xref: /dragonfly/bin/pax/tables.c (revision 0ca59c34)
1 /*-
2  * Copyright (c) 1992 Keith Muller.
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Keith Muller of the University of California, San Diego.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * @(#)tables.c	8.1 (Berkeley) 5/31/93
34  * $FreeBSD: src/bin/pax/tables.c,v 1.13.2.1 2001/08/01 05:03:12 obrien Exp $
35  */
36 
37 #include <sys/types.h>
38 #include <sys/time.h>
39 #include <sys/stat.h>
40 #include <sys/fcntl.h>
41 #include <errno.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <unistd.h>
46 #include "pax.h"
47 #include "tables.h"
48 #include "extern.h"
49 
50 /*
51  * Routines for controlling the contents of all the different databases pax
52  * keeps. Tables are dynamically created only when they are needed. The
53  * goal was speed and the ability to work with HUGE archives. The databases
54  * were kept simple, but do have complex rules for when the contents change.
55  * As of this writing, the POSIX library functions were more complex than
56  * needed for this application (pax databases have very short lifetimes and
57  * do not survive after pax is finished). Pax is required to handle very
58  * large archives. These database routines carefully combine memory usage and
59  * temporary file storage in ways which will not significantly impact runtime
60  * performance while allowing the largest possible archives to be handled.
61  * Trying to force the fit to the POSIX database routines was not considered
62  * time well spent.
63  */
64 
65 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
66 static FTM **ftab = NULL;	/* file time table for updating arch */
67 static NAMT **ntab = NULL;	/* interactive rename storage table */
68 static DEVT **dtab = NULL;	/* device/inode mapping tables */
69 static ATDIR **atab = NULL;	/* file tree directory time reset table */
70 static int dirfd = -1;		/* storage for setting created dir time/mode */
71 static u_long dircnt;		/* entries in dir time/mode storage */
72 static int ffd = -1;		/* tmp file for file time table name storage */
73 
74 static DEVT *chk_dev (dev_t, int);
75 
76 /*
77  * hard link table routines
78  *
79  * The hard link table tries to detect hard links to files using the device and
80  * inode values. We do this when writing an archive, so we can tell the format
81  * write routine that this file is a hard link to another file. The format
82  * write routine then can store this file in whatever way it wants (as a hard
83  * link if the format supports that like tar, or ignore this info like cpio).
84  * (Actually a field in the format driver table tells us if the format wants
85  * hard link info. if not, we do not waste time looking for them). We also use
86  * the same table when reading an archive. In that situation, this table is
87  * used by the format read routine to detect hard links from stored dev and
88  * inode numbers (like cpio). This will allow pax to create a link when one
89  * can be detected by the archive format.
90  */
91 
92 /*
93  * lnk_start
94  *	Creates the hard link table.
95  * Return:
96  *	0 if created, -1 if failure
97  */
98 
99 int
100 lnk_start(void)
101 {
102 	if (ltab != NULL)
103 		return(0);
104 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
105 		paxwarn(1, "Cannot allocate memory for hard link table");
106 		return(-1);
107 	}
108 	return(0);
109 }
110 
111 /*
112  * chk_lnk()
113  *	Looks up entry in hard link hash table. If found, it copies the name
114  *	of the file it is linked to (we already saw that file) into ln_name.
115  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
116  *	database. (We have seen all the links to this file). If not found,
117  *	we add the file to the database if it has the potential for having
118  *	hard links to other files we may process (it has a link count > 1)
119  * Return:
120  *	if found returns 1; if not found returns 0; -1 on error
121  */
122 
123 int
124 chk_lnk(ARCHD *arcn)
125 {
126 	HRDLNK *pt;
127 	HRDLNK **ppt;
128 	u_int indx;
129 
130 	if (ltab == NULL)
131 		return(-1);
132 	/*
133 	 * ignore those nodes that cannot have hard links
134 	 */
135 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
136 		return(0);
137 
138 	/*
139 	 * hash inode number and look for this file
140 	 */
141 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
142 	if ((pt = ltab[indx]) != NULL) {
143 		/*
144 		 * it's hash chain in not empty, walk down looking for it
145 		 */
146 		ppt = &(ltab[indx]);
147 		while (pt != NULL) {
148 			if ((pt->ino == arcn->sb.st_ino) &&
149 			    (pt->dev == arcn->sb.st_dev))
150 				break;
151 			ppt = &(pt->fow);
152 			pt = pt->fow;
153 		}
154 
155 		if (pt != NULL) {
156 			/*
157 			 * found a link. set the node type and copy in the
158 			 * name of the file it is to link to. we need to
159 			 * handle hardlinks to regular files differently than
160 			 * other links.
