1 //! This crate implements a structure that can be used as a generic array type.
2 //! Core Rust array types `[T; N]` can't be used generically with
3 //! respect to `N`, so for example this:
4 //!
5 //! ```rust{compile_fail}
6 //! struct Foo<T, N> {
7 //!     data: [T; N]
8 //! }
9 //! ```
10 //!
11 //! won't work.
12 //!
13 //! **generic-array** exports a `GenericArray<T,N>` type, which lets
14 //! the above be implemented as:
15 //!
16 //! ```rust
17 //! use generic_array::{ArrayLength, GenericArray};
18 //!
19 //! struct Foo<T, N: ArrayLength<T>> {
20 //!     data: GenericArray<T,N>
21 //! }
22 //! ```
23 //!
24 //! The `ArrayLength<T>` trait is implemented by default for
25 //! [unsigned integer types](../typenum/uint/index.html) from
26 //! [typenum](../typenum/index.html):
27 //!
28 //! ```rust
29 //! # use generic_array::{ArrayLength, GenericArray};
30 //! use generic_array::typenum::U5;
31 //!
32 //! struct Foo<N: ArrayLength<i32>> {
33 //!     data: GenericArray<i32, N>
34 //! }
35 //!
36 //! # fn main() {
37 //! let foo = Foo::<U5>{data: GenericArray::default()};
38 //! # }
39 //! ```
40 //!
41 //! For example, `GenericArray<T, U5>` would work almost like `[T; 5]`:
42 //!
43 //! ```rust
44 //! # use generic_array::{ArrayLength, GenericArray};
45 //! use generic_array::typenum::U5;
46 //!
47 //! struct Foo<T, N: ArrayLength<T>> {
48 //!     data: GenericArray<T, N>
49 //! }
50 //!
51 //! # fn main() {
52 //! let foo = Foo::<i32, U5>{data: GenericArray::default()};
53 //! # }
54 //! ```
55 //!
56 //! For ease of use, an `arr!` macro is provided - example below:
57 //!
58 //! ```
59 //! # #[macro_use]
60 //! # extern crate generic_array;
61 //! # extern crate typenum;
62 //! # fn main() {
63 //! let array = arr![u32; 1, 2, 3];
64 //! assert_eq!(array[2], 3);
65 //! # }
66 //! ```
67 
68 #![deny(missing_docs)]
69 #![deny(meta_variable_misuse)]
70 #![no_std]
71 
72 #[cfg(feature = "serde")]
73 extern crate serde;
74 
75 #[cfg(test)]
76 extern crate bincode;
77 
78 pub extern crate typenum;
79 
80 mod hex;
81 mod impls;
82 
83 #[cfg(feature = "serde")]
84 mod impl_serde;
85 
86 use core::iter::FromIterator;
87 use core::marker::PhantomData;
88 use core::mem::{MaybeUninit, ManuallyDrop};
89 use core::ops::{Deref, DerefMut};
90 use core::{mem, ptr, slice};
91 use typenum::bit::{B0, B1};
92 use typenum::uint::{UInt, UTerm, Unsigned};
93 
94 #[cfg_attr(test, macro_use)]
95 pub mod arr;
96 pub mod functional;
97 pub mod iter;
98 pub mod sequence;
99 
100 use self::functional::*;
101 pub use self::iter::GenericArrayIter;
102 use self::sequence::*;
103 
104 /// Trait making `GenericArray` work, marking types to be used as length of an array
105 pub unsafe trait ArrayLength<T>: Unsigned {
106     /// Associated type representing the array type for the number
107     type ArrayType;
108 }
109 
110 unsafe impl<T> ArrayLength<T> for UTerm {
111     #[doc(hidden)]
112     type ArrayType = [T; 0];
113 }
114 
115 /// Internal type used to generate a struct of appropriate size
116 #[allow(dead_code)]
117 #[repr(C)]
118 #[doc(hidden)]
119 pub struct GenericArrayImplEven<T, U> {
120     parent1: U,
121     parent2: U,
122     _marker: PhantomData<T>,
123 }
124 
125 impl<T: Clone, U: Clone> Clone for GenericArrayImplEven<T, U> {
clone(&self) -> GenericArrayImplEven<T, U>126     fn clone(&self) -> GenericArrayImplEven<T, U> {
127         GenericArrayImplEven {
128             parent1: self.parent1.clone(),
129             parent2: self.parent2.clone(),
