIN_A)       \
3357   V(ceq, CEQ)           \
3358   V(clt_s, CLT_S)       \
3359   V(clt_u, CLT_U)       \
3360   V(cle_s, CLE_S)       \
3361   V(cle_u, CLE_U)       \
3362   V(add_a, ADD_A)       \
3363   V(adds_a, ADDS_A)     \
3364   V(adds_s, ADDS_S)     \
3365   V(adds_u, ADDS_U)     \
3366   V(ave_s, AVE_S)       \
3367   V(ave_u, AVE_U)       \
3368   V(aver_s, AVER_S)     \
3369   V(aver_u, AVER_U)     \
3370   V(subs_s, SUBS_S)     \
3371   V(subs_u, SUBS_U)     \
3372   V(subsus_u, SUBSUS_U) \
3373   V(subsuu_s, SUBSUU_S) \
3374   V(asub_s, ASUB_S)     \
3375   V(asub_u, ASUB_U)     \
3376   V(mulv, MULV)         \
3377   V(maddv, MADDV)       \
3378   V(msubv, MSUBV)       \
3379   V(div_s, DIV_S_MSA)   \
3380   V(div_u, DIV_U)       \
3381   V(mod_s, MOD_S)       \
3382   V(mod_u, MOD_U)       \
3383   V(dotp_s, DOTP_S)     \
3384   V(dotp_u, DOTP_U)     \
3385   V(dpadd_s, DPADD_S)   \
3386   V(dpadd_u, DPADD_U)   \
3387   V(dpsub_s, DPSUB_S)   \
3388   V(dpsub_u, DPSUB_U)   \
3389   V(pckev, PCKEV)       \
3390   V(pckod, PCKOD)       \
3391   V(ilvl, ILVL)         \
3392   V(ilvr, ILVR)         \
3393   V(ilvev, ILVEV)       \
3394   V(ilvod, ILVOD)       \
3395   V(vshf, VSHF)         \
3396   V(srar, SRAR)         \
3397   V(srlr, SRLR)         \
3398   V(hadd_s, HADD_S)     \
3399   V(hadd_u, HADD_U)     \
3400   V(hsub_s, HSUB_S)     \
3401   V(hsub_u, HSUB_U)
3402 
3403 #define MSA_3R_FORMAT(name, opcode, format)                             \
3404   void Assembler::name##_##format(MSARegister wd, MSARegister ws,       \
3405                                   MSARegister wt) {                     \
3406     GenInstrMsa3R<MSARegister>(opcode, MSA_3R_DF_##format, wt, ws, wd); \
3407   }
3408 
3409 #define MSA_3R_FORMAT_SLD_SPLAT(name, opcode, format)                \
3410   void Assembler::name##_##format(MSARegister wd, MSARegister ws,    \
3411                                   Register rt) {                     \
3412     GenInstrMsa3R<Register>(opcode, MSA_3R_DF_##format, rt, ws, wd); \
3413   }
3414 
3415 #define MSA_3R(name, opcode)     \
3416   MSA_3R_FORMAT(name, opcode, b) \
3417   MSA_3R_FORMAT(name, opcode, h) \
3418   MSA_3R_FORMAT(name, opcode, w) \
3419   MSA_3R_FORMAT(name, opcode, d)
3420 
3421 #define MSA_3R_SLD_SPLAT(name, opcode)     \
3422   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, b) \
3423   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, h) \
3424   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, w) \
3425   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, d)
3426 
3427 MSA_3R_LIST(MSA_3R)
3428 MSA_3R_SLD_SPLAT(sld, SLD)
3429 MSA_3R_SLD_SPLAT(splat, SPLAT)
3430 
3431 #undef MSA_3R
3432 #undef MSA_3R_FORMAT
3433 #undef MSA_3R_FORMAT_SLD_SPLAT
3434 #undef MSA_3R_SLD_SPLAT
3435 #undef MSA_3R_LIST
3436 
3437 #define MSA_3RF_LIST1(V) \
3438   V(fcaf, FCAF)          \
3439   V(fcun, FCUN)          \
3440   V(fceq, FCEQ)          \
3441   V(fcueq, FCUEQ)        \
3442   V(fclt, FCLT)          \
3443   V(fcult, FCULT)        \
3444   V(fcle, FCLE)          \
3445   V(fcule, FCULE)        \
3446   V(fsaf, FSAF)          \
3447   V(fsun, FSUN)          \
3448   V(fseq, FSEQ)          \
3449   V(fsueq, FSUEQ)        \
3450   V(fslt, FSLT)          \
