1 /*
2  * jchuff.c
3  *
4  * Copyright (C) 1991-1997, Thomas G. Lane.
5  * Modified 2006-2019 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains Huffman entropy encoding routines.
10  * Both sequential and progressive modes are supported in this single module.
11  *
12  * Much of the complexity here has to do with supporting output suspension.
13  * If the data destination module demands suspension, we want to be able to
14  * back up to the start of the current MCU.  To do this, we copy state
15  * variables into local working storage, and update them back to the
16  * permanent JPEG objects only upon successful completion of an MCU.
17  *
18  * We do not support output suspension for the progressive JPEG mode, since
19  * the library currently does not allow multiple-scan files to be written
20  * with output suspension.
21  */
22 
23 #define JPEG_INTERNALS
24 #include "jinclude.h"
25 #include "jpeglib.h"
26 
27 
28 /* The legal range of a DCT coefficient is
29  *  -1024 .. +1023  for 8-bit data;
30  * -16384 .. +16383 for 12-bit data.
31  * Hence the magnitude should always fit in 10 or 14 bits respectively.
32  */
33 
34 #if BITS_IN_JSAMPLE == 8
35 #define MAX_COEF_BITS 10
36 #else
37 #define MAX_COEF_BITS 14
38 #endif
39 
40 /* Derived data constructed for each Huffman table */
41 
42 typedef struct {
43   unsigned int ehufco[256];	/* code for each symbol */
44   char ehufsi[256];		/* length of code for each symbol */
45   /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
46 } c_derived_tbl;
47 
48 
49 /* Expanded entropy encoder object for Huffman encoding.
50  *
51  * The savable_state subrecord contains fields that change within an MCU,
52  * but must not be updated permanently until we complete the MCU.
53  */
54 
55 typedef struct {
56   INT32 put_buffer;		/* current bit-accumulation buffer */
57   int put_bits;			/* # of bits now in it */
58   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
59 } savable_state;
60 
61 /* This macro is to work around compilers with missing or broken
62  * structure assignment.  You'll need to fix this code if you have
63  * such a compiler and you change MAX_COMPS_IN_SCAN.
64  */
65 
66 #ifndef NO_STRUCT_ASSIGN
67 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
68 #else
69 #if MAX_COMPS_IN_SCAN == 4
70 #define ASSIGN_STATE(dest,src)  \
71 	((dest).put_buffer = (src).put_buffer, \
72 	 (dest).put_bits = (src).put_bits, \
73 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
74 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
75 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
76 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
77 #endif
78 #endif
79 
80 
81 typedef struct {
82   struct jpeg_entropy_encoder pub; /* public fields */
83 
84   savable_state saved;		/* Bit buffer & DC state at start of MCU */
85 
86   /* These fields are NOT loaded into local working state. */
87   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
88   int next_restart_num;		/* next restart number to write (0-7) */
89 
90   /* Pointers to derived tables (these workspaces have image lifespan) */
91   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
92   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
93 
94   /* Statistics tables for optimization */
95   long * dc_count_ptrs[NUM_HUFF_TBLS];
96   long * ac_count_ptrs[NUM_HUFF_TBLS];
97 
98   /* Following fields used only in progressive mode */
99 
100   /* Mode flag: TRUE for optimization, FALSE for actual data output */
101   boolean gather_statistics;
102 
103   /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
104    */
105   JOCTET * next_output_byte;	/* => next byte to write in buffer */
106   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
107   j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
108 
109   /* Coding status for AC components */
110   int ac_tbl_no;		/* the table number of the single component */
111   unsigned int EOBRUN;		/* run length of EOBs */
112   unsigned int BE;		/* # of buffered correction bits before MCU */
113   char * bit_buffer;		/* buffer for correction bits (1 per char) */
114   /* packing correction bits tightly would save some space but cost time... */
115 } huff_entropy_encoder;
116 
117 typedef huff_entropy_encoder * huff_entropy_ptr;
118 
119 /* Working state while writing an MCU (sequential mode).
120  * This struct contains all the fields that are needed by subroutines.
121  */
122 
123 typedef struct {
124   JOCTET * next_output_byte;	/* => next byte to write in buffer */
125   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
126   savable_state cur;		/* Current bit buffer & DC state */
127   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
128 } working_state;
129 
130 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
131  * buffer can hold.  Larger sizes may slightly improve compression, but
132  * 1000 is already well into the realm of overkill.
133  * The minimum safe size is 64 bits.
134  */
135 
136 #define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
137 
138 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
139  * We assume that int right shift is unsigned if INT32 right shift is,
140  * which should be safe.
141  */
142 
143 #ifdef RIGHT_SHIFT_IS_UNSIGNED
144 #define ISHIFT_TEMPS	int ishift_temp;
145 #define IRIGHT_SHIFT(x,shft)  \
146 	((ishift_temp = (x)) < 0 ? \
147 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
148 	 (ishift_temp >> (shft)))
149 #else
150 #define ISHIFT_TEMPS
151 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
152 #endif
153 
154 
155 /*
156  * Compute the derived values for a Huffman table.
157  * This routine also performs some validation checks on the table.
158  */
159 
160 LOCAL(void)
jpeg_make_c_derived_tbl(j_compress_ptr cinfo,boolean isDC,int tblno,c_derived_tbl ** pdtbl)161 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
162 			 c_derived_tbl ** pdtbl)
163 {
164   JHUFF_TBL *htbl;
165   c_derived_tbl *dtbl;
166   int p, i, l, lastp, si, maxsymbol;
167   char huffsize[257];
168   unsigned int huffcode[257];
169   unsigned int code;
170 
171   /* Note that huffsize[] and huffcode[] are filled in code-length order,
172    * paralleling the order of the symbols themselves in htbl->huffval[].
173    */
174 
175   /* Find the input Huffman table */
176   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
177     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
178   htbl =
179     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
180   if (htbl == NULL)
181     htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno);
182 
183   /* Allocate a workspace if we haven't already done so. */
184   if (*pdtbl == NULL)
185     *pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small)
186       ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(c_derived_tbl));
187   dtbl = *pdtbl;
188 
189   /* Figure C.1: make table of Huffman code length for each symbol */
190 
191   p = 0;
192   for (l = 1; l <= 16; l++) {
193     i = (int) htbl->bits[l];
194     if (i < 0 || p + i > 256)	/* protect against table overrun */
195       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
196     while (i--)
197       huffsize[p++] = (char) l;
198   }
199   huffsize[p] = 0;
200   lastp = p;
201 
202   /* Figure C.2: generate the codes themselves */
203   /* We also validate that the counts represent a legal Huffman code tree. */
204 
205   code = 0;
206   si = huffsize[0];
207   p = 0;
208   while (huffsize[p]) {
209     while (((int) huffsize[p]) == si) {
210       huffcode[p++] = code;
211       code++;
212     }
213     /* code is now 1 more than the last code used for codelength si; but
214      * it must still fit in si bits, since no code is allowed to be all ones.
215      */
216     if (((INT32) code) >= (((INT32) 1) << si))
217       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
218     code <<= 1;
219     si++;
220   }
221 
222   /* Figure C.3: generate encoding tables */
223   /* These are code and size indexed by symbol value */
224 
225   /* Set all codeless symbols to have code length 0;
226    * this lets us detect duplicate VAL entries here, and later
227    * allows emit_bits to detect any attempt to emit such symbols.
228    */
229   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
230 
231   /* This is also a convenient place to check for out-of-range
232    * and duplicated VAL entries.  We allow 0..255 for AC symbols
233    * but only 0..15 for DC.  (We could constrain them further
234    * based on data depth and mode, but this seems enough.)
235    */
236   maxsymbol = isDC ? 15 : 255;
237 
238   for (p = 0; p < lastp; p++) {
239     i = htbl->huffval[p];
240     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
241       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
242     dtbl->ehufco[i] = huffcode[p];
243     dtbl->ehufsi[i] = huffsize[p];
244   }
245 }
246 
247 
248 /* Outputting bytes to the file.
249  * NB: these must be called only when actually outputting,
250  * that is, entropy->gather_statistics == FALSE.
251  */
252 
253 /* Emit a byte, taking 'action' if must suspend. */
254 #define emit_byte_s(state,val,action)  \
255 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
256 	  if (--(state)->free_in_buffer == 0)  \
257 	    if (! dump_buffer_s(state))  \
258 	      { action; } }
259 
260 /* Emit a byte */
261 #define emit_byte_e(entropy,val)  \
262 	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \
263 	  if (--(entropy)->free_in_buffer == 0)  \
264 	    dump_buffer_e(entropy); }
265 
266 
267 LOCAL(boolean)
dump_buffer_s(working_state * state)268 dump_buffer_s (working_state * state)
269 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
270 {
271   struct jpeg_destination_mgr * dest = state->cinfo->dest;
272 
273   if (! (*dest->empty_output_buffer) (state->cinfo))
274     return FALSE;
275   /* After a successful buffer dump, must reset buffer pointers */
276   state->next_output_byte = dest->next_output_byte;
277   state->free_in_buffer = dest->free_in_buffer;
278   return TRUE;
279 }
280 
281 
282 LOCAL(void)
dump_buffer_e(huff_entropy_ptr entropy)283 dump_buffer_e (huff_entropy_ptr entropy)
284 /* Empty the output buffer; we do not support suspension in this case. */
285 {
286   struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
287 
288   if (! (*dest->empty_output_buffer) (entropy->cinfo))
289     ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
290   /* After a successful buffer dump, must reset buffer pointers */
291   entropy->next_output_byte = dest->next_output_byte;
292   entropy->free_in_buffer = dest->free_in_buffer;
293 }
294 
295 
296 /* Outputting bits to the file */
297 
298 /* Only the right 24 bits of put_buffer are used; the valid bits are
299  * left-justified in this part.  At most 16 bits can be passed to emit_bits
300  * in one call, and we never retain more than 7 bits in put_buffer
301  * between calls, so 24 bits are sufficient.
302  */
303 
304 INLINE
LOCAL(boolean)305 LOCAL(boolean)
306 emit_bits_s (working_state * state, unsigned int code, int size)
307 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
308 {
309   /* This routine is heavily used, so it's worth coding tightly. */
310   register INT32 put_buffer;
311   register int put_bits;
312 
313   /* if size is 0, caller used an invalid Huffman table entry */
314   if (size == 0)
315     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
316 
317   /* mask off any extra bits in code */
318   put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
319 
320   /* new number of bits in buffer */
321   put_bits = size + state->cur.put_bits;
322 
323   put_buffer <<= 24 - put_bits; /* align incoming bits */
324 
325   /* and merge with old buffer contents */
326   put_buffer |= state->cur.put_buffer;
327 
328   while (put_bits >= 8) {
329     int c = (int) ((put_buffer >> 16) & 0xFF);
330 
331     emit_byte_s(state, c, return FALSE);
332     if (c == 0xFF) {		/* need to stuff a zero byte? */
333       emit_byte_s(state, 0, return FALSE);
334     }
335     put_buffer <<= 8;
336     put_bits -= 8;
337   }
338 
339   state->cur.put_buffer = put_buffer; /* update state variables */
340   state->cur.put_bits = put_bits;
341 
342   return TRUE;
343 }
344 
345 
346 INLINE
LOCAL(void)347 LOCAL(void)
348 emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
349 /* Emit some bits, unless we are in gather mode */
350 {
351   /* This routine is heavily used, so it's worth coding tightly. */
352   register INT32 put_buffer;
353   register int put_bits;
354 
355   /* if size is 0, caller used an invalid Huffman table entry */
356   if (size == 0)
357     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
358 
359   if (entropy->gather_statistics)
360     return;			/* do nothing if we're only getting stats */
361 
362   /* mask off any extra bits in code */
363   put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
364 
365   /* new number of bits in buffer */
366   put_bits = size + entropy->saved.put_bits;
367 
368   put_buffer <<= 24 - put_bits; /* align incoming bits */
369 
370   /* and merge with old buffer contents */
371   put_buffer |= entropy->saved.put_buffer;
372 
373   while (put_bits >= 8) {
374     int c = (int) ((put_buffer >> 16) & 0xFF);
375 
376     emit_byte_e(entropy, c);
377     if (c == 0xFF) {		/* need to stuff a zero byte? */
378       emit_byte_e(entropy, 0);
379     }
380     put_buffer <<= 8;
381     put_bits -= 8;
382   }
383 
384   entropy->saved.put_buffer = put_buffer; /* update variables */
385   entropy->saved.put_bits = put_bits;
386 }
387 
388 
389 LOCAL(boolean)
flush_bits_s(working_state * state)390 flush_bits_s (working_state * state)
391 {
392   if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
393     return FALSE;
394   state->cur.put_buffer = 0;	     /* and reset bit-buffer to empty */
395   state->cur.put_bits = 0;
396   return TRUE;
397 }
398 
399 
400 LOCAL(void)
flush_bits_e(huff_entropy_ptr entropy)401 flush_bits_e (huff_entropy_ptr entropy)
402 {
403   emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
404   entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
405   entropy->saved.put_bits = 0;
406 }
407 
408 
409 /*
410  * Emit (or just count) a Huffman symbol.
411  */
412 
413 INLINE
LOCAL(void)414 LOCAL(void)
415 emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
416 {
417   if (entropy->gather_statistics)
418     entropy->dc_count_ptrs[tbl_no][symbol]++;
419   else {
420     c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
421     emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
422   }
423 }
424 
425 
426 INLINE
LOCAL(void)427 LOCAL(void)
428 emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
429 {
430   if (entropy->gather_statistics)
431     entropy->ac_count_ptrs[tbl_no][symbol]++;
432   else {
433     c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
434     emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
435   }
436 }
437 
438 
439 /*
440  * Emit bits from a correction bit buffer.
441  */
442 
443 LOCAL(void)
emit_buffered_bits(huff_entropy_ptr entropy,char * bufstart,unsigned int nbits)444 emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
445 		    unsigned int nbits)
446 {
447   if (entropy->gather_statistics)
448     return;			/* no real work */
449 
450   while (nbits > 0) {
451     emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
452     bufstart++;
453     nbits--;
454   }
455 }
456 
457 
458 /*
459  * Emit any pending EOBRUN symbol.
460  */
461 
462 LOCAL(void)
emit_eobrun(huff_entropy_ptr entropy)463 emit_eobrun (huff_entropy_ptr entropy)
464 {
465   register int temp, nbits;
466 
467   if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
468     temp = entropy->EOBRUN;
469     nbits = 0;
470     while ((temp >>= 1))
471       nbits++;
472     /* safety check: shouldn't happen given limited correction-bit buffer */
473     if (nbits > 14)
474       ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
475 
476     emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
477     if (nbits)
478       emit_bits_e(entropy, entropy->EOBRUN, nbits);
479 
480     entropy->EOBRUN = 0;
481 
482     /* Emit any buffered correction bits */
483     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
484     entropy->BE = 0;
485   }
486 }
487 
488 
489 /*
490  * Emit a restart marker & resynchronize predictions.
491  */
492 
493 LOCAL(boolean)
emit_restart_s(working_state * state,int restart_num)494 emit_restart_s (working_state * state, int restart_num)
495 {
496   int ci;
497 
498   if (! flush_bits_s(state))
499     return FALSE;
500 
501   emit_byte_s(state, 0xFF, return FALSE);
502   emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
503 
504   /* Re-initialize DC predictions to 0 */
505   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
506     state->cur.last_dc_val[ci] = 0;
507 
508   /* The restart counter is not updated until we successfully write the MCU. */
509 
510   return TRUE;
511 }
512 
513 
514 LOCAL(void)
emit_restart_e(huff_entropy_ptr entropy,int restart_num)515 emit_restart_e (huff_entropy_ptr entropy, int restart_num)
516 {
517   int ci;
518 
519   emit_eobrun(entropy);
520 
521   if (! entropy->gather_statistics) {
522     flush_bits_e(entropy);
523     emit_byte_e(entropy, 0xFF);
524     emit_byte_e(entropy, JPEG_RST0 + restart_num);
525   }
526 
527   if (entropy->cinfo->Ss == 0) {
528     /* Re-initialize DC predictions to 0 */
529     for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
530       entropy->saved.last_dc_val[ci] = 0;
531   } else {
532     /* Re-initialize all AC-related fields to 0 */
533     entropy->EOBRUN = 0;
534     entropy->BE = 0;
535   }
536 }
537 
538 
539 /*
540  * MCU encoding for DC initial scan (either spectral selection,
541  * or first pass of successive approximation).
542  */
543 
544 METHODDEF(boolean)
encode_mcu_DC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)545 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
546 {
547   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
548   register int temp, temp2;
549   register int nbits;
550   int blkn, ci, tbl;
551   ISHIFT_TEMPS
552 
553   entropy->next_output_byte = cinfo->dest->next_output_byte;
554   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
555 
556   /* Emit restart marker if needed */
557   if (cinfo->restart_interval)
558     if (entropy->restarts_to_go == 0)
559       emit_restart_e(entropy, entropy->next_restart_num);
560 
561   /* Encode the MCU data blocks */
562   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563     ci = cinfo->MCU_membership[blkn];
564     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
565 
566     /* Compute the DC value after the required point transform by Al.
567      * This is simply an arithmetic right shift.
568      */
569     temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
570 
571     /* DC differences are figured on the point-transformed values. */
572     temp2 = temp - entropy->saved.last_dc_val[ci];
573     entropy->saved.last_dc_val[ci] = temp;
574 
575     /* Encode the DC coefficient difference per section G.1.2.1 */
576     temp = temp2;
577     if (temp < 0) {
578       temp = -temp;		/* temp is abs value of input */
579       /* For a negative input, want temp2 = bitwise complement of abs(input) */
580       /* This code assumes we are on a two's complement machine */
581       temp2--;
582     }
583 
584     /* Find the number of bits needed for the magnitude of the coefficient */
585     nbits = 0;
586     while (temp) {
587       nbits++;
588       temp >>= 1;
589     }
590     /* Check for out-of-range coefficient values.
591      * Since we're encoding a difference, the range limit is twice as much.
592      */
593     if (nbits > MAX_COEF_BITS+1)
594       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
595 
596     /* Count/emit the Huffman-coded symbol for the number of bits */
597     emit_dc_symbol(entropy, tbl, nbits);
598 
599     /* Emit that number of bits of the value, if positive, */
600     /* or the complement of its magnitude, if negative. */
601     if (nbits)			/* emit_bits rejects calls with size 0 */
602       emit_bits_e(entropy, (unsigned int) temp2, nbits);
603   }
604 
605   cinfo->dest->next_output_byte = entropy->next_output_byte;
606   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
607 
608   /* Update restart-interval state too */
609   if (cinfo->restart_interval) {
610     if (entropy->restarts_to_go == 0) {
611       entropy->restarts_to_go = cinfo->restart_interval;
612       entropy->next_restart_num++;
613       entropy->next_restart_num &= 7;
614     }
615     entropy->restarts_to_go--;
616   }
617 
618   return TRUE;
619 }
620 
621 
622 /*
623  * MCU encoding for AC initial scan (either spectral selection,
624  * or first pass of successive approximation).
625  */
626 
627 METHODDEF(boolean)
encode_mcu_AC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)628 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
629 {
630   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
631   const int * natural_order;
632   JBLOCKROW block;
633   register int temp, temp2;
634   register int nbits;
635   register int r, k;
636   int Se, Al;
637 
638   entropy->next_output_byte = cinfo->dest->next_output_byte;
639   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
640 
641   /* Emit restart marker if needed */
642   if (cinfo->restart_interval)
643     if (entropy->restarts_to_go == 0)
644       emit_restart_e(entropy, entropy->next_restart_num);
645 
646   Se = cinfo->Se;
647   Al = cinfo->Al;
648   natural_order = cinfo->natural_order;
649 
650   /* Encode the MCU data block */
651   block = MCU_data[0];
652 
653   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
654 
655   r = 0;			/* r = run length of zeros */
656 
657   for (k = cinfo->Ss; k <= Se; k++) {
658     if ((temp = (*block)[natural_order[k]]) == 0) {
659       r++;
660       continue;
661     }
662     /* We must apply the point transform by Al.  For AC coefficients this
663      * is an integer division with rounding towards 0.  To do this portably
664      * in C, we shift after obtaining the absolute value; so the code is
665      * interwoven with finding the abs value (temp) and output bits (temp2).
666      */
667     if (temp < 0) {
668       temp = -temp;		/* temp is abs value of input */
669       temp >>= Al;		/* apply the point transform */
670       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
671       temp2 = ~temp;
672     } else {
673       temp >>= Al;		/* apply the point transform */
674       temp2 = temp;
675     }
676     /* Watch out for case that nonzero coef is zero after point transform */
677     if (temp == 0) {
678       r++;
679       continue;
680     }
681 
682     /* Emit any pending EOBRUN */
683     if (entropy->EOBRUN > 0)
684       emit_eobrun(entropy);
685     /* if run length > 15, must emit special run-length-16 codes (0xF0) */
686     while (r > 15) {
687       emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
688       r -= 16;
689     }
690 
691     /* Find the number of bits needed for the magnitude of the coefficient */
692     nbits = 1;			/* there must be at least one 1 bit */
693     while ((temp >>= 1))
694       nbits++;
695     /* Check for out-of-range coefficient values */
696     if (nbits > MAX_COEF_BITS)
697       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
698 
699     /* Count/emit Huffman symbol for run length / number of bits */
700     emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
701 
702     /* Emit that number of bits of the value, if positive, */
703     /* or the complement of its magnitude, if negative. */
704     emit_bits_e(entropy, (unsigned int) temp2, nbits);
705 
706     r = 0;			/* reset zero run length */
707   }
708 
709   if (r > 0) {			/* If there are trailing zeroes, */
710     entropy->EOBRUN++;		/* count an EOB */
711     if (entropy->EOBRUN == 0x7FFF)
712       emit_eobrun(entropy);	/* force it out to avoid overflow */
713   }
714 
715   cinfo->dest->next_output_byte = entropy->next_output_byte;
716   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
717 
718   /* Update restart-interval state too */
719   if (cinfo->restart_interval) {
720     if (entropy->restarts_to_go == 0) {
721       entropy->restarts_to_go = cinfo->restart_interval;
722       entropy->next_restart_num++;
723       entropy->next_restart_num &= 7;
724     }
725     entropy->restarts_to_go--;
726   }
727 
728   return TRUE;
729 }
730 
731 
732 /*
733  * MCU encoding for DC successive approximation refinement scan.
734  * Note: we assume such scans can be multi-component,
735  * although the spec is not very clear on the point.
736  */
737 
738 METHODDEF(boolean)
encode_mcu_DC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)739 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
740 {
741   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
742   int Al, blkn;
743 
744   entropy->next_output_byte = cinfo->dest->next_output_byte;
745   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
746 
747   /* Emit restart marker if needed */
748   if (cinfo->restart_interval)
749     if (entropy->restarts_to_go == 0)
750       emit_restart_e(entropy, entropy->next_restart_num);
751 
752   Al = cinfo->Al;
753 
754   /* Encode the MCU data blocks */
755   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
756     /* We simply emit the Al'th bit of the DC coefficient value. */
757     emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1);
758   }
759 
760   cinfo->dest->next_output_byte = entropy->next_output_byte;
761   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
762 
763   /* Update restart-interval state too */
764   if (cinfo->restart_interval) {
765     if (entropy->restarts_to_go == 0) {
766       entropy->restarts_to_go = cinfo->restart_interval;
767       entropy->next_restart_num++;
768       entropy->next_restart_num &= 7;
769     }
770     entropy->restarts_to_go--;
771   }
772 
773   return TRUE;
774 }
775 
776 
777 /*
778  * MCU encoding for AC successive approximation refinement scan.
779  */
780 
781 METHODDEF(boolean)
encode_mcu_AC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)782 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
783 {
784   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
785   const int * natural_order;
786   JBLOCKROW block;
787   register int temp;
788   register int r, k;
789   int Se, Al;
790   int EOB;
791   char *BR_buffer;
792   unsigned int BR;
793   int absvalues[DCTSIZE2];
794 
795   entropy->next_output_byte = cinfo->dest->next_output_byte;
796   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
797 
798   /* Emit restart marker if needed */
799   if (cinfo->restart_interval)
800     if (entropy->restarts_to_go == 0)
801       emit_restart_e(entropy, entropy->next_restart_num);
802 
803   Se = cinfo->Se;
804   Al = cinfo->Al;
805   natural_order = cinfo->natural_order;
806 
807   /* Encode the MCU data block */
808   block = MCU_data[0];
809 
810   /* It is convenient to make a pre-pass to determine the transformed
811    * coefficients' absolute values and the EOB position.
812    */
813   EOB = 0;
814   for (k = cinfo->Ss; k <= Se; k++) {
815     temp = (*block)[natural_order[k]];
816     /* We must apply the point transform by Al.  For AC coefficients this
817      * is an integer division with rounding towards 0.  To do this portably
818      * in C, we shift after obtaining the absolute value.
819      */
820     if (temp < 0)
821       temp = -temp;		/* temp is abs value of input */
822     temp >>= Al;		/* apply the point transform */
823     absvalues[k] = temp;	/* save abs value for main pass */
824     if (temp == 1)
825       EOB = k;			/* EOB = index of last newly-nonzero coef */
826   }
827 
828   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
829 
830   r = 0;			/* r = run length of zeros */
831   BR = 0;			/* BR = count of buffered bits added now */
832   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
833 
834   for (k = cinfo->Ss; k <= Se; k++) {
835     if ((temp = absvalues[k]) == 0) {
836       r++;
837       continue;
838     }
839 
840     /* Emit any required ZRLs, but not if they can be folded into EOB */
841     while (r > 15 && k <= EOB) {
842       /* emit any pending EOBRUN and the BE correction bits */
843       emit_eobrun(entropy);
844       /* Emit ZRL */
845       emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
846       r -= 16;
847       /* Emit buffered correction bits that must be associated with ZRL */
848       emit_buffered_bits(entropy, BR_buffer, BR);
849       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
850       BR = 0;
851     }
852 
853     /* If the coef was previously nonzero, it only needs a correction bit.
854      * NOTE: a straight translation of the spec's figure G.7 would suggest
855      * that we also need to test r > 15.  But if r > 15, we can only get here
856      * if k > EOB, which implies that this coefficient is not 1.
857      */
858     if (temp > 1) {
859       /* The correction bit is the next bit of the absolute value. */
860       BR_buffer[BR++] = (char) (temp & 1);
861       continue;
862     }
863 
864     /* Emit any pending EOBRUN and the BE correction bits */
865     emit_eobrun(entropy);
866 
867     /* Count/emit Huffman symbol for run length / number of bits */
868     emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
869 
870     /* Emit output bit for newly-nonzero coef */
871     temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
872     emit_bits_e(entropy, (unsigned int) temp, 1);
873 
874     /* Emit buffered correction bits that must be associated with this code */
875     emit_buffered_bits(entropy, BR_buffer, BR);
876     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
877     BR = 0;
878     r = 0;			/* reset zero run length */
879   }
880 
881   if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
882     entropy->EOBRUN++;		/* count an EOB */
883     entropy->BE += BR;		/* concat my correction bits to older ones */
884     /* We force out the EOB if we risk either:
885      * 1. overflow of the EOB counter;
886      * 2. overflow of the correction bit buffer during the next MCU.
887      */
888     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
889       emit_eobrun(entropy);
890   }
891 
892   cinfo->dest->next_output_byte = entropy->next_output_byte;
893   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
894 
895   /* Update restart-interval state too */
896   if (cinfo->restart_interval) {
897     if (entropy->restarts_to_go == 0) {
898       entropy->restarts_to_go = cinfo->restart_interval;
899       entropy->next_restart_num++;
900       entropy->next_restart_num &= 7;
901     }
902     entropy->restarts_to_go--;
903   }
904 
905   return TRUE;
906 }
907 
908 
909 /* Encode a single block's worth of coefficients */
910 
911 LOCAL(boolean)
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)912 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
913 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
914 {
915   register int temp, temp2;
916   register int nbits;
917   register int r, k;
918   int Se = state->cinfo->lim_Se;
919   const int * natural_order = state->cinfo->natural_order;
920 
921   /* Encode the DC coefficient difference per section F.1.2.1 */
922 
923   temp = temp2 = block[0] - last_dc_val;
924 
925   if (temp < 0) {
926     temp = -temp;		/* temp is abs value of input */
927     /* For a negative input, want temp2 = bitwise complement of abs(input) */
928     /* This code assumes we are on a two's complement machine */
929     temp2--;
930   }
931 
932   /* Find the number of bits needed for the magnitude of the coefficient */
933   nbits = 0;
934   while (temp) {
935     nbits++;
936     temp >>= 1;
937   }
938   /* Check for out-of-range coefficient values.
939    * Since we're encoding a difference, the range limit is twice as much.
940    */
941   if (nbits > MAX_COEF_BITS+1)
942     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
943 
944   /* Emit the Huffman-coded symbol for the number of bits */
945   if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
946     return FALSE;
947 
948   /* Emit that number of bits of the value, if positive, */
949   /* or the complement of its magnitude, if negative. */
950   if (nbits)			/* emit_bits rejects calls with size 0 */
951     if (! emit_bits_s(state, (unsigned int) temp2, nbits))
952       return FALSE;
953 
954   /* Encode the AC coefficients per section F.1.2.2 */
955 
956   r = 0;			/* r = run length of zeros */
957 
958   for (k = 1; k <= Se; k++) {
959     if ((temp2 = block[natural_order[k]]) == 0) {
960       r++;
961     } else {
962       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
963       while (r > 15) {
964 	if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
965 	  return FALSE;
966 	r -= 16;
967       }
968 
969       temp = temp2;
970       if (temp < 0) {
971 	temp = -temp;		/* temp is abs value of input */
972 	/* This code assumes we are on a two's complement machine */
973 	temp2--;
974       }
975 
976       /* Find the number of bits needed for the magnitude of the coefficient */
977       nbits = 1;		/* there must be at least one 1 bit */
978       while ((temp >>= 1))
979 	nbits++;
980       /* Check for out-of-range coefficient values */
981       if (nbits > MAX_COEF_BITS)
982 	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
983 
984       /* Emit Huffman symbol for run length / number of bits */
985       temp = (r << 4) + nbits;
986       if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp]))
987 	return FALSE;
988 
989       /* Emit that number of bits of the value, if positive, */
990       /* or the complement of its magnitude, if negative. */
991       if (! emit_bits_s(state, (unsigned int) temp2, nbits))
992 	return FALSE;
993 
994       r = 0;
995     }
996   }
997 
998   /* If the last coef(s) were zero, emit an end-of-block code */
999   if (r > 0)
1000     if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
1001       return FALSE;
1002 
1003   return TRUE;
1004 }
1005 
1006 
1007 /*
1008  * Encode and output one MCU's worth of Huffman-compressed coefficients.
1009  */
1010 
1011 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)1012 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
1013 {
1014   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1015   working_state state;
1016   int blkn, ci;
1017   jpeg_component_info * compptr;
1018 
1019   /* Load up working state */
1020   state.next_output_byte = cinfo->dest->next_output_byte;
1021   state.free_in_buffer = cinfo->dest->free_in_buffer;
1022   ASSIGN_STATE(state.cur, entropy->saved);
1023   state.cinfo = cinfo;
1024 
1025   /* Emit restart marker if needed */
1026   if (cinfo->restart_interval) {
1027     if (entropy->restarts_to_go == 0)
1028       if (! emit_restart_s(&state, entropy->next_restart_num))
1029 	return FALSE;
1030   }
1031 
1032   /* Encode the MCU data blocks */
1033   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1034     ci = cinfo->MCU_membership[blkn];
1035     compptr = cinfo->cur_comp_info[ci];
1036     if (! encode_one_block(&state,
1037 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
1038 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
1039 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
1040       return FALSE;
1041     /* Update last_dc_val */
1042     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
1043   }
1044 
1045   /* Completed MCU, so update state */
1046   cinfo->dest->next_output_byte = state.next_output_byte;
1047   cinfo->dest->free_in_buffer = state.free_in_buffer;
1048   ASSIGN_STATE(entropy->saved, state.cur);
1049 
1050   /* Update restart-interval state too */
1051   if (cinfo->restart_interval) {
1052     if (entropy->restarts_to_go == 0) {
1053       entropy->restarts_to_go = cinfo->restart_interval;
1054       entropy->next_restart_num++;
1055       entropy->next_restart_num &= 7;
1056     }
1057     entropy->restarts_to_go--;
1058   }
1059 
1060   return TRUE;
1061 }
1062 
1063 
1064 /*
1065  * Finish up at the end of a Huffman-compressed scan.
1066  */
1067 
1068 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)1069 finish_pass_huff (j_compress_ptr cinfo)
1070 {
1071   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1072   working_state state;
1073 
1074   if (cinfo->progressive_mode) {
1075     entropy->next_output_byte = cinfo->dest->next_output_byte;
1076     entropy->free_in_buffer = cinfo->dest->free_in_buffer;
1077 
1078     /* Flush out any buffered data */
1079     emit_eobrun(entropy);
1080     flush_bits_e(entropy);
1081 
1082     cinfo->dest->next_output_byte = entropy->next_output_byte;
1083     cinfo->dest->free_in_buffer = entropy->free_in_buffer;
1084   } else {
1085     /* Load up working state ... flush_bits needs it */
1086     state.next_output_byte = cinfo->dest->next_output_byte;
1087     state.free_in_buffer = cinfo->dest->free_in_buffer;
1088     ASSIGN_STATE(state.cur, entropy->saved);
1089     state.cinfo = cinfo;
1090 
1091     /* Flush out the last data */
1092     if (! flush_bits_s(&state))
1093       ERREXIT(cinfo, JERR_CANT_SUSPEND);
1094 
1095     /* Update state */
1096     cinfo->dest->next_output_byte = state.next_output_byte;
1097     cinfo->dest->free_in_buffer = state.free_in_buffer;
1098     ASSIGN_STATE(entropy->saved, state.cur);
1099   }
1100 }
1101 
1102 
1103 /*
1104  * Huffman coding optimization.
1105  *
1106  * We first scan the supplied data and count the number of uses of each symbol
1107  * that is to be Huffman-coded. (This process MUST agree with the code above.)
1108  * Then we build a Huffman coding tree for the observed counts.
1109  * Symbols which are not needed at all for the particular image are not
1110  * assigned any code, which saves space in the DHT marker as well as in
1111  * the compressed data.
1112  */
1113 
1114 
1115 /* Process a single block's worth of coefficients */
1116 
1117 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])1118 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
1119 		 long dc_counts[], long ac_counts[])
1120 {
1121   register int temp;
1122   register int nbits;
1123   register int r, k;
1124   int Se = cinfo->lim_Se;
1125   const int * natural_order = cinfo->natural_order;
1126 
1127   /* Encode the DC coefficient difference per section F.1.2.1 */
1128 
1129   temp = block[0] - last_dc_val;
1130   if (temp < 0)
1131     temp = -temp;
1132 
1133   /* Find the number of bits needed for the magnitude of the coefficient */
1134   nbits = 0;
1135   while (temp) {
1136     nbits++;
1137     temp >>= 1;
1138   }
1139   /* Check for out-of-range coefficient values.
1140    * Since we're encoding a difference, the range limit is twice as much.
1141    */
1142   if (nbits > MAX_COEF_BITS+1)
1143     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1144 
1145   /* Count the Huffman symbol for the number of bits */
1146   dc_counts[nbits]++;
1147 
1148   /* Encode the AC coefficients per section F.1.2.2 */
1149 
1150   r = 0;			/* r = run length of zeros */
1151 
1152   for (k = 1; k <= Se; k++) {
1153     if ((temp = block[natural_order[k]]) == 0) {
1154       r++;
1155     } else {
1156       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
1157       while (r > 15) {
1158 	ac_counts[0xF0]++;
1159 	r -= 16;
1160       }
1161 
1162       /* Find the number of bits needed for the magnitude of the coefficient */
1163       if (temp < 0)
1164 	temp = -temp;
1165 
1166       /* Find the number of bits needed for the magnitude of the coefficient */
1167       nbits = 1;		/* there must be at least one 1 bit */
1168       while ((temp >>= 1))
1169 	nbits++;
1170       /* Check for out-of-range coefficient values */
1171       if (nbits > MAX_COEF_BITS)
1172 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1173 
1174       /* Count Huffman symbol for run length / number of bits */
1175       ac_counts[(r << 4) + nbits]++;
1176 
1177       r = 0;
1178     }
1179   }
1180 
1181   /* If the last coef(s) were zero, emit an end-of-block code */
1182   if (r > 0)
1183     ac_counts[0]++;
1184 }
1185 
1186 
1187 /*
1188  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
1189  * No data is actually output, so no suspension return is possible.
1190  */
1191 
1192 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)1193 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
1194 {
1195   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1196   int blkn, ci;
1197   jpeg_component_info * compptr;
1198 
1199   /* Take care of restart intervals if needed */
1200   if (cinfo->restart_interval) {
1201     if (entropy->restarts_to_go == 0) {
1202       /* Re-initialize DC predictions to 0 */
1203       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
1204 	entropy->saved.last_dc_val[ci] = 0;
1205       /* Update restart state */
1206       entropy->restarts_to_go = cinfo->restart_interval;
1207     }
1208     entropy->restarts_to_go--;
1209   }
1210 
1211   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1212     ci = cinfo->MCU_membership[blkn];
1213     compptr = cinfo->cur_comp_info[ci];
1214     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
1215 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
1216 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
1217     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
1218   }
1219 
1220   return TRUE;
1221 }
1222 
1223 
1224 /*
1225  * Generate the best Huffman code table for the given counts, fill htbl.
1226  *
1227  * The JPEG standard requires that no symbol be assigned a codeword of all
1228  * one bits (so that padding bits added at the end of a compressed segment
1229  * can't look like a valid code).  Because of the canonical ordering of
1230  * codewords, this just means that there must be an unused slot in the
1231  * longest codeword length category.  Section K.2 of the JPEG spec suggests
1232  * reserving such a slot by pretending that symbol 256 is a valid symbol
1233  * with count 1.  In theory that's not optimal; giving it count zero but
1234  * including it in the symbol set anyway should give a better Huffman code.
1235  * But the theoretically better code actually seems to come out worse in
1236  * practice, because it produces more all-ones bytes (which incur stuffed
1237  * zero bytes in the final file).  In any case the difference is tiny.
1238  *
1239  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
1240  * If some symbols have a very small but nonzero probability, the Huffman tree
1241  * must be adjusted to meet the code length restriction.  We currently use
1242  * the adjustment method suggested in JPEG section K.2.  This method is *not*
1243  * optimal; it may not choose the best possible limited-length code.  But
1244  * typically only very-low-frequency symbols will be given less-than-optimal
1245  * lengths, so the code is almost optimal.  Experimental comparisons against
1246  * an optimal limited-length-code algorithm indicate that the difference is
1247  * microscopic --- usually less than a hundredth of a percent of total size.
1248  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
1249  */
1250 
1251 LOCAL(void)
jpeg_gen_optimal_table(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])1252 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
1253 {
1254 #define MAX_CLEN 32		/* assumed maximum initial code length */
1255   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
1256   int codesize[257];		/* codesize[k] = code length of symbol k */
1257   int others[257];		/* next symbol in current branch of tree */
1258   int c1, c2, i, j;
1259   UINT8 *p;
1260   long v;
1261 
1262   freq[256] = 1;		/* make sure 256 has a nonzero count */
1263   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
1264    * that no real symbol is given code-value of all ones, because 256
1265    * will be placed last in the largest codeword category.
1266    * In the symbol list build procedure this element serves as sentinel
1267    * for the zero run loop.
1268    */
1269 
1270 #ifndef DONT_USE_FANCY_HUFF_OPT
1271 
1272   /* Build list of symbols sorted in order of descending frequency */
1273   /* This approach has several benefits (thank to John Korejwa for the idea):
1274    *     1.
1275    * If a codelength category is split during the length limiting procedure
1276    * below, the feature that more frequent symbols are assigned shorter
1277    * codewords remains valid for the adjusted code.
1278    *     2.
1279    * To reduce consecutive ones in a Huffman data stream (thus reducing the
1280    * number of stuff bytes in JPEG) it is preferable to follow 0 branches
1281    * (and avoid 1 branches) as much as possible.  This is easily done by
1282    * assigning symbols to leaves of the Huffman tree in order of decreasing
1283    * frequency, with no secondary sort based on codelengths.
1284    *     3.
1285    * The symbol list can be built independently from the assignment of code
1286    * lengths by the Huffman procedure below.
1287    * Note: The symbol list build procedure must be performed first, because
1288    * the Huffman procedure assigning the codelengths clobbers the frequency
1289    * counts!
1290    */
1291 
1292   /* Here we use the others array as a linked list of nonzero frequencies
1293    * to be sorted.  Already sorted elements are removed from the list.
1294    */
1295 
1296   /* Building list */
1297 
1298   /* This item does not correspond to a valid symbol frequency and is used
1299    * as starting index.
1300    */
1301   j = 256;
1302 
1303   for (i = 0;; i++) {
1304     if (freq[i] == 0)		/* skip zero frequencies */
1305       continue;
1306     if (i > 255)
1307       break;
1308     others[j] = i;		/* this symbol value */
1309     j = i;			/* previous symbol value */
1310   }
1311   others[j] = -1;		/* mark end of list */
1312 
1313   /* Sorting list */
1314 
1315   p = htbl->huffval;
1316   while ((c1 = others[256]) >= 0) {
1317     v = freq[c1];
1318     i = c1;			/* first symbol value */
1319     j = 256;			/* pseudo symbol value for starting index */
1320     while ((c2 = others[c1]) >= 0) {
1321       if (freq[c2] > v) {
1322 	v = freq[c2];
1323 	i = c2;			/* this symbol value */
1324 	j = c1;			/* previous symbol value */
1325       }
1326       c1 = c2;
1327     }
1328     others[j] = others[i];	/* remove this symbol i from list */
1329     *p++ = (UINT8) i;
1330   }
1331 
1332 #endif /* DONT_USE_FANCY_HUFF_OPT */
1333 
1334   /* This algorithm is explained in section K.2 of the JPEG standard */
1335 
1336   MEMZERO(bits, SIZEOF(bits));
1337   MEMZERO(codesize, SIZEOF(codesize));
1338   for (i = 0; i < 257; i++)
1339     others[i] = -1;		/* init links to empty */
1340 
1341   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
1342 
1343   for (;;) {
1344     /* Find the smallest nonzero frequency, set c1 = its symbol */
1345     /* In case of ties, take the larger symbol number */
1346     c1 = -1;
1347     v = 1000000000L;
1348     for (i = 0; i <= 256; i++) {
1349       if (freq[i] && freq[i] <= v) {
1350 	v = freq[i];
1351 	c1 = i;
1352       }
1353     }
1354 
1355     /* Find the next smallest nonzero frequency, set c2 = its symbol */
1356     /* In case of ties, take the larger symbol number */
1357     c2 = -1;
1358     v = 1000000000L;
1359     for (i = 0; i <= 256; i++) {
1360       if (freq[i] && freq[i] <= v && i != c1) {
1361 	v = freq[i];
1362 	c2 = i;
1363       }
1364     }
1365 
1366     /* Done if we've merged everything into one frequency */
1367     if (c2 < 0)
1368       break;
1369 
1370     /* Else merge the two counts/trees */
1371     freq[c1] += freq[c2];
1372     freq[c2] = 0;
1373 
1374     /* Increment the codesize of everything in c1's tree branch */
1375     codesize[c1]++;
1376     while (others[c1] >= 0) {
1377       c1 = others[c1];
1378       codesize[c1]++;
1379     }
1380 
1381     others[c1] = c2;		/* chain c2 onto c1's tree branch */
1382 
1383     /* Increment the codesize of everything in c2's tree branch */
1384     codesize[c2]++;
1385     while (others[c2] >= 0) {
1386       c2 = others[c2];
1387       codesize[c2]++;
1388     }
1389   }
1390 
1391   /* Now count the number of symbols of each code length */
1392   for (i = 0; i <= 256; i++) {
1393     if (codesize[i]) {
1394       /* The JPEG standard seems to think that this can't happen, */
1395       /* but I'm paranoid... */
1396       if (codesize[i] > MAX_CLEN)
1397 	ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS);
1398 
1399       bits[codesize[i]]++;
1400     }
1401   }
1402 
1403   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1404    * Huffman procedure assigned any such lengths, we must adjust the coding.
1405    * Here is what the JPEG spec says about how this next bit works:
1406    * Since symbols are paired for the longest Huffman code, the symbols are
1407    * removed from this length category two at a time.  The prefix for the pair
1408    * (which is one bit shorter) is allocated to one of the pair; then,
1409    * skipping the BITS entry for that prefix length, a code word from the next
1410    * shortest nonzero BITS entry is converted into a prefix for two code words
1411    * one bit longer.
1412    */
1413 
1414   for (i = MAX_CLEN; i > 16; i--) {
1415     while (bits[i] > 0) {
1416       j = i - 2;		/* find length of new prefix to be used */
1417       while (bits[j] == 0) {
1418 	if (j == 0)
1419 	  ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS);
1420 	j--;
1421       }
1422 
1423       bits[i] -= 2;		/* remove two symbols */
1424       bits[i-1]++;		/* one goes in this length */
1425       bits[j+1] += 2;		/* two new symbols in this length */
1426       bits[j]--;		/* symbol of this length is now a prefix */
1427     }
1428   }
1429 
1430   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
1431   while (bits[i] == 0)		/* find largest codelength still in use */
1432     i--;
1433   bits[i]--;
1434 
1435   /* Return final symbol counts (only for lengths 0..16) */
1436   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
1437 
1438 #ifdef DONT_USE_FANCY_HUFF_OPT
1439 
1440   /* Return a list of the symbols sorted by code length */
1441   /* Note: Due to the codelength changes made above, it can happen
1442    * that more frequent symbols are assigned longer codewords.
1443    */
1444   p = htbl->huffval;
1445   for (i = 1; i <= MAX_CLEN; i++) {
1446     for (j = 0; j <= 255; j++) {
1447       if (codesize[j] == i) {
1448 	*p++ = (UINT8) j;
1449       }
1450     }
1451   }
1452 
1453 #endif /* DONT_USE_FANCY_HUFF_OPT */
1454 
1455   /* Set sent_table FALSE so updated table will be written to JPEG file. */
1456   htbl->sent_table = FALSE;
1457 }
1458 
1459 
1460 /*
1461  * Finish up a statistics-gathering pass and create the new Huffman tables.
1462  */
1463 
1464 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)1465 finish_pass_gather (j_compress_ptr cinfo)
1466 {
1467   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1468   int ci, tbl;
1469   jpeg_component_info * compptr;
1470   JHUFF_TBL **htblptr;
1471   boolean did_dc[NUM_HUFF_TBLS];
1472   boolean did_ac[NUM_HUFF_TBLS];
1473 
1474   if (cinfo->progressive_mode)
1475     /* Flush out buffered data (all we care about is counting the EOB symbol) */
1476     emit_eobrun(entropy);
1477 
1478   /* It's important not to apply jpeg_gen_optimal_table more than once
1479    * per table, because it clobbers the input frequency counts!
1480    */
1481   MEMZERO(did_dc, SIZEOF(did_dc));
1482   MEMZERO(did_ac, SIZEOF(did_ac));
1483 
1484   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1485     compptr = cinfo->cur_comp_info[ci];
1486     /* DC needs no table for refinement scan */
1487     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
1488       tbl = compptr->dc_tbl_no;
1489       if (! did_dc[tbl]) {
1490 	htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
1491 	if (*htblptr == NULL)
1492 	  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1493 	jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
1494 	did_dc[tbl] = TRUE;
1495       }
1496     }
1497     /* AC needs no table when not present */
1498     if (cinfo->Se) {
1499       tbl = compptr->ac_tbl_no;
1500       if (! did_ac[tbl]) {
1501 	htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
1502 	if (*htblptr == NULL)
1503 	  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1504 	jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
1505 	did_ac[tbl] = TRUE;
1506       }
1507     }
1508   }
1509 }
1510 
1511 
1512 /*
1513  * Initialize for a Huffman-compressed scan.
1514  * If gather_statistics is TRUE, we do not output anything during the scan,
1515  * just count the Huffman symbols used and generate Huffman code tables.
1516  */
1517 
1518 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)1519 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
1520 {
1521   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1522   int ci, tbl;
1523   jpeg_component_info * compptr;
1524 
1525   if (gather_statistics)
1526     entropy->pub.finish_pass = finish_pass_gather;
1527   else
1528     entropy->pub.finish_pass = finish_pass_huff;
1529 
1530   if (cinfo->progressive_mode) {
1531     entropy->cinfo = cinfo;
1532     entropy->gather_statistics = gather_statistics;
1533 
1534     /* We assume jcmaster.c already validated the scan parameters. */
1535 
1536     /* Select execution routine */
1537     if (cinfo->Ah == 0) {
1538       if (cinfo->Ss == 0)
1539 	entropy->pub.encode_mcu = encode_mcu_DC_first;
1540       else
1541 	entropy->pub.encode_mcu = encode_mcu_AC_first;
1542     } else {
1543       if (cinfo->Ss == 0)
1544 	entropy->pub.encode_mcu = encode_mcu_DC_refine;
1545       else {
1546 	entropy->pub.encode_mcu = encode_mcu_AC_refine;
1547 	/* AC refinement needs a correction bit buffer */
1548 	if (entropy->bit_buffer == NULL)
1549 	  entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small)
1550 	    ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char));
1551       }
1552     }
1553 
1554     /* Initialize AC stuff */
1555     entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
1556     entropy->EOBRUN = 0;
1557     entropy->BE = 0;
1558   } else {
1559     if (gather_statistics)
1560       entropy->pub.encode_mcu = encode_mcu_gather;
1561     else
1562       entropy->pub.encode_mcu = encode_mcu_huff;
1563   }
1564 
1565   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1566     compptr = cinfo->cur_comp_info[ci];
1567     /* DC needs no table for refinement scan */
1568     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
1569       tbl = compptr->dc_tbl_no;
1570       if (gather_statistics) {
1571 	/* Check for invalid table index */
1572 	/* (make_c_derived_tbl does this in the other path) */
1573 	if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
1574 	  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
1575 	/* Allocate and zero the statistics tables */
1576 	/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
1577 	if (entropy->dc_count_ptrs[tbl] == NULL)
1578 	  entropy->dc_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small)
1579 	    ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long));
1580 	MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
1581       } else {
1582 	/* Compute derived values for Huffman tables */
1583 	/* We may do this more than once for a table, but it's not expensive */
1584 	jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
1585 				& entropy->dc_derived_tbls[tbl]);
1586       }
1587       /* Initialize DC predictions to 0 */
1588       entropy->saved.last_dc_val[ci] = 0;
1589     }
1590     /* AC needs no table when not present */
1591     if (cinfo->Se) {
1592       tbl = compptr->ac_tbl_no;
1593       if (gather_statistics) {
1594 	if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
1595 	  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
1596 	if (entropy->ac_count_ptrs[tbl] == NULL)
1597 	  entropy->ac_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small)
1598 	    ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long));
1599 	MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
1600       } else {
1601 	jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
1602 				& entropy->ac_derived_tbls[tbl]);
1603       }
1604     }
1605   }
1606 
1607   /* Initialize bit buffer to empty */
1608   entropy->saved.put_buffer = 0;
1609   entropy->saved.put_bits = 0;
1610 
1611   /* Initialize restart stuff */
1612   entropy->restarts_to_go = cinfo->restart_interval;
1613   entropy->next_restart_num = 0;
1614 }
1615 
1616 
1617 /*
1618  * Module initialization routine for Huffman entropy encoding.
1619  */
1620 
1621 GLOBAL(void)
jinit_huff_encoder(j_compress_ptr cinfo)1622 jinit_huff_encoder (j_compress_ptr cinfo)
1623 {
1624   huff_entropy_ptr entropy;
1625   int i;
1626 
1627   entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small)
1628     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder));
1629   cinfo->entropy = &entropy->pub;
1630   entropy->pub.start_pass = start_pass_huff;
1631 
1632   /* Mark tables unallocated */
1633   for (i = 0; i < NUM_HUFF_TBLS; i++) {
1634     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1635     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1636   }
1637 
1638   if (cinfo->progressive_mode)
1639     entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
1640 }
1641