161 			 */
162 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
163 				sizeof(arcn->ln_name) - 1);
164 			arcn->ln_name[arcn->ln_nlen] = '\0';
165 			if (arcn->type == PAX_REG)
166 				arcn->type = PAX_HRG;
167 			else
168 				arcn->type = PAX_HLK;
169 
170 			/*
171 			 * if we have found all the links to this file, remove
172 			 * it from the database
173 			 */
174 			if (--pt->nlink <= 1) {
175 				*ppt = pt->fow;
176 				free((char *)pt->name);
177 				free((char *)pt);
178 			}
179 			return(1);
180 		}
181 	}
182 
183 	/*
184 	 * we never saw this file before. It has links so we add it to the
185 	 * front of this hash chain
186 	 */
187 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
188 		if ((pt->name = strdup(arcn->name)) != NULL) {
189 			pt->dev = arcn->sb.st_dev;
190 			pt->ino = arcn->sb.st_ino;
191 			pt->nlink = arcn->sb.st_nlink;
192 			pt->fow = ltab[indx];
193 			ltab[indx] = pt;
194 			return(0);
195 		}
196 		free((char *)pt);
197 	}
198 
199 	paxwarn(1, "Hard link table out of memory");
200 	return(-1);
201 }
202 
203 /*
204  * purg_lnk
205  *	remove reference for a file that we may have added to the data base as
206  *	a potential source for hard links. We ended up not using the file, so
207  *	we do not want to accidently point another file at it later on.
208  */
209 
210 void
211 purg_lnk(ARCHD *arcn)
212 {
213 	HRDLNK *pt;
214 	HRDLNK **ppt;
215 	u_int indx;
216 
217 	if (ltab == NULL)
218 		return;
219 	/*
220 	 * do not bother to look if it could not be in the database
221 	 */
222 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
223 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
224 		return;
225 
226 	/*
227 	 * find the hash chain for this inode value, if empty return
228 	 */
229 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
230 	if ((pt = ltab[indx]) == NULL)
231 		return;
232 
233 	/*
234 	 * walk down the list looking for the inode/dev pair, unlink and
235 	 * free if found
236 	 */
237 	ppt = &(ltab[indx]);
238 	while (pt != NULL) {
239 		if ((pt->ino == arcn->sb.st_ino) &&
240 		    (pt->dev == arcn->sb.st_dev))
241 			break;
242 		ppt = &(pt->fow);
243 		pt = pt->fow;
244 	}
245 	if (pt == NULL)
246 		return;
247 
248 	/*
249 	 * remove and free it
250 	 */
251 	*ppt = pt->fow;
252 	free((char *)pt->name);
253 	free((char *)pt);
254 }
255 
256 /*
257  * lnk_end()
258  *	pull apart a existing link table so we can reuse it. We do this between
259  *	read and write phases of append with update. (The format may have
260  *	used the link table, and we need to start with a fresh table for the
261  *	write phase
262  */
263 
264 void
265 lnk_end(void)
266 {
267 	int i;
268 	HRDLNK *pt;
269 	HRDLNK *ppt;
270 
271 	if (ltab == NULL)
272 		return;
273 
274 	for (i = 0; i < L_TAB_SZ; ++i) {
275 		if (ltab[i] == NULL)
276 			continue;
277 		pt = ltab[i];
278 		ltab[i] = NULL;
279 
280 		/*
281 		 * free up each entry on this chain
282 		 */
283 		while (pt != NULL) {
284 			ppt = pt;
285 			pt = ppt->fow;
286 			free((char *)ppt->name);
287 			free((char *)ppt);
288 		}
289 	}
290 	return;
291 }
292 
293 /*
294  * modification time table routines
295  *
296  * The modification time table keeps track of last modification times for all
297  * files stored in an archive during a write phase when -u is set. We only
298  * add a file to the archive if it is newer than a file with the same name
299  * already stored on the archive (if there is no other file with the same
300  * name on the archive it is added). This applies to writes and appends.
301  * An append with an -u must read the archive and store the modification time
302  * for every file on that archive before starting the write phase. It is clear
303  * that this is one HUGE database. To save memory space, the actual file names
304  * are stored in a scratch file and indexed by an in memory hash table. The
305  * hash table is indexed by hashing the file path. The nodes in the table store
306  * the length of the filename and the lseek offset within the scratch file
307  * where the actual name is stored. Since there are never any deletions from
308  * this table, fragmentation of the scratch file is never a issue. Lookups
309  * seem to not exhibit any locality at all (files in the database are rarely
310  * looked up more than once...), so caching is just a waste of memory. The
311  * only limitation is the amount of scratch file space available to store the
312  * path names.
313  */
314 
315 /*
316  * ftime_start()
317  *	create the file time hash table and open for read/write the scratch
318  *	file. (after created it is unlinked, so when we exit we leave
319  *	no witnesses).
320  * Return:
321  *	0 if the table and file was created ok, -1 otherwise
322  */
323 
324 int
325 ftime_start(void)
326 {
327 
328 	if (ftab != NULL)
329 		return(0);
330 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
331 		paxwarn(1, "Cannot allocate memory for file time table");
332 		return(-1);
333 	}
334 
335 	/*
336 	 * get random name and create temporary scratch file, unlink name
337 	 * so it will get removed on exit
338 	 */
339 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
340 	if ((ffd = mkstemp(tempfile)) < 0) {
341 		syswarn(1, errno, "Unable to create temporary file: %s",
342 		    tempfile);
343 		return(-1);
344 	}
345 	unlink(tempfile);
346 
347 	return(0);
348 }
349 
350 /*
351  * chk_ftime()
352  *	looks up entry in file time hash table. If not found, the file is
353  *	added to the hash table and the file named stored in the scratch file.
354  *	If a file with the same name is found, the file times are compared and
355  *	the most recent file time is retained. If the new file was younger (or
356  *	was not in the database) the new file is selected for storage.
357  * Return:
358  *	0 if file should be added to the archive, 1 if it should be skipped,
359  *	-1 on error
360  */
361 
362 int
363 chk_ftime(ARCHD *arcn)
364 {
365 	FTM *pt;
366 	int namelen;
367 	u_int indx;
368 	char ckname[PAXPATHLEN+1];
369 
370 	/*
371 	 * no info, go ahead and add to archive
372 	 */
373 	if (ftab == NULL)
374 		return(0);
375 
376 	/*
377 	 * hash the pathname and look up in table
378 	 */
379 	namelen = arcn->nlen;
380 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
381 	if ((pt = ftab[indx]) != NULL) {
382 		/*
383 		 * the hash chain is not empty, walk down looking for match
384 		 * only read up the path names if the lengths match, speeds
385 		 * up the search a lot
386 		 */
387 		while (pt != NULL) {
388 			if (pt->namelen == namelen) {
389 				/*
390 				 * potential match, have to read the name
391 				 * from the scratch file.
392 				 */
393 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
394 					syswarn(1, errno,
395 					    "Failed ftime table seek");
396 					return(-1);
397 				}
398 				if (read(ffd, ckname, namelen) != namelen) {
399 					syswarn(1, errno,
400 					    "Failed ftime table read");
401 					return(-1);
402 				}
403 
404 				/*
405 				 * if the names match, we are done
406 				 */
407 				if (!strncmp(ckname, arcn->name, namelen))
408 					break;
409 			}
410 
411 			/*
412 			 * try the next entry on the chain
413 			 */
414 			pt = pt->fow;
415 		}
416 
417 		if (pt != NULL) {
418 			/*
419 			 * found the file, compare the times, save the newer
420 			 */
421 			if (arcn->sb.st_mtime > pt->mtime) {
422 				/*
423 				 * file is newer
424 				 */
425 				pt->mtime = arcn->sb.st_mtime;
426 				return(0);
427 			}
428 			/*
429 			 * file is older
430 			 */
431 			return(1);
432 		}
433 	}
434 
435 	/*
436 	 * not in table, add it
437 	 */
438 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
439 		/*
440 		 * add the name at the end of the scratch file, saving the
441 		 * offset. add the file to the head of the hash chain
442 		 */
443 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
444 			if (write(ffd, arcn->name, namelen) == namelen) {
445 				pt->mtime = arcn->sb.st_mtime;
446 				pt->namelen = namelen;
447 				pt->fow = ftab[indx];
448 				ftab[indx] = pt;
449 				return(0);
450 			}
451 			syswarn(1, errno, "Failed write to file time table");
452 		} else
453 			syswarn(1, errno, "Failed seek on file time table");
454 	} else
455 		paxwarn(1, "File time table ran out of memory");
456 
457 	if (pt != NULL)
458 		free((char *)pt);
459 	return(-1);
460 }
461 
462 /*
463  * Interactive rename table routines
464  *
465  * The interactive rename table keeps track of the new names that the user
466  * assigns to files from tty input. Since this map is unique for each file
467  * we must store it in case there is a reference to the file later in archive
468  * (a link). Otherwise we will be unable to find the file we know was
469  * extracted. The remapping of these files is stored in a memory based hash
470  * table (it is assumed since input must come from /dev/tty, it is unlikely to
471  * be a very large table).
472  */
473 
474 /*
475  * name_start()
476  *	create the interactive rename table
477  * Return:
478  *	0 if successful, -1 otherwise
479  */
480 
481 int
482 name_start(void)
483 {
484 	if (ntab != NULL)
485 		return(0);
486 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
487 		paxwarn(1, "Cannot allocate memory for interactive rename table");
488 		return(-1);
489 	}
490 	return(0);
491 }
492 
493 /*
494  * add_name()
495  *	add the new name to old name mapping just created by the user.
496  *	If an old name mapping is found (there may be duplicate names on an
497  *	archive) only the most recent is kept.
498  * Return:
499  *	0 if added, -1 otherwise
500  */
501 
502 int
503 add_name(char *oname, int onamelen, char *nname)
504 {
505 	NAMT *pt;
506 	u_int indx;
507 
508 	if (ntab == NULL) {
509 		/*
510 		 * should never happen
511 		 */
512 		paxwarn(0, "No interactive rename table, links may fail\n");
513 		return(0);
514 	}
515 
516 	/*
517 	 * look to see if we have already mapped this file, if so we
518 	 * will update it
519 	 */
520 	indx = st_hash(oname, onamelen, N_TAB_SZ);
521 	if ((pt = ntab[indx]) != NULL) {
522 		/*
523 		 * look down the has chain for the file
524 		 */
525 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
526 			pt = pt->fow;
527 
528 		if (pt != NULL) {
529 			/*
530 			 * found an old mapping, replace it with the new one
531 			 * the user just input (if it is different)
532 			 */
533 			if (strcmp(nname, pt->nname) == 0)
534 				return(0);
535 
536 			free((char *)pt->nname);
537 			if ((pt->nname = strdup(nname)) == NULL) {
538 				paxwarn(1, "Cannot update rename table");
539 				return(-1);
540 			}
541 			return(0);
542 		}
543 	}
544 
545 	/*
546 	 * this is a new mapping, add it to the table
547 	 */
548 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
549 		if ((pt->oname = strdup(oname)) != NULL) {
550 			if ((pt->nname = strdup(nname)) != NULL) {
551 				pt->fow = ntab[indx];
552 				ntab[indx] = pt;
553 				return(0);
554 			}
555 			free((char *)pt->oname);
556 		}
557 		free((char *)pt);
558 	}
559 	paxwarn(1, "Interactive rename table out of memory");
560 	return(-1);
561 }
562 
563 /*
564  * sub_name()
565  *	look up a link name to see if it points at a file that has been
566  *	remapped by the user. If found, the link is adjusted to contain the
567  *	new name (oname is the link to name)
568  */
569 
570 void
571 sub_name(char *oname, int *onamelen, size_t onamesize)
572 {
573 	NAMT *pt;
574 	u_int indx;
575 
576 	if (ntab == NULL)
577 		return;
578 	/*
579 	 * look the name up in the hash table
580 	 */
581 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
582 	if ((pt = ntab[indx]) == NULL)
583 		return;
584 
585 	while (pt != NULL) {
586 		/*
587 		 * walk down the hash chain looking for a match
588 		 */
589 		if (strcmp(oname, pt->oname) == 0) {
590 			/*
591 			 * found it, replace it with the new name
592 			 * and return (we know that oname has enough space)
593 			 */
594 			*onamelen = l_strncpy(oname, pt->nname, onamesize - 1);
595 			oname[*onamelen] = '\0';
596 			return;
597 		}
598 		pt = pt->fow;
599 	}
600 
601 	/*
602 	 * no match, just return
603 	 */
604 	return;
605 }
606 
607 /*
608  * device/inode mapping table routines
609  * (used with formats that store device and inodes fields)
610  *
611  * device/inode mapping tables remap the device field in a archive header. The
612  * device/inode fields are used to determine when files are hard links to each
613  * other. However these values have very little meaning outside of that. This
614  * database is used to solve one of two different problems.
615  *
616  * 1) when files are appended to an archive, while the new files may have hard
617  * links to each other, you cannot determine if they have hard links to any
618  * file already stored on the archive from a prior run of pax. We must assume
619  * that these inode/device pairs are unique only within a SINGLE run of pax
620  * (which adds a set of files to an archive). So we have to make sure the
621  * inode/dev pairs we add each time are always unique. We do this by observing
622  * while the inode field is very dense, the use of the dev field is fairly
623  * sparse. Within each run of pax, we remap any device number of a new archive
624  * member that has a device number used in a prior run and already stored in a
625  * file on the archive. During the read phase of the append, we store the
626  * device numbers used and mark them to not be used by any file during the
627  * write phase. If during write we go to use one of those old device numbers,
628  * we remap it to a new value.
629  *
630  * 2) Often the fields in the archive header used to store these values are
631  * too small to store the entire value. The result is an inode or device value
632  * which can be truncated. This really can foul up an archive. With truncation
633  * we end up creating links between files that are really not links (after
634  * truncation the inodes are the same value). We address that by detecting
635  * truncation and forcing a remap of the device field to split truncated
636  * inodes away from each other. Each truncation creates a pattern of bits that
637  * are removed. We use this pattern of truncated bits to partition the inodes
638  * on a single device to many different devices (each one represented by the
639  * truncated bit pattern). All inodes on the same device that have the same
640  * truncation pattern are mapped to the same new device. Two inodes that
641  * truncate to the same value clearly will always have different truncation
642  * bit patterns, so they will be split from away each other. When we spot
643  * device truncation we remap the device number to a non truncated value.
644  * (for more info see table.h for the data structures involved).
645  */
646 
647 /*
648  * dev_start()
649  *	create the device mapping table
650  * Return:
651  *	0 if successful, -1 otherwise
652  */
653 
654 int
655 dev_start(void)
656 {
657 	if (dtab != NULL)
658 		return(0);
659 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
660 		paxwarn(1, "Cannot allocate memory for device mapping table");
661 		return(-1);
662 	}
663 	return(0);
664 }
665 
666 /*
667  * add_dev()
668  *	add a device number to the table. this will force the device to be
669  *	remapped to a new value if it be used during a write phase. This
670  *	function is called during the read phase of an append to prohibit the
671  *	use of any device number already in the archive.
672  * Return:
673  *	0 if added ok, -1 otherwise
674  */
675 
676 int
677 add_dev(ARCHD *arcn)
678 {
679 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
680 		return(-1);
681 	return(0);
682 }
683 
684 /*
685  * chk_dev()
686  *	check for a device value in the device table. If not found and the add
687  *	flag is set, it is added. This does NOT assign any mapping values, just
688  *	adds the device number as one that need to be remapped. If this device
689  *	is already mapped, just return with a pointer to that entry.
690  * Return:
691  *	pointer to the entry for this device in the device map table. Null
692  *	if the add flag is not set and the device is not in the table (it is
693  *	not been seen yet). If add is set and the device cannot be added, null
694  *	is returned (indicates an error).
695  */
696 
697 static DEVT *
698 chk_dev(dev_t dev, int add)
699 {
700 	DEVT *pt;
701 	u_int indx;
702 
703 	if (dtab == NULL)
704 		return(NULL);
705 	/*
706 	 * look to see if this device is already in the table
707 	 */
708 	indx = ((unsigned)dev) % D_TAB_SZ;
709 	if ((pt = dtab[indx]) != NULL) {
710 		while ((pt != NULL) && (pt->dev != dev))
711 			pt = pt->fow;
712 
713 		/*
714 		 * found it, return a pointer to it
715 		 */
716 		if (pt != NULL)
717 			return(pt);
718 	}
719 
720 	/*
721 	 * not in table, we add it only if told to as this may just be a check
722 	 * to see if a device number is being used.
723 	 */
724 	if (add == 0)
725 		return(NULL);
726 
727 	/*
728 	 * allocate a node for this device and add it to the front of the hash
729 	 * chain. Note we do not assign remaps values here, so the pt->list
730 	 * list must be NULL.
731 	 */
732 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
733 		paxwarn(1, "Device map table out of memory");
734 		return(NULL);
735 	}
736 	pt->dev = dev;
737 	pt->list = NULL;
738 	pt->fow = dtab[indx];
739 	dtab[indx] = pt;
740 	return(pt);
741 }
742 /*
743  * map_dev()
744  *	given an inode and device storage mask (the mask has a 1 for each bit
745  *	the archive format is able to store in a header), we check for inode
746  *	and device truncation and remap the device as required. Device mapping
747  *	can also occur when during the read phase of append a device number was
748  *	seen (and was marked as do not use during the write phase). WE ASSUME
749  *	that unsigned longs are the same size or bigger than the fields used
750  *	for ino_t and dev_t. If not the types will have to be changed.
751  * Return:
752  *	0 if all ok, -1 otherwise.
753  */
754 
755 int
756 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
757 {
758 	DEVT *pt;
759 	DLIST *dpt;
760 	static dev_t lastdev = 0;	/* next device number to try */
761 	int trc_ino = 0;
762 	int trc_dev = 0;
763 	ino_t trunc_bits = 0;
764 	ino_t nino;
765 
766 	if (dtab == NULL)
767 		return(0);
768 	/*
769 	 * check for device and inode truncation, and extract the truncated
770 	 * bit pattern.
771 	 */
772 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
773 		++trc_dev;
774 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
775 		++trc_ino;
776 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
777 	}
778 
779 	/*
780 	 * see if this device is already being mapped, look up the device
781 	 * then find the truncation bit pattern which applies
782 	 */
783 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
784 		/*
785 		 * this device is already marked to be remapped
786 		 */
787 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
788 			if (dpt->trunc_bits == trunc_bits)
789 				break;
790 
791 		if (dpt != NULL) {
792 			/*
793 			 * we are being remapped for this device and pattern
794 			 * change the device number to be stored and return
795 			 */
796 			arcn->sb.st_dev = dpt->dev;
797 			arcn->sb.st_ino = nino;
798 			return(0);
799 		}
800 	} else {
801 		/*
802 		 * this device is not being remapped YET. if we do not have any
803 		 * form of truncation, we do not need a remap
804 		 */
805 		if (!trc_ino && !trc_dev)
806 			return(0);
807 
808 		/*
809 		 * we have truncation, have to add this as a device to remap
810 		 */
811 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
812 			goto bad;
813 
814 		/*
815 		 * if we just have a truncated inode, we have to make sure that
816 		 * all future inodes that do not truncate (they have the
817 		 * truncation pattern of all 0's) continue to map to the same
818 		 * device number. We probably have already written inodes with
819 		 * this device number to the archive with the truncation
820 		 * pattern of all 0's. So we add the mapping for all 0's to the
821 		 * same device number.
822 		 */
823 		if (!trc_dev && (trunc_bits != 0)) {
824 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
825 				goto bad;
826 			dpt->trunc_bits = 0;
827 			dpt->dev = arcn->sb.st_dev;
828 			dpt->fow = pt->list;
829 			pt->list = dpt;
830 		}
831 	}
832 
833 	/*
834 	 * look for a device number not being used. We must watch for wrap
835 	 * around on lastdev (so we do not get stuck looking forever!)
836 	 */
837 	while (++lastdev > 0) {
838 		if (chk_dev(lastdev, 0) != NULL)
839 			continue;
840 		/*
841 		 * found an unused value. If we have reached truncation point
842 		 * for this format we are hosed, so we give up. Otherwise we
843 		 * mark it as being used.
844 		 */
845 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
846 		    (chk_dev(lastdev, 1) == NULL))
847 			goto bad;
848 		break;
849 	}
850 
851 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
852 		goto bad;
853 
854 	/*
855 	 * got a new device number, store it under this truncation pattern.
856 	 * change the device number this file is being stored with.
857 	 */
858 	dpt->trunc_bits = trunc_bits;
859 	dpt->dev = lastdev;
860 	dpt->fow = pt->list;
861 	pt->list = dpt;
862 	arcn->sb.st_dev = lastdev;
863 	arcn->sb.st_ino = nino;
864 	return(0);
865 
866     bad:
867 	paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
868 	    arcn->name);
869 	paxwarn(0, "Archive may create improper hard links when extracted");
870 	return(0);
871 }
872 
873 /*
874  * directory access/mod time reset table routines (for directories READ by pax)
875  *
876  * The pax -t flag requires that access times of archive files be the same
877  * before being read by pax. For regular files, access time is restored after
878  * the file has been copied. This database provides the same functionality for
879  * directories read during file tree traversal. Restoring directory access time
880  * is more complex than files since directories may be read several times until
881  * all the descendants in their subtree are visited by fts. Directory access
882  * and modification times are stored during the fts pre-order visit (done
883  * before any descendants in the subtree are visited) and restored after the
884  * fts post-order visit (after all the descendants have been visited). In the
885  * case of premature exit from a subtree (like from the effects of -n), any
886  * directory entries left in this database are reset during final cleanup
887  * operations of pax. Entries are hashed by inode number for fast lookup.
888  */
889 
890 /*
891  * atdir_start()
892  *	create the directory access time database for directories READ by pax.
893  * Return:
894  *	0 is created ok, -1 otherwise.
895  */
896 
897 int
898 atdir_start(void)
899 {
900 	if (atab != NULL)
901 		return(0);
902 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
903 		paxwarn(1,"Cannot allocate space for directory access time table");
904 		return(-1);
905 	}
906 	return(0);
907 }
908 
909 
910 /*
911  * atdir_end()
912  *	walk through the directory access time table and reset the access time
913  *	of any directory who still has an entry left in the database. These
914  *	entries are for directories READ by pax
915  */
916 
917 void
918 atdir_end(void)
919 {
920 	ATDIR *pt;
921 	int i;
922 
923 	if (atab == NULL)
924 		return;
925 	/*
926 	 * for each non-empty hash table entry reset all the directories
927 	 * chained there.
928 	 */
929 	for (i = 0; i < A_TAB_SZ; ++i) {
930 		if ((pt = atab[i]) == NULL)
931 			continue;
932 		/*
933 		 * remember to force the times, set_ftime() looks at pmtime
934 		 * and patime, which only applies to things CREATED by pax,
935 		 * not read by pax. Read time reset is controlled by -t.
936 		 */
937 		for (; pt != NULL; pt = pt->fow)
938 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
939 	}
940 }
941 
942 /*
943  * add_atdir()
944  *	add a directory to the directory access time table. Table is hashed
945  *	and chained by inode number. This is for directories READ by pax
946  */
947 
948 void
949 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
950 {
951 	ATDIR *pt;
952 	u_int indx;
953 
954 	if (atab == NULL)
955 		return;
956 
957 	/*
958 	 * make sure this directory is not already in the table, if so just
959 	 * return (the older entry always has the correct time). The only
960 	 * way this will happen is when the same subtree can be traversed by
961 	 * different args to pax and the -n option is aborting fts out of a
962 	 * subtree before all the post-order visits have been made.
