xref: /dragonfly/bin/pax/tables.c (revision fb151170)
1 /*-
2  * Copyright (c) 1992 Keith Muller.
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Keith Muller of the University of California, San Diego.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * @(#)tables.c	8.1 (Berkeley) 5/31/93
38  * $FreeBSD: src/bin/pax/tables.c,v 1.13.2.1 2001/08/01 05:03:12 obrien Exp $
39  */
40 
41 #include <sys/types.h>
42 #include <sys/time.h>
43 #include <sys/stat.h>
44 #include <sys/fcntl.h>
45 #include <errno.h>
46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <unistd.h>
50 #include "pax.h"
51 #include "tables.h"
52 #include "extern.h"
53 
54 /*
55  * Routines for controlling the contents of all the different databases pax
56  * keeps. Tables are dynamically created only when they are needed. The
57  * goal was speed and the ability to work with HUGE archives. The databases
58  * were kept simple, but do have complex rules for when the contents change.
59  * As of this writing, the POSIX library functions were more complex than
60  * needed for this application (pax databases have very short lifetimes and
61  * do not survive after pax is finished). Pax is required to handle very
62  * large archives. These database routines carefully combine memory usage and
63  * temporary file storage in ways which will not significantly impact runtime
64  * performance while allowing the largest possible archives to be handled.
65  * Trying to force the fit to the POSIX database routines was not considered
66  * time well spent.
67  */
68 
69 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
70 static FTM **ftab = NULL;	/* file time table for updating arch */
71 static NAMT **ntab = NULL;	/* interactive rename storage table */
72 static DEVT **dtab = NULL;	/* device/inode mapping tables */
73 static ATDIR **atab = NULL;	/* file tree directory time reset table */
74 static int dirfd = -1;		/* storage for setting created dir time/mode */
75 static u_long dircnt;		/* entries in dir time/mode storage */
76 static int ffd = -1;		/* tmp file for file time table name storage */
77 
78 static DEVT *chk_dev (dev_t, int);
79 
80 /*
81  * hard link table routines
82  *
83  * The hard link table tries to detect hard links to files using the device and
84  * inode values. We do this when writing an archive, so we can tell the format
85  * write routine that this file is a hard link to another file. The format
86  * write routine then can store this file in whatever way it wants (as a hard
87  * link if the format supports that like tar, or ignore this info like cpio).
88  * (Actually a field in the format driver table tells us if the format wants
89  * hard link info. if not, we do not waste time looking for them). We also use
90  * the same table when reading an archive. In that situation, this table is
91  * used by the format read routine to detect hard links from stored dev and
92  * inode numbers (like cpio). This will allow pax to create a link when one
93  * can be detected by the archive format.
94  */
95 
96 /*
97  * lnk_start
98  *	Creates the hard link table.
99  * Return:
100  *	0 if created, -1 if failure
101  */
102 
103 int
104 lnk_start(void)
105 {
106 	if (ltab != NULL)
107 		return(0);
108 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
109 		paxwarn(1, "Cannot allocate memory for hard link table");
110 		return(-1);
111 	}
112 	return(0);
113 }
114 
115 /*
116  * chk_lnk()
117  *	Looks up entry in hard link hash table. If found, it copies the name
118  *	of the file it is linked to (we already saw that file) into ln_name.
119  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
120  *	database. (We have seen all the links to this file). If not found,
121  *	we add the file to the database if it has the potential for having
122  *	hard links to other files we may process (it has a link count > 1)
123  * Return:
124  *	if found returns 1; if not found returns 0; -1 on error
125  */
126 
127 int
128 chk_lnk(ARCHD *arcn)
129 {
130 	HRDLNK *pt;
131 	HRDLNK **ppt;
132 	u_int indx;
133 
134 	if (ltab == NULL)
135 		return(-1);
136 	/*
137 	 * ignore those nodes that cannot have hard links
138 	 */
139 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
140 		return(0);
141 
142 	/*
143 	 * hash inode number and look for this file
144 	 */
145 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
146 	if ((pt = ltab[indx]) != NULL) {
147 		/*
148 		 * it's hash chain in not empty, walk down looking for it
149 		 */
150 		ppt = &(ltab[indx]);
151 		while (pt != NULL) {
152 			if ((pt->ino == arcn->sb.st_ino) &&
153 			    (pt->dev == arcn->sb.st_dev))
154 				break;
155 			ppt = &(pt->fow);
156 			pt = pt->fow;
157 		}
158 
159 		if (pt != NULL) {
160 			/*
161 			 * found a link. set the node type and copy in the
162 			 * name of the file it is to link to. we need to
163 			 * handle hardlinks to regular files differently than
164 			 * other links.
