1 /* linker.c -- BFD linker routines
2    Copyright (C) 1993-2016 Free Software Foundation, Inc.
3    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27 
28 /*
29 SECTION
30 	Linker Functions
31 
32 @cindex Linker
33 	The linker uses three special entry points in the BFD target
34 	vector.  It is not necessary to write special routines for
35 	these entry points when creating a new BFD back end, since
36 	generic versions are provided.  However, writing them can
37 	speed up linking and make it use significantly less runtime
38 	memory.
39 
40 	The first routine creates a hash table used by the other
41 	routines.  The second routine adds the symbols from an object
42 	file to the hash table.  The third routine takes all the
43 	object files and links them together to create the output
44 	file.  These routines are designed so that the linker proper
45 	does not need to know anything about the symbols in the object
46 	files that it is linking.  The linker merely arranges the
47 	sections as directed by the linker script and lets BFD handle
48 	the details of symbols and relocs.
49 
50 	The second routine and third routines are passed a pointer to
51 	a <<struct bfd_link_info>> structure (defined in
52 	<<bfdlink.h>>) which holds information relevant to the link,
53 	including the linker hash table (which was created by the
54 	first routine) and a set of callback functions to the linker
55 	proper.
56 
57 	The generic linker routines are in <<linker.c>>, and use the
58 	header file <<genlink.h>>.  As of this writing, the only back
59 	ends which have implemented versions of these routines are
60 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
61 	routines are used as examples throughout this section.
62 
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68 
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 	Creating a linker hash table
73 
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 	The linker routines must create a hash table, which must be
77 	derived from <<struct bfd_link_hash_table>> described in
78 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
79 	create a derived hash table.  This entry point is called using
80 	the target vector of the linker output file.
81 
82 	The <<_bfd_link_hash_table_create>> entry point must allocate
83 	and initialize an instance of the desired hash table.  If the
84 	back end does not require any additional information to be
85 	stored with the entries in the hash table, the entry point may
86 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
87 	however, some additional information will be needed.
88 
89 	For example, with each entry in the hash table the a.out
90 	linker keeps the index the symbol has in the final output file
91 	(this index number is used so that when doing a relocatable
92 	link the symbol index used in the output file can be quickly
93 	filled in when copying over a reloc).  The a.out linker code
94 	defines the required structures and functions for a hash table
95 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
96 	hash table is created by the function
97 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
98 	space for the hash table, initializes it, and returns a
99 	pointer to it.
100 
101 	When writing the linker routines for a new back end, you will
102 	generally not know exactly which fields will be required until
103 	you have finished.  You should simply create a new hash table
104 	which defines no additional fields, and then simply add fields
105 	as they become necessary.
106 
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 	Adding symbols to the hash table
111 
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 	The linker proper will call the <<_bfd_link_add_symbols>>
115 	entry point for each object file or archive which is to be
116 	linked (typically these are the files named on the command
117 	line, but some may also come from the linker script).  The
118 	entry point is responsible for examining the file.  For an
119 	object file, BFD must add any relevant symbol information to
120 	the hash table.  For an archive, BFD must determine which
121 	elements of the archive should be used and adding them to the
122 	link.
123 
124 	The a.out version of this entry point is
125 	<<NAME(aout,link_add_symbols)>>.
126 
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132 
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 	Differing file formats
137 
138 	Normally all the files involved in a link will be of the same
139 	format, but it is also possible to link together different
140 	format object files, and the back end must support that.  The
141 	<<_bfd_link_add_symbols>> entry point is called via the target
142 	vector of the file to be added.  This has an important
143 	consequence: the function may not assume that the hash table
144 	is the type created by the corresponding
145 	<<_bfd_link_hash_table_create>> vector.  All the
146 	<<_bfd_link_add_symbols>> function can assume about the hash
147 	table is that it is derived from <<struct
148 	bfd_link_hash_table>>.
149 
150 	Sometimes the <<_bfd_link_add_symbols>> function must store
151 	some information in the hash table entry to be used by the
152 	<<_bfd_final_link>> function.  In such a case the output bfd
153 	xvec must be checked to make sure that the hash table was
154 	created by an object file of the same format.
155 
156 	The <<_bfd_final_link>> routine must be prepared to handle a
157 	hash entry without any extra information added by the
158 	<<_bfd_link_add_symbols>> function.  A hash entry without
159 	extra information will also occur when the linker script
160 	directs the linker to create a symbol.  Note that, regardless
161 	of how a hash table entry is added, all the fields will be
162 	initialized to some sort of null value by the hash table entry
163 	initialization function.
164 
165 	See <<ecoff_link_add_externals>> for an example of how to
166 	check the output bfd before saving information (in this
167 	case, the ECOFF external symbol debugging information) in a
168 	hash table entry.
169 
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 	Adding symbols from an object file
174 
175 	When the <<_bfd_link_add_symbols>> routine is passed an object
176 	file, it must add all externally visible symbols in that
177 	object file to the hash table.  The actual work of adding the
178 	symbol to the hash table is normally handled by the function
179 	<<_bfd_generic_link_add_one_symbol>>.  The
180 	<<_bfd_link_add_symbols>> routine is responsible for reading
181 	all the symbols from the object file and passing the correct
182 	information to <<_bfd_generic_link_add_one_symbol>>.
183 
184 	The <<_bfd_link_add_symbols>> routine should not use
185 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
186 	providing this routine is to avoid the overhead of converting
187 	the symbols into generic <<asymbol>> structures.
188 
189 @findex _bfd_generic_link_add_one_symbol
190 	<<_bfd_generic_link_add_one_symbol>> handles the details of
191 	combining common symbols, warning about multiple definitions,
192 	and so forth.  It takes arguments which describe the symbol to
193 	add, notably symbol flags, a section, and an offset.  The
194 	symbol flags include such things as <<BSF_WEAK>> or
195 	<<BSF_INDIRECT>>.  The section is a section in the object
196 	file, or something like <<bfd_und_section_ptr>> for an undefined
197 	symbol or <<bfd_com_section_ptr>> for a common symbol.
198 
199 	If the <<_bfd_final_link>> routine is also going to need to
200 	read the symbol information, the <<_bfd_link_add_symbols>>
201 	routine should save it somewhere attached to the object file
202 	BFD.  However, the information should only be saved if the
203 	<<keep_memory>> field of the <<info>> argument is TRUE, so
204 	that the <<-no-keep-memory>> linker switch is effective.
205 
206 	The a.out function which adds symbols from an object file is
207 	<<aout_link_add_object_symbols>>, and most of the interesting
208 	work is in <<aout_link_add_symbols>>.  The latter saves
209 	pointers to the hash tables entries created by
210 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 	so that the <<_bfd_final_link>> routine does not have to call
212 	the hash table lookup routine to locate the entry.
213 
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 	Adding symbols from an archive
218 
219 	When the <<_bfd_link_add_symbols>> routine is passed an
220 	archive, it must look through the symbols defined by the
221 	archive and decide which elements of the archive should be
222 	included in the link.  For each such element it must call the
223 	<<add_archive_element>> linker callback, and it must add the
224 	symbols from the object file to the linker hash table.  (The
225 	callback may in fact indicate that a replacement BFD should be
226 	used, in which case the symbols from that BFD should be added
227 	to the linker hash table instead.)
228 
229 @findex _bfd_generic_link_add_archive_symbols
230 	In most cases the work of looking through the symbols in the
231 	archive should be done by the
232 	<<_bfd_generic_link_add_archive_symbols>> function.
233 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
234 	to call to make the final decision about adding an archive
235 	element to the link and to do the actual work of adding the
236 	symbols to the linker hash table.  If the element is to
237 	be included, the <<add_archive_element>> linker callback
238 	routine must be called with the element as an argument, and
239 	the element's symbols must be added to the linker hash table
240 	just as though the element had itself been passed to the
241 	<<_bfd_link_add_symbols>> function.
242 
243 	When the a.out <<_bfd_link_add_symbols>> function receives an
244 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 	passing <<aout_link_check_archive_element>> as the function
246 	argument. <<aout_link_check_archive_element>> calls
247 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
248 	the element (an element is only added if it provides a real,
249 	non-common, definition for a previously undefined or common
250 	symbol) it calls the <<add_archive_element>> callback and then
251 	<<aout_link_check_archive_element>> calls
252 	<<aout_link_add_symbols>> to actually add the symbols to the
253 	linker hash table - possibly those of a substitute BFD, if the
254 	<<add_archive_element>> callback avails itself of that option.
255 
256 	The ECOFF back end is unusual in that it does not normally
257 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 	archives already contain a hash table of symbols.  The ECOFF
259 	back end searches the archive itself to avoid the overhead of
260 	creating a new hash table.
261 
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 	Performing the final link
266 
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 	When all the input files have been processed, the linker calls
270 	the <<_bfd_final_link>> entry point of the output BFD.  This
271 	routine is responsible for producing the final output file,
272 	which has several aspects.  It must relocate the contents of
273 	the input sections and copy the data into the output sections.
274 	It must build an output symbol table including any local
275 	symbols from the input files and the global symbols from the
276 	hash table.  When producing relocatable output, it must
277 	modify the input relocs and write them into the output file.
278 	There may also be object format dependent work to be done.
279 
280 	The linker will also call the <<write_object_contents>> entry
281 	point when the BFD is closed.  The two entry points must work
282 	together in order to produce the correct output file.
283 
284 	The details of how this works are inevitably dependent upon
285 	the specific object file format.  The a.out
286 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287 
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293 
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 	Information provided by the linker
298 
299 	Before the linker calls the <<_bfd_final_link>> entry point,
300 	it sets up some data structures for the function to use.
301 
302 	The <<input_bfds>> field of the <<bfd_link_info>> structure
303 	will point to a list of all the input files included in the
304 	link.  These files are linked through the <<link.next>> field
305 	of the <<bfd>> structure.
306 
307 	Each section in the output file will have a list of
308 	<<link_order>> structures attached to the <<map_head.link_order>>
309 	field (the <<link_order>> structure is defined in
310 	<<bfdlink.h>>).  These structures describe how to create the
311 	contents of the output section in terms of the contents of
312 	various input sections, fill constants, and, eventually, other
313 	types of information.  They also describe relocs that must be
314 	created by the BFD backend, but do not correspond to any input
315 	file; this is used to support -Ur, which builds constructors
316 	while generating a relocatable object file.
317 
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 	Relocating the section contents
322 
323 	The <<_bfd_final_link>> function should look through the
324 	<<link_order>> structures attached to each section of the
325 	output file.  Each <<link_order>> structure should either be
326 	handled specially, or it should be passed to the function
327 	<<_bfd_default_link_order>> which will do the right thing
328 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
329 
330 	For efficiency, a <<link_order>> of type
331 	<<bfd_indirect_link_order>> whose associated section belongs
332 	to a BFD of the same format as the output BFD must be handled
333 	specially.  This type of <<link_order>> describes part of an
334 	output section in terms of a section belonging to one of the
335 	input files.  The <<_bfd_final_link>> function should read the
336 	contents of the section and any associated relocs, apply the
337 	relocs to the section contents, and write out the modified
338 	section contents.  If performing a relocatable link, the
339 	relocs themselves must also be modified and written out.
340 
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 	The functions <<_bfd_relocate_contents>> and
344 	<<_bfd_final_link_relocate>> provide some general support for
345 	performing the actual relocations, notably overflow checking.
346 	Their arguments include information about the symbol the
347 	relocation is against and a <<reloc_howto_type>> argument
348 	which describes the relocation to perform.  These functions
349 	are defined in <<reloc.c>>.
350 
351 	The a.out function which handles reading, relocating, and
352 	writing section contents is <<aout_link_input_section>>.  The
353 	actual relocation is done in <<aout_link_input_section_std>>
354 	and <<aout_link_input_section_ext>>.
355 
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 	Writing the symbol table
360 
361 	The <<_bfd_final_link>> function must gather all the symbols
362 	in the input files and write them out.  It must also write out
363 	all the symbols in the global hash table.  This must be
364 	controlled by the <<strip>> and <<discard>> fields of the
365 	<<bfd_link_info>> structure.
366 
367 	The local symbols of the input files will not have been
368 	entered into the linker hash table.  The <<_bfd_final_link>>
369 	routine must consider each input file and include the symbols
370 	in the output file.  It may be convenient to do this when
371 	looking through the <<link_order>> structures, or it may be
372 	done by stepping through the <<input_bfds>> list.