3451   V(fsult, FSULT)        \
3452   V(fsle, FSLE)          \
3453   V(fsule, FSULE)        \
3454   V(fadd, FADD)          \
3455   V(fsub, FSUB)          \
3456   V(fmul, FMUL)          \
3457   V(fdiv, FDIV)          \
3458   V(fmadd, FMADD)        \
3459   V(fmsub, FMSUB)        \
3460   V(fexp2, FEXP2)        \
3461   V(fmin, FMIN)          \
3462   V(fmin_a, FMIN_A)      \
3463   V(fmax, FMAX)          \
3464   V(fmax_a, FMAX_A)      \
3465   V(fcor, FCOR)          \
3466   V(fcune, FCUNE)        \
3467   V(fcne, FCNE)          \
3468   V(fsor, FSOR)          \
3469   V(fsune, FSUNE)        \
3470   V(fsne, FSNE)
3471 
3472 #define MSA_3RF_LIST2(V) \
3473   V(fexdo, FEXDO)        \
3474   V(ftq, FTQ)            \
3475   V(mul_q, MUL_Q)        \
3476   V(madd_q, MADD_Q)      \
3477   V(msub_q, MSUB_Q)      \
3478   V(mulr_q, MULR_Q)      \
3479   V(maddr_q, MADDR_Q)    \
3480   V(msubr_q, MSUBR_Q)
3481 
3482 #define MSA_3RF_FORMAT(name, opcode, df, df_c)                \
3483   void Assembler::name##_##df(MSARegister wd, MSARegister ws, \
3484                               MSARegister wt) {               \
3485     GenInstrMsa3RF(opcode, df_c, wt, ws, wd);                 \
3486   }
3487 
3488 #define MSA_3RF_1(name, opcode)      \
3489   MSA_3RF_FORMAT(name, opcode, w, 0) \
3490   MSA_3RF_FORMAT(name, opcode, d, 1)
3491 
3492 #define MSA_3RF_2(name, opcode)      \
3493   MSA_3RF_FORMAT(name, opcode, h, 0) \
3494   MSA_3RF_FORMAT(name, opcode, w, 1)
3495 
3496 MSA_3RF_LIST1(MSA_3RF_1)
3497 MSA_3RF_LIST2(MSA_3RF_2)
3498 #undef MSA_3RF_1
3499 #undef MSA_3RF_2
3500 #undef MSA_3RF_FORMAT
3501 #undef MSA_3RF_LIST1
3502 #undef MSA_3RF_LIST2
3503 
3504 void Assembler::sldi_b(MSARegister wd, MSARegister ws, uint32_t n) {
3505   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_B, n, ws, wd);
3506 }
3507 
sldi_h(MSARegister wd,MSARegister ws,uint32_t n)3508 void Assembler::sldi_h(MSARegister wd, MSARegister ws, uint32_t n) {
3509   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_H, n, ws, wd);
3510 }
3511 
sldi_w(MSARegister wd,MSARegister ws,uint32_t n)3512 void Assembler::sldi_w(MSARegister wd, MSARegister ws, uint32_t n) {
3513   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_W, n, ws, wd);
3514 }
3515 
sldi_d(MSARegister wd,MSARegister ws,uint32_t n)3516 void Assembler::sldi_d(MSARegister wd, MSARegister ws, uint32_t n) {
3517   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_D, n, ws, wd);
3518 }
3519 
splati_b(MSARegister wd,MSARegister ws,uint32_t n)3520 void Assembler::splati_b(MSARegister wd, MSARegister ws, uint32_t n) {
3521   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_B, n, ws, wd);
3522 }
3523 
splati_h(MSARegister wd,MSARegister ws,uint32_t n)3524 void Assembler::splati_h(MSARegister wd, MSARegister ws, uint32_t n) {
3525   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_H, n, ws, wd);
3526 }
3527 
splati_w(MSARegister wd,MSARegister ws,uint32_t n)3528 void Assembler::splati_w(MSARegister wd, MSARegister ws, uint32_t n) {
3529   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_W, n, ws, wd);
3530 }
3531 
splati_d(MSARegister wd,MSARegister ws,uint32_t n)3532 void Assembler::splati_d(MSARegister wd, MSARegister ws, uint32_t n) {
3533   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_D, n, ws, wd);