165 			 */
166 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
167 				sizeof(arcn->ln_name) - 1);
168 			arcn->ln_name[arcn->ln_nlen] = '\0';
169 			if (arcn->type == PAX_REG)
170 				arcn->type = PAX_HRG;
171 			else
172 				arcn->type = PAX_HLK;
173 
174 			/*
175 			 * if we have found all the links to this file, remove
176 			 * it from the database
177 			 */
178 			if (--pt->nlink <= 1) {
179 				*ppt = pt->fow;
180 				free((char *)pt->name);
181 				free((char *)pt);
182 			}
183 			return(1);
184 		}
185 	}
186 
187 	/*
188 	 * we never saw this file before. It has links so we add it to the
189 	 * front of this hash chain
190 	 */
191 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
192 		if ((pt->name = strdup(arcn->name)) != NULL) {
193 			pt->dev = arcn->sb.st_dev;
194 			pt->ino = arcn->sb.st_ino;
195 			pt->nlink = arcn->sb.st_nlink;
196 			pt->fow = ltab[indx];
197 			ltab[indx] = pt;
198 			return(0);
199 		}
200 		free((char *)pt);
201 	}
202 
203 	paxwarn(1, "Hard link table out of memory");
204 	return(-1);
205 }
206 
207 /*
208  * purg_lnk
209  *	remove reference for a file that we may have added to the data base as
210  *	a potential source for hard links. We ended up not using the file, so
211  *	we do not want to accidently point another file at it later on.
212  */
213 
214 void
215 purg_lnk(ARCHD *arcn)
216 {
217 	HRDLNK *pt;
218 	HRDLNK **ppt;
219 	u_int indx;
220 
221 	if (ltab == NULL)
222 		return;
223 	/*
224 	 * do not bother to look if it could not be in the database
225 	 */
226 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
227 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
228 		return;
229 
230 	/*
231 	 * find the hash chain for this inode value, if empty return
232 	 */
233 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
234 	if ((pt = ltab[indx]) == NULL)
235 		return;
236 
237 	/*
238 	 * walk down the list looking for the inode/dev pair, unlink and
239 	 * free if found
240 	 */
241 	ppt = &(ltab[indx]);
242 	while (pt != NULL) {
243 		if ((pt->ino == arcn->sb.st_ino) &&
244 		    (pt->dev == arcn->sb.st_dev))
245 			break;
246 		ppt = &(pt->fow);
247 		pt = pt->fow;
248 	}
249 	if (pt == NULL)
250 		return;
251 
252 	/*
253 	 * remove and free it
254 	 */
255 	*ppt = pt->fow;
256 	free((char *)pt->name);
257 	free((char *)pt);
258 }
259 
260 /*
261  * lnk_end()
262  *	pull apart a existing link table so we can reuse it. We do this between
263  *	read and write phases of append with update. (The format may have
264  *	used the link table, and we need to start with a fresh table for the
265  *	write phase
266  */
267 
268 void
269 lnk_end(void)
270 {
271 	int i;
272 	HRDLNK *pt;
273 	HRDLNK *ppt;
274 
275 	if (ltab == NULL)
276 		return;
277 
278 	for (i = 0; i < L_TAB_SZ; ++i) {
279 		if (ltab[i] == NULL)
280 			continue;
281 		pt = ltab[i];
282 		ltab[i] = NULL;
283 
284 		/*
285 		 * free up each entry on this chain
286 		 */
287 		while (pt != NULL) {
288 			ppt = pt;
289 			pt = ppt->fow;
290 			free((char *)ppt->name);
291 			free((char *)ppt);
292 		}
293 	}
294 	return;
295 }
296 
297 /*
298  * modification time table routines
299  *
300  * The modification time table keeps track of last modification times for all
301  * files stored in an archive during a write phase when -u is set. We only
302  * add a file to the archive if it is newer than a file with the same name
303  * already stored on the archive (if there is no other file with the same
304  * name on the archive it is added). This applies to writes and appends.
305  * An append with an -u must read the archive and store the modification time
306  * for every file on that archive before starting the write phase. It is clear
307  * that this is one HUGE database. To save memory space, the actual file names
308  * are stored in a scratch file and indexed by an in memory hash table. The
309  * hash table is indexed by hashing the file path. The nodes in the table store
310  * the length of the filename and the lseek offset within the scratch file
311  * where the actual name is stored. Since there are never any deletions from
312  * this table, fragmentation of the scratch file is never a issue. Lookups
313  * seem to not exhibit any locality at all (files in the database are rarely
314  * looked up more than once...), so caching is just a waste of memory. The
315  * only limitation is the amount of scratch file space available to store the
316  * path names.
317  */
318 
319 /*
320  * ftime_start()
321  *	create the file time hash table and open for read/write the scratch
322  *	file. (after created it is unlinked, so when we exit we leave
323  *	no witnesses).