373 
374 	The <<_bfd_final_link>> routine must also traverse the global
375 	hash table to gather all the externally visible symbols.  It
376 	is possible that most of the externally visible symbols may be
377 	written out when considering the symbols of each input file,
378 	but it is still necessary to traverse the hash table since the
379 	linker script may have defined some symbols that are not in
380 	any of the input files.
381 
382 	The <<strip>> field of the <<bfd_link_info>> structure
383 	controls which symbols are written out.  The possible values
384 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
385 	then the <<keep_hash>> field of the <<bfd_link_info>>
386 	structure is a hash table of symbols to keep; each symbol
387 	should be looked up in this hash table, and only symbols which
388 	are present should be included in the output file.
389 
390 	If the <<strip>> field of the <<bfd_link_info>> structure
391 	permits local symbols to be written out, the <<discard>> field
392 	is used to further controls which local symbols are included
393 	in the output file.  If the value is <<discard_l>>, then all
394 	local symbols which begin with a certain prefix are discarded;
395 	this is controlled by the <<bfd_is_local_label_name>> entry point.
396 
397 	The a.out backend handles symbols by calling
398 	<<aout_link_write_symbols>> on each input BFD and then
399 	traversing the global hash table with the function
400 	<<aout_link_write_other_symbol>>.  It builds a string table
401 	while writing out the symbols, which is written to the output
402 	file at the end of <<NAME(aout,final_link)>>.
403 */
404 
405 static bfd_boolean generic_link_add_object_symbols
406   (bfd *, struct bfd_link_info *, bfd_boolean collect);
407 static bfd_boolean generic_link_add_symbols
408   (bfd *, struct bfd_link_info *, bfd_boolean);
409 static bfd_boolean generic_link_check_archive_element_no_collect
410   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
411    bfd_boolean *);
412 static bfd_boolean generic_link_check_archive_element_collect
413   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
414    bfd_boolean *);
415 static bfd_boolean generic_link_check_archive_element
416   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
417    bfd_boolean *, bfd_boolean);
418 static bfd_boolean generic_link_add_symbol_list
419   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
420    bfd_boolean);
421 static bfd_boolean generic_add_output_symbol
422   (bfd *, size_t *psymalloc, asymbol *);
423 static bfd_boolean default_data_link_order
424   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
425 static bfd_boolean default_indirect_link_order
426   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
427    bfd_boolean);
428 
429 /* The link hash table structure is defined in bfdlink.h.  It provides
430    a base hash table which the backend specific hash tables are built
431    upon.  */
432 
433 /* Routine to create an entry in the link hash table.  */
434 
435 struct bfd_hash_entry *
436 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
437 			struct bfd_hash_table *table,
438 			const char *string)
439 {
440   /* Allocate the structure if it has not already been allocated by a
441      subclass.  */
442   if (entry == NULL)
443     {
444       entry = (struct bfd_hash_entry *)
445           bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446       if (entry == NULL)
447 	return entry;
448     }
449 
450   /* Call the allocation method of the superclass.  */
451   entry = bfd_hash_newfunc (entry, table, string);
452   if (entry)
453     {
454       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455 
456       /* Initialize the local fields.  */
457       memset ((char *) &h->root + sizeof (h->root), 0,
458 	      sizeof (*h) - sizeof (h->root));
459     }
460 
461   return entry;
462 }
463 
464 /* Initialize a link hash table.  The BFD argument is the one
465    responsible for creating this table.  */
466 
467 bfd_boolean
468 _bfd_link_hash_table_init
469   (struct bfd_link_hash_table *table,
470    bfd *abfd ATTRIBUTE_UNUSED,
471    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
472 				      struct bfd_hash_table *,
473 				      const char *),
474    unsigned int entsize)
475 {
476   bfd_boolean ret;
477 
478   BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
479   table->undefs = NULL;
480   table->undefs_tail = NULL;
481   table->type = bfd_link_generic_hash_table;
482 
483   ret = bfd_hash_table_init (&table->table, newfunc, entsize);
484   if (ret)
485     {
486       /* Arrange for destruction of this hash table on closing ABFD.  */
487       table->hash_table_free = _bfd_generic_link_hash_table_free;
488       abfd->link.hash = table;
489       abfd->is_linker_output = TRUE;
490     }
491   return ret;
492 }
493 
494 /* Look up a symbol in a link hash table.  If follow is TRUE, we
495    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496    the real symbol.  */
497 
498 struct bfd_link_hash_entry *
499 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500 		      const char *string,
501 		      bfd_boolean create,
502 		      bfd_boolean copy,
503 		      bfd_boolean follow)
504 {
505   struct bfd_link_hash_entry *ret;
506 
507   ret = ((struct bfd_link_hash_entry *)
508 	 bfd_hash_lookup (&table->table, string, create, copy));
509 
510   if (follow && ret != NULL)
511     {
512       while (ret->type == bfd_link_hash_indirect
513 	     || ret->type == bfd_link_hash_warning)
514 	ret = ret->u.i.link;
515     }
516 
517   return ret;
518 }
519 
520 /* Look up a symbol in the main linker hash table if the symbol might
521    be wrapped.  This should only be used for references to an
522    undefined symbol, not for definitions of a symbol.  */
523 
524 struct bfd_link_hash_entry *
525 bfd_wrapped_link_hash_lookup (bfd *abfd,
526 			      struct bfd_link_info *info,
527 			      const char *string,
528 			      bfd_boolean create,
529 			      bfd_boolean copy,
530 			      bfd_boolean follow)
531 {
532   bfd_size_type amt;
533 
534   if (info->wrap_hash != NULL)
535     {
536       const char *l;
537       char prefix = '\0';
538 
539       l = string;
540       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541 	{
542 	  prefix = *l;
543 	  ++l;
544 	}
545 
546 #undef WRAP
547 #define WRAP "__wrap_"
548 
549       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550 	{
551 	  char *n;
552 	  struct bfd_link_hash_entry *h;
553 
554 	  /* This symbol is being wrapped.  We want to replace all
555              references to SYM with references to __wrap_SYM.  */
556 
557 	  amt = strlen (l) + sizeof WRAP + 1;
558 	  n = (char *) bfd_malloc (amt);
559 	  if (n == NULL)
560 	    return NULL;
561 
562 	  n[0] = prefix;
563 	  n[1] = '\0';
564 	  strcat (n, WRAP);
565 	  strcat (n, l);
566 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567 	  free (n);
568 	  return h;
569 	}
570 
571 #undef  REAL
572 #define REAL "__real_"
573 
574       if (*l == '_'
575 	  && CONST_STRNEQ (l, REAL)
576 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
577 			      FALSE, FALSE) != NULL)
578 	{
579 	  char *n;
580 	  struct bfd_link_hash_entry *h;
581 
582 	  /* This is a reference to __real_SYM, where SYM is being
583              wrapped.  We want to replace all references to __real_SYM
584              with references to SYM.  */
585 
586 	  amt = strlen (l + sizeof REAL - 1) + 2;
587 	  n = (char *) bfd_malloc (amt);
588 	  if (n == NULL)
589 	    return NULL;
590 
591 	  n[0] = prefix;
592 	  n[1] = '\0';
593 	  strcat (n, l + sizeof REAL - 1);
594 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
595 	  free (n);
596 	  return h;
597 	}
598 
599 #undef REAL
600     }
601 
602   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
603 }
604 
605 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
606    and the remainder is found in wrap_hash, return the real symbol.  */
607 
608 struct bfd_link_hash_entry *
609 unwrap_hash_lookup (struct bfd_link_info *info,
610 		    bfd *input_bfd,
611 		    struct bfd_link_hash_entry *h)
612 {
613   const char *l = h->root.string;
614 
615   if (*l == bfd_get_symbol_leading_char (input_bfd)
616       || *l == info->wrap_char)
617     ++l;
618 
619   if (CONST_STRNEQ (l, WRAP))
620     {
621       l += sizeof WRAP - 1;
622 
623       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
624 	{
625 	  char save = 0;
626 	  if (l - (sizeof WRAP - 1) != h->root.string)
627 	    {
628 	      --l;
629 	      save = *l;
630 	      *(char *) l = *h->root.string;
631 	    }
632 	  h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
633 	  if (save)
634 	    *(char *) l = save;
635 	}
636     }
637   return h;
638 }
639 #undef WRAP
640 
641 /* Traverse a generic link hash table.  Differs from bfd_hash_traverse
642    in the treatment of warning symbols.  When warning symbols are
643    created they replace the real symbol, so you don't get to see the
644    real symbol in a bfd_hash_travere.  This traversal calls func with
645    the real symbol.  */
646 
647 void
648 bfd_link_hash_traverse
649   (struct bfd_link_hash_table *htab,
650    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
651    void *info)
652 {
653   unsigned int i;
654 
655   htab->table.frozen = 1;
656   for (i = 0; i < htab->table.size; i++)
657     {
658       struct bfd_link_hash_entry *p;
659 
660       p = (struct bfd_link_hash_entry *) htab->table.table[i];
661       for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
662 	if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
663 	  goto out;
664     }
665  out:
666   htab->table.frozen = 0;
667 }
668 
669 /* Add a symbol to the linker hash table undefs list.  */
670 
671 void
672 bfd_link_add_undef (struct bfd_link_hash_table *table,
673 		    struct bfd_link_hash_entry *h)
674 {
675   BFD_ASSERT (h->u.undef.next == NULL);
676   if (table->undefs_tail != NULL)
677     table->undefs_tail->u.undef.next = h;
678   if (table->undefs == NULL)
679     table->undefs = h;
680   table->undefs_tail = h;
681 }
682 
683 /* The undefs list was designed so that in normal use we don't need to
684    remove entries.  However, if symbols on the list are changed from
685    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
686    bfd_link_hash_new for some reason, then they must be removed from the
687    list.  Failure to do so might result in the linker attempting to add
688    the symbol to the list again at a later stage.  */
689 
690 void
691 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
692 {
693   struct bfd_link_hash_entry **pun;
694 
695   pun = &table->undefs;
696   while (*pun != NULL)
697     {
698       struct bfd_link_hash_entry *h = *pun;
699 
700       if (h->type == bfd_link_hash_new
701 	  || h->type == bfd_link_hash_undefweak)
702 	{
703 	  *pun = h->u.undef.next;
704 	  h->u.undef.next = NULL;
705 	  if (h == table->undefs_tail)
706 	    {
707 	      if (pun == &table->undefs)
708 		table->undefs_tail = NULL;
709 	      else
710 		/* pun points at an u.undef.next field.  Go back to
711 		   the start of the link_hash_entry.  */
712 		table->undefs_tail = (struct bfd_link_hash_entry *)
713 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
714 	      break;
715 	    }
716 	}
717       else
718 	pun = &h->u.undef.next;
719     }
720 }
721 
722 /* Routine to create an entry in a generic link hash table.  */
723 
724 struct bfd_hash_entry *
725 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
726 				struct bfd_hash_table *table,
727 				const char *string)
728 {
729   /* Allocate the structure if it has not already been allocated by a
730      subclass.  */
731   if (entry == NULL)
732     {
733       entry = (struct bfd_hash_entry *)
734 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
735       if (entry == NULL)
736 	return entry;
737     }
738 
739   /* Call the allocation method of the superclass.  */
740   entry = _bfd_link_hash_newfunc (entry, table, string);
741   if (entry)
742     {
743       struct generic_link_hash_entry *ret;
744 
745       /* Set local fields.  */
746       ret = (struct generic_link_hash_entry *) entry;
747       ret->written = FALSE;
748       ret->sym = NULL;
749     }
750 
751   return entry;
752 }
753 
754 /* Create a generic link hash table.  */
755 
756 struct bfd_link_hash_table *
757 _bfd_generic_link_hash_table_create (bfd *abfd)
758 {
759   struct generic_link_hash_table *ret;
760   bfd_size_type amt = sizeof (struct generic_link_hash_table);
761 
762   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
763   if (ret == NULL)
764     return NULL;
765   if (! _bfd_link_hash_table_init (&ret->root, abfd,
766 				   _bfd_generic_link_hash_newfunc,
767 				   sizeof (struct generic_link_hash_entry)))
768     {
769       free (ret);
770       return NULL;
771     }
772   return &ret->root;
773 }
774 
775 void
776 _bfd_generic_link_hash_table_free (bfd *obfd)
777 {
778   struct generic_link_hash_table *ret;
779 
780   BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
781   ret = (struct generic_link_hash_table *) obfd->link.hash;
782   bfd_hash_table_free (&ret->root.table);
783   free (ret);
784   obfd->link.hash = NULL;
785   obfd->is_linker_output = FALSE;
786 }
787 
788 /* Grab the symbols for an object file when doing a generic link.  We
789    store the symbols in the outsymbols field.  We need to keep them
790    around for the entire link to ensure that we only read them once.