130             _marker: PhantomData,
131         }
132     }
133 }
134 
135 impl<T: Copy, U: Copy> Copy for GenericArrayImplEven<T, U> {}
136 
137 /// Internal type used to generate a struct of appropriate size
138 #[allow(dead_code)]
139 #[repr(C)]
140 #[doc(hidden)]
141 pub struct GenericArrayImplOdd<T, U> {
142     parent1: U,
143     parent2: U,
144     data: T,
145 }
146 
147 impl<T: Clone, U: Clone> Clone for GenericArrayImplOdd<T, U> {
clone(&self) -> GenericArrayImplOdd<T, U>148     fn clone(&self) -> GenericArrayImplOdd<T, U> {
149         GenericArrayImplOdd {
150             parent1: self.parent1.clone(),
151             parent2: self.parent2.clone(),
152             data: self.data.clone(),
153         }
154     }
155 }
156 
157 impl<T: Copy, U: Copy> Copy for GenericArrayImplOdd<T, U> {}
158 
159 unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B0> {
160     #[doc(hidden)]
161     type ArrayType = GenericArrayImplEven<T, N::ArrayType>;
162 }
163 
164 unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B1> {
165     #[doc(hidden)]
166     type ArrayType = GenericArrayImplOdd<T, N::ArrayType>;
167 }
168 
169 /// Struct representing a generic array - `GenericArray<T, N>` works like [T; N]
170 #[allow(dead_code)]
171 #[repr(transparent)]
172 pub struct GenericArray<T, U: ArrayLength<T>> {
173     data: U::ArrayType,
174 }
175 
176 unsafe impl<T: Send, N: ArrayLength<T>> Send for GenericArray<T, N> {}
177 unsafe impl<T: Sync, N: ArrayLength<T>> Sync for GenericArray<T, N> {}
178 
179 impl<T, N> Deref for GenericArray<T, N>
180 where
181     N: ArrayLength<T>,
182 {
183     type Target = [T];
184 
185     #[inline(always)]
deref(&self) -> &[T]186     fn deref(&self) -> &[T] {
187         unsafe { slice::from_raw_parts(self as *const Self as *const T, N::USIZE) }
188     }
189 }
190 
191 impl<T, N> DerefMut for GenericArray<T, N>
192 where
193     N: ArrayLength<T>,
194 {
195     #[inline(always)]
deref_mut(&mut self) -> &mut [T]196     fn deref_mut(&mut self) -> &mut [T] {
197         unsafe { slice::from_raw_parts_mut(self as *mut Self as *mut T, N::USIZE) }
198     }
199 }
200 
201 /// Creates an array one element at a time using a mutable iterator
202 /// you can write to with `ptr::write`.
203 ///
204 /// Incremenent the position while iterating to mark off created elements,
205 /// which will be dropped if `into_inner` is not called.
206 #[doc(hidden)]
207 pub struct ArrayBuilder<T, N: ArrayLength<T>> {
208     array: MaybeUninit<GenericArray<T, N>>,
209     position: usize,
210 }
211 
212 impl<T, N: ArrayLength<T>> ArrayBuilder<T, N> {
213     #[doc(hidden)]
214     #[inline]
new() -> ArrayBuilder<T, N>215     pub unsafe fn new() -> ArrayBuilder<T, N> {
216         ArrayBuilder {
217             array: MaybeUninit::uninit(),
218             position: 0,
219         }
220     }
221 
222     /// Creates a mutable iterator for writing to the array using `ptr::write`.
223     ///
224     /// Increment the position value given as a mutable reference as you iterate
225     /// to mark how many elements have been created.
226     #[doc(hidden)]
227     #[inline]
iter_position(&mut self) -> (slice::IterMut<T>, &mut usize)228     pub unsafe fn iter_position(&mut self) -> (slice::IterMut<T>, &mut usize) {
229         ((&mut *self.array.as_mut_ptr()).iter_mut(), &mut self.position)
230     }
231 
232     /// When done writing (assuming all elements have been written to),
233     /// get the inner array.