324  * Return:
325  *	0 if the table and file was created ok, -1 otherwise
326  */
327 
328 int
329 ftime_start(void)
330 {
331 
332 	if (ftab != NULL)
333 		return(0);
334 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
335 		paxwarn(1, "Cannot allocate memory for file time table");
336 		return(-1);
337 	}
338 
339 	/*
340 	 * get random name and create temporary scratch file, unlink name
341 	 * so it will get removed on exit
342 	 */
343 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
344 	if ((ffd = mkstemp(tempfile)) < 0) {
345 		syswarn(1, errno, "Unable to create temporary file: %s",
346 		    tempfile);
347 		return(-1);
348 	}
349 	unlink(tempfile);
350 
351 	return(0);
352 }
353 
354 /*
355  * chk_ftime()
356  *	looks up entry in file time hash table. If not found, the file is
357  *	added to the hash table and the file named stored in the scratch file.
358  *	If a file with the same name is found, the file times are compared and
359  *	the most recent file time is retained. If the new file was younger (or
360  *	was not in the database) the new file is selected for storage.
361  * Return:
362  *	0 if file should be added to the archive, 1 if it should be skipped,
363  *	-1 on error
364  */
365 
366 int
367 chk_ftime(ARCHD *arcn)
368 {
369 	FTM *pt;
370 	int namelen;
371 	u_int indx;
372 	char ckname[PAXPATHLEN+1];
373 
374 	/*
375 	 * no info, go ahead and add to archive
376 	 */
377 	if (ftab == NULL)
378 		return(0);
379 
380 	/*
381 	 * hash the pathname and look up in table
382 	 */
383 	namelen = arcn->nlen;
384 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
385 	if ((pt = ftab[indx]) != NULL) {
386 		/*
387 		 * the hash chain is not empty, walk down looking for match
388 		 * only read up the path names if the lengths match, speeds
389 		 * up the search a lot
390 		 */
391 		while (pt != NULL) {
392 			if (pt->namelen == namelen) {
393 				/*
394 				 * potential match, have to read the name
395 				 * from the scratch file.
396 				 */
397 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
398 					syswarn(1, errno,
399 					    "Failed ftime table seek");
400 					return(-1);
401 				}
402 				if (read(ffd, ckname, namelen) != namelen) {
403 					syswarn(1, errno,
404 					    "Failed ftime table read");
405 					return(-1);
406 				}
407 
408 				/*
409 				 * if the names match, we are done
410 				 */
411 				if (!strncmp(ckname, arcn->name, namelen))
412 					break;
413 			}
414 
415 			/*
416 			 * try the next entry on the chain
417 			 */
418 			pt = pt->fow;
419 		}
420 
421 		if (pt != NULL) {
422 			/*
423 			 * found the file, compare the times, save the newer
424 			 */
425 			if (arcn->sb.st_mtime > pt->mtime) {
426 				/*
427 				 * file is newer
428 				 */
429 				pt->mtime = arcn->sb.st_mtime;
430 				return(0);
431 			}
432 			/*
433 			 * file is older
434 			 */
435 			return(1);
436 		}
437 	}
438 
439 	/*
440 	 * not in table, add it
441 	 */
442 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
443 		/*
444 		 * add the name at the end of the scratch file, saving the
445 		 * offset. add the file to the head of the hash chain
446 		 */
447 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
448 			if (write(ffd, arcn->name, namelen) == namelen) {
449 				pt->mtime = arcn->sb.st_mtime;
450 				pt->namelen = namelen;
451 				pt->fow = ftab[indx];
452 				ftab[indx] = pt;
453 				return(0);
454 			}
455 			syswarn(1, errno, "Failed write to file time table");
456 		} else
457 			syswarn(1, errno, "Failed seek on file time table");
458 	} else
459 		paxwarn(1, "File time table ran out of memory");
460 
461 	if (pt != NULL)
462 		free((char *)pt);
463 	return(-1);
464 }
465 
466 /*
467  * Interactive rename table routines
468  *
469  * The interactive rename table keeps track of the new names that the user
470  * assigns to files from tty input. Since this map is unique for each file
471  * we must store it in case there is a reference to the file later in archive
472  * (a link). Otherwise we will be unable to find the file we know was
473  * extracted. The remapping of these files is stored in a memory based hash
474  * table (it is assumed since input must come from /dev/tty, it is unlikely to
475  * be a very large table).
476  */
477 
478 /*
479  * name_start()
480  *	create the interactive rename table
481  * Return:
482  *	0 if successful, -1 otherwise
483  */
484 
485 int
486 name_start(void)
487 {
488 	if (ntab != NULL)
489 		return(0);
490 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
491 		paxwarn(1, "Cannot allocate memory for interactive rename table");
492 		return(-1);
493 	}
494 	return(0);
495 }
496 
497 /*
498  * add_name()
499  *	add the new name to old name mapping just created by the user.
500  *	If an old name mapping is found (there may be duplicate names on an
501  *	archive) only the most recent is kept.
502  * Return:
503  *	0 if added, -1 otherwise
504  */
505 
506 int
507 add_name(char *oname, int onamelen, char *nname)
508 {
509 	NAMT *pt;
510 	u_int indx;
511 
512 	if (ntab == NULL) {
513 		/*
514 		 * should never happen
515 		 */
516 		paxwarn(0, "No interactive rename table, links may fail\n");
517 		return(0);
518 	}
519 
520 	/*
521 	 * look to see if we have already mapped this file, if so we
522 	 * will update it
523 	 */
524 	indx = st_hash(oname, onamelen, N_TAB_SZ);
525 	if ((pt = ntab[indx]) != NULL) {
526 		/*
527 		 * look down the has chain for the file
528 		 */
529 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
530 			pt = pt->fow;
531 
532 		if (pt != NULL) {
533 			/*
534 			 * found an old mapping, replace it with the new one
535 			 * the user just input (if it is different)
536 			 */
537 			if (strcmp(nname, pt->nname) == 0)
538 				return(0);
539 
540 			free((char *)pt->nname);
541 			if ((pt->nname = strdup(nname)) == NULL) {
542 				paxwarn(1, "Cannot update rename table");
543 				return(-1);
544 			}
545 			return(0);
546 		}
547 	}
548 
549 	/*
550 	 * this is a new mapping, add it to the table
551 	 */
552 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
553 		if ((pt->oname = strdup(oname)) != NULL) {
554 			if ((pt->nname = strdup(nname)) != NULL) {
555 				pt->fow = ntab[indx];
556 				ntab[indx] = pt;
557 				return(0);
558 			}
559 			free((char *)pt->oname);
560 		}
561 		free((char *)pt);
562 	}
563 	paxwarn(1, "Interactive rename table out of memory");
564 	return(-1);
565 }
566 
567 /*
568  * sub_name()
569  *	look up a link name to see if it points at a file that has been
570  *	remapped by the user. If found, the link is adjusted to contain the
571  *	new name (oname is the link to name)
572  */
573 
574 void
575 sub_name(char *oname, int *onamelen, size_t onamesize)
576 {
577 	NAMT *pt;
578 	u_int indx;
579 
580 	if (ntab == NULL)
581 		return;
582 	/*
583 	 * look the name up in the hash table
584 	 */
585 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
586 	if ((pt = ntab[indx]) == NULL)
587 		return;
588 
589 	while (pt != NULL) {
590 		/*
591 		 * walk down the hash chain looking for a match
592 		 */
593 		if (strcmp(oname, pt->oname) == 0) {
594 			/*
595 			 * found it, replace it with the new name
596 			 * and return (we know that oname has enough space)
597 			 */
598 			*onamelen = l_strncpy(oname, pt->nname, onamesize - 1);
599 			oname[*onamelen] = '\0';
600 			return;
601 		}
602 		pt = pt->fow;
603 	}
604 
605 	/*
606 	 * no match, just return
607 	 */
608 	return;
609 }
610 
611 /*
612  * device/inode mapping table routines
613  * (used with formats that store device and inodes fields)
614  *
615  * device/inode mapping tables remap the device field in a archive header. The
616  * device/inode fields are used to determine when files are hard links to each
617  * other. However these values have very little meaning outside of that. This
618  * database is used to solve one of two different problems.
619  *
620  * 1) when files are appended to an archive, while the new files may have hard
621  * links to each other, you cannot determine if they have hard links to any
622  * file already stored on the archive from a prior run of pax. We must assume
623  * that these inode/device pairs are unique only within a SINGLE run of pax
624  * (which adds a set of files to an archive). So we have to make sure the
625  * inode/dev pairs we add each time are always unique. We do this by observing
626  * while the inode field is very dense, the use of the dev field is fairly
627  * sparse. Within each run of pax, we remap any device number of a new archive
628  * member that has a device number used in a prior run and already stored in a
629  * file on the archive. During the read phase of the append, we store the
630  * device numbers used and mark them to not be used by any file during the
631  * write phase. If during write we go to use one of those old device numbers,
632  * we remap it to a new value.
633  *
634  * 2) Often the fields in the archive header used to store these values are
635  * too small to store the entire value. The result is an inode or device value
636  * which can be truncated. This really can foul up an archive. With truncation
637  * we end up creating links between files that are really not links (after
638  * truncation the inodes are the same value). We address that by detecting
639  * truncation and forcing a remap of the device field to split truncated
640  * inodes away from each other. Each truncation creates a pattern of bits that
641  * are removed. We use this pattern of truncated bits to partition the inodes
642  * on a single device to many different devices (each one represented by the
643  * truncated bit pattern). All inodes on the same device that have the same
644  * truncation pattern are mapped to the same new device. Two inodes that
645  * truncate to the same value clearly will always have different truncation
646  * bit patterns, so they will be split from away each other. When we spot
647  * device truncation we remap the device number to a non truncated value.
648  * (for more info see table.h for the data structures involved).