791    If we read them multiple times, we might wind up with relocs and
792    the hash table pointing to different instances of the symbol
793    structure.  */
794 
795 bfd_boolean
796 bfd_generic_link_read_symbols (bfd *abfd)
797 {
798   if (bfd_get_outsymbols (abfd) == NULL)
799     {
800       long symsize;
801       long symcount;
802 
803       symsize = bfd_get_symtab_upper_bound (abfd);
804       if (symsize < 0)
805 	return FALSE;
806       bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
807                                                                     symsize);
808       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
809 	return FALSE;
810       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
811       if (symcount < 0)
812 	return FALSE;
813       bfd_get_symcount (abfd) = symcount;
814     }
815 
816   return TRUE;
817 }
818 
819 /* Generic function to add symbols to from an object file to the
820    global hash table.  This version does not automatically collect
821    constructors by name.  */
822 
823 bfd_boolean
824 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
825 {
826   return generic_link_add_symbols (abfd, info, FALSE);
827 }
828 
829 /* Generic function to add symbols from an object file to the global
830    hash table.  This version automatically collects constructors by
831    name, as the collect2 program does.  It should be used for any
832    target which does not provide some other mechanism for setting up
833    constructors and destructors; these are approximately those targets
834    for which gcc uses collect2 and do not support stabs.  */
835 
836 bfd_boolean
837 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
838 {
839   return generic_link_add_symbols (abfd, info, TRUE);
840 }
841 
842 /* Indicate that we are only retrieving symbol values from this
843    section.  We want the symbols to act as though the values in the
844    file are absolute.  */
845 
846 void
847 _bfd_generic_link_just_syms (asection *sec,
848 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
849 {
850   sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
851   sec->output_section = bfd_abs_section_ptr;
852   sec->output_offset = sec->vma;
853 }
854 
855 /* Copy the symbol type and other attributes for a linker script
856    assignment from HSRC to HDEST.
857    The default implementation does nothing.  */
858 void
859 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
860     struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
861     struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
862 {
863 }
864 
865 /* Add symbols from an object file to the global hash table.  */
866 
867 static bfd_boolean
868 generic_link_add_symbols (bfd *abfd,
869 			  struct bfd_link_info *info,
870 			  bfd_boolean collect)
871 {
872   bfd_boolean ret;
873 
874   switch (bfd_get_format (abfd))
875     {
876     case bfd_object:
877       ret = generic_link_add_object_symbols (abfd, info, collect);
878       break;
879     case bfd_archive:
880       ret = (_bfd_generic_link_add_archive_symbols
881 	     (abfd, info,
882 	      (collect
883 	       ? generic_link_check_archive_element_collect
884 	       : generic_link_check_archive_element_no_collect)));
885       break;
886     default:
887       bfd_set_error (bfd_error_wrong_format);
888       ret = FALSE;
889     }
890 
891   return ret;
892 }
893 
894 /* Add symbols from an object file to the global hash table.  */
895 
896 static bfd_boolean
897 generic_link_add_object_symbols (bfd *abfd,
898 				 struct bfd_link_info *info,
899 				 bfd_boolean collect)
900 {
901   bfd_size_type symcount;
902   struct bfd_symbol **outsyms;
903 
904   if (!bfd_generic_link_read_symbols (abfd))
905     return FALSE;
906   symcount = _bfd_generic_link_get_symcount (abfd);
907   outsyms = _bfd_generic_link_get_symbols (abfd);
908   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
909 }
910 
911 /* Generic function to add symbols from an archive file to the global
912    hash file.  This function presumes that the archive symbol table
913    has already been read in (this is normally done by the
914    bfd_check_format entry point).  It looks through the archive symbol
915    table for symbols that are undefined or common in the linker global
916    symbol hash table.  When one is found, the CHECKFN argument is used
917    to see if an object file should be included.  This allows targets
918    to customize common symbol behaviour.  CHECKFN should set *PNEEDED
919    to TRUE if the object file should be included, and must also call
920    the bfd_link_info add_archive_element callback function and handle
921    adding the symbols to the global hash table.  CHECKFN must notice
922    if the callback indicates a substitute BFD, and arrange to add
923    those symbols instead if it does so.  CHECKFN should only return
924    FALSE if some sort of error occurs.  */
925 
926 bfd_boolean
927 _bfd_generic_link_add_archive_symbols
928   (bfd *abfd,
929    struct bfd_link_info *info,
930    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
931 			   struct bfd_link_hash_entry *, const char *,
932 			   bfd_boolean *))
933 {
934   bfd_boolean loop;
935   bfd_size_type amt;
936   unsigned char *included;
937 
938   if (! bfd_has_map (abfd))
939     {
940       /* An empty archive is a special case.  */
941       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
942 	return TRUE;
943       bfd_set_error (bfd_error_no_armap);
944       return FALSE;
945     }
946 
947   amt = bfd_ardata (abfd)->symdef_count;
948   if (amt == 0)
949     return TRUE;
950   amt *= sizeof (*included);
951   included = (unsigned char *) bfd_zmalloc (amt);
952   if (included == NULL)
953     return FALSE;
954 
955   do
956     {
957       carsym *arsyms;
958       carsym *arsym_end;
959       carsym *arsym;
960       unsigned int indx;
961       file_ptr last_ar_offset = -1;
962       bfd_boolean needed = FALSE;
963       bfd *element = NULL;
964 
965       loop = FALSE;
966       arsyms = bfd_ardata (abfd)->symdefs;
967       arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
968       for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
969 	{
970 	  struct bfd_link_hash_entry *h;
971 	  struct bfd_link_hash_entry *undefs_tail;
972 
973 	  if (included[indx])
974 	    continue;
975 	  if (needed && arsym->file_offset == last_ar_offset)
976 	    {
977 	      included[indx] = 1;
978 	      continue;
979 	    }
980 
981 	  h = bfd_link_hash_lookup (info->hash, arsym->name,
982 				    FALSE, FALSE, TRUE);
983 
984 	  if (h == NULL
985 	      && info->pei386_auto_import
986 	      && CONST_STRNEQ (arsym->name, "__imp_"))
987 	    h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
988 				      FALSE, FALSE, TRUE);
989 	  if (h == NULL)
990 	    continue;
991 
992 	  if (h->type != bfd_link_hash_undefined
993 	      && h->type != bfd_link_hash_common)
994 	    {
995 	      if (h->type != bfd_link_hash_undefweak)
996 		/* Symbol must be defined.  Don't check it again.  */
997 		included[indx] = 1;
998 	      continue;
999 	    }
1000 
1001 	  if (last_ar_offset != arsym->file_offset)
1002 	    {
1003 	      last_ar_offset = arsym->file_offset;
1004 	      element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
1005 	      if (element == NULL
1006 		  || !bfd_check_format (element, bfd_object))
1007 		goto error_return;
1008 	    }
1009 
1010 	  undefs_tail = info->hash->undefs_tail;
1011 
1012 	  /* CHECKFN will see if this element should be included, and
1013 	     go ahead and include it if appropriate.  */
1014 	  if (! (*checkfn) (element, info, h, arsym->name, &needed))
1015 	    goto error_return;
1016 
1017 	  if (needed)
1018 	    {
1019 	      unsigned int mark;
1020 
1021 	      /* Look backward to mark all symbols from this object file
1022 		 which we have already seen in this pass.  */
1023 	      mark = indx;
1024 	      do
1025 		{
1026 		  included[mark] = 1;
1027 		  if (mark == 0)
1028 		    break;
1029 		  --mark;
1030 		}
1031 	      while (arsyms[mark].file_offset == last_ar_offset);
1032 
1033 	      if (undefs_tail != info->hash->undefs_tail)
1034 		loop = TRUE;
1035 	    }
1036 	}
1037     } while (loop);
1038 
1039   free (included);
1040   return TRUE;
1041 
1042  error_return:
1043   free (included);
1044   return FALSE;
1045 }
1046 
1047 /* See if we should include an archive element.  This version is used
1048    when we do not want to automatically collect constructors based on
1049    the symbol name, presumably because we have some other mechanism
1050    for finding them.  */
1051 
1052 static bfd_boolean
1053 generic_link_check_archive_element_no_collect (bfd *abfd,
1054 					       struct bfd_link_info *info,
1055 					       struct bfd_link_hash_entry *h,
1056 					       const char *name,
1057 					       bfd_boolean *pneeded)
1058 {
1059   return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1060 					     FALSE);
1061 }
1062 
1063 /* See if we should include an archive element.  This version is used
1064    when we want to automatically collect constructors based on the
1065    symbol name, as collect2 does.  */
1066 
1067 static bfd_boolean
1068 generic_link_check_archive_element_collect (bfd *abfd,
1069 					    struct bfd_link_info *info,
1070 					    struct bfd_link_hash_entry *h,
1071 					    const char *name,
1072 					    bfd_boolean *pneeded)
1073 {
1074   return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1075 					     TRUE);
1076 }
1077 
1078 /* See if we should include an archive element.  Optionally collect
1079    constructors.  */
1080 
1081 static bfd_boolean
1082 generic_link_check_archive_element (bfd *abfd,
1083 				    struct bfd_link_info *info,
1084 				    struct bfd_link_hash_entry *h,
1085 				    const char *name ATTRIBUTE_UNUSED,
1086 				    bfd_boolean *pneeded,
1087 				    bfd_boolean collect)
1088 {
1089   asymbol **pp, **ppend;
1090 
1091   *pneeded = FALSE;
1092 
1093   if (!bfd_generic_link_read_symbols (abfd))
1094     return FALSE;
1095 
1096   pp = _bfd_generic_link_get_symbols (abfd);
1097   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1098   for (; pp < ppend; pp++)
1099     {
1100       asymbol *p;
1101 
1102       p = *pp;
1103 
1104       /* We are only interested in globally visible symbols.  */
1105       if (! bfd_is_com_section (p->section)
1106 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1107 	continue;
1108 
1109       /* We are only interested if we know something about this
1110 	 symbol, and it is undefined or common.  An undefined weak
1111 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1112 	 a reference when pulling files out of an archive.  See the
1113 	 SVR4 ABI, p. 4-27.  */
1114       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1115 				FALSE, TRUE);
1116       if (h == NULL
1117 	  || (h->type != bfd_link_hash_undefined
1118 	      && h->type != bfd_link_hash_common))
1119 	continue;
1120 
1121       /* P is a symbol we are looking for.  */
1122 
1123       if (! bfd_is_com_section (p->section)
1124 	  || (h->type == bfd_link_hash_undefined
1125 	      && h->u.undef.abfd == NULL))
1126 	{
1127 	  /* P is not a common symbol, or an undefined reference was
1128 	     created from outside BFD such as from a linker -u option.