234     #[doc(hidden)]
235     #[inline]
into_inner(self) -> GenericArray<T, N>236     pub unsafe fn into_inner(self) -> GenericArray<T, N> {
237         let array = ptr::read(&self.array);
238 
239         mem::forget(self);
240 
241         array.assume_init()
242     }
243 }
244 
245 impl<T, N: ArrayLength<T>> Drop for ArrayBuilder<T, N> {
drop(&mut self)246     fn drop(&mut self) {
247         if mem::needs_drop::<T>() {
248             unsafe {
249                 for value in &mut (&mut *self.array.as_mut_ptr())[..self.position] {
250                     ptr::drop_in_place(value);
251                 }
252             }
253         }
254     }
255 }
256 
257 /// Consumes an array.
258 ///
259 /// Increment the position while iterating and any leftover elements
260 /// will be dropped if position does not go to N
261 #[doc(hidden)]
262 pub struct ArrayConsumer<T, N: ArrayLength<T>> {
263     array: ManuallyDrop<GenericArray<T, N>>,
264     position: usize,
265 }
266 
267 impl<T, N: ArrayLength<T>> ArrayConsumer<T, N> {
268     #[doc(hidden)]
269     #[inline]
new(array: GenericArray<T, N>) -> ArrayConsumer<T, N>270     pub unsafe fn new(array: GenericArray<T, N>) -> ArrayConsumer<T, N> {
271         ArrayConsumer {
272             array: ManuallyDrop::new(array),
273             position: 0,
274         }
275     }
276 
277     /// Creates an iterator and mutable reference to the internal position
278     /// to keep track of consumed elements.
279     ///
280     /// Increment the position as you iterate to mark off consumed elements
281     #[doc(hidden)]
282     #[inline]
iter_position(&mut self) -> (slice::Iter<T>, &mut usize)283     pub unsafe fn iter_position(&mut self) -> (slice::Iter<T>, &mut usize) {
284         (self.array.iter(), &mut self.position)
285     }
286 }
287 
288 impl<T, N: ArrayLength<T>> Drop for ArrayConsumer<T, N> {
drop(&mut self)289     fn drop(&mut self) {
290         if mem::needs_drop::<T>() {
291             for value in &mut self.array[self.position..N::USIZE] {
292                 unsafe {
293                     ptr::drop_in_place(value);
294                 }
295             }
296         }
297     }
298 }
299 
300 impl<'a, T: 'a, N> IntoIterator for &'a GenericArray<T, N>
301 where
302     N: ArrayLength<T>,
303 {
304     type IntoIter = slice::Iter<'a, T>;
305     type Item = &'a T;
306 
into_iter(self: &'a GenericArray<T, N>) -> Self::IntoIter307     fn into_iter(self: &'a GenericArray<T, N>) -> Self::IntoIter {
308         self.as_slice().iter()
309     }
310 }
311 
312 impl<'a, T: 'a, N> IntoIterator for &'a mut GenericArray<T, N>
313 where
314     N: ArrayLength<T>,
315 {
316     type IntoIter = slice::IterMut<'a, T>;
317     type Item = &'a mut T;
318 
into_iter(self: &'a mut GenericArray<T, N>) -> Self::IntoIter319     fn into_iter(self: &'a mut GenericArray<T, N>) -> Self::IntoIter {
320         self.as_mut_slice().iter_mut()
321     }
322 }
323 
324 impl<T, N> FromIterator<T> for GenericArray<T, N>
325 where
326     N: ArrayLength<T>,
327 {
from_iter<I>(iter: I) -> GenericArray<T, N> where I: IntoIterator<Item = T>,328     fn from_iter<I>(iter: I) -> GenericArray<T, N>
329     where
330         I: IntoIterator<Item = T>,
331     {
332         unsafe {
333             let mut destination = ArrayBuilder::new();
334 
335             {
336                 let (destination_iter, position) = destination.iter_position();
337 
338                 iter.into_iter()
339                     .zip(destination_iter)
340                     .for_each(|(src, dst)| {
341                         ptr::write(dst, src);
342 
343                         *position += 1;
344                     });
345             }
346 
347             if destination.position < N::USIZE {
348                 from_iter_length_fail(destination.position, N::USIZE);
349             }
350 
351             destination.into_inner()
352         }