649  */
650 
651 /*
652  * dev_start()
653  *	create the device mapping table
654  * Return:
655  *	0 if successful, -1 otherwise
656  */
657 
658 int
659 dev_start(void)
660 {
661 	if (dtab != NULL)
662 		return(0);
663 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
664 		paxwarn(1, "Cannot allocate memory for device mapping table");
665 		return(-1);
666 	}
667 	return(0);
668 }
669 
670 /*
671  * add_dev()
672  *	add a device number to the table. this will force the device to be
673  *	remapped to a new value if it be used during a write phase. This
674  *	function is called during the read phase of an append to prohibit the
675  *	use of any device number already in the archive.
676  * Return:
677  *	0 if added ok, -1 otherwise
678  */
679 
680 int
681 add_dev(ARCHD *arcn)
682 {
683 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
684 		return(-1);
685 	return(0);
686 }
687 
688 /*
689  * chk_dev()
690  *	check for a device value in the device table. If not found and the add
691  *	flag is set, it is added. This does NOT assign any mapping values, just
692  *	adds the device number as one that need to be remapped. If this device
693  *	is already mapped, just return with a pointer to that entry.
694  * Return:
695  *	pointer to the entry for this device in the device map table. Null
696  *	if the add flag is not set and the device is not in the table (it is
697  *	not been seen yet). If add is set and the device cannot be added, null
698  *	is returned (indicates an error).
699  */
700 
701 static DEVT *
702 chk_dev(dev_t dev, int add)
703 {
704 	DEVT *pt;
705 	u_int indx;
706 
707 	if (dtab == NULL)
708 		return(NULL);
709 	/*
710 	 * look to see if this device is already in the table
711 	 */
712 	indx = ((unsigned)dev) % D_TAB_SZ;
713 	if ((pt = dtab[indx]) != NULL) {
714 		while ((pt != NULL) && (pt->dev != dev))
715 			pt = pt->fow;
716 
717 		/*
718 		 * found it, return a pointer to it
719 		 */
720 		if (pt != NULL)
721 			return(pt);
722 	}
723 
724 	/*
725 	 * not in table, we add it only if told to as this may just be a check
726 	 * to see if a device number is being used.
727 	 */
728 	if (add == 0)
729 		return(NULL);
730 
731 	/*
732 	 * allocate a node for this device and add it to the front of the hash
733 	 * chain. Note we do not assign remaps values here, so the pt->list
734 	 * list must be NULL.
735 	 */
736 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
737 		paxwarn(1, "Device map table out of memory");
738 		return(NULL);
739 	}
740 	pt->dev = dev;
741 	pt->list = NULL;
742 	pt->fow = dtab[indx];
743 	dtab[indx] = pt;
744 	return(pt);
745 }
746 /*
747  * map_dev()
748  *	given an inode and device storage mask (the mask has a 1 for each bit
749  *	the archive format is able to store in a header), we check for inode
750  *	and device truncation and remap the device as required. Device mapping
751  *	can also occur when during the read phase of append a device number was
752  *	seen (and was marked as do not use during the write phase). WE ASSUME
753  *	that unsigned longs are the same size or bigger than the fields used
754  *	for ino_t and dev_t. If not the types will have to be changed.
755  * Return:
756  *	0 if all ok, -1 otherwise.
757  */
758 
759 int
760 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
761 {
762 	DEVT *pt;
763 	DLIST *dpt;
764 	static dev_t lastdev = 0;	/* next device number to try */
765 	int trc_ino = 0;
766 	int trc_dev = 0;
767 	ino_t trunc_bits = 0;
768 	ino_t nino;
769 
770 	if (dtab == NULL)
771 		return(0);
772 	/*
773 	 * check for device and inode truncation, and extract the truncated
774 	 * bit pattern.
775 	 */
776 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
777 		++trc_dev;
778 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
779 		++trc_ino;
780 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
781 	}
782 
783 	/*
784 	 * see if this device is already being mapped, look up the device
785 	 * then find the truncation bit pattern which applies
786 	 */
787 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
788 		/*
789 		 * this device is already marked to be remapped
790 		 */
791 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
792 			if (dpt->trunc_bits == trunc_bits)
793 				break;
794 
795 		if (dpt != NULL) {
796 			/*
797 			 * we are being remapped for this device and pattern
798 			 * change the device number to be stored and return
799 			 */
800 			arcn->sb.st_dev = dpt->dev;
801 			arcn->sb.st_ino = nino;
802 			return(0);
803 		}
804 	} else {
805 		/*
806 		 * this device is not being remapped YET. if we do not have any
807 		 * form of truncation, we do not need a remap
808 		 */
809 		if (!trc_ino && !trc_dev)
810 			return(0);
811 
812 		/*
813 		 * we have truncation, have to add this as a device to remap
814 		 */
815 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
816 			goto bad;
817 
818 		/*
819 		 * if we just have a truncated inode, we have to make sure that
820 		 * all future inodes that do not truncate (they have the
821 		 * truncation pattern of all 0's) continue to map to the same
822 		 * device number. We probably have already written inodes with
823 		 * this device number to the archive with the truncation
824 		 * pattern of all 0's. So we add the mapping for all 0's to the
825 		 * same device number.
826 		 */
827 		if (!trc_dev && (trunc_bits != 0)) {
828 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
829 				goto bad;
830 			dpt->trunc_bits = 0;
831 			dpt->dev = arcn->sb.st_dev;
832 			dpt->fow = pt->list;
833 			pt->list = dpt;
834 		}
835 	}
836 
837 	/*
838 	 * look for a device number not being used. We must watch for wrap
839 	 * around on lastdev (so we do not get stuck looking forever!)
840 	 */
841 	while (++lastdev > 0) {
842 		if (chk_dev(lastdev, 0) != NULL)
843 			continue;
844 		/*
845 		 * found an unused value. If we have reached truncation point
846 		 * for this format we are hosed, so we give up. Otherwise we
847 		 * mark it as being used.
848 		 */
849 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
850 		    (chk_dev(lastdev, 1) == NULL))
851 			goto bad;
852 		break;
853 	}
854 
855 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
856 		goto bad;
857 
858 	/*
859 	 * got a new device number, store it under this truncation pattern.
860 	 * change the device number this file is being stored with.
861 	 */
862 	dpt->trunc_bits = trunc_bits;
863 	dpt->dev = lastdev;
864 	dpt->fow = pt->list;
865 	pt->list = dpt;
866 	arcn->sb.st_dev = lastdev;
867 	arcn->sb.st_ino = nino;
868 	return(0);
869 
870     bad:
871 	paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
872 	    arcn->name);
873 	paxwarn(0, "Archive may create improper hard links when extracted");
874 	return(0);
875 }
876 
877 /*
878  * directory access/mod time reset table routines (for directories READ by pax)
879  *
880  * The pax -t flag requires that access times of archive files be the same
881  * before being read by pax. For regular files, access time is restored after
882  * the file has been copied. This database provides the same functionality for
883  * directories read during file tree traversal. Restoring directory access time
884  * is more complex than files since directories may be read several times until
885  * all the descendants in their subtree are visited by fts. Directory access
886  * and modification times are stored during the fts pre-order visit (done
887  * before any descendants in the subtree are visited) and restored after the
888  * fts post-order visit (after all the descendants have been visited). In the
889  * case of premature exit from a subtree (like from the effects of -n), any
890  * directory entries left in this database are reset during final cleanup
891  * operations of pax. Entries are hashed by inode number for fast lookup.
892  */
893 
894 /*
895  * atdir_start()
896  *	create the directory access time database for directories READ by pax.
897  * Return:
898  *	0 is created ok, -1 otherwise.
899  */
900 
901 int
902 atdir_start(void)
903 {
904 	if (atab != NULL)
905 		return(0);
906 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
907 		paxwarn(1,"Cannot allocate space for directory access time table");
908 		return(-1);
909 	}
910 	return(0);
911 }
912 
913 
914 /*
915  * atdir_end()
916  *	walk through the directory access time table and reset the access time
917  *	of any directory who still has an entry left in the database. These
918  *	entries are for directories READ by pax
919  */
920 
921 void
922 atdir_end(void)
923 {
924 	ATDIR *pt;
925 	int i;
926 
927 	if (atab == NULL)
928 		return;
929 	/*
930 	 * for each non-empty hash table entry reset all the directories
931 	 * chained there.
932 	 */
933 	for (i = 0; i < A_TAB_SZ; ++i) {
934 		if ((pt = atab[i]) == NULL)
935 			continue;
936 		/*
937 		 * remember to force the times, set_ftime() looks at pmtime
938 		 * and patime, which only applies to things CREATED by pax,
939 		 * not read by pax. Read time reset is controlled by -t.
940 		 */
941 		for (; pt != NULL; pt = pt->fow)
942 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
943 	}
944 }
945 
946 /*
947  * add_atdir()
948  *	add a directory to the directory access time table. Table is hashed
949  *	and chained by inode number. This is for directories READ by pax
950  */
951 
952 void
953 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
954 {
955 	ATDIR *pt;
956 	u_int indx;
957 
958 	if (atab == NULL)
959 		return;
960 
961 	/*
962 	 * make sure this directory is not already in the table, if so just
963 	 * return (the older entry always has the correct time). The only
964 	 * way this will happen is when the same subtree can be traversed by
965 	 * different args to pax and the -n option is aborting fts out of a
966 	 * subtree before all the post-order visits have been made.
967 	 */
968 	indx = ((unsigned)ino) % A_TAB_SZ;
969 	if ((pt = atab[indx]) != NULL) {
970 		while (pt != NULL) {
971 			if ((pt->ino == ino) && (pt->dev == dev))
972 				break;
973 			pt = pt->fow;
974 		}
975 
976 		/*
977 		 * oops, already there. Leave it alone.
978 		 */
979 		if (pt != NULL)
980 			return;
981 	}
982 
983 	/*
984 	 * add it to the front of the hash chain
985 	 */
986 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
987 		if ((pt->name = strdup(fname)) != NULL) {
988 			pt->dev = dev;
989 			pt->ino = ino;
990 			pt->mtime = mtime;
991 			pt->atime = atime;
992 			pt->fow = atab[indx];
993 			atab[indx] = pt;
994 			return;
995 		}
996 		free((char *)pt);
997 	}
998 
999 	paxwarn(1, "Directory access time reset table ran out of memory");
1000 	return;
1001 }
1002 
1003 /*
1004  * get_atdir()
1005  *	look up a directory by inode and device number to obtain the access
1006  *	and modification time you want to set to. If found, the modification
1007  *	and access time parameters are set and the entry is removed from the
1008  *	table (as it is no longer needed). These are for directories READ by
1009  *	pax
1010  * Return:
1011  *	0 if found, -1 if not found.
1012  */
1013 
1014 int
1015 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1016 {
1017 	ATDIR *pt;
1018 	ATDIR **ppt;
1019 	u_int indx;
1020 
1021 	if (atab == NULL)
1022 		return(-1);
1023 	/*
1024 	 * hash by inode and search the chain for an inode and device match
1025 	 */
1026 	indx = ((unsigned)ino) % A_TAB_SZ;
1027 	if ((pt = atab[indx]) == NULL)
1028 		return(-1);
1029 
1030 	ppt = &(atab[indx]);
1031 	while (pt != NULL) {
1032 		if ((pt->ino == ino) && (pt->dev == dev))
1033 			break;
1034 		/*
1035 		 * no match, go to next one
1036 		 */
1037 		ppt = &(pt->fow);
1038 		pt = pt->fow;
1039 	}
1040 
1041 	/*
1042 	 * return if we did not find it.
1043 	 */
1044 	if (pt == NULL)
1045 		return(-1);
1046 
1047 	/*
1048 	 * found it. return the times and remove the entry from the table.
1049 	 */
1050 	*ppt = pt->fow;
1051 	*mtime = pt->mtime;
1052 	*atime = pt->atime;
1053 	free((char *)pt->name);
1054 	free((char *)pt);
1055 	return(0);
1056 }
1057 
1058 /*
1059  * directory access mode and time storage routines (for directories CREATED
1060  * by pax).
1061  *
1062  * Pax requires that extracted directories, by default, have their access/mod
1063  * times and permissions set to the values specified in the archive. During the
1064  * actions of extracting (and creating the destination subtree during -rw copy)
1065  * directories extracted may be modified after being created. Even worse is
1066  * that these directories may have been created with file permissions which
1067  * prohibits any descendants of these directories from being extracted. When
1068  * directories are created by pax, access rights may be added to permit the
1069  * creation of files in their subtree. Every time pax creates a directory, the
1070  * times and file permissions specified by the archive are stored. After all
1071  * files have been extracted (or copied), these directories have their times
1072  * and file modes reset to the stored values. The directory info is restored in
1073  * reverse order as entries were added to the data file from root to leaf. To
1074  * restore atime properly, we must go backwards. The data file consists of
1075  * records with two parts, the file name followed by a DIRDATA trailer. The
1076  * fixed sized trailer contains the size of the name plus the off_t location in
1077  * the file. To restore we work backwards through the file reading the trailer
1078  * then the file name.
1079  */
1080 
1081 /*
1082  * dir_start()
1083  *	set up the directory time and file mode storage for directories CREATED
1084  *	by pax.