3534 }
3535 
copy_s_b(Register rd,MSARegister ws,uint32_t n)3536 void Assembler::copy_s_b(Register rd, MSARegister ws, uint32_t n) {
3537   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_B, n, ws, rd);
3538 }
3539 
copy_s_h(Register rd,MSARegister ws,uint32_t n)3540 void Assembler::copy_s_h(Register rd, MSARegister ws, uint32_t n) {
3541   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_H, n, ws, rd);
3542 }
3543 
copy_s_w(Register rd,MSARegister ws,uint32_t n)3544 void Assembler::copy_s_w(Register rd, MSARegister ws, uint32_t n) {
3545   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_W, n, ws, rd);
3546 }
3547 
copy_s_d(Register rd,MSARegister ws,uint32_t n)3548 void Assembler::copy_s_d(Register rd, MSARegister ws, uint32_t n) {
3549   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_D, n, ws, rd);
3550 }
3551 
copy_u_b(Register rd,MSARegister ws,uint32_t n)3552 void Assembler::copy_u_b(Register rd, MSARegister ws, uint32_t n) {
3553   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_B, n, ws, rd);
3554 }
3555 
copy_u_h(Register rd,MSARegister ws,uint32_t n)3556 void Assembler::copy_u_h(Register rd, MSARegister ws, uint32_t n) {
3557   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_H, n, ws, rd);
3558 }
3559 
copy_u_w(Register rd,MSARegister ws,uint32_t n)3560 void Assembler::copy_u_w(Register rd, MSARegister ws, uint32_t n) {
3561   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_W, n, ws, rd);
3562 }
3563 
insert_b(MSARegister wd,uint32_t n,Register rs)3564 void Assembler::insert_b(MSARegister wd, uint32_t n, Register rs) {
3565   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_B, n, rs, wd);
3566 }
3567 
insert_h(MSARegister wd,uint32_t n,Register rs)3568 void Assembler::insert_h(MSARegister wd, uint32_t n, Register rs) {
3569   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_H, n, rs, wd);
3570 }
3571 
insert_w(MSARegister wd,uint32_t n,Register rs)3572 void Assembler::insert_w(MSARegister wd, uint32_t n, Register rs) {
3573   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_W, n, rs, wd);
3574 }
3575 
insert_d(MSARegister wd,uint32_t n,Register rs)3576 void Assembler::insert_d(MSARegister wd, uint32_t n, Register rs) {
3577   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_D, n, rs, wd);
3578 }
3579 
insve_b(MSARegister wd,uint32_t n,MSARegister ws)3580 void Assembler::insve_b(MSARegister wd, uint32_t n, MSARegister ws) {
3581   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_B, n, ws, wd);
3582 }
3583 
insve_h(MSARegister wd,uint32_t n,MSARegister ws)3584 void Assembler::insve_h(MSARegister wd, uint32_t n, MSARegister ws) {
3585   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_H, n, ws, wd);
3586 }
3587 
insve_w(MSARegister wd,uint32_t n,MSARegister ws)3588 void Assembler::insve_w(MSARegister wd, uint32_t n, MSARegister ws) {
3589   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_W, n, ws, wd);
3590 }
3591 
insve_d(MSARegister wd,uint32_t n,MSARegister ws)3592 void Assembler::insve_d(MSARegister wd, uint32_t n, MSARegister ws) {
3593   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_D, n, ws, wd);
3594 }
3595 
move_v(MSARegister wd,MSARegister ws)3596 void Assembler::move_v(MSARegister wd, MSARegister ws) {
