xref: /dragonfly/contrib/binutils-2.27/bfd/hash.c (revision 9348a738)
1 /* hash.c -- hash table routines for BFD
2    Copyright (C) 1993-2016 Free Software Foundation, Inc.
3    Written by Steve Chamberlain <sac@cygnus.com>
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "objalloc.h"
26 #include "libiberty.h"
27 
28 /*
29 SECTION
30 	Hash Tables
31 
32 @cindex Hash tables
33 	BFD provides a simple set of hash table functions.  Routines
34 	are provided to initialize a hash table, to free a hash table,
35 	to look up a string in a hash table and optionally create an
36 	entry for it, and to traverse a hash table.  There is
37 	currently no routine to delete an string from a hash table.
38 
39 	The basic hash table does not permit any data to be stored
40 	with a string.  However, a hash table is designed to present a
41 	base class from which other types of hash tables may be
42 	derived.  These derived types may store additional information
43 	with the string.  Hash tables were implemented in this way,
44 	rather than simply providing a data pointer in a hash table
45 	entry, because they were designed for use by the linker back
46 	ends.  The linker may create thousands of hash table entries,
47 	and the overhead of allocating private data and storing and
48 	following pointers becomes noticeable.
49 
50 	The basic hash table code is in <<hash.c>>.
51 
52 @menu
53 @* Creating and Freeing a Hash Table::
54 @* Looking Up or Entering a String::
55 @* Traversing a Hash Table::
56 @* Deriving a New Hash Table Type::
57 @end menu
58 
59 INODE
60 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
61 SUBSECTION
62 	Creating and freeing a hash table
63 
64 @findex bfd_hash_table_init
65 @findex bfd_hash_table_init_n
66 	To create a hash table, create an instance of a <<struct
67 	bfd_hash_table>> (defined in <<bfd.h>>) and call
68 	<<bfd_hash_table_init>> (if you know approximately how many
69 	entries you will need, the function <<bfd_hash_table_init_n>>,
70 	which takes a @var{size} argument, may be used).
71 	<<bfd_hash_table_init>> returns <<FALSE>> if some sort of
72 	error occurs.
73 
74 @findex bfd_hash_newfunc
75 	The function <<bfd_hash_table_init>> take as an argument a
76 	function to use to create new entries.  For a basic hash
77 	table, use the function <<bfd_hash_newfunc>>.  @xref{Deriving
78 	a New Hash Table Type}, for why you would want to use a
79 	different value for this argument.
80 
81 @findex bfd_hash_allocate
82 	<<bfd_hash_table_init>> will create an objalloc which will be
83 	used to allocate new entries.  You may allocate memory on this
84 	objalloc using <<bfd_hash_allocate>>.
85 
86 @findex bfd_hash_table_free
87 	Use <<bfd_hash_table_free>> to free up all the memory that has
88 	been allocated for a hash table.  This will not free up the
89 	<<struct bfd_hash_table>> itself, which you must provide.
90 
91 @findex bfd_hash_set_default_size
92 	Use <<bfd_hash_set_default_size>> to set the default size of
93 	hash table to use.
94 
95 INODE
96 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
97 SUBSECTION
98 	Looking up or entering a string
99 
100 @findex bfd_hash_lookup
101 	The function <<bfd_hash_lookup>> is used both to look up a
102 	string in the hash table and to create a new entry.
103 
104 	If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
105 	will look up a string.  If the string is found, it will
106 	returns a pointer to a <<struct bfd_hash_entry>>.  If the
107 	string is not found in the table <<bfd_hash_lookup>> will
108 	return <<NULL>>.  You should not modify any of the fields in
109 	the returns <<struct bfd_hash_entry>>.
110 
111 	If the @var{create} argument is <<TRUE>>, the string will be
112 	entered into the hash table if it is not already there.
113 	Either way a pointer to a <<struct bfd_hash_entry>> will be
114 	returned, either to the existing structure or to a newly
115 	created one.  In this case, a <<NULL>> return means that an
116 	error occurred.
117 
118 	If the @var{create} argument is <<TRUE>>, and a new entry is
119 	created, the @var{copy} argument is used to decide whether to
120 	copy the string onto the hash table objalloc or not.  If
121 	@var{copy} is passed as <<FALSE>>, you must be careful not to
122 	deallocate or modify the string as long as the hash table
123 	exists.
124 
125 INODE
126 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
127 SUBSECTION
128 	Traversing a hash table
129 
130 @findex bfd_hash_traverse
131 	The function <<bfd_hash_traverse>> may be used to traverse a
132 	hash table, calling a function on each element.  The traversal
133 	is done in a random order.
134 
135 	<<bfd_hash_traverse>> takes as arguments a function and a
136 	generic <<void *>> pointer.  The function is called with a
137 	hash table entry (a <<struct bfd_hash_entry *>>) and the
138 	generic pointer passed to <<bfd_hash_traverse>>.  The function
139 	must return a <<boolean>> value, which indicates whether to
140 	continue traversing the hash table.  If the function returns
141 	<<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
142 	return immediately.
143 
144 INODE
145 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
146 SUBSECTION
147 	Deriving a new hash table type
148 
149 	Many uses of hash tables want to store additional information
150 	which each entry in the hash table.  Some also find it
151 	convenient to store additional information with the hash table
152 	itself.  This may be done using a derived hash table.
153 
154 	Since C is not an object oriented language, creating a derived
155 	hash table requires sticking together some boilerplate
156 	routines with a few differences specific to the type of hash
157 	table you want to create.
158 
159 	An example of a derived hash table is the linker hash table.
160 	The structures for this are defined in <<bfdlink.h>>.  The
161 	functions are in <<linker.c>>.
162 
163 	You may also derive a hash table from an already derived hash
164 	table.  For example, the a.out linker backend code uses a hash
165 	table derived from the linker hash table.
166 
167 @menu
168 @* Define the Derived Structures::
169 @* Write the Derived Creation Routine::
170 @* Write Other Derived Routines::
171 @end menu
172 
173 INODE
174 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
175 SUBSUBSECTION
176 	Define the derived structures
177 
178 	You must define a structure for an entry in the hash table,
179 	and a structure for the hash table itself.
180 
181 	The first field in the structure for an entry in the hash
182 	table must be of the type used for an entry in the hash table
183 	you are deriving from.  If you are deriving from a basic hash
184 	table this is <<struct bfd_hash_entry>>, which is defined in
185 	<<bfd.h>>.  The first field in the structure for the hash
186 	table itself must be of the type of the hash table you are
187 	deriving from itself.  If you are deriving from a basic hash
188 	table, this is <<struct bfd_hash_table>>.
189 
190 	For example, the linker hash table defines <<struct
191 	bfd_link_hash_entry>> (in <<bfdlink.h>>).  The first field,
192 	<<root>>, is of type <<struct bfd_hash_entry>>.  Similarly,
193 	the first field in <<struct bfd_link_hash_table>>, <<table>>,
194 	is of type <<struct bfd_hash_table>>.
195 
196 INODE
197 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
198 SUBSUBSECTION
199 	Write the derived creation routine
200 
201 	You must write a routine which will create and initialize an
202 	entry in the hash table.  This routine is passed as the
203 	function argument to <<bfd_hash_table_init>>.
204 
205 	In order to permit other hash tables to be derived from the
206 	hash table you are creating, this routine must be written in a
207 	standard way.
208 
209 	The first argument to the creation routine is a pointer to a
210 	hash table entry.  This may be <<NULL>>, in which case the
211 	routine should allocate the right amount of space.  Otherwise
212 	the space has already been allocated by a hash table type
213 	derived from this one.
214 
215 	After allocating space, the creation routine must call the
216 	creation routine of the hash table type it is derived from,
217 	passing in a pointer to the space it just allocated.  This
218 	will initialize any fields used by the base hash table.
219 
220 	Finally the creation routine must initialize any local fields
221 	for the new hash table type.
222 
223 	Here is a boilerplate example of a creation routine.
224 	@var{function_name} is the name of the routine.
225 	@var{entry_type} is the type of an entry in the hash table you
226 	are creating.  @var{base_newfunc} is the name of the creation
227 	routine of the hash table type your hash table is derived
228 	from.
229 
230 EXAMPLE
231 
232 .struct bfd_hash_entry *
233 .@var{function_name} (struct bfd_hash_entry *entry,
234 .                     struct bfd_hash_table *table,
235 .                     const char *string)
236 .{
237 .  struct @var{entry_type} *ret = (@var{entry_type} *) entry;
238 .
239 . {* Allocate the structure if it has not already been allocated by a
240 .    derived class.  *}
241 .  if (ret == NULL)
242 .    {
243 .      ret = bfd_hash_allocate (table, sizeof (* ret));
244 .      if (ret == NULL)
245 .        return NULL;
246 .    }
247 .
248 . {* Call the allocation method of the base class.  *}
249 .  ret = ((@var{entry_type} *)
250 .	 @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
251 .
252 . {* Initialize the local fields here.  *}
253 .
254 .  return (struct bfd_hash_entry *) ret;
255 .}
256 
257 DESCRIPTION
258 	The creation routine for the linker hash table, which is in
259 	<<linker.c>>, looks just like this example.
260 	@var{function_name} is <<_bfd_link_hash_newfunc>>.
261 	@var{entry_type} is <<struct bfd_link_hash_entry>>.
262 	@var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
263 	routine for a basic hash table.
264 
265 	<<_bfd_link_hash_newfunc>> also initializes the local fields
266 	in a linker hash table entry: <<type>>, <<written>> and
267 	<<next>>.
268 
269 INODE
270 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
271 SUBSUBSECTION
272 	Write other derived routines
273 
274 	You will want to write other routines for your new hash table,
275 	as well.
276 
277 	You will want an initialization routine which calls the
278 	initialization routine of the hash table you are deriving from
279 	and initializes any other local fields.  For the linker hash
280 	table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
281 
282 	You will want a lookup routine which calls the lookup routine
283 	of the hash table you are deriving from and casts the result.
284 	The linker hash table uses <<bfd_link_hash_lookup>> in
285 	<<linker.c>> (this actually takes an additional argument which
286 	it uses to decide how to return the looked up value).
287 
288 	You may want a traversal routine.  This should just call the
289 	traversal routine of the hash table you are deriving from with
290 	appropriate casts.  The linker hash table uses
291 	<<bfd_link_hash_traverse>> in <<linker.c>>.
292 
293 	These routines may simply be defined as macros.  For example,
294 	the a.out backend linker hash table, which is derived from the
295 	linker hash table, uses macros for the lookup and traversal
296 	routines.  These are <<aout_link_hash_lookup>> and
297 	<<aout_link_hash_traverse>> in aoutx.h.
298 */
299 
300 /* The default number of entries to use when creating a hash table.  */
301 #define DEFAULT_SIZE 4051
302 
303 /* The following function returns a nearest prime number which is
304    greater than N, and near a power of two.  Copied from libiberty.
305    Returns zero for ridiculously large N to signify an error.  */
306 
307 static unsigned long
308 higher_prime_number (unsigned long n)
309 {
310   /* These are primes that are near, but slightly smaller than, a
311      power of two.  */
312   static const unsigned long primes[] =
313     {
314       (unsigned long) 31,
315       (unsigned long) 61,
316       (unsigned long) 127,
317       (unsigned long) 251,
318       (unsigned long) 509,
319       (unsigned long) 1021,
320       (unsigned long) 2039,
321       (unsigned long) 4093,
322       (unsigned long) 8191,
323       (unsigned long) 16381,
324       (unsigned long) 32749,
325       (unsigned long) 65521,
326       (unsigned long) 131071,
327       (unsigned long) 262139,
328       (unsigned long) 524287,
329       (unsigned long) 1048573,
330       (unsigned long) 2097143,
331       (unsigned long) 4194301,
332       (unsigned long) 8388593,
333       (unsigned long) 16777213,
334       (unsigned long) 33554393,
335       (unsigned long) 67108859,
336       (unsigned long) 134217689,
337       (unsigned long) 268435399,
338       (unsigned long) 536870909,
339       (unsigned long) 1073741789,
340       (unsigned long) 2147483647,
341 					/* 4294967291L */
342       ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
343   };
344 
345   const unsigned long *low = &primes[0];
346   const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
347 
348   while (low != high)
349     {
350       const unsigned long *mid = low + (high - low) / 2;
351       if (n >= *mid)
352 	low = mid + 1;
353       else
354 	high = mid;
355     }
356 
357   if (n >= *low)
358     return 0;
359 
360   return *low;
361 }
362 
363 static unsigned long bfd_default_hash_table_size = DEFAULT_SIZE;
364 
365 /* Create a new hash table, given a number of entries.  */
366 
367 bfd_boolean
368 bfd_hash_table_init_n (struct bfd_hash_table *table,
369 		       struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
370 							  struct bfd_hash_table *,
371 							  const char *),
372 		       unsigned int entsize,
373 		       unsigned int size)
374 {
375   unsigned long alloc;
376 
377   alloc = size;
378   alloc *= sizeof (struct bfd_hash_entry *);
379   if (alloc / sizeof (struct bfd_hash_entry *) != size)
380     {
381       bfd_set_error (bfd_error_no_memory);
382       return FALSE;
383     }
384 
385   table->memory = (void *) objalloc_create ();
386   if (table->memory == NULL)
387     {
388       bfd_set_error (bfd_error_no_memory);
389       return FALSE;
390     }
391   table->table = (struct bfd_hash_entry **)
392       objalloc_alloc ((struct objalloc *) table->memory, alloc);
393   if (table->table == NULL)
394     {
395       bfd_hash_table_free (table);
396       bfd_set_error (bfd_error_no_memory);
397       return FALSE;
398     }
399   memset ((void *) table->table, 0, alloc);
400   table->size = size;
401   table->entsize = entsize;
402   table->count = 0;
403   table->frozen = 0;
404   table->newfunc = newfunc;
405   return TRUE;
406 }
407 
408 /* Create a new hash table with the default number of entries.  */
409 
410 bfd_boolean
411 bfd_hash_table_init (struct bfd_hash_table *table,
412 		     struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
413 							struct bfd_hash_table *,
414 							const char *),
415 		     unsigned int entsize)
416 {
417   return bfd_hash_table_init_n (table, newfunc, entsize,
418 				bfd_default_hash_table_size);
419 }
420 
421 /* Free a hash table.  */
422 
423 void
424 bfd_hash_table_free (struct bfd_hash_table *table)
425 {
426   objalloc_free ((struct objalloc *) table->memory);
427   table->memory = NULL;
428 }
429 
430 static inline unsigned long
431 bfd_hash_hash (const char *string, unsigned int *lenp)
432 {
433   const unsigned char *s;
434   unsigned long hash;
435   unsigned int len;
436   unsigned int c;
437 
438   hash = 0;
439   len = 0;
440   s = (const unsigned char *) string;
441   while ((c = *s++) != '\0')
442     {
443       hash += c + (c << 17);
444       hash ^= hash >> 2;
445     }
446   len = (s - (const unsigned char *) string) - 1;
447   hash += len + (len << 17);
448   hash ^= hash >> 2;
449   if (lenp != NULL)
450     *lenp = len;
451   return hash;
452 }
453 
454 /* Look up a string in a hash table.  */
455 
456 struct bfd_hash_entry *
457 bfd_hash_lookup (struct bfd_hash_table *table,
458 		 const char *string,
459 		 bfd_boolean create,
460 		 bfd_boolean copy)
461 {
462   unsigned long hash;
463   struct bfd_hash_entry *hashp;
464   unsigned int len;
465   unsigned int _index;
466 
467   hash = bfd_hash_hash (string, &len);
468   _index = hash % table->size;
469   for (hashp = table->table[_index];
470        hashp != NULL;
471        hashp = hashp->next)
472     {
473       if (hashp->hash == hash
474 	  && strcmp (hashp->string, string) == 0)
475 	return hashp;
476     }
477 
478   if (! create)
479     return NULL;
480 
481   if (copy)
482     {
483       char *new_string;
484 
485       new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
486                                             len + 1);
487       if (!new_string)
488 	{
489 	  bfd_set_error (bfd_error_no_memory);
490 	  return NULL;
491 	}
492       memcpy (new_string, string, len + 1);
493       string = new_string;
494     }
495 
496   return bfd_hash_insert (table, string, hash);
497 }
498 
499 /* Insert an entry in a hash table.  */
500 
501 struct bfd_hash_entry *
502 bfd_hash_insert (struct bfd_hash_table *table,
503 		 const char *string,
504 		 unsigned long hash)
505 {
506   struct bfd_hash_entry *hashp;
507   unsigned int _index;
508 
509   hashp = (*table->newfunc) (NULL, table, string);
510   if (hashp == NULL)
511     return NULL;
512   hashp->string = string;
513   hashp->hash = hash;
514   _index = hash % table->size;
515   hashp->next = table->table[_index];
516   table->table[_index] = hashp;
517   table->count++;
518 
519   if (!table->frozen && table->count > table->size * 3 / 4)
520     {
521       unsigned long newsize = higher_prime_number (table->size);
522       struct bfd_hash_entry **newtable;
523       unsigned int hi;
524       unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
525 
526       /* If we can't find a higher prime, or we can't possibly alloc
527 	 that much memory, don't try to grow the table.  */
528       if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
529 	{
530 	  table->frozen = 1;
531 	  return hashp;
532 	}
533 
534       newtable = ((struct bfd_hash_entry **)
535 		  objalloc_alloc ((struct objalloc *) table->memory, alloc));
536       if (newtable == NULL)
537 	{
538 	  table->frozen = 1;
539 	  return hashp;
540 	}
541       memset (newtable, 0, alloc);
542 
543       for (hi = 0; hi < table->size; hi ++)
544 	while (table->table[hi])
545 	  {
546 	    struct bfd_hash_entry *chain = table->table[hi];
547 	    struct bfd_hash_entry *chain_end = chain;
548 
549 	    while (chain_end->next && chain_end->next->hash == chain->hash)
550 	      chain_end = chain_end->next;
551 
552 	    table->table[hi] = chain_end->next;
553 	    _index = chain->hash % newsize;
554 	    chain_end->next = newtable[_index];
555 	    newtable[_index] = chain;
556 	  }
557       table->table = newtable;
558       table->size = newsize;
559     }
560 
561   return hashp;
562 }
563 
564 /* Rename an entry in a hash table.  */
565 
566 void
567 bfd_hash_rename (struct bfd_hash_table *table,
568 		 const char *string,
569 		 struct bfd_hash_entry *ent)
570 {
571   unsigned int _index;
572   struct bfd_hash_entry **pph;
573 
574   _index = ent->hash % table->size;
575   for (pph = &table->table[_index]; *pph != NULL; pph = &(*pph)->next)
576     if (*pph == ent)
577       break;
578   if (*pph == NULL)
579     abort ();
580 
581   *pph = ent->next;
582   ent->string = string;
583   ent->hash = bfd_hash_hash (string, NULL);
584   _index = ent->hash % table->size;
585   ent->next = table->table[_index];
586   table->table[_index] = ent;
587 }
588 
589 /* Replace an entry in a hash table.  */
590 
591 void
592 bfd_hash_replace (struct bfd_hash_table *table,
593 		  struct bfd_hash_entry *old,
594 		  struct bfd_hash_entry *nw)
595 {
596   unsigned int _index;
597   struct bfd_hash_entry **pph;
598 
599   _index = old->hash % table->size;
600   for (pph = &table->table[_index];
601        (*pph) != NULL;
602        pph = &(*pph)->next)
603     {
604       if (*pph == old)
605 	{
606 	  *pph = nw;
607 	  return;
608 	}
609     }
610 
611   abort ();
612 }
613 
614 /* Allocate space in a hash table.  */
615 
616 void *
617 bfd_hash_allocate (struct bfd_hash_table *table,
618 		   unsigned int size)
619 {
620   void * ret;
621 
622   ret = objalloc_alloc ((struct objalloc *) table->memory, size);
623   if (ret == NULL && size != 0)
624     bfd_set_error (bfd_error_no_memory);
625   return ret;
626 }
627 
628 /* Base method for creating a new hash table entry.  */
629 
630 struct bfd_hash_entry *
631 bfd_hash_newfunc (struct bfd_hash_entry *entry,
632 		  struct bfd_hash_table *table,
633 		  const char *string ATTRIBUTE_UNUSED)
634 {
635   if (entry == NULL)
636     entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
637                                                          sizeof (* entry));
638   return entry;
639 }
640 
641 /* Traverse a hash table.  */
642 
643 void
644 bfd_hash_traverse (struct bfd_hash_table *table,
645 		   bfd_boolean (*func) (struct bfd_hash_entry *, void *),
646 		   void * info)
647 {
648   unsigned int i;
649 
650   table->frozen = 1;
651   for (i = 0; i < table->size; i++)
652     {
653       struct bfd_hash_entry *p;
654 
655       for (p = table->table[i]; p != NULL; p = p->next)
656 	if (! (*func) (p, info))
657 	  goto out;
658     }
659  out:
660   table->frozen = 0;
661 }
662 
663 unsigned long
664 bfd_hash_set_default_size (unsigned long hash_size)
665 {
666   /* Extend this prime list if you want more granularity of hash table size.  */
667   static const unsigned long hash_size_primes[] =
668     {
669       31, 61, 127, 251, 509, 1021, 2039, 4091, 8191, 16381, 32749, 65537
670     };
671   unsigned int _index;
672 
673   /* Work out best prime number near the hash_size.  */
674   for (_index = 0; _index < ARRAY_SIZE (hash_size_primes) - 1; ++_index)
675     if (hash_size <= hash_size_primes[_index])
676       break;
677 
678   bfd_default_hash_table_size = hash_size_primes[_index];
679   return bfd_default_hash_table_size;
680 }
681 
682 /* A few different object file formats (a.out, COFF, ELF) use a string
683    table.  These functions support adding strings to a string table,
684    returning the byte offset, and writing out the table.
685 
686    Possible improvements:
687    + look for strings matching trailing substrings of other strings
688    + better data structures?  balanced trees?
689    + look at reducing memory use elsewhere -- maybe if we didn't have
690      to construct the entire symbol table at once, we could get by
691      with smaller amounts of VM?  (What effect does that have on the
692      string table reductions?)  */
693 
694 /* An entry in the strtab hash table.  */
695 
696 struct strtab_hash_entry
697 {
698   struct bfd_hash_entry root;
699   /* Index in string table.  */
700   bfd_size_type index;
701   /* Next string in strtab.  */
702   struct strtab_hash_entry *next;
703 };
704 
705 /* The strtab hash table.  */
706 
707 struct bfd_strtab_hash
708 {
709   struct bfd_hash_table table;
710   /* Size of strtab--also next available index.  */
711   bfd_size_type size;
712   /* First string in strtab.  */
713   struct strtab_hash_entry *first;
714   /* Last string in strtab.  */
715   struct strtab_hash_entry *last;
716   /* Whether to precede strings with a two byte length, as in the
717      XCOFF .debug section.  */
718   bfd_boolean xcoff;
719 };
720 
721 /* Routine to create an entry in a strtab.  */
722 
723 static struct bfd_hash_entry *
724 strtab_hash_newfunc (struct bfd_hash_entry *entry,
725 		     struct bfd_hash_table *table,
726 		     const char *string)
727 {
728   struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
729 
730   /* Allocate the structure if it has not already been allocated by a
731      subclass.  */
732   if (ret == NULL)
733     ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
734                                                           sizeof (* ret));
735   if (ret == NULL)
736     return NULL;
737 
738   /* Call the allocation method of the superclass.  */
739   ret = (struct strtab_hash_entry *)
740 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
741 
742   if (ret)
743     {
744       /* Initialize the local fields.  */
745       ret->index = (bfd_size_type) -1;
746       ret->next = NULL;
747     }
748 
749   return (struct bfd_hash_entry *) ret;
750 }
751 
752 /* Look up an entry in an strtab.  */
753 
754 #define strtab_hash_lookup(t, string, create, copy) \
755   ((struct strtab_hash_entry *) \
756    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
757 
758 /* Create a new strtab.  */
759 
760 struct bfd_strtab_hash *
761 _bfd_stringtab_init (void)
762 {
763   struct bfd_strtab_hash *table;
764   bfd_size_type amt = sizeof (* table);
765 
766   table = (struct bfd_strtab_hash *) bfd_malloc (amt);
767   if (table == NULL)
768     return NULL;
769 
770   if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
771 			    sizeof (struct strtab_hash_entry)))
772     {
773       free (table);
774       return NULL;
775     }
776 
777   table->size = 0;
778   table->first = NULL;
779   table->last = NULL;
780   table->xcoff = FALSE;
781 
782   return table;
783 }
784 
785 /* Create a new strtab in which the strings are output in the format
786    used in the XCOFF .debug section: a two byte length precedes each
787    string.  */
788 
789 struct bfd_strtab_hash *
790 _bfd_xcoff_stringtab_init (void)
791 {
792   struct bfd_strtab_hash *ret;
793 
794   ret = _bfd_stringtab_init ();
795   if (ret != NULL)
796     ret->xcoff = TRUE;
797   return ret;
798 }
799 
800 /* Free a strtab.  */
801 
802 void
803 _bfd_stringtab_free (struct bfd_strtab_hash *table)
804 {
805   bfd_hash_table_free (&table->table);
806   free (table);
807 }
808 
809 /* Get the index of a string in a strtab, adding it if it is not
810    already present.  If HASH is FALSE, we don't really use the hash
811    table, and we don't eliminate duplicate strings.  If COPY is true
812    then store a copy of STR if creating a new entry.  */
813 
814 bfd_size_type
815 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
816 		    const char *str,
817 		    bfd_boolean hash,
818 		    bfd_boolean copy)
819 {
820   struct strtab_hash_entry *entry;
821 
822   if (hash)
823     {
824       entry = strtab_hash_lookup (tab, str, TRUE, copy);
825       if (entry == NULL)
826 	return (bfd_size_type) -1;
827     }
828   else
829     {
830       entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
831                                                               sizeof (* entry));
832       if (entry == NULL)
833 	return (bfd_size_type) -1;
834       if (! copy)
835 	entry->root.string = str;
836       else
837 	{
838 	  size_t len = strlen (str) + 1;
839 	  char *n;
840 
841 	  n = (char *) bfd_hash_allocate (&tab->table, len);
842 	  if (n == NULL)
843 	    return (bfd_size_type) -1;
844           memcpy (n, str, len);
845 	  entry->root.string = n;
846 	}
847       entry->index = (bfd_size_type) -1;
848       entry->next = NULL;
849     }
850 
851   if (entry->index == (bfd_size_type) -1)
852     {
853       entry->index = tab->size;
854       tab->size += strlen (str) + 1;
855       if (tab->xcoff)
856 	{
857 	  entry->index += 2;
858 	  tab->size += 2;
859 	}
860       if (tab->first == NULL)
861 	tab->first = entry;
862       else
863 	tab->last->next = entry;
864       tab->last = entry;
865     }
866 
867   return entry->index;
868 }
869 
870 /* Get the number of bytes in a strtab.  */
871 
872 bfd_size_type
873 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
874 {
875   return tab->size;
876 }
877 
878 /* Write out a strtab.  ABFD must already be at the right location in
879    the file.  */
880 
881 bfd_boolean
882 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
883 {
884   bfd_boolean xcoff;
885   struct strtab_hash_entry *entry;
886 
887   xcoff = tab->xcoff;
888 
889   for (entry = tab->first; entry != NULL; entry = entry->next)
890     {
891       const char *str;
892       size_t len;
893 
894       str = entry->root.string;
895       len = strlen (str) + 1;
896 
897       if (xcoff)
898 	{
899 	  bfd_byte buf[2];
900 
901 	  /* The output length includes the null byte.  */
902 	  bfd_put_16 (abfd, (bfd_vma) len, buf);
903 	  if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
904 	    return FALSE;
905 	}
906 
907       if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
908 	return FALSE;
909     }
910 
911   return TRUE;
912 }
913