1129 	     This object file defines the symbol, so pull it in.  */
1130 	  *pneeded = TRUE;
1131 	  if (!(*info->callbacks
1132 		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1133 					&abfd))
1134 	    return FALSE;
1135 	  /* Potentially, the add_archive_element hook may have set a
1136 	     substitute BFD for us.  */
1137 	  return generic_link_add_object_symbols (abfd, info, collect);
1138 	}
1139 
1140       /* P is a common symbol.  */
1141 
1142       if (h->type == bfd_link_hash_undefined)
1143 	{
1144 	  bfd *symbfd;
1145 	  bfd_vma size;
1146 	  unsigned int power;
1147 
1148 	  /* Turn the symbol into a common symbol but do not link in
1149 	     the object file.  This is how a.out works.  Object
1150 	     formats that require different semantics must implement
1151 	     this function differently.  This symbol is already on the
1152 	     undefs list.  We add the section to a common section
1153 	     attached to symbfd to ensure that it is in a BFD which
1154 	     will be linked in.  */
1155 	  symbfd = h->u.undef.abfd;
1156 	  h->type = bfd_link_hash_common;
1157 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1158 	    bfd_hash_allocate (&info->hash->table,
1159 			       sizeof (struct bfd_link_hash_common_entry));
1160 	  if (h->u.c.p == NULL)
1161 	    return FALSE;
1162 
1163 	  size = bfd_asymbol_value (p);
1164 	  h->u.c.size = size;
1165 
1166 	  power = bfd_log2 (size);
1167 	  if (power > 4)
1168 	    power = 4;
1169 	  h->u.c.p->alignment_power = power;
1170 
1171 	  if (p->section == bfd_com_section_ptr)
1172 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1173 	  else
1174 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1175 							  p->section->name);
1176 	  h->u.c.p->section->flags |= SEC_ALLOC;
1177 	}
1178       else
1179 	{
1180 	  /* Adjust the size of the common symbol if necessary.  This
1181 	     is how a.out works.  Object formats that require
1182 	     different semantics must implement this function
1183 	     differently.  */
1184 	  if (bfd_asymbol_value (p) > h->u.c.size)
1185 	    h->u.c.size = bfd_asymbol_value (p);
1186 	}
1187     }
1188 
1189   /* This archive element is not needed.  */
1190   return TRUE;
1191 }
1192 
1193 /* Add the symbols from an object file to the global hash table.  ABFD
1194    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1195    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1196    is TRUE if constructors should be automatically collected by name
1197    as is done by collect2.  */
1198 
1199 static bfd_boolean
1200 generic_link_add_symbol_list (bfd *abfd,
1201 			      struct bfd_link_info *info,
1202 			      bfd_size_type symbol_count,
1203 			      asymbol **symbols,
1204 			      bfd_boolean collect)
1205 {
1206   asymbol **pp, **ppend;
1207 
1208   pp = symbols;
1209   ppend = symbols + symbol_count;
1210   for (; pp < ppend; pp++)
1211     {
1212       asymbol *p;
1213 
1214       p = *pp;
1215 
1216       if ((p->flags & (BSF_INDIRECT
1217 		       | BSF_WARNING
1218 		       | BSF_GLOBAL
1219 		       | BSF_CONSTRUCTOR
1220 		       | BSF_WEAK)) != 0
1221 	  || bfd_is_und_section (bfd_get_section (p))
1222 	  || bfd_is_com_section (bfd_get_section (p))
1223 	  || bfd_is_ind_section (bfd_get_section (p)))
1224 	{
1225 	  const char *name;
1226 	  const char *string;
1227 	  struct generic_link_hash_entry *h;
1228 	  struct bfd_link_hash_entry *bh;
1229 
1230 	  string = name = bfd_asymbol_name (p);
1231 	  if (((p->flags & BSF_INDIRECT) != 0
1232 	       || bfd_is_ind_section (p->section))
1233 	      && pp + 1 < ppend)
1234 	    {
1235 	      pp++;
1236 	      string = bfd_asymbol_name (*pp);
1237 	    }
1238 	  else if ((p->flags & BSF_WARNING) != 0
1239 		   && pp + 1 < ppend)
1240 	    {
1241 	      /* The name of P is actually the warning string, and the
1242 		 next symbol is the one to warn about.  */
1243 	      pp++;
1244 	      name = bfd_asymbol_name (*pp);
1245 	    }
1246 
1247 	  bh = NULL;
1248 	  if (! (_bfd_generic_link_add_one_symbol
1249 		 (info, abfd, name, p->flags, bfd_get_section (p),
1250 		  p->value, string, FALSE, collect, &bh)))
1251 	    return FALSE;
1252 	  h = (struct generic_link_hash_entry *) bh;
1253 
1254 	  /* If this is a constructor symbol, and the linker didn't do
1255              anything with it, then we want to just pass the symbol
1256              through to the output file.  This will happen when
1257              linking with -r.  */
1258 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1259 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1260 	    {
1261 	      p->udata.p = NULL;
1262 	      continue;
1263 	    }
1264 
1265 	  /* Save the BFD symbol so that we don't lose any backend
1266 	     specific information that may be attached to it.  We only
1267 	     want this one if it gives more information than the
1268 	     existing one; we don't want to replace a defined symbol
1269 	     with an undefined one.  This routine may be called with a
1270 	     hash table other than the generic hash table, so we only
1271 	     do this if we are certain that the hash table is a
1272 	     generic one.  */
1273 	  if (info->output_bfd->xvec == abfd->xvec)
1274 	    {
1275 	      if (h->sym == NULL
1276 		  || (! bfd_is_und_section (bfd_get_section (p))
1277 		      && (! bfd_is_com_section (bfd_get_section (p))
1278 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1279 		{
1280 		  h->sym = p;
1281 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1282 		     reading, and it should go away when the COFF
1283 		     linker is switched to the new version.  */
1284 		  if (bfd_is_com_section (bfd_get_section (p)))
1285 		    p->flags |= BSF_OLD_COMMON;
1286 		}
1287 	    }
1288 
1289 	  /* Store a back pointer from the symbol to the hash
1290 	     table entry for the benefit of relaxation code until
1291 	     it gets rewritten to not use asymbol structures.
1292 	     Setting this is also used to check whether these
1293 	     symbols were set up by the generic linker.  */
1294 	  p->udata.p = h;
1295 	}
1296     }
1297 
1298   return TRUE;
1299 }
1300 
1301 /* We use a state table to deal with adding symbols from an object
1302    file.  The first index into the state table describes the symbol
1303    from the object file.  The second index into the state table is the
1304    type of the symbol in the hash table.  */
1305 
1306 /* The symbol from the object file is turned into one of these row
1307    values.  */
1308 
1309 enum link_row
1310 {
1311   UNDEF_ROW,		/* Undefined.  */
1312   UNDEFW_ROW,		/* Weak undefined.  */
1313   DEF_ROW,		/* Defined.  */
1314   DEFW_ROW,		/* Weak defined.  */
1315   COMMON_ROW,		/* Common.  */
1316   INDR_ROW,		/* Indirect.  */
1317   WARN_ROW,		/* Warning.  */
1318   SET_ROW		/* Member of set.  */
1319 };
1320 
1321 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1322 #undef FAIL
1323 
1324 /* The actions to take in the state table.  */
1325 
1326 enum link_action
1327 {
1328   FAIL,		/* Abort.  */
1329   UND,		/* Mark symbol undefined.  */
1330   WEAK,		/* Mark symbol weak undefined.  */
1331   DEF,		/* Mark symbol defined.  */
1332   DEFW,		/* Mark symbol weak defined.  */
1333   COM,		/* Mark symbol common.  */
1334   REF,		/* Mark defined symbol referenced.  */
1335   CREF,		/* Possibly warn about common reference to defined symbol.  */
1336   CDEF,		/* Define existing common symbol.  */
1337   NOACT,	/* No action.  */
1338   BIG,		/* Mark symbol common using largest size.  */
1339   MDEF,		/* Multiple definition error.  */
1340   MIND,		/* Multiple indirect symbols.  */
1341   IND,		/* Make indirect symbol.  */
1342   CIND,		/* Make indirect symbol from existing common symbol.  */
1343   SET,		/* Add value to set.  */
1344   MWARN,	/* Make warning symbol.  */
1345   WARN,		/* Warn if referenced, else MWARN.  */
1346   CYCLE,	/* Repeat with symbol pointed to.  */
1347   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1348   WARNC		/* Issue warning and then CYCLE.  */
1349 };
1350 
1351 /* The state table itself.  The first index is a link_row and the
1352    second index is a bfd_link_hash_type.  */
1353 
1354 static const enum link_action link_action[8][8] =
1355 {
1356   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1357   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1358   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1359   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1360   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1361   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1362   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1363   /* WARN_ROW   */  {MWARN, WARN,  WARN,  WARN,  WARN,  WARN,  WARN,  NOACT },
1364   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1365 };
1366 
1367 /* Most of the entries in the LINK_ACTION table are straightforward,
1368    but a few are somewhat subtle.
1369 
1370    A reference to an indirect symbol (UNDEF_ROW/indr or
1371    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1372    symbol and to the symbol the indirect symbol points to.
1373 
1374    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1375    causes the warning to be issued.
1376 
1377    A common definition of an indirect symbol (COMMON_ROW/indr) is
1378    treated as a multiple definition error.  Likewise for an indirect
1379    definition of a common symbol (INDR_ROW/com).
1380 
1381    An indirect definition of a warning (INDR_ROW/warn) does not cause
1382    the warning to be issued.
1383 
1384    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1385    warning is created for the symbol the indirect symbol points to.
1386 
1387    Adding an entry to a set does not count as a reference to a set,
1388    and no warning is issued (SET_ROW/warn).  */
1389 
1390 /* Return the BFD in which a hash entry has been defined, if known.  */
1391 
1392 static bfd *
1393 hash_entry_bfd (struct bfd_link_hash_entry *h)
1394 {
1395   while (h->type == bfd_link_hash_warning)
1396     h = h->u.i.link;
1397   switch (h->type)
1398     {
1399     default:
1400       return NULL;
1401     case bfd_link_hash_undefined:
1402     case bfd_link_hash_undefweak:
1403       return h->u.undef.abfd;
1404     case bfd_link_hash_defined:
1405     case bfd_link_hash_defweak:
1406       return h->u.def.section->owner;
1407     case bfd_link_hash_common:
1408       return h->u.c.p->section->owner;
1409     }
1410   /*NOTREACHED*/
1411 }
1412 
1413 /* Add a symbol to the global hash table.
1414    ABFD is the BFD the symbol comes from.
1415    NAME is the name of the symbol.
1416    FLAGS is the BSF_* bits associated with the symbol.
1417    SECTION is the section in which the symbol is defined; this may be
1418      bfd_und_section_ptr or bfd_com_section_ptr.
1419    VALUE is the value of the symbol, relative to the section.
1420    STRING is used for either an indirect symbol, in which case it is
1421      the name of the symbol to indirect to, or a warning symbol, in
1422      which case it is the warning string.
1423    COPY is TRUE if NAME or STRING must be copied into locally
1424      allocated memory if they need to be saved.
1425    COLLECT is TRUE if we should automatically collect gcc constructor
1426      or destructor names as collect2 does.
1427    HASHP, if not NULL, is a place to store the created hash table
1428      entry; if *HASHP is not NULL, the caller has already looked up
1429      the hash table entry, and stored it in *HASHP.  */
1430 
1431 bfd_boolean
1432 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1433 				  bfd *abfd,
1434 				  const char *name,
1435 				  flagword flags,
1436 				  asection *section,
1437 				  bfd_vma value,
1438 				  const char *string,
1439 				  bfd_boolean copy,
1440 				  bfd_boolean collect,
1441 				  struct bfd_link_hash_entry **hashp)
1442 {
1443   enum link_row row;
1444   struct bfd_link_hash_entry *h;
1445   struct bfd_link_hash_entry *inh = NULL;
1446   bfd_boolean cycle;
1447 
1448   BFD_ASSERT (section != NULL);
1449 
1450   if (bfd_is_ind_section (section)
1451       || (flags & BSF_INDIRECT) != 0)
1452     {
1453       row = INDR_ROW;
1454       /* Create the indirect symbol here.  This is for the benefit of
1455 	 the plugin "notice" function.