1085  * Return:
1086  *	0 if ok, -1 otherwise
1087  */
1088 
1089 int
1090 dir_start(void)
1091 {
1092 
1093 	if (dirfd != -1)
1094 		return(0);
1095 
1096 	/*
1097 	 * unlink the file so it goes away at termination by itself
1098 	 */
1099 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
1100 	if ((dirfd = mkstemp(tempfile)) >= 0) {
1101 		unlink(tempfile);
1102 		return(0);
1103 	}
1104 	paxwarn(1, "Unable to create temporary file for directory times: %s",
1105 	    tempfile);
1106 	return(-1);
1107 }
1108 
1109 /*
1110  * add_dir()
1111  *	add the mode and times for a newly CREATED directory
1112  *	name is name of the directory, psb the stat buffer with the data in it,
1113  *	frc_mode is a flag that says whether to force the setting of the mode
1114  *	(ignoring the user set values for preserving file mode). Frc_mode is
1115  *	for the case where we created a file and found that the resulting
1116  *	directory was not writeable and the user asked for file modes to NOT
1117  *	be preserved. (we have to preserve what was created by default, so we
1118  *	have to force the setting at the end. this is stated explicitly in the
1119  *	pax spec)
1120  */
1121 
1122 void
1123 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1124 {
1125 	DIRDATA dblk;
1126 
1127 	if (dirfd < 0)
1128 		return;
1129 
1130 	/*
1131 	 * get current position (where file name will start) so we can store it
1132 	 * in the trailer
1133 	 */
1134 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1135 		paxwarn(1,"Unable to store mode and times for directory: %s",name);
1136 		return;
1137 	}
1138 
1139 	/*
1140 	 * write the file name followed by the trailer
1141 	 */
1142 	dblk.nlen = nlen + 1;
1143 	dblk.mode = psb->st_mode & 0xffff;
1144 	dblk.mtime = psb->st_mtime;
1145 	dblk.atime = psb->st_atime;
1146 	dblk.frc_mode = frc_mode;
1147 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1148 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1149 		++dircnt;
1150 		return;
1151 	}
1152 
1153 	paxwarn(1,"Unable to store mode and times for created directory: %s",name);
1154 	return;
1155 }
1156 
1157 /*
1158  * proc_dir()
1159  *	process all file modes and times stored for directories CREATED
1160  *	by pax
1161  */
1162 
1163 void
1164 proc_dir(void)
1165 {
1166 	char name[PAXPATHLEN+1];
1167 	DIRDATA dblk;
1168 	u_long cnt;
1169 
1170 	if (dirfd < 0)
1171 		return;
1172 	/*
1173 	 * read backwards through the file and process each directory
1174 	 */
1175 	for (cnt = 0; cnt < dircnt; ++cnt) {
1176 		/*
1177 		 * read the trailer, then the file name, if this fails
1178 		 * just give up.
1179 		 */
1180 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1181 			break;
1182 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1183 			break;
1184 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1185 			break;
1186 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1187 			break;
1188 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1189 			break;
1190 
1191 		/*
1192 		 * frc_mode set, make sure we set the file modes even if
1193 		 * the user didn't ask for it (see file_subs.c for more info)
1194 		 */
1195 		if (pmode || dblk.frc_mode)
1196 			set_pmode(name, dblk.mode);
1197 		if (patime || pmtime)
1198 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1199 	}
1200 
1201 	close(dirfd);
1202 	dirfd = -1;
1203 	if (cnt != dircnt)
1204 		paxwarn(1,"Unable to set mode and times for created directories");
1205 	return;
1206 }
1207 
1208 /*
1209  * database independent routines
1210  */
1211 
1212 /*
1213  * st_hash()
1214  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1215  *	end of file, as this provides far better distribution than any other
1216  *	part of the name. For performance reasons we only care about the last
1217  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1218  *	name). Was tested on 500,000 name file tree traversal from the root
1219  *	and gave almost a perfectly uniform distribution of keys when used with
1220  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1221  *	chars at a time and pads with 0 for last addition.
1222  * Return:
1223  *	the hash value of the string MOD (%) the table size.
1224  */
1225 
1226 u_int
1227 st_hash(char *name, int len, int tabsz)
1228 {
1229 	char *pt;
1230 	char *dest;
1231 	char *end;
1232 	int i;
1233 	u_int key = 0;
1234 	int steps;
1235 	int res;
1236 	u_int val;
1237 
1238 	/*
1239 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1240 	 * time here (remember these are pathnames, the tail is what will
1241 	 * spread out the keys)
1242 	 */
1243 	if (len > MAXKEYLEN) {
1244 		pt = &(name[len - MAXKEYLEN]);
1245 		len = MAXKEYLEN;
1246 	} else
1247 		pt = name;
1248 
1249 	/*
1250 	 * calculate the number of u_int size steps in the string and if
1251 	 * there is a runt to deal with
1252 	 */
1253 	steps = len/sizeof(u_int);
1254 	res = len % sizeof(u_int);
1255 
1256 	/*
1257 	 * add up the value of the string in unsigned integer sized pieces
1258 	 * too bad we cannot have unsigned int aligned strings, then we
1259 	 * could avoid the expensive copy.
1260 	 */
1261 	for (i = 0; i < steps; ++i) {
1262 		end = pt + sizeof(u_int);
1263 		dest = (char *)&val;
1264 		while (pt < end)
1265 			*dest++ = *pt++;
1266 		key += val;
1267 	}
1268 
1269 	/*
1270 	 * add in the runt padded with zero to the right
1271 	 */
1272 	if (res) {
1273 		val = 0;
1274 		end = pt + res;
1275 		dest = (char *)&val;
1276 		while (pt < end)
1277 			*dest++ = *pt++;
1278 		key += val;
1279 	}
1280 
1281 	/*
1282 	 * return the result mod the table size
1283 	 */
1284 	return(key % tabsz);
1285 }
1286