3597   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
3598   DCHECK(ws.is_valid() && wd.is_valid());
3599   Instr instr = MSA | MOVE_V | (ws.code() << kWsShift) |
3600                 (wd.code() << kWdShift) | MSA_ELM_MINOR;
3601   emit(instr);
3602 }
3603 
ctcmsa(MSAControlRegister cd,Register rs)3604 void Assembler::ctcmsa(MSAControlRegister cd, Register rs) {
3605   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
3606   DCHECK(cd.is_valid() && rs.is_valid());
3607   Instr instr = MSA | CTCMSA | (rs.code() << kWsShift) |
3608                 (cd.code() << kWdShift) | MSA_ELM_MINOR;
3609   emit(instr);
3610 }
3611 
cfcmsa(Register rd,MSAControlRegister cs)3612 void Assembler::cfcmsa(Register rd, MSAControlRegister cs) {
3613   DCHECK((kArchVariant == kMips64r6) && IsEnabled(MIPS_SIMD));
3614   DCHECK(rd.is_valid() && cs.is_valid());
3615   Instr instr = MSA | CFCMSA | (cs.code() << kWsShift) |
3616                 (rd.code() << kWdShift) | MSA_ELM_MINOR;
3617   emit(instr);
3618 }
3619 
3620 #define MSA_BIT_LIST(V) \
3621   V(slli, SLLI)         \
3622   V(srai, SRAI)         \
3623   V(srli, SRLI)         \
3624   V(bclri, BCLRI)       \
3625   V(bseti, BSETI)       \
3626   V(bnegi, BNEGI)       \
3627   V(binsli, BINSLI)     \
3628   V(binsri, BINSRI)     \
3629   V(sat_s, SAT_S)       \
3630   V(sat_u, SAT_U)       \
3631   V(srari, SRARI)       \
3632   V(srlri, SRLRI)
3633 
3634 #define MSA_BIT_FORMAT(name, opcode, format)                      \
3635   void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3636                                   uint32_t m) {                   \
3637     GenInstrMsaBit(opcode, BIT_DF_##format, m, ws, wd);           \
3638   }
3639 
3640 #define MSA_BIT(name, opcode)     \
3641   MSA_BIT_FORMAT(name, opcode, b) \
3642   MSA_BIT_FORMAT(name, opcode, h) \
3643   MSA_BIT_FORMAT(name, opcode, w) \
3644   MSA_BIT_FORMAT(name, opcode, d)
3645 
MSA_BIT_LIST(MSA_BIT)3646 MSA_BIT_LIST(MSA_BIT)
3647 #undef MSA_BIT
3648 #undef MSA_BIT_FORMAT
3649 #undef MSA_BIT_LIST
3650 
3651 int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
3652                                          intptr_t pc_delta) {
3653   if (RelocInfo::IsInternalReference(rmode)) {
3654     int64_t* p = reinterpret_cast<int64_t*>(pc);
3655     if (*p == kEndOfJumpChain) {
3656       return 0;  // Number of instructions patched.
3657     }
3658     *p += pc_delta;
3659     return 2;  // Number of instructions patched.
3660   }
3661   Instr instr = instr_at(pc);
3662   DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
3663   if (IsLui(instr)) {
3664     Instr instr_lui = instr_at(pc + 0 * kInstrSize);
3665     Instr instr_ori = instr_at(pc + 1 * kInstrSize);
3666     Instr instr_ori2 = instr_at(pc + 3 * kInstrSize);
3667     DCHECK(IsOri(instr_ori));
3668     DCHECK(IsOri(instr_ori2));
3669     // TODO(plind): symbolic names for the shifts.
3670     int64_t imm = (instr_lui & static_cast<int64_t>(kImm16Mask)) << 48;
3671     imm |= (instr_ori & static_cast<int64_t>(kImm16Mask)) << 32;
3672     imm |= (instr_ori2 & static_cast<int64_t>(kImm16Mask)) << 16;
3673     // Sign extend address.
3674     imm >>= 16;
3675 
3676     if (imm == kEndOfJumpChain) {
3677       return 0;  // Number of instructions patched.
3678     }
3679     imm += pc_delta;
3680     DCHECK_EQ(imm & 3, 0);
3681 
3682     instr_lui &= ~kImm16Mask;
3683     instr_ori &= ~kImm16Mask;
3684     instr_ori2 &= ~kImm16Mask;
3685 
3686     instr_at_put(pc + 0 * kInstrSize, instr_lui | ((imm >> 32) & kImm16Mask));
3687     instr_at_put(pc + 1 * kInstrSize, instr_ori | (imm >> 16 & kImm16Mask));
3688     instr_at_put(pc + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask));
3689     return 4;  // Number of instructions patched.
3690   } else if (IsJ(instr) || IsJal(instr)) {
3691     // Regular j/jal relocation.
3692     uint32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
3693     imm28 += pc_delta;
3694     imm28 &= kImm28Mask;
3695     instr &= ~kImm26Mask;
3696     DCHECK_EQ(imm28 & 3, 0);
3697     uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
3698     instr_at_put(pc, instr | (imm26 & kImm26Mask));
3699     return 1;  // Number of instructions patched.
3700   } else {
3701     DCHECK(((instr & kJumpRawMask) == kJRawMark) ||
3702            ((instr & kJumpRawMask) == kJalRawMark));
3703     // Unbox raw offset and emit j/jal.
3704     int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
3705     // Sign extend 28-bit offset to 32-bit.
3706     imm28 = (imm28 << 4) >> 4;
3707     uint64_t target =
3708         static_cast<int64_t>(imm28) + reinterpret_cast<uint64_t>(pc);
3709     target &= kImm28Mask;
3710     DCHECK_EQ(imm28 & 3, 0);
3711     uint32_t imm26 = static_cast<uint32_t>(target >> 2);
3712     // Check markings whether to emit j or jal.
3713     uint32_t unbox = (instr & kJRawMark) ? J : JAL;
3714     instr_at_put(pc, unbox | (imm26 & kImm26Mask));
3715     return 1;  // Number of instructions patched.
3716   }
3717 }
3718 
GrowBuffer()3719 void Assembler::GrowBuffer() {
3720   // Compute new buffer size.
3721   int old_size = buffer_->size();
3722   int new_size = std::min(2 * old_size, old_size + 1 * MB);
3723 
3724   // Some internal data structures overflow for very large buffers,
3725   // they must ensure that kMaximalBufferSize is not too large.
3726   if (new_size > kMaximalBufferSize) {
3727     V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
3728   }
3729 
3730   // Set up new buffer.
3731   std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size);
3732   DCHECK_EQ(new_size, new_buffer->size());
3733   byte* new_start = new_buffer->start();
3734 
3735   // Copy the data.
3736   intptr_t pc_delta = new_start - buffer_start_;
3737   intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size);
3738   size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos();
3739   MemMove(new_start, buffer_start_, pc_offset());
3740   MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3741           reloc_size);
3742 
3743   // Switch buffers.
3744   buffer_ = std::move(new_buffer);
3745   buffer_start_ = new_start;
3746   pc_ += pc_delta;
3747   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3748                                reloc_info_writer.last_pc() + pc_delta);
3749 
3750   // Relocate runtime entries.
3751   Vector<byte> instructions{buffer_start_, pc_offset()};
3752   Vector<const byte> reloc_info{reloc_info_writer.pos(), reloc_size};
3753   for (RelocIterator it(instructions, reloc_info, 0); !it.done(); it.next()) {
3754     RelocInfo::Mode rmode = it.rinfo()->rmode();
3755     if (rmode == RelocInfo::INTERNAL_REFERENCE) {
3756       RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta);
3757     }
3758   }
3759   DCHECK(!overflow());
3760 }
3761 
db(uint8_t data)3762 void Assembler::db(uint8_t data) {
3763   CheckForEmitInForbiddenSlot();
3764   EmitHelper(data);
3765 }
3766 
dd(uint32_t data)3767 void Assembler::dd(uint32_t data) {
3768   CheckForEmitInForbiddenSlot();
3769   EmitHelper(data);
3770 }
3771 
dq(uint64_t data)3772 void Assembler::dq(uint64_t data) {
3773   CheckForEmitInForbiddenSlot();
3774   EmitHelper(data);
3775 }
3776 
dd(Label * label)3777 void Assembler::dd(Label* label) {
3778   uint64_t data;
3779   CheckForEmitInForbiddenSlot();
3780   if (label->is_bound()) {
3781     data = reinterpret_cast<uint64_t>(buffer_start_ + label->pos());
3782   } else {
3783     data = jump_address(label);
3784     unbound_labels_count_++;
3785     internal_reference_positions_.insert(label->pos());
3786   }
3787   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3788   EmitHelper(data);
3789 }
3790 
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3791 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3792   if (!ShouldRecordRelocInfo(rmode)) return;
3793   // We do not try to reuse pool constants.
3794   RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code());
3795   DCHECK_GE(buffer_space(), kMaxRelocSize);  // Too late to grow buffer here.
3796   reloc_info_writer.Write(&rinfo);
3797 }
3798 
BlockTrampolinePoolFor(int instructions)3799 void Assembler::BlockTrampolinePoolFor(int instructions) {
3800   CheckTrampolinePoolQuick(instructions);
3801   BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
3802 }
3803 
CheckTrampolinePool()3804 void Assembler::CheckTrampolinePool() {
3805   // Some small sequences of instructions must not be broken up by the
3806   // insertion of a trampoline pool; such sequences are protected by setting
3807   // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
3808   // which are both checked here. Also, recursive calls to CheckTrampolinePool
3809   // are blocked by trampoline_pool_blocked_nesting_.
3810   if ((trampoline_pool_blocked_nesting_ > 0) ||
3811       (pc_offset() < no_trampoline_pool_before_)) {
3812     // Emission is currently blocked; make sure we try again as soon as
3813     // possible.
3814     if (trampoline_pool_blocked_nesting_ > 0) {
3815       next_buffer_check_ = pc_offset() + kInstrSize;
3816     } else {
3817       next_buffer_check_ = no_trampoline_pool_before_;
3818     }
3819     return;
3820   }
3821 
3822   DCHECK(!trampoline_emitted_);
3823   DCHECK_GE(unbound_labels_count_, 0);
3824   if (unbound_labels_count_ > 0) {
3825     // First we emit jump (2 instructions), then we emit trampoline pool.
3826     {
3827       BlockTrampolinePoolScope block_trampoline_pool(this);
3828       Label after_pool;
3829       if (kArchVariant == kMips64r6) {
3830         bc(&after_pool);
3831       } else {
3832         b(&after_pool);
3833       }
3834       nop();
3835 
3836       int pool_start = pc_offset();
3837       for (int i = 0; i < unbound_labels_count_; i++) {
3838         {
3839           if (kArchVariant == kMips64r6) {
3840             bc(&after_pool);
3841             nop();
3842           } else {
3843             or_(t8, ra, zero_reg);
3844             nal();       // Read PC into ra register.
3845             lui(t9, 0);  // Branch delay slot.
3846             ori(t9, t9, 0);
3847             daddu(t9, ra, t9);
3848             or_(ra, t8, zero_reg);
3849             // Instruction jr will take or_ from the next trampoline.
3850             // in its branch delay slot. This is the expected behavior
3851             // in order to decrease size of trampoline pool.
3852             jr(t9);
3853           }
3854         }
3855       }
3856       nop();
3857       bind(&after_pool);
3858       trampoline_ = Trampoline(pool_start, unbound_labels_count_);
3859 
3860       trampoline_emitted_ = true;
3861       // As we are only going to emit trampoline once, we need to prevent any
3862       // further emission.
3863       next_buffer_check_ = kMaxInt;
3864     }
3865   } else {
3866     // Number of branches to unbound label at this point is zero, so we can
3867     // move next buffer check to maximum.
3868     next_buffer_check_ =
3869         pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16;
3870   }
3871   return;
3872 }
3873 
target_address_at(Address pc)3874 Address Assembler::target_address_at(Address pc) {
3875   Instr instr0 = instr_at(pc);
3876   Instr instr1 = instr_at(pc + 1 * kInstrSize);
3877   Instr instr3 = instr_at(pc + 3 * kInstrSize);
3878 
3879   // Interpret 4 instructions for address generated by li: See listing in
3880   // Assembler::set_target_address_at() just below.
3881   if ((GetOpcodeField(instr0) == LUI) && (GetOpcodeField(instr1) == ORI) &&
3882       (GetOpcodeField(instr3) == ORI)) {
3883     // Assemble the 48 bit value.
3884     int64_t addr =
3885         static_cast<int64_t>(((uint64_t)(GetImmediate16(instr0)) << 32) |
3886                              ((uint64_t)(GetImmediate16(instr1)) << 16) |
3887                              ((uint64_t)(GetImmediate16(instr3))));
3888 
3889     // Sign extend to get canonical address.
3890     addr = (addr << 16) >> 16;
3891     return static_cast<Address>(addr);
3892   }
3893   // We should never get here, force a bad address if we do.
3894   UNREACHABLE();
3895 }
3896 
3897 // On Mips64, a target address is stored in a 4-instruction sequence:
3898 //    0: lui(rd, (j.imm64_ >> 32) & kImm16Mask);
3899 //    1: ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
3900 //    2: dsll(rd, rd, 16);
3901 //    3: ori(rd, rd, j.imm32_ & kImm16Mask);
3902 //
3903 // Patching the address must replace all the lui & ori instructions,
3904 // and flush the i-cache.
3905 //
3906 // There is an optimization below, which emits a nop when the address
3907 // fits in just 16 bits. This is unlikely to help, and should be benchmarked,
3908 // and possibly removed.
set_target_value_at(Address pc,uint64_t target,ICacheFlushMode icache_flush_mode)3909 void Assembler::set_target_value_at(Address pc, uint64_t target,
3910                                     ICacheFlushMode icache_flush_mode) {
3911   // There is an optimization where only 4 instructions are used to load address
3912   // in code on MIP64 because only 48-bits of address is effectively used.
3913   // It relies on fact the upper [63:48] bits are not used for virtual address
3914   // translation and they have to be set according to value of bit 47 in order
3915   // get canonical address.
3916   Instr instr1 = instr_at(pc + kInstrSize);
3917   uint32_t rt_code = GetRt(instr1);
3918   uint32_t* p = reinterpret_cast<uint32_t*>(pc);
3919 
3920 #ifdef DEBUG
3921   // Check we have the result from a li macro-instruction.
3922   Instr instr0 = instr_at(pc);
3923   Instr instr3 = instr_at(pc + kInstrSize * 3);
3924   DCHECK((GetOpcodeField(instr0) == LUI && GetOpcodeField(instr1) == ORI &&
3925           GetOpcodeField(instr3) == ORI));
3926 #endif
3927 
3928   // Must use 4 instructions to insure patchable code.
3929   // lui rt, upper-16.
3930   // ori rt, rt, lower-16.
3931   // dsll rt, rt, 16.
3932   // ori rt rt, lower-16.
3933   *p = LUI | (rt_code << kRtShift) | ((target >> 32) & kImm16Mask);
3934   *(p + 1) = ORI | (rt_code << kRtShift) | (rt_code << kRsShift) |
3935              ((target >> 16) & kImm16Mask);
3936   *(p + 3) = ORI | (rt_code << kRsShift) | (rt_code << kRtShift) |
3937              (target & kImm16Mask);
3938 
3939   if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
3940     FlushInstructionCache(pc, 4 * kInstrSize);
3941   }
3942 }
3943 
UseScratchRegisterScope(Assembler * assembler)3944 UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler)
3945     : available_(assembler->GetScratchRegisterList()),
3946       old_available_(*available_) {}
3947 
~UseScratchRegisterScope()3948 UseScratchRegisterScope::~UseScratchRegisterScope() {
3949   *available_ = old_available_;
3950 }
3951 
Acquire()3952 Register UseScratchRegisterScope::Acquire() {
3953   DCHECK_NOT_NULL(available_);
3954   DCHECK_NE(*available_, 0);
3955   int index = static_cast<int>(base::bits::CountTrailingZeros32(*available_));
3956   *available_ &= ~(1UL << index);
3957 
3958   return Register::from_code(index);
3959 }
3960 
hasAvailable() const3961 bool UseScratchRegisterScope::hasAvailable() const { return *available_ != 0; }
3962 
3963 }  // namespace internal
3964 }  // namespace v8
3965 
3966 #endif  // V8_TARGET_ARCH_MIPS64
3967