963 	 */
964 	indx = ((unsigned)ino) % A_TAB_SZ;
965 	if ((pt = atab[indx]) != NULL) {
966 		while (pt != NULL) {
967 			if ((pt->ino == ino) && (pt->dev == dev))
968 				break;
969 			pt = pt->fow;
970 		}
971 
972 		/*
973 		 * oops, already there. Leave it alone.
974 		 */
975 		if (pt != NULL)
976 			return;
977 	}
978 
979 	/*
980 	 * add it to the front of the hash chain
981 	 */
982 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
983 		if ((pt->name = strdup(fname)) != NULL) {
984 			pt->dev = dev;
985 			pt->ino = ino;
986 			pt->mtime = mtime;
987 			pt->atime = atime;
988 			pt->fow = atab[indx];
989 			atab[indx] = pt;
990 			return;
991 		}
992 		free((char *)pt);
993 	}
994 
995 	paxwarn(1, "Directory access time reset table ran out of memory");
996 	return;
997 }
998 
999 /*
1000  * get_atdir()
1001  *	look up a directory by inode and device number to obtain the access
1002  *	and modification time you want to set to. If found, the modification
1003  *	and access time parameters are set and the entry is removed from the
1004  *	table (as it is no longer needed). These are for directories READ by
1005  *	pax
1006  * Return:
1007  *	0 if found, -1 if not found.
1008  */
1009 
1010 int
1011 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1012 {
1013 	ATDIR *pt;
1014 	ATDIR **ppt;
1015 	u_int indx;
1016 
1017 	if (atab == NULL)
1018 		return(-1);
1019 	/*
1020 	 * hash by inode and search the chain for an inode and device match
1021 	 */
1022 	indx = ((unsigned)ino) % A_TAB_SZ;
1023 	if ((pt = atab[indx]) == NULL)
1024 		return(-1);
1025 
1026 	ppt = &(atab[indx]);
1027 	while (pt != NULL) {
1028 		if ((pt->ino == ino) && (pt->dev == dev))
1029 			break;
1030 		/*
1031 		 * no match, go to next one
1032 		 */
1033 		ppt = &(pt->fow);
1034 		pt = pt->fow;
1035 	}
1036 
1037 	/*
1038 	 * return if we did not find it.
1039 	 */
1040 	if (pt == NULL)
1041 		return(-1);
1042 
1043 	/*
1044 	 * found it. return the times and remove the entry from the table.
1045 	 */
1046 	*ppt = pt->fow;
1047 	*mtime = pt->mtime;
1048 	*atime = pt->atime;
1049 	free((char *)pt->name);
1050 	free((char *)pt);
1051 	return(0);
1052 }
1053 
1054 /*
1055  * directory access mode and time storage routines (for directories CREATED
1056  * by pax).
1057  *
1058  * Pax requires that extracted directories, by default, have their access/mod
1059  * times and permissions set to the values specified in the archive. During the
1060  * actions of extracting (and creating the destination subtree during -rw copy)
1061  * directories extracted may be modified after being created. Even worse is
1062  * that these directories may have been created with file permissions which
1063  * prohibits any descendants of these directories from being extracted. When
1064  * directories are created by pax, access rights may be added to permit the
1065  * creation of files in their subtree. Every time pax creates a directory, the
1066  * times and file permissions specified by the archive are stored. After all
1067  * files have been extracted (or copied), these directories have their times
1068  * and file modes reset to the stored values. The directory info is restored in
1069  * reverse order as entries were added to the data file from root to leaf. To
1070  * restore atime properly, we must go backwards. The data file consists of
1071  * records with two parts, the file name followed by a DIRDATA trailer. The
1072  * fixed sized trailer contains the size of the name plus the off_t location in
1073  * the file. To restore we work backwards through the file reading the trailer
1074  * then the file name.
1075  */
1076 
1077 /*
1078  * dir_start()
1079  *	set up the directory time and file mode storage for directories CREATED
1080  *	by pax.
1081  * Return:
1082  *	0 if ok, -1 otherwise
1083  */
1084 
1085 int
1086 dir_start(void)
1087 {
1088 
1089 	if (dirfd != -1)
1090 		return(0);
1091 
1092 	/*
1093 	 * unlink the file so it goes away at termination by itself
1094 	 */
1095 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
1096 	if ((dirfd = mkstemp(tempfile)) >= 0) {
1097 		unlink(tempfile);
1098 		return(0);
1099 	}
1100 	paxwarn(1, "Unable to create temporary file for directory times: %s",
1101 	    tempfile);
1102 	return(-1);
1103 }
1104 
1105 /*
1106  * add_dir()
1107  *	add the mode and times for a newly CREATED directory
1108  *	name is name of the directory, psb the stat buffer with the data in it,
1109  *	frc_mode is a flag that says whether to force the setting of the mode
1110  *	(ignoring the user set values for preserving file mode). Frc_mode is
1111  *	for the case where we created a file and found that the resulting
1112  *	directory was not writeable and the user asked for file modes to NOT
1113  *	be preserved. (we have to preserve what was created by default, so we
1114  *	have to force the setting at the end. this is stated explicitly in the
1115  *	pax spec)
1116  */
1117 
1118 void
1119 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1120 {
1121 	DIRDATA dblk;
1122 
1123 	if (dirfd < 0)
1124 		return;
1125 
1126 	/*
1127 	 * get current position (where file name will start) so we can store it
1128 	 * in the trailer
1129 	 */
1130 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1131 		paxwarn(1,"Unable to store mode and times for directory: %s",name);
1132 		return;
1133 	}
1134 
1135 	/*
1136 	 * write the file name followed by the trailer
1137 	 */
1138 	dblk.nlen = nlen + 1;
1139 	dblk.mode = psb->st_mode & 0xffff;
1140 	dblk.mtime = psb->st_mtime;
1141 	dblk.atime = psb->st_atime;
1142 	dblk.frc_mode = frc_mode;
1143 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1144 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1145 		++dircnt;
1146 		return;
1147 	}
1148 
1149 	paxwarn(1,"Unable to store mode and times for created directory: %s",name);
1150 	return;
1151 }
1152 
1153 /*
1154  * proc_dir()
1155  *	process all file modes and times stored for directories CREATED
1156  *	by pax
1157  */
1158 
1159 void
1160 proc_dir(void)
1161 {
1162 	char name[PAXPATHLEN+1];
1163 	DIRDATA dblk;
1164 	u_long cnt;
1165 
1166 	if (dirfd < 0)
1167 		return;
1168 	/*
1169 	 * read backwards through the file and process each directory
1170 	 */
1171 	for (cnt = 0; cnt < dircnt; ++cnt) {
1172 		/*
1173 		 * read the trailer, then the file name, if this fails
1174 		 * just give up.
1175 		 */
1176 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1177 			break;
1178 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1179 			break;
1180 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1181 			break;
1182 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1183 			break;
1184 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1185 			break;
1186 
1187 		/*
1188 		 * frc_mode set, make sure we set the file modes even if
1189 		 * the user didn't ask for it (see file_subs.c for more info)
1190 		 */
1191 		if (pmode || dblk.frc_mode)
1192 			set_pmode(name, dblk.mode);
1193 		if (patime || pmtime)
1194 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1195 	}
1196 
1197 	close(dirfd);
1198 	dirfd = -1;
1199 	if (cnt != dircnt)
1200 		paxwarn(1,"Unable to set mode and times for created directories");
1201 	return;
1202 }
1203 
1204 /*
1205  * database independent routines
1206  */
1207 
1208 /*
1209  * st_hash()
1210  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1211  *	end of file, as this provides far better distribution than any other
1212  *	part of the name. For performance reasons we only care about the last
1213  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1214  *	name). Was tested on 500,000 name file tree traversal from the root
1215  *	and gave almost a perfectly uniform distribution of keys when used with
1216  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1217  *	chars at a time and pads with 0 for last addition.
1218  * Return:
1219  *	the hash value of the string MOD (%) the table size.
1220  */
1221 
1222 u_int
1223 st_hash(char *name, int len, int tabsz)
1224 {
1225 	char *pt;
1226 	char *dest;
1227 	char *end;
1228 	int i;
1229 	u_int key = 0;
1230 	int steps;
1231 	int res;
1232 	u_int val;
1233 
1234 	/*
1235 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1236 	 * time here (remember these are pathnames, the tail is what will
1237 	 * spread out the keys)
1238 	 */
1239 	if (len > MAXKEYLEN) {
1240 		pt = &(name[len - MAXKEYLEN]);
1241 		len = MAXKEYLEN;
1242 	} else
1243 		pt = name;
1244 
1245 	/*
1246 	 * calculate the number of u_int size steps in the string and if
1247 	 * there is a runt to deal with
1248 	 */
1249 	steps = len/sizeof(u_int);
1250 	res = len % sizeof(u_int);
1251 
1252 	/*
1253 	 * add up the value of the string in unsigned integer sized pieces
1254 	 * too bad we cannot have unsigned int aligned strings, then we
1255 	 * could avoid the expensive copy.
1256 	 */
1257 	for (i = 0; i < steps; ++i) {
1258 		end = pt + sizeof(u_int);
1259 		dest = (char *)&val;
1260 		while (pt < end)
1261 			*dest++ = *pt++;
1262 		key += val;
1263 	}
1264 
1265 	/*
1266 	 * add in the runt padded with zero to the right
1267 	 */
1268 	if (res) {
1269 		val = 0;
1270 		end = pt + res;
1271 		dest = (char *)&val;
1272 		while (pt < end)
1273 			*dest++ = *pt++;
1274 		key += val;
1275 	}
1276 
1277 	/*
1278 	 * return the result mod the table size
1279 	 */
1280 	return(key % tabsz);
1281 }
1282