1456 	 STRING is the name of the symbol we want to indirect to.  */
1457       inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1458 					  copy, FALSE);
1459       if (inh == NULL)
1460 	return FALSE;
1461     }
1462   else if ((flags & BSF_WARNING) != 0)
1463     row = WARN_ROW;
1464   else if ((flags & BSF_CONSTRUCTOR) != 0)
1465     row = SET_ROW;
1466   else if (bfd_is_und_section (section))
1467     {
1468       if ((flags & BSF_WEAK) != 0)
1469 	row = UNDEFW_ROW;
1470       else
1471 	row = UNDEF_ROW;
1472     }
1473   else if ((flags & BSF_WEAK) != 0)
1474     row = DEFW_ROW;
1475   else if (bfd_is_com_section (section))
1476     {
1477       row = COMMON_ROW;
1478       if (!bfd_link_relocatable (info)
1479 	  && strcmp (name, "__gnu_lto_slim") == 0)
1480 	(*_bfd_error_handler)
1481 	  (_("%s: plugin needed to handle lto object"),
1482 	   bfd_get_filename (abfd));
1483     }
1484   else
1485     row = DEF_ROW;
1486 
1487   if (hashp != NULL && *hashp != NULL)
1488     h = *hashp;
1489   else
1490     {
1491       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1492 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1493       else
1494 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1495       if (h == NULL)
1496 	{
1497 	  if (hashp != NULL)
1498 	    *hashp = NULL;
1499 	  return FALSE;
1500 	}
1501     }
1502 
1503   if (info->notice_all
1504       || (info->notice_hash != NULL
1505 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1506     {
1507       if (! (*info->callbacks->notice) (info, h, inh,
1508 					abfd, section, value, flags))
1509 	return FALSE;
1510     }
1511 
1512   if (hashp != NULL)
1513     *hashp = h;
1514 
1515   do
1516     {
1517       enum link_action action;
1518 
1519       cycle = FALSE;
1520       action = link_action[(int) row][(int) h->type];
1521       switch (action)
1522 	{
1523 	case FAIL:
1524 	  abort ();
1525 
1526 	case NOACT:
1527 	  /* Do nothing.  */
1528 	  break;
1529 
1530 	case UND:
1531 	  /* Make a new undefined symbol.  */
1532 	  h->type = bfd_link_hash_undefined;
1533 	  h->u.undef.abfd = abfd;
1534 	  bfd_link_add_undef (info->hash, h);
1535 	  break;
1536 
1537 	case WEAK:
1538 	  /* Make a new weak undefined symbol.  */
1539 	  h->type = bfd_link_hash_undefweak;
1540 	  h->u.undef.abfd = abfd;
1541 	  break;
1542 
1543 	case CDEF:
1544 	  /* We have found a definition for a symbol which was
1545 	     previously common.  */
1546 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1547 	  (*info->callbacks->multiple_common) (info, h, abfd,
1548 					       bfd_link_hash_defined, 0);
1549 	  /* Fall through.  */
1550 	case DEF:
1551 	case DEFW:
1552 	  {
1553 	    enum bfd_link_hash_type oldtype;
1554 
1555 	    /* Define a symbol.  */
1556 	    oldtype = h->type;
1557 	    if (action == DEFW)
1558 	      h->type = bfd_link_hash_defweak;
1559 	    else
1560 	      h->type = bfd_link_hash_defined;
1561 	    h->u.def.section = section;
1562 	    h->u.def.value = value;
1563 	    h->linker_def = 0;
1564 
1565 	    /* If we have been asked to, we act like collect2 and
1566 	       identify all functions that might be global
1567 	       constructors and destructors and pass them up in a
1568 	       callback.  We only do this for certain object file
1569 	       types, since many object file types can handle this
1570 	       automatically.  */
1571 	    if (collect && name[0] == '_')
1572 	      {
1573 		const char *s;
1574 
1575 		/* A constructor or destructor name starts like this:
1576 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1577 		   the second are the same character (we accept any
1578 		   character there, in case a new object file format
1579 		   comes along with even worse naming restrictions).  */
1580 
1581 #define CONS_PREFIX "GLOBAL_"
1582 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1583 
1584 		s = name + 1;
1585 		while (*s == '_')
1586 		  ++s;
1587 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1588 		  {
1589 		    char c;
1590 
1591 		    c = s[CONS_PREFIX_LEN + 1];
1592 		    if ((c == 'I' || c == 'D')
1593 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1594 		      {
1595 			/* If this is a definition of a symbol which
1596                            was previously weakly defined, we are in
1597                            trouble.  We have already added a
1598                            constructor entry for the weak defined
1599                            symbol, and now we are trying to add one
1600                            for the new symbol.  Fortunately, this case
1601                            should never arise in practice.  */
1602 			if (oldtype == bfd_link_hash_defweak)
1603 			  abort ();
1604 
1605 			(*info->callbacks->constructor) (info, c == 'I',
1606 							 h->root.string, abfd,
1607 							 section, value);
1608 		      }
1609 		  }
1610 	      }
1611 	  }
1612 
1613 	  break;
1614 
1615 	case COM:
1616 	  /* We have found a common definition for a symbol.  */
1617 	  if (h->type == bfd_link_hash_new)
1618 	    bfd_link_add_undef (info->hash, h);
1619 	  h->type = bfd_link_hash_common;
1620 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1621 	    bfd_hash_allocate (&info->hash->table,
1622 			       sizeof (struct bfd_link_hash_common_entry));
1623 	  if (h->u.c.p == NULL)
1624 	    return FALSE;
1625 
1626 	  h->u.c.size = value;
1627 
1628 	  /* Select a default alignment based on the size.  This may
1629              be overridden by the caller.  */
1630 	  {
1631 	    unsigned int power;
1632 
1633 	    power = bfd_log2 (value);
1634 	    if (power > 4)
1635 	      power = 4;
1636 	    h->u.c.p->alignment_power = power;
1637 	  }
1638 
1639 	  /* The section of a common symbol is only used if the common
1640              symbol is actually allocated.  It basically provides a
1641              hook for the linker script to decide which output section
1642              the common symbols should be put in.  In most cases, the
1643              section of a common symbol will be bfd_com_section_ptr,
1644              the code here will choose a common symbol section named
1645              "COMMON", and the linker script will contain *(COMMON) in
1646              the appropriate place.  A few targets use separate common
1647              sections for small symbols, and they require special
1648              handling.  */
1649 	  if (section == bfd_com_section_ptr)
1650 	    {
1651 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1652 	      h->u.c.p->section->flags |= SEC_ALLOC;
1653 	    }
1654 	  else if (section->owner != abfd)
1655 	    {
1656 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1657 							    section->name);
1658 	      h->u.c.p->section->flags |= SEC_ALLOC;
1659 	    }
1660 	  else
1661 	    h->u.c.p->section = section;
1662 	  h->linker_def = 0;
1663 	  break;
1664 
1665 	case REF:
1666 	  /* A reference to a defined symbol.  */
1667 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1668 	    h->u.undef.next = h;
1669 	  break;
1670 
1671 	case BIG:
1672 	  /* We have found a common definition for a symbol which
1673 	     already had a common definition.  Use the maximum of the
1674 	     two sizes, and use the section required by the larger symbol.  */
1675 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1676 	  (*info->callbacks->multiple_common) (info, h, abfd,
1677 					       bfd_link_hash_common, value);
1678 	  if (value > h->u.c.size)
1679 	    {
1680 	      unsigned int power;
1681 
1682 	      h->u.c.size = value;
1683 
1684 	      /* Select a default alignment based on the size.  This may
1685 		 be overridden by the caller.  */
1686 	      power = bfd_log2 (value);
1687 	      if (power > 4)
1688 		power = 4;
1689 	      h->u.c.p->alignment_power = power;
1690 
1691 	      /* Some systems have special treatment for small commons,
1692 		 hence we want to select the section used by the larger
1693 		 symbol.  This makes sure the symbol does not go in a
1694 		 small common section if it is now too large.  */
1695 	      if (section == bfd_com_section_ptr)
1696 		{
1697 		  h->u.c.p->section
1698 		    = bfd_make_section_old_way (abfd, "COMMON");
1699 		  h->u.c.p->section->flags |= SEC_ALLOC;
1700 		}
1701 	      else if (section->owner != abfd)
1702 		{
1703 		  h->u.c.p->section
1704 		    = bfd_make_section_old_way (abfd, section->name);
1705 		  h->u.c.p->section->flags |= SEC_ALLOC;
1706 		}
1707 	      else
1708 		h->u.c.p->section = section;
1709 	    }
1710 	  break;
1711 
1712 	case CREF:
1713 	  /* We have found a common definition for a symbol which
1714 	     was already defined.  */
1715 	  (*info->callbacks->multiple_common) (info, h, abfd,
1716 					       bfd_link_hash_common, value);
1717 	  break;
1718 
1719 	case MIND:
1720 	  /* Multiple indirect symbols.  This is OK if they both point
1721 	     to the same symbol.  */
1722 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1723 	    break;
1724 	  /* Fall through.  */
1725 	case MDEF:
1726 	  /* Handle a multiple definition.  */
1727 	  (*info->callbacks->multiple_definition) (info, h,
1728 						   abfd, section, value);
1729 	  break;
1730 
1731 	case CIND:
1732 	  /* Create an indirect symbol from an existing common symbol.  */
1733 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1734 	  (*info->callbacks->multiple_common) (info, h, abfd,
1735 					       bfd_link_hash_indirect, 0);
1736 	  /* Fall through.  */
1737 	case IND:
1738 	  if (inh->type == bfd_link_hash_indirect
1739 	      && inh->u.i.link == h)
1740 	    {
1741 	      (*_bfd_error_handler)
1742 		(_("%B: indirect symbol `%s' to `%s' is a loop"),
1743 		 abfd, name, string);
1744 	      bfd_set_error (bfd_error_invalid_operation);
1745 	      return FALSE;
1746 	    }
1747 	  if (inh->type == bfd_link_hash_new)
1748 	    {
1749 	      inh->type = bfd_link_hash_undefined;
1750 	      inh->u.undef.abfd = abfd;
1751 	      bfd_link_add_undef (info->hash, inh);
1752 	    }
1753 
1754 	  /* If the indirect symbol has been referenced, we need to
1755 	     push the reference down to the symbol we are referencing.  */
1756 	  if (h->type != bfd_link_hash_new)
1757 	    {
1758 	      /* ??? If inh->type == bfd_link_hash_undefweak this
1759 		 converts inh to bfd_link_hash_undefined.  */
1760 	      row = UNDEF_ROW;
1761 	      cycle = TRUE;
1762 	    }
1763 
1764 	  h->type = bfd_link_hash_indirect;
1765 	  h->u.i.link = inh;
1766 	  /* Not setting h = h->u.i.link here means that when cycle is
1767 	     set above we'll always go to REFC, and then cycle again
1768 	     to the indirected symbol.  This means that any successful
1769 	     change of an existing symbol to indirect counts as a
1770 	     reference.  ??? That may not be correct when the existing
1771 	     symbol was defweak.  */
1772 	  break;
1773 
1774 	case SET:
1775 	  /* Add an entry to a set.  */
1776 	  (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1777 					  abfd, section, value);
1778 	  break;
1779 
1780 	case WARNC:
1781 	  /* Issue a warning and cycle, except when the reference is
1782 	     in LTO IR.  */
1783 	  if (h->u.i.warning != NULL
1784 	      && (abfd->flags & BFD_PLUGIN) == 0)
1785 	    {
1786 	      (*info->callbacks->warning) (info, h->u.i.warning,
1787 					   h->root.string, abfd, NULL, 0);
1788 	      /* Only issue a warning once.  */
1789 	      h->u.i.warning = NULL;
1790 	    }
1791 	  /* Fall through.  */
1792 	case CYCLE:
1793 	  /* Try again with the referenced symbol.  */
1794 	  h = h->u.i.link;
1795 	  cycle = TRUE;
1796 	  break;
1797 
1798 	case REFC:
1799 	  /* A reference to an indirect symbol.  */
1800 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1801 	    h->u.undef.next = h;
1802 	  h = h->u.i.link;
1803 	  cycle = TRUE;
1804 	  break;
1805 
1806 	case WARN:
1807 	  /* Warn if this symbol has been referenced already from non-IR,
1808 	     otherwise add a warning.  */
1809 	  if ((!info->lto_plugin_active
1810 	       && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1811 	      || h->non_ir_ref)
1812 	    {
1813 	      (*info->callbacks->warning) (info, string, h->root.string,
1814 					   hash_entry_bfd (h), NULL, 0);
1815 	      break;
1816 	    }
1817 	  /* Fall through.  */
1818 	case MWARN:
1819 	  /* Make a warning symbol.  */
1820 	  {
1821 	    struct bfd_link_hash_entry *sub;
1822 
1823 	    /* STRING is the warning to give.  */
1824 	    sub = ((struct bfd_link_hash_entry *)
1825 		   ((*info->hash->table.newfunc)
1826 		    (NULL, &info->hash->table, h->root.string)));
1827 	    if (sub == NULL)
1828 	      return FALSE;
1829 	    *sub = *h;
1830 	    sub->type = bfd_link_hash_warning;
1831 	    sub->u.i.link = h;
1832 	    if (! copy)
1833 	      sub->u.i.warning = string;
1834 	    else
1835 	      {
1836 		char *w;
1837 		size_t len = strlen (string) + 1;
1838 
1839 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1840 		if (w == NULL)
1841 		  return FALSE;
1842 		memcpy (w, string, len);
1843 		sub->u.i.warning = w;
1844 	      }
1845 
1846 	    bfd_hash_replace (&info->hash->table,
1847 			      (struct bfd_hash_entry *) h,
1848 			      (struct bfd_hash_entry *) sub);
1849 	    if (hashp != NULL)
1850 	      *hashp = sub;
1851 	  }
1852 	  break;
1853 	}
1854     }
1855   while (cycle);
1856 
1857   return TRUE;
1858 }
1859 
1860 /* Generic final link routine.  */
1861 
1862 bfd_boolean
1863 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1864 {
1865   bfd *sub;
1866   asection *o;
1867   struct bfd_link_order *p;
1868   size_t outsymalloc;
1869   struct generic_write_global_symbol_info wginfo;
1870 
1871   bfd_get_outsymbols (abfd) = NULL;
1872   bfd_get_symcount (abfd) = 0;
1873   outsymalloc = 0;
1874 
1875   /* Mark all sections which will be included in the output file.  */
1876   for (o = abfd->sections; o != NULL; o = o->next)
1877     for (p = o->map_head.link_order; p != NULL; p = p->next)
1878       if (p->type == bfd_indirect_link_order)
1879 	p->u.indirect.section->linker_mark = TRUE;
1880 
1881   /* Build the output symbol table.  */
1882   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1883     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1884       return FALSE;
1885 
1886   /* Accumulate the global symbols.  */
1887   wginfo.info = info;
1888   wginfo.output_bfd = abfd;
1889   wginfo.psymalloc = &outsymalloc;
1890   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1891 				   _bfd_generic_link_write_global_symbol,
1892 				   &wginfo);
1893 
1894   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
1895      shouldn't really need one, since we have SYMCOUNT, but some old
1896      code still expects one.  */
1897   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1898     return FALSE;
1899 
1900   if (bfd_link_relocatable (info))
1901     {
1902       /* Allocate space for the output relocs for each section.  */
1903       for (o = abfd->sections; o != NULL; o = o->next)
1904 	{
1905 	  o->reloc_count = 0;
1906 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
1907 	    {
1908 	      if (p->type == bfd_section_reloc_link_order
1909 		  || p->type == bfd_symbol_reloc_link_order)
1910 		++o->reloc_count;
1911 	      else if (p->type == bfd_indirect_link_order)
1912 		{
1913 		  asection *input_section;
1914 		  bfd *input_bfd;
1915 		  long relsize;
1916 		  arelent **relocs;
1917 		  asymbol **symbols;
1918 		  long reloc_count;
1919 
1920 		  input_section = p->u.indirect.section;
1921 		  input_bfd = input_section->owner;
1922 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
1923 						       input_section);
1924 		  if (relsize < 0)
1925 		    return FALSE;
1926 		  relocs = (arelent **) bfd_malloc (relsize);
1927 		  if (!relocs && relsize != 0)
1928 		    return FALSE;
1929 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
1930 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
1931 							input_section,
1932 							relocs,
1933 							symbols);
1934 		  free (relocs);
1935 		  if (reloc_count < 0)
1936 		    return FALSE;
1937 		  BFD_ASSERT ((unsigned long) reloc_count
1938 			      == input_section->reloc_count);
1939 		  o->reloc_count += reloc_count;
1940 		}
1941 	    }
1942 	  if (o->reloc_count > 0)
1943 	    {
1944 	      bfd_size_type amt;
1945 
1946 	      amt = o->reloc_count;
1947 	      amt *= sizeof (arelent *);
1948 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1949 	      if (!o->orelocation)
1950 		return FALSE;
1951 	      o->flags |= SEC_RELOC;
1952 	      /* Reset the count so that it can be used as an index
1953 		 when putting in the output relocs.  */
1954 	      o->reloc_count = 0;
1955 	    }
1956 	}
1957     }
1958 
1959   /* Handle all the link order information for the sections.  */
1960   for (o = abfd->sections; o != NULL; o = o->next)
1961     {
1962       for (p = o->map_head.link_order; p != NULL; p = p->next)
1963 	{
1964 	  switch (p->type)
1965 	    {
1966 	    case bfd_section_reloc_link_order:
1967 	    case bfd_symbol_reloc_link_order:
1968 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1969 		return FALSE;
1970 	      break;
1971 	    case bfd_indirect_link_order:
1972 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1973 		return FALSE;
1974 	      break;
1975 	    default:
1976 	      if (! _bfd_default_link_order (abfd, info, o, p))
1977 		return FALSE;
1978 	      break;
1979 	    }
1980 	}
1981     }
1982 
1983   return TRUE;
1984 }
1985 
1986 /* Add an output symbol to the output BFD.  */
1987 
1988 static bfd_boolean
1989 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1990 {
1991   if (bfd_get_symcount (output_bfd) >= *psymalloc)
1992     {
1993       asymbol **newsyms;
1994       bfd_size_type amt;
1995 
1996       if (*psymalloc == 0)
1997 	*psymalloc = 124;
1998       else
1999 	*psymalloc *= 2;
2000       amt = *psymalloc;
2001       amt *= sizeof (asymbol *);
2002       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2003       if (newsyms == NULL)
2004 	return FALSE;
2005       bfd_get_outsymbols (output_bfd) = newsyms;
2006     }
2007 
2008   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2009   if (sym != NULL)
2010     ++ bfd_get_symcount (output_bfd);
2011 
2012   return TRUE;
2013 }
2014 
2015 /* Handle the symbols for an input BFD.  */
2016 
2017 bfd_boolean
2018 _bfd_generic_link_output_symbols (bfd *output_bfd,
2019 				  bfd *input_bfd,
2020 				  struct bfd_link_info *info,
2021 				  size_t *psymalloc)
2022 {
2023   asymbol **sym_ptr;
2024   asymbol **sym_end;
2025 
2026   if (!bfd_generic_link_read_symbols (input_bfd))
2027     return FALSE;
2028 
2029   /* Create a filename symbol if we are supposed to.  */
2030   if (info->create_object_symbols_section != NULL)
2031     {
2032       asection *sec;
2033 
2034       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2035 	{
2036 	  if (sec->output_section == info->create_object_symbols_section)
2037 	    {
2038 	      asymbol *newsym;
2039 
2040 	      newsym = bfd_make_empty_symbol (input_bfd);
2041 	      if (!newsym)
2042 		return FALSE;
2043 	      newsym->name = input_bfd->filename;
2044 	      newsym->value = 0;
2045 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2046 	      newsym->section = sec;
2047 
2048 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2049 					       newsym))
2050 		return FALSE;
2051 
2052 	      break;
2053 	    }
2054 	}
2055     }
2056 
2057   /* Adjust the values of the globally visible symbols, and write out
2058      local symbols.  */
2059   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2060   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2061   for (; sym_ptr < sym_end; sym_ptr++)
2062     {
2063       asymbol *sym;
2064       struct generic_link_hash_entry *h;
2065       bfd_boolean output;
2066 
2067       h = NULL;
2068       sym = *sym_ptr;
2069       if ((sym->flags & (BSF_INDIRECT
2070 			 | BSF_WARNING
2071 			 | BSF_GLOBAL
2072 			 | BSF_CONSTRUCTOR
2073 			 | BSF_WEAK)) != 0
2074 	  || bfd_is_und_section (bfd_get_section (sym))
2075 	  || bfd_is_com_section (bfd_get_section (sym))
2076 	  || bfd_is_ind_section (bfd_get_section (sym)))
2077 	{
2078 	  if (sym->udata.p != NULL)
2079 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2080 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2081 	    {
2082 	      /* This case normally means that the main linker code
2083                  deliberately ignored this constructor symbol.  We
2084                  should just pass it through.  This will screw up if
2085                  the constructor symbol is from a different,
2086                  non-generic, object file format, but the case will
2087                  only arise when linking with -r, which will probably
2088                  fail anyhow, since there will be no way to represent
2089                  the relocs in the output format being used.  */
2090 	      h = NULL;
2091 	    }
2092 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2093 	    h = ((struct generic_link_hash_entry *)
2094 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2095 					       bfd_asymbol_name (sym),
2096 					       FALSE, FALSE, TRUE));
2097 	  else
2098 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2099 					       bfd_asymbol_name (sym),
2100 					       FALSE, FALSE, TRUE);
2101 
2102 	  if (h != NULL)
2103 	    {
2104 	      /* Force all references to this symbol to point to
2105 		 the same area in memory.  It is possible that
2106 		 this routine will be called with a hash table
2107 		 other than a generic hash table, so we double
2108 		 check that.  */
2109 	      if (info->output_bfd->xvec == input_bfd->xvec)
2110 		{
2111 		  if (h->sym != NULL)
2112 		    *sym_ptr = sym = h->sym;
2113 		}
2114 
2115 	      switch (h->root.type)
2116 		{
2117 		default:
2118 		case bfd_link_hash_new:
2119 		  abort ();
2120 		case bfd_link_hash_undefined:
2121 		  break;
2122 		case bfd_link_hash_undefweak:
2123 		  sym->flags |= BSF_WEAK;
2124 		  break;
2125 		case bfd_link_hash_indirect:
2126 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2127 		  /* fall through */
2128 		case bfd_link_hash_defined:
2129 		  sym->flags |= BSF_GLOBAL;
2130 		  sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2131 		  sym->value = h->root.u.def.value;
2132 		  sym->section = h->root.u.def.section;
2133 		  break;
2134 		case bfd_link_hash_defweak:
2135 		  sym->flags |= BSF_WEAK;
2136 		  sym->flags &=~ BSF_CONSTRUCTOR;
2137 		  sym->value = h->root.u.def.value;
2138 		  sym->section = h->root.u.def.section;
2139 		  break;
2140 		case bfd_link_hash_common:
2141 		  sym->value = h->root.u.c.size;
2142 		  sym->flags |= BSF_GLOBAL;
2143 		  if (! bfd_is_com_section (sym->section))
2144 		    {
2145 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2146 		      sym->section = bfd_com_section_ptr;
2147 		    }
2148 		  /* We do not set the section of the symbol to
2149 		     h->root.u.c.p->section.  That value was saved so
2150 		     that we would know where to allocate the symbol
2151 		     if it was defined.  In this case the type is
2152 		     still bfd_link_hash_common, so we did not define
2153 		     it, so we do not want to use that section.  */
2154 		  break;
2155 		}
2156 	    }
2157 	}
2158 
2159       /* This switch is straight from the old code in
2160 	 write_file_locals in ldsym.c.  */
2161       if (info->strip == strip_all
2162 	  || (info->strip == strip_some
2163 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2164 				  FALSE, FALSE) == NULL))
2165 	output = FALSE;
2166       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2167 	{
2168 	  /* If this symbol is marked as occurring now, rather
2169 	     than at the end, output it now.  This is used for
2170 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2171 	     better way.  */
2172 	  if (bfd_asymbol_bfd (sym) == input_bfd
2173 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2174 	    output = TRUE;
2175 	  else
2176 	    output = FALSE;
2177 	}
2178       else if (bfd_is_ind_section (sym->section))
2179 	output = FALSE;
2180       else if ((sym->flags & BSF_DEBUGGING) != 0)
2181 	{
2182 	  if (info->strip == strip_none)
2183 	    output = TRUE;
2184 	  else
2185 	    output = FALSE;
2186 	}
2187       else if (bfd_is_und_section (sym->section)
2188 	       || bfd_is_com_section (sym->section))
2189 	output = FALSE;
2190       else if ((sym->flags & BSF_LOCAL) != 0)
2191 	{
2192 	  if ((sym->flags & BSF_WARNING) != 0)
2193 	    output = FALSE;
2194 	  else
2195 	    {
2196 	      switch (info->discard)
2197 		{
2198 		default:
2199 		case discard_all:
2200 		  output = FALSE;
2201 		  break;
2202 		case discard_sec_merge:
2203 		  output = TRUE;
2204 		  if (bfd_link_relocatable (info)
2205 		      || ! (sym->section->flags & SEC_MERGE))
2206 		    break;
2207 		  /* FALLTHROUGH */
2208 		case discard_l:
2209 		  if (bfd_is_local_label (input_bfd, sym))
2210 		    output = FALSE;
2211 		  else
2212 		    output = TRUE;
2213 		  break;
2214 		case discard_none:
2215 		  output = TRUE;
2216 		  break;
2217 		}
2218 	    }
2219 	}
2220       else if ((sym->flags & BSF_CONSTRUCTOR))
2221 	{
2222 	  if (info->strip != strip_all)
2223 	    output = TRUE;
2224 	  else
2225 	    output = FALSE;
2226 	}
2227       else if (sym->flags == 0
2228 	       && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2229 	/* LTO doesn't set symbol information.  We get here with the
2230 	   generic linker for a symbol that was "common" but no longer
2231 	   needs to be global.  */
2232 	output = FALSE;
2233       else
2234 	abort ();
2235 
2236       /* If this symbol is in a section which is not being included
2237 	 in the output file, then we don't want to output the
2238 	 symbol.  */
2239       if (!bfd_is_abs_section (sym->section)
2240 	  && bfd_section_removed_from_list (output_bfd,
2241 					    sym->section->output_section))
2242 	output = FALSE;
2243 
2244       if (output)
2245 	{
2246 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2247 	    return FALSE;
2248 	  if (h != NULL)
2249 	    h->written = TRUE;
2250 	}
2251     }
2252 
2253   return TRUE;
2254 }
2255 
2256 /* Set the section and value of a generic BFD symbol based on a linker
2257    hash table entry.  */
2258 
2259 static void
2260 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2261 {
2262   switch (h->type)
2263     {
2264     default:
2265       abort ();
2266       break;
2267     case bfd_link_hash_new:
2268       /* This can happen when a constructor symbol is seen but we are
2269          not building constructors.  */
2270       if (sym->section != NULL)
2271 	{
2272 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2273 	}
2274       else
2275 	{
2276 	  sym->flags |= BSF_CONSTRUCTOR;
2277 	  sym->section = bfd_abs_section_ptr;
2278 	  sym->value = 0;
2279 	}
2280       break;
2281     case bfd_link_hash_undefined:
2282       sym->section = bfd_und_section_ptr;
2283       sym->value = 0;
2284       break;
2285     case bfd_link_hash_undefweak:
2286       sym->section = bfd_und_section_ptr;
2287       sym->value = 0;
2288       sym->flags |= BSF_WEAK;
2289       break;
2290     case bfd_link_hash_defined:
2291       sym->section = h->u.def.section;
2292       sym->value = h->u.def.value;
2293       break;
2294     case bfd_link_hash_defweak:
2295       sym->flags |= BSF_WEAK;
2296       sym->section = h->u.def.section;
2297       sym->value = h->u.def.value;
2298       break;
2299     case bfd_link_hash_common:
2300       sym->value = h->u.c.size;
2301       if (sym->section == NULL)
2302 	sym->section = bfd_com_section_ptr;
2303       else if (! bfd_is_com_section (sym->section))
2304 	{
2305 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2306 	  sym->section = bfd_com_section_ptr;
2307 	}
2308       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2309       break;
2310     case bfd_link_hash_indirect:
2311     case bfd_link_hash_warning:
2312       /* FIXME: What should we do here?  */
2313       break;
2314     }
2315 }
2316 
2317 /* Write out a global symbol, if it hasn't already been written out.
2318    This is called for each symbol in the hash table.  */
2319 
2320 bfd_boolean
2321 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2322 				       void *data)
2323 {
2324   struct generic_write_global_symbol_info *wginfo =
2325       (struct generic_write_global_symbol_info *) data;
2326   asymbol *sym;
2327 
2328   if (h->written)
2329     return TRUE;
2330 
2331   h->written = TRUE;
2332 
2333   if (wginfo->info->strip == strip_all
2334       || (wginfo->info->strip == strip_some
2335 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2336 			      FALSE, FALSE) == NULL))
2337     return TRUE;
2338 
2339   if (h->sym != NULL)
2340     sym = h->sym;
2341   else
2342     {
2343       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2344       if (!sym)
2345 	return FALSE;
2346       sym->name = h->root.root.string;
2347       sym->flags = 0;
2348     }
2349 
2350   set_symbol_from_hash (sym, &h->root);
2351 
2352   sym->flags |= BSF_GLOBAL;
2353 
2354   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2355 				   sym))
2356     {
2357       /* FIXME: No way to return failure.  */
2358       abort ();
2359     }
2360 
2361   return TRUE;
2362 }
2363 
2364 /* Create a relocation.  */
2365 
2366 bfd_boolean
2367 _bfd_generic_reloc_link_order (bfd *abfd,
2368 			       struct bfd_link_info *info,
2369 			       asection *sec,
2370 			       struct bfd_link_order *link_order)
2371 {
2372   arelent *r;
2373 
2374   if (! bfd_link_relocatable (info))
2375     abort ();
2376   if (sec->orelocation == NULL)
2377     abort ();
2378 
2379   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2380   if (r == NULL)
2381     return FALSE;
2382 
2383   r->address = link_order->offset;
2384   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2385   if (r->howto == 0)
2386     {
2387       bfd_set_error (bfd_error_bad_value);
2388       return FALSE;
2389     }
2390 
2391   /* Get the symbol to use for the relocation.  */
2392   if (link_order->type == bfd_section_reloc_link_order)
2393     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2394   else
2395     {
2396       struct generic_link_hash_entry *h;
2397 
2398       h = ((struct generic_link_hash_entry *)
2399 	   bfd_wrapped_link_hash_lookup (abfd, info,
2400 					 link_order->u.reloc.p->u.name,
2401 					 FALSE, FALSE, TRUE));
2402       if (h == NULL
2403 	  || ! h->written)
2404 	{
2405 	  (*info->callbacks->unattached_reloc)
2406 	    (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2407 	  bfd_set_error (bfd_error_bad_value);
2408 	  return FALSE;
2409 	}
2410       r->sym_ptr_ptr = &h->sym;
2411     }
2412 
2413   /* If this is an inplace reloc, write the addend to the object file.
2414      Otherwise, store it in the reloc addend.  */
2415   if (! r->howto->partial_inplace)
2416     r->addend = link_order->u.reloc.p->addend;
2417   else
2418     {
2419       bfd_size_type size;
2420       bfd_reloc_status_type rstat;
2421       bfd_byte *buf;
2422       bfd_boolean ok;
2423       file_ptr loc;
2424 
2425       size = bfd_get_reloc_size (r->howto);
2426       buf = (bfd_byte *) bfd_zmalloc (size);
2427       if (buf == NULL && size != 0)
2428 	return FALSE;
2429       rstat = _bfd_relocate_contents (r->howto, abfd,
2430 				      (bfd_vma) link_order->u.reloc.p->addend,
2431 				      buf);
2432       switch (rstat)
2433 	{
2434 	case bfd_reloc_ok:
2435 	  break;
2436 	default:
2437 	case bfd_reloc_outofrange:
2438 	  abort ();
2439 	case bfd_reloc_overflow:
2440 	  (*info->callbacks->reloc_overflow)
2441 	    (info, NULL,
2442 	     (link_order->type == bfd_section_reloc_link_order
2443 	      ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2444 	      : link_order->u.reloc.p->u.name),
2445 	     r->howto->name, link_order->u.reloc.p->addend,
2446 	     NULL, NULL, 0);
2447 	  break;
2448 	}
2449       loc = link_order->offset * bfd_octets_per_byte (abfd);
2450       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2451       free (buf);
2452       if (! ok)
2453 	return FALSE;
2454 
2455       r->addend = 0;
2456     }
2457 
2458   sec->orelocation[sec->reloc_count] = r;
2459   ++sec->reloc_count;
2460 
2461   return TRUE;
2462 }
2463 
2464 /* Allocate a new link_order for a section.  */
2465 
2466 struct bfd_link_order *
2467 bfd_new_link_order (bfd *abfd, asection *section)
2468 {
2469   bfd_size_type amt = sizeof (struct bfd_link_order);
2470   struct bfd_link_order *new_lo;
2471 
2472   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2473   if (!new_lo)
2474     return NULL;
2475 
2476   new_lo->type = bfd_undefined_link_order;
2477 
2478   if (section->map_tail.link_order != NULL)
2479     section->map_tail.link_order->next = new_lo;
2480   else
2481     section->map_head.link_order = new_lo;
2482   section->map_tail.link_order = new_lo;
2483 
2484   return new_lo;
2485 }
2486 
2487 /* Default link order processing routine.  Note that we can not handle
2488    the reloc_link_order types here, since they depend upon the details
2489    of how the particular backends generates relocs.  */
2490 
2491 bfd_boolean
2492 _bfd_default_link_order (bfd *abfd,
2493 			 struct bfd_link_info *info,
2494 			 asection *sec,
2495 			 struct bfd_link_order *link_order)
2496 {
2497   switch (link_order->type)
2498     {
2499     case bfd_undefined_link_order:
2500     case bfd_section_reloc_link_order:
2501     case bfd_symbol_reloc_link_order:
2502     default:
2503       abort ();
2504     case bfd_indirect_link_order:
2505       return default_indirect_link_order (abfd, info, sec, link_order,
2506 					  FALSE);
2507     case bfd_data_link_order:
2508       return default_data_link_order (abfd, info, sec, link_order);
2509     }
2510 }
2511 
2512 /* Default routine to handle a bfd_data_link_order.  */
2513 
2514 static bfd_boolean
2515 default_data_link_order (bfd *abfd,
2516 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2517 			 asection *sec,
2518 			 struct bfd_link_order *link_order)
2519 {
2520   bfd_size_type size;
2521   size_t fill_size;
2522   bfd_byte *fill;
2523   file_ptr loc;
2524   bfd_boolean result;
2525 
2526   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2527 
2528   size = link_order->size;
2529   if (size == 0)
2530     return TRUE;
2531 
2532   fill = link_order->u.data.contents;
2533   fill_size = link_order->u.data.size;
2534   if (fill_size == 0)
2535     {
2536       fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2537 				    (sec->flags & SEC_CODE) != 0);
2538       if (fill == NULL)
2539 	return FALSE;
2540     }
2541   else if (fill_size < size)
2542     {
2543       bfd_byte *p;
2544       fill = (bfd_byte *) bfd_malloc (size);
2545       if (fill == NULL)
2546 	return FALSE;
2547       p = fill;
2548       if (fill_size == 1)
2549 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2550       else
2551 	{
2552 	  do
2553 	    {
2554 	      memcpy (p, link_order->u.data.contents, fill_size);
2555 	      p += fill_size;
2556 	      size -= fill_size;
2557 	    }
2558 	  while (size >= fill_size);
2559 	  if (size != 0)
2560 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2561 	  size = link_order->size;
2562 	}
2563     }
2564 
2565   loc = link_order->offset * bfd_octets_per_byte (abfd);
2566   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2567 
2568   if (fill != link_order->u.data.contents)
2569     free (fill);
2570   return result;
2571 }
2572 
2573 /* Default routine to handle a bfd_indirect_link_order.  */
2574 
2575 static bfd_boolean
2576 default_indirect_link_order (bfd *output_bfd,
2577 			     struct bfd_link_info *info,
2578 			     asection *output_section,
2579 			     struct bfd_link_order *link_order,
2580 			     bfd_boolean generic_linker)
2581 {
2582   asection *input_section;
2583   bfd *input_bfd;
2584   bfd_byte *contents = NULL;
2585   bfd_byte *new_contents;
2586   bfd_size_type sec_size;
2587   file_ptr loc;
2588 
2589   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2590 
2591   input_section = link_order->u.indirect.section;
2592   input_bfd = input_section->owner;
2593   if (input_section->size == 0)
2594     return TRUE;
2595 
2596   BFD_ASSERT (input_section->output_section == output_section);
2597   BFD_ASSERT (input_section->output_offset == link_order->offset);
2598   BFD_ASSERT (input_section->size == link_order->size);
2599 
2600   if (bfd_link_relocatable (info)
2601       && input_section->reloc_count > 0
2602       && output_section->orelocation == NULL)
2603     {
2604       /* Space has not been allocated for the output relocations.
2605 	 This can happen when we are called by a specific backend
2606 	 because somebody is attempting to link together different
2607 	 types of object files.  Handling this case correctly is
2608 	 difficult, and sometimes impossible.  */
2609       (*_bfd_error_handler)
2610 	(_("Attempt to do relocatable link with %s input and %s output"),
2611 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2612       bfd_set_error (bfd_error_wrong_format);
2613       return FALSE;
2614     }
2615 
2616   if (! generic_linker)
2617     {
2618       asymbol **sympp;
2619       asymbol **symppend;
2620 
2621       /* Get the canonical symbols.  The generic linker will always
2622 	 have retrieved them by this point, but we are being called by
2623 	 a specific linker, presumably because we are linking
2624 	 different types of object files together.  */
2625       if (!bfd_generic_link_read_symbols (input_bfd))
2626 	return FALSE;
2627 
2628       /* Since we have been called by a specific linker, rather than
2629 	 the generic linker, the values of the symbols will not be
2630 	 right.  They will be the values as seen in the input file,
2631 	 not the values of the final link.  We need to fix them up
2632 	 before we can relocate the section.  */
2633       sympp = _bfd_generic_link_get_symbols (input_bfd);
2634       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2635       for (; sympp < symppend; sympp++)
2636 	{
2637 	  asymbol *sym;
2638 	  struct bfd_link_hash_entry *h;
2639 
2640 	  sym = *sympp;
2641 
2642 	  if ((sym->flags & (BSF_INDIRECT
2643 			     | BSF_WARNING
2644 			     | BSF_GLOBAL
2645 			     | BSF_CONSTRUCTOR
2646 			     | BSF_WEAK)) != 0
2647 	      || bfd_is_und_section (bfd_get_section (sym))
2648 	      || bfd_is_com_section (bfd_get_section (sym))
2649 	      || bfd_is_ind_section (bfd_get_section (sym)))
2650 	    {
2651 	      /* sym->udata may have been set by
2652 		 generic_link_add_symbol_list.  */
2653 	      if (sym->udata.p != NULL)
2654 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2655 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2656 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2657 						  bfd_asymbol_name (sym),
2658 						  FALSE, FALSE, TRUE);
2659 	      else
2660 		h = bfd_link_hash_lookup (info->hash,
2661 					  bfd_asymbol_name (sym),
2662 					  FALSE, FALSE, TRUE);
2663 	      if (h != NULL)
2664 		set_symbol_from_hash (sym, h);
2665 	    }
2666 	}
2667     }
2668 
2669   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2670       && input_section->size != 0)
2671     {
2672       /* Group section contents are set by bfd_elf_set_group_contents.  */
2673       if (!output_bfd->output_has_begun)
2674 	{
2675 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2676 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2677 	    goto error_return;
2678 	}
2679       new_contents = output_section->contents;
2680       BFD_ASSERT (new_contents != NULL);
2681       BFD_ASSERT (input_section->output_offset == 0);
2682     }
2683   else
2684     {
2685       /* Get and relocate the section contents.  */
2686       sec_size = (input_section->rawsize > input_section->size
2687 		  ? input_section->rawsize
2688 		  : input_section->size);
2689       contents = (bfd_byte *) bfd_malloc (sec_size);
2690       if (contents == NULL && sec_size != 0)
2691 	goto error_return;
2692       new_contents = (bfd_get_relocated_section_contents
2693 		      (output_bfd, info, link_order, contents,
2694 		       bfd_link_relocatable (info),
2695 		       _bfd_generic_link_get_symbols (input_bfd)));
2696       if (!new_contents)
2697 	goto error_return;
2698     }
2699 
2700   /* Output the section contents.  */
2701   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2702   if (! bfd_set_section_contents (output_bfd, output_section,
2703 				  new_contents, loc, input_section->size))
2704     goto error_return;
2705 
2706   if (contents != NULL)
2707     free (contents);
2708   return TRUE;
2709 
2710  error_return:
2711   if (contents != NULL)
2712     free (contents);
2713   return FALSE;
2714 }
2715 
2716 /* A little routine to count the number of relocs in a link_order
2717    list.  */
2718 
2719 unsigned int
2720 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2721 {
2722   register unsigned int c;
2723   register struct bfd_link_order *l;
2724 
2725   c = 0;
2726   for (l = link_order; l != NULL; l = l->next)
2727     {
2728       if (l->type == bfd_section_reloc_link_order
2729 	  || l->type == bfd_symbol_reloc_link_order)
2730 	++c;
2731     }
2732 
2733   return c;
2734 }
2735 
2736 /*
2737 FUNCTION
2738 	bfd_link_split_section
2739 
2740 SYNOPSIS
2741         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2742 
2743 DESCRIPTION
2744 	Return nonzero if @var{sec} should be split during a
2745 	reloceatable or final link.
2746 
2747 .#define bfd_link_split_section(abfd, sec) \
2748 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2749 .
2750 
2751 */
2752 
2753 bfd_boolean
2754 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2755 				 asection *sec ATTRIBUTE_UNUSED)
2756 {
2757   return FALSE;
2758 }
2759 
2760 /*
2761 FUNCTION
2762 	bfd_section_already_linked
2763 
2764 SYNOPSIS
2765         bfd_boolean bfd_section_already_linked (bfd *abfd,
2766 						asection *sec,
2767 						struct bfd_link_info *info);
2768 
2769 DESCRIPTION
2770 	Check if @var{data} has been already linked during a reloceatable
2771 	or final link.  Return TRUE if it has.
2772 
2773 .#define bfd_section_already_linked(abfd, sec, info) \
2774 .       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2775 .
2776 
2777 */
2778 
2779 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2780    once into the output.  This routine checks each section, and
2781    arrange to discard it if a section of the same name has already
2782    been linked.  This code assumes that all relevant sections have the
2783    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2784    section name.  bfd_section_already_linked is called via
2785    bfd_map_over_sections.  */
2786 
2787 /* The hash table.  */
2788 
2789 static struct bfd_hash_table _bfd_section_already_linked_table;
2790 
2791 /* Support routines for the hash table used by section_already_linked,
2792    initialize the table, traverse, lookup, fill in an entry and remove
2793    the table.  */
2794 
2795 void
2796 bfd_section_already_linked_table_traverse
2797   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2798 			void *), void *info)
2799 {
2800   bfd_hash_traverse (&_bfd_section_already_linked_table,
2801 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2802 				       void *)) func,
2803 		     info);
2804 }
2805 
2806 struct bfd_section_already_linked_hash_entry *
2807 bfd_section_already_linked_table_lookup (const char *name)
2808 {
2809   return ((struct bfd_section_already_linked_hash_entry *)
2810 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2811 			   TRUE, FALSE));
2812 }
2813 
2814 bfd_boolean
2815 bfd_section_already_linked_table_insert
2816   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2817    asection *sec)
2818 {
2819   struct bfd_section_already_linked *l;
2820 
2821   /* Allocate the memory from the same obstack as the hash table is
2822      kept in.  */
2823   l = (struct bfd_section_already_linked *)
2824       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2825   if (l == NULL)
2826     return FALSE;
2827   l->sec = sec;
2828   l->next = already_linked_list->entry;
2829   already_linked_list->entry = l;
2830   return TRUE;
2831 }
2832 
2833 static struct bfd_hash_entry *
2834 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2835 			struct bfd_hash_table *table,
2836 			const char *string ATTRIBUTE_UNUSED)
2837 {
2838   struct bfd_section_already_linked_hash_entry *ret =
2839     (struct bfd_section_already_linked_hash_entry *)
2840       bfd_hash_allocate (table, sizeof *ret);
2841 
2842   if (ret == NULL)
2843     return NULL;
2844 
2845   ret->entry = NULL;
2846 
2847   return &ret->root;
2848 }
2849 
2850 bfd_boolean
2851 bfd_section_already_linked_table_init (void)
2852 {
2853   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2854 				already_linked_newfunc,
2855 				sizeof (struct bfd_section_already_linked_hash_entry),
2856 				42);
2857 }
2858 
2859 void
2860 bfd_section_already_linked_table_free (void)
2861 {
2862   bfd_hash_table_free (&_bfd_section_already_linked_table);
2863 }
2864 
2865 /* Report warnings as appropriate for duplicate section SEC.
2866    Return FALSE if we decide to keep SEC after all.  */
2867 
2868 bfd_boolean
2869 _bfd_handle_already_linked (asection *sec,
2870 			    struct bfd_section_already_linked *l,
2871 			    struct bfd_link_info *info)
2872 {
2873   switch (sec->flags & SEC_LINK_DUPLICATES)
2874     {
2875     default:
2876       abort ();
2877 
2878     case SEC_LINK_DUPLICATES_DISCARD:
2879       /* If we found an LTO IR match for this comdat group on
2880 	 the first pass, replace it with the LTO output on the
2881 	 second pass.  We can't simply choose real object
2882 	 files over IR because the first pass may contain a
2883 	 mix of LTO and normal objects and we must keep the
2884 	 first match, be it IR or real.  */
2885       if (sec->owner->lto_output
2886 	  && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2887 	{
2888 	  l->sec = sec;
2889 	  return FALSE;
2890 	}
2891       break;
2892 
2893     case SEC_LINK_DUPLICATES_ONE_ONLY:
2894       info->callbacks->einfo
2895 	(_("%B: ignoring duplicate section `%A'\n"),
2896 	 sec->owner, sec);
2897       break;
2898 
2899     case SEC_LINK_DUPLICATES_SAME_SIZE:
2900       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2901 	;
2902       else if (sec->size != l->sec->size)
2903 	info->callbacks->einfo
2904 	  (_("%B: duplicate section `%A' has different size\n"),
2905 	   sec->owner, sec);
2906       break;
2907 
2908     case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2909       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2910 	;
2911       else if (sec->size != l->sec->size)
2912 	info->callbacks->einfo
2913 	  (_("%B: duplicate section `%A' has different size\n"),
2914 	   sec->owner, sec);
2915       else if (sec->size != 0)
2916 	{
2917 	  bfd_byte *sec_contents, *l_sec_contents = NULL;
2918 
2919 	  if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2920 	    info->callbacks->einfo
2921 	      (_("%B: could not read contents of section `%A'\n"),
2922 	       sec->owner, sec);
2923 	  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2924 						&l_sec_contents))
2925 	    info->callbacks->einfo
2926 	      (_("%B: could not read contents of section `%A'\n"),
2927 	       l->sec->owner, l->sec);
2928 	  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2929 	    info->callbacks->einfo
2930 	      (_("%B: duplicate section `%A' has different contents\n"),
2931 	       sec->owner, sec);
2932 
2933 	  if (sec_contents)
2934 	    free (sec_contents);
2935 	  if (l_sec_contents)
2936 	    free (l_sec_contents);
2937 	}
2938       break;
2939     }
2940 
2941   /* Set the output_section field so that lang_add_section
2942      does not create a lang_input_section structure for this
2943      section.  Since there might be a symbol in the section
2944      being discarded, we must retain a pointer to the section
2945      which we are really going to use.  */
2946   sec->output_section = bfd_abs_section_ptr;
2947   sec->kept_section = l->sec;
2948   return TRUE;
2949 }
2950 
2951 /* This is used on non-ELF inputs.  */
2952 
2953 bfd_boolean
2954 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2955 				     asection *sec,
2956 				     struct bfd_link_info *info)
2957 {
2958   const char *name;
2959   struct bfd_section_already_linked *l;
2960   struct bfd_section_already_linked_hash_entry *already_linked_list;
2961 
2962   if ((sec->flags & SEC_LINK_ONCE) == 0)
2963     return FALSE;
2964 
2965   /* The generic linker doesn't handle section groups.  */
2966   if ((sec->flags & SEC_GROUP) != 0)
2967     return FALSE;
2968 
2969   /* FIXME: When doing a relocatable link, we may have trouble
2970      copying relocations in other sections that refer to local symbols
2971      in the section being discarded.  Those relocations will have to
2972      be converted somehow; as of this writing I'm not sure that any of
2973      the backends handle that correctly.
2974 
2975      It is tempting to instead not discard link once sections when
2976      doing a relocatable link (technically, they should be discarded
2977      whenever we are building constructors).  However, that fails,
2978      because the linker winds up combining all the link once sections
2979      into a single large link once section, which defeats the purpose
2980      of having link once sections in the first place.  */
2981 
2982   name = bfd_get_section_name (abfd, sec);
2983 
2984   already_linked_list = bfd_section_already_linked_table_lookup (name);
2985 
2986   l = already_linked_list->entry;
2987   if (l != NULL)
2988     {
2989       /* The section has already been linked.  See if we should
2990 	 issue a warning.  */
2991       return _bfd_handle_already_linked (sec, l, info);
2992     }
2993 
2994   /* This is the first section with this name.  Record it.  */
2995   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2996     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2997   return FALSE;
2998 }
2999 
3000 /* Choose a neighbouring section to S in OBFD that will be output, or
3001    the absolute section if ADDR is out of bounds of the neighbours.  */
3002 
3003 asection *
3004 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3005 {
3006   asection *next, *prev, *best;
3007 
3008   /* Find preceding kept section.  */
3009   for (prev = s->prev; prev != NULL; prