1 /* $Header$ */
2 
3 /*
4  * Copyright (c) 1988-1997 Sam Leffler
5  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
6  *
7  * Permission to use, copy, modify, distribute, and sell this software and
8  * its documentation for any purpose is hereby granted without fee, provided
9  * that (i) the above copyright notices and this permission notice appear in
10  * all copies of the software and related documentation, and (ii) the names of
11  * Sam Leffler and Silicon Graphics may not be used in any advertising or
12  * publicity relating to the software without the specific, prior written
13  * permission of Sam Leffler and Silicon Graphics.
14  *
15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18  *
19  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26 
27 /*
28  * CIE L*a*b* to CIE XYZ and CIE XYZ to RGB conversion routines are taken
29  * from the VIPS library (http://www.vips.ecs.soton.ac.uk) with
30  * the permission of John Cupitt, the VIPS author.
31  */
32 
33 /*
34  * TIFF Library.
35  *
36  * Color space conversion routines.
37  */
38 
39 #include "tiffiop.h"
40 #include <math.h>
41 
42 /*
43  * Convert color value from the CIE L*a*b* 1976 space to CIE XYZ.
44  */
45 void
TIFFCIELabToXYZ(TIFFCIELabToRGB * cielab,uint32 l,int32 a,int32 b,float * X,float * Y,float * Z)46 TIFFCIELabToXYZ(TIFFCIELabToRGB *cielab, uint32 l, int32 a, int32 b,
47 		float *X, float *Y, float *Z)
48 {
49 	float L = (float)l * 100.0F / 255.0F;
50 	float cby, tmp;
51 
52 	if( L < 8.856F ) {
53 		*Y = (L * cielab->Y0) / 903.292F;
54 		cby = 7.787F * (*Y / cielab->Y0) + 16.0F / 116.0F;
55 	} else {
56 		cby = (L + 16.0F) / 116.0F;
57 		*Y = cielab->Y0 * cby * cby * cby;
58 	}
59 
60 	tmp = (float)a / 500.0F + cby;
61 	if( tmp < 0.2069F )
62 		*X = cielab->X0 * (tmp - 0.13793F) / 7.787F;
63 	else
64 		*X = cielab->X0 * tmp * tmp * tmp;
65 
66 	tmp = cby - (float)b / 200.0F;
67 	if( tmp < 0.2069F )
68 		*Z = cielab->Z0 * (tmp - 0.13793F) / 7.787F;
69 	else
70 		*Z = cielab->Z0 * tmp * tmp * tmp;
71 }
72 
73 #define RINT(R) ((uint32)((R)>0?((R)+0.5):((R)-0.5)))
74 /*
75  * Convert color value from the XYZ space to RGB.
76  */
77 void
TIFFXYZToRGB(TIFFCIELabToRGB * cielab,float X,float Y,float Z,uint32 * r,uint32 * g,uint32 * b)78 TIFFXYZToRGB(TIFFCIELabToRGB *cielab, float X, float Y, float Z,
79 	     uint32 *r, uint32 *g, uint32 *b)
80 {
81 	int i;
82 	float Yr, Yg, Yb;
83 	float *matrix = &cielab->display.d_mat[0][0];
84 
85 	/* Multiply through the matrix to get luminosity values. */
86 	Yr =  matrix[0] * X + matrix[1] * Y + matrix[2] * Z;
87 	Yg =  matrix[3] * X + matrix[4] * Y + matrix[5] * Z;
88 	Yb =  matrix[6] * X + matrix[7] * Y + matrix[8] * Z;
89 
90 	/* Clip input */
91 	Yr = TIFFmax( Yr, cielab->display.d_Y0R );
92 	Yg = TIFFmax( Yg, cielab->display.d_Y0G );
93 	Yb = TIFFmax( Yb, cielab->display.d_Y0B );
94 
95 	/* Turn luminosity to colour value. */
96 	i = TIFFmin(cielab->range,
97 		    (int)((Yr - cielab->display.d_Y0R) / cielab->rstep));
98 	*r = RINT(cielab->Yr2r[i]);
99 
100 	i = TIFFmin(cielab->range,
101 		    (int)((Yg - cielab->display.d_Y0G) / cielab->gstep));
102 	*g = RINT(cielab->Yg2g[i]);
103 
104 	i = TIFFmin(cielab->range,
105 		    (int)((Yb - cielab->display.d_Y0B) / cielab->bstep));
106 	*b = RINT(cielab->Yb2b[i]);
107 
108 	/* Clip output. */
109 	*r = TIFFmin( *r, cielab->display.d_Vrwr );
110 	*g = TIFFmin( *g, cielab->display.d_Vrwg );
111 	*b = TIFFmin( *b, cielab->display.d_Vrwb );
112 }
113 #undef RINT
114 
115 /*
116  * Allocate conversion state structures and make look_up tables for
117  * the Yr,Yb,Yg <=> r,g,b conversions.
118  */
119 int
TIFFCIELabToRGBInit(TIFFCIELabToRGB * cielab,TIFFDisplay * display,float * refWhite)120 TIFFCIELabToRGBInit(TIFFCIELabToRGB* cielab,
121 		    TIFFDisplay *display, float *refWhite)
122 {
123 	int i;
124 	float gamma;
125 
126 	cielab->range = CIELABTORGB_TABLE_RANGE;
127 
128 	_TIFFmemcpy(&cielab->display, display, sizeof(TIFFDisplay));
129 
130 	/* Red */
131 	gamma = 1.0F / cielab->display.d_gammaR ;
132 	cielab->rstep =
133 		(cielab->display.d_YCR - cielab->display.d_Y0R)	/ cielab->range;
134 	for(i = 0; i <= cielab->range; i++) {
135 		cielab->Yr2r[i] = cielab->display.d_Vrwr
136 		    * ((float)pow((double)i / cielab->range, gamma));
137 	}
138 
139 	/* Green */
140 	gamma = 1.0F / cielab->display.d_gammaG ;
141 	cielab->gstep =
142 	    (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
143 	for(i = 0; i <= cielab->range; i++) {
144 		cielab->Yg2g[i] = cielab->display.d_Vrwg
145 		    * ((float)pow((double)i / cielab->range, gamma));
146 	}
147 
148 	/* Blue */
149 	gamma = 1.0F / cielab->display.d_gammaB ;
150 	cielab->bstep =
151 	    (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
152 	for(i = 0; i <= cielab->range; i++) {
153 		cielab->Yb2b[i] = cielab->display.d_Vrwb
154 		    * ((float)pow((double)i / cielab->range, gamma));
155 	}
156 
157 	/* Init reference white point */
158 	cielab->X0 = refWhite[0];
159 	cielab->Y0 = refWhite[1];
160 	cielab->Z0 = refWhite[2];
161 
162 	return 0;
163 }
164 
165 /*
166  * Convert color value from the YCbCr space to CIE XYZ.
167  * The colorspace conversion algorithm comes from the IJG v5a code;
168  * see below for more information on how it works.
169  */
170 #define	SHIFT			16
171 #define	FIX(x)			((int32)((x) * (1L<<SHIFT) + 0.5))
172 #define	ONE_HALF		((int32)(1<<(SHIFT-1)))
173 #define	Code2V(c, RB, RW, CR)	((((c)-(int32)(RB))*(float)(CR))/(float)((RW)-(RB)))
174 #define	CLAMP(f,min,max)	((f)<(min)?(min):(f)>(max)?(max):(f))
175 
176 void
TIFFYCbCrtoRGB(TIFFYCbCrToRGB * ycbcr,uint32 Y,int32 Cb,int32 Cr,uint32 * r,uint32 * g,uint32 * b)177 TIFFYCbCrtoRGB(TIFFYCbCrToRGB *ycbcr, uint32 Y, int32 Cb, int32 Cr,
178 	       uint32 *r, uint32 *g, uint32 *b)
179 {
180 	/* XXX: Only 8-bit YCbCr input supported for now */
181 	Y = CLAMP(Y, 0, 255), Cb = CLAMP(Cb, 0, 255), Cr = CLAMP(Cr, 0, 255);
182 
183 	*r = ycbcr->clamptab[ycbcr->Y_tab[Y] + ycbcr->Cr_r_tab[Cr]];
184 	*g = ycbcr->clamptab[ycbcr->Y_tab[Y]
185 	    + (int)((ycbcr->Cb_g_tab[Cb] + ycbcr->Cr_g_tab[Cr]) >> SHIFT)];
186 	*b = ycbcr->clamptab[ycbcr->Y_tab[Y] + ycbcr->Cb_b_tab[Cb]];
187 }
188 
189 /*
190  * Initialize the YCbCr->RGB conversion tables.  The conversion
191  * is done according to the 6.0 spec:
192  *
193  *    R = Y + Cr*(2 - 2*LumaRed)
194  *    B = Y + Cb*(2 - 2*LumaBlue)
195  *    G =   Y
196  *        - LumaBlue*Cb*(2-2*LumaBlue)/LumaGreen
197  *        - LumaRed*Cr*(2-2*LumaRed)/LumaGreen
198  *
199  * To avoid floating point arithmetic the fractional constants that
200  * come out of the equations are represented as fixed point values
201  * in the range 0...2^16.  We also eliminate multiplications by
202  * pre-calculating possible values indexed by Cb and Cr (this code
203  * assumes conversion is being done for 8-bit samples).
204  */
205 int
TIFFYCbCrToRGBInit(TIFFYCbCrToRGB * ycbcr,float * luma,float * refBlackWhite)206 TIFFYCbCrToRGBInit(TIFFYCbCrToRGB* ycbcr, float *luma, float *refBlackWhite)
207 {
208     TIFFRGBValue* clamptab;
209     int i;
210 
211 #define LumaRed	    luma[0]
212 #define LumaGreen   luma[1]
213 #define LumaBlue    luma[2]
214 
215     clamptab = (TIFFRGBValue*)(
216 	(tidata_t) ycbcr+TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long)));
217     _TIFFmemset(clamptab, 0, 256);		/* v < 0 => 0 */
218     ycbcr->clamptab = (clamptab += 256);
219     for (i = 0; i < 256; i++)
220 	clamptab[i] = (TIFFRGBValue) i;
221     _TIFFmemset(clamptab+256, 255, 2*256);	/* v > 255 => 255 */
222     ycbcr->Cr_r_tab = (int*) (clamptab + 3*256);
223     ycbcr->Cb_b_tab = ycbcr->Cr_r_tab + 256;
224     ycbcr->Cr_g_tab = (int32*) (ycbcr->Cb_b_tab + 256);
225     ycbcr->Cb_g_tab = ycbcr->Cr_g_tab + 256;
226     ycbcr->Y_tab = ycbcr->Cb_g_tab + 256;
227 
228     { float f1 = 2-2*LumaRed;		int32 D1 = FIX(f1);
229       float f2 = LumaRed*f1/LumaGreen;	int32 D2 = -FIX(f2);
230       float f3 = 2-2*LumaBlue;		int32 D3 = FIX(f3);
231       float f4 = LumaBlue*f3/LumaGreen;	int32 D4 = -FIX(f4);
232       int x;
233 
234 #undef LumaBlue
235 #undef LumaGreen
236 #undef LumaRed
237 
238       /*
239        * i is the actual input pixel value in the range 0..255
240        * Cb and Cr values are in the range -128..127 (actually
241        * they are in a range defined by the ReferenceBlackWhite
242        * tag) so there is some range shifting to do here when
243        * constructing tables indexed by the raw pixel data.
244        */
245       for (i = 0, x = -128; i < 256; i++, x++) {
246 	    int32 Cr = (int32)Code2V(x, refBlackWhite[4] - 128.0F,
247 			    refBlackWhite[5] - 128.0F, 127);
248 	    int32 Cb = (int32)Code2V(x, refBlackWhite[2] - 128.0F,
249 			    refBlackWhite[3] - 128.0F, 127);
250 
251 	    ycbcr->Cr_r_tab[i] = (int32)((D1*Cr + ONE_HALF)>>SHIFT);
252 	    ycbcr->Cb_b_tab[i] = (int32)((D3*Cb + ONE_HALF)>>SHIFT);
253 	    ycbcr->Cr_g_tab[i] = D2*Cr;
254 	    ycbcr->Cb_g_tab[i] = D4*Cb + ONE_HALF;
255 	    ycbcr->Y_tab[i] =
256 		    (int32)Code2V(x + 128, refBlackWhite[0], refBlackWhite[1], 255);
257       }
258     }
259 
260     return 0;
261 }
262 #undef	CLAMP
263 #undef	Code2V
264 #undef	SHIFT
265 #undef	ONE_HALF
266 #undef	FIX
267 
268 
269