353     }
354 }
355 
356 #[inline(never)]
357 #[cold]
from_iter_length_fail(length: usize, expected: usize) -> !358 fn from_iter_length_fail(length: usize, expected: usize) -> ! {
359     panic!(
360         "GenericArray::from_iter received {} elements but expected {}",
361         length, expected
362     );
363 }
364 
365 unsafe impl<T, N> GenericSequence<T> for GenericArray<T, N>
366 where
367     N: ArrayLength<T>,
368     Self: IntoIterator<Item = T>,
369 {
370     type Length = N;
371     type Sequence = Self;
372 
generate<F>(mut f: F) -> GenericArray<T, N> where F: FnMut(usize) -> T,373     fn generate<F>(mut f: F) -> GenericArray<T, N>
374     where
375         F: FnMut(usize) -> T,
376     {
377         unsafe {
378             let mut destination = ArrayBuilder::new();
379 
380             {
381                 let (destination_iter, position) = destination.iter_position();
382 
383                 destination_iter.enumerate().for_each(|(i, dst)| {
384                     ptr::write(dst, f(i));
385 
386                     *position += 1;
387                 });
388             }
389 
390             destination.into_inner()
391         }
392     }
393 
394     #[doc(hidden)]
inverted_zip<B, U, F>( self, lhs: GenericArray<B, Self::Length>, mut f: F, ) -> MappedSequence<GenericArray<B, Self::Length>, B, U> where GenericArray<B, Self::Length>: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>, Self: MappedGenericSequence<T, U>, Self::Length: ArrayLength<B> + ArrayLength<U>, F: FnMut(B, Self::Item) -> U,395     fn inverted_zip<B, U, F>(
396         self,
397         lhs: GenericArray<B, Self::Length>,
398         mut f: F,
399     ) -> MappedSequence<GenericArray<B, Self::Length>, B, U>
400     where
401         GenericArray<B, Self::Length>:
402             GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
403         Self: MappedGenericSequence<T, U>,
404         Self::Length: ArrayLength<B> + ArrayLength<U>,
405         F: FnMut(B, Self::Item) -> U,
406     {
407         unsafe {
408             let mut left = ArrayConsumer::new(lhs);
409             let mut right = ArrayConsumer::new(self);
410 
411             let (left_array_iter, left_position) = left.iter_position();
412             let (right_array_iter, right_position) = right.iter_position();
413 
414             FromIterator::from_iter(left_array_iter.zip(right_array_iter).map(|(l, r)| {
415                 let left_value = ptr::read(l);
416                 let right_value = ptr::read(r);
417 
418                 *left_position += 1;
419                 *right_position += 1;
420 
421                 f(left_value, right_value)
422             }))
423         }
424     }
425 
426     #[doc(hidden)]
inverted_zip2<B, Lhs, U, F>(self, lhs: Lhs, mut f: F) -> MappedSequence<Lhs, B, U> where Lhs: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>, Self: MappedGenericSequence<T, U>, Self::Length: ArrayLength<B> + ArrayLength<U>, F: FnMut(Lhs::Item, Self::Item) -> U,427     fn inverted_zip2<B, Lhs, U, F>(self, lhs: Lhs, mut f: F) -> MappedSequence<Lhs, B, U>
428     where
429         Lhs: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
430         Self: MappedGenericSequence<T, U>,
431         Self::Length: ArrayLength<B> + ArrayLength<U>,
432         F: FnMut(Lhs::Item, Self::Item) -> U,
433     {
434         unsafe {
435             let mut right = ArrayConsumer::new(self);
436 
437             let (right_array_iter, right_position) = right.iter_position();
438 
439             FromIterator::from_iter(
440                 lhs.into_iter()
441                     .zip(right_array_iter)
442                     .map(|(left_value, r)| {
443                         let right_value = ptr::read(r);
444 
445                         *right_position += 1;
446 
447                         f(left_value, right_value)
448                     }),
449             )
450         }
451     }
452 }
453 
454 unsafe impl<T, U, N> MappedGenericSequence<T, U> for GenericArray<T, N>
455 where
456     N: ArrayLength<T> + ArrayLength<U>,
457     GenericArray<U, N>: GenericSequence<U, Length = N>,
458 {
459     type Mapped = GenericArray<U, N>;
460 }
461 
462 unsafe impl<T, N> FunctionalSequence<T> for GenericArray<T, N>
463 where
464     N: ArrayLength<T>,
465     Self: GenericSequence<T, Item = T, Length = N>,
466 {
map<U, F>(self, mut f: F) -> MappedSequence<Self, T, U> where Self::Length: ArrayLength<U>, Self: MappedGenericSequence<T, U>, F: FnMut(T) -> U,467     fn map<U, F>(self, mut f: F) -> MappedSequence<Self, T, U>
468     where
469         Self::Length: ArrayLength<U>,
470         Self: MappedGenericSequence<T, U>,
471         F: FnMut(T) -> U,
472     {
473         unsafe {
474             let mut source = ArrayConsumer::new(self);
475 
476             let (array_iter, position) = source.iter_position();
477 
478             FromIterator::from_iter(array_iter.map(|src| {
479                 let value = ptr::read(src);
480 
481                 *position += 1;
482 
483                 f(value)
484             }))
485         }
486     }
487 
488     #[inline]
zip<B, Rhs, U, F>(self, rhs: Rhs, f: F) -> MappedSequence<Self, T, U> where Self: MappedGenericSequence<T, U>, Rhs: MappedGenericSequence<B, U, Mapped = MappedSequence<Self, T, U>>, Self::Length: ArrayLength<B> + ArrayLength<U>, Rhs: GenericSequence<B, Length = Self::Length>, F: FnMut(T, Rhs::Item) -> U,489     fn zip<B, Rhs, U, F>(self, rhs: Rhs, f: F) -> MappedSequence<Self, T, U>
490     where
491         Self: MappedGenericSequence<T, U>,
492         Rhs: MappedGenericSequence<B, U, Mapped = MappedSequence<Self, T, U>>,
493         Self::Length: ArrayLength<B> + ArrayLength<U>,
494         Rhs: GenericSequence<B, Length = Self::Length>,
495         F: FnMut(T, Rhs::Item) -> U,
496     {
497         rhs.inverted_zip(self, f)
498     }
499 
fold<U, F>(self, init: U, mut f: F) -> U where F: FnMut(U, T) -> U,500     fn fold<U, F>(self, init: U, mut f: F) -> U
501     where
502         F: FnMut(U, T) -> U,
503     {
504         unsafe {
505             let mut source = ArrayConsumer::new(self);
506 
507             let (array_iter, position) = source.iter_position();
508 
509             array_iter.fold(init, |acc, src| {
510                 let value = ptr::read(src);
511 
512                 *position += 1;
513 
514                 f(acc, value)
515             })
516         }
517     }
518 }
519 
520 impl<T, N> GenericArray<T, N>
521 where
522     N: ArrayLength<T>,
523 {
524     /// Extracts a slice containing the entire array.
525     #[inline]
as_slice(&self) -> &[T]526     pub fn as_slice(&self) -> &[T] {
527         self.deref()
528     }
529 
530     /// Extracts a mutable slice containing the entire array.
531     #[inline]
as_mut_slice(&mut self) -> &mut [T]532     pub fn as_mut_slice(&mut self) -> &mut [T] {
533         self.deref_mut()
534     }
535 
536     /// Converts slice to a generic array reference with inferred length;
537     ///
538     /// Length of the slice must be equal to the length of the array.
539     #[inline]
from_slice(slice: &[T]) -> &GenericArray<T, N>540     pub fn from_slice(slice: &[T]) -> &GenericArray<T, N> {
541         slice.into()
542     }
543 
544     /// Converts mutable slice to a mutable generic array reference
545     ///
546     /// Length of the slice must be equal to the length of the array.
547     #[inline]
from_mut_slice(slice: &mut [T]) -> &mut GenericArray<T, N>548     pub fn from_mut_slice(slice: &mut [T]) -> &mut GenericArray<T, N> {
549         slice.into()
550     }
551 }
552 
553 impl<'a, T, N: ArrayLength<T>> From<&'a [T]> for &'a GenericArray<T, N> {
554     /// Converts slice to a generic array reference with inferred length;
555     ///
556     /// Length of the slice must be equal to the length of the array.
557     #[inline]
from(slice: &[T]) -> &GenericArray<T, N>558     fn from(slice: &[T]) -> &GenericArray<T, N> {
559         assert_eq!(slice.len(), N::USIZE);
560 
561         unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) }
562     }
563 }
564 
565 impl<'a, T, N: ArrayLength<T>> From<&'a mut [T]> for &'a mut GenericArray<T, N> {
566     /// Converts mutable slice to a mutable generic array reference
567     ///
568     /// Length of the slice must be equal to the length of the array.
569     #[inline]
from(slice: &mut [T]) -> &mut GenericArray<T, N>570     fn from(slice: &mut [T]) -> &mut GenericArray<T, N> {
571         assert_eq!(slice.len(), N::USIZE);
572 
573         unsafe { &mut *(slice.as_mut_ptr() as *mut GenericArray<T, N>) }
574     }
575 }
576 
577 impl<T: Clone, N> GenericArray<T, N>
578 where
579     N: ArrayLength<T>,
580 {
581     /// Construct a `GenericArray` from a slice by cloning its content
582     ///
583     /// Length of the slice must be equal to the length of the array
584     #[inline]
clone_from_slice(list: &[T]) -> GenericArray<T, N>585     pub fn clone_from_slice(list: &[T]) -> GenericArray<T, N> {
586         Self::from_exact_iter(list.iter().cloned())
587             .expect("Slice must be the same length as the array")
588     }
589 }
590 
591 impl<T, N> GenericArray<T, N>
592 where
593     N: ArrayLength<T>,
594 {
595     /// Creates a new `GenericArray` instance from an iterator with a specific size.
596     ///
597     /// Returns `None` if the size is not equal to the number of elements in the `GenericArray`.
from_exact_iter<I>(iter: I) -> Option<Self> where I: IntoIterator<Item = T>,598     pub fn from_exact_iter<I>(iter: I) -> Option<Self>
599     where
600         I: IntoIterator<Item = T>,
601     {
602         let mut iter = iter.into_iter();
603 
604         unsafe {
605             let mut destination = ArrayBuilder::new();
606 
607             {
608                 let (destination_iter, position) = destination.iter_position();
609 
610                 destination_iter.zip(&mut iter).for_each(|(dst, src)| {
611                     ptr::write(dst, src);
612 
613                     *position += 1;
614                 });
615 
616                 // The iterator produced fewer than `N` elements.
617                 if *position != N::USIZE {
618                     return None;
619                 }
620 
621                 // The iterator produced more than `N` elements.
622                 if iter.next().is_some() {
623                     return None;
624                 }
625             }
626 
627             Some(destination.into_inner())
628         }
629     }
630 }
631 
632 /// A reimplementation of the `transmute` function, avoiding problems
633 /// when the compiler can't prove equal sizes.
634 #[inline]
635 #[doc(hidden)]
transmute<A, B>(a: A) -> B636 pub unsafe fn transmute<A, B>(a: A) -> B {
637     let a = ManuallyDrop::new(a);
638     ::core::ptr::read(&*a as *const A as *const B)
639 }
640 
641 #[cfg(test)]
642 mod test {
643     // Compile with:
644     // cargo rustc --lib --profile test --release --
645     //      -C target-cpu=native -C opt-level=3 --emit asm
646     // and view the assembly to make sure test_assembly generates
647     // SIMD instructions instead of a niave loop.
648 
649     #[inline(never)]
black_box<T>(val: T) -> T650     pub fn black_box<T>(val: T) -> T {
651         use core::{mem, ptr};
652 
653         let ret = unsafe { ptr::read_volatile(&val) };
654         mem::forget(val);
655         ret
656     }
657 
658     #[test]
test_assembly()659     fn test_assembly() {
660         use crate::functional::*;
661 
662         let a = black_box(arr![i32; 1, 3, 5, 7]);
663         let b = black_box(arr![i32; 2, 4, 6, 8]);
664 
665         let c = (&a).zip(b, |l, r| l + r);
666 
667         let d = a.fold(0, |a, x| a + x);
668 
669         assert_eq!(c, arr![i32; 3, 7, 11, 15]);
670 
671         assert_eq!(d, 16);
672     }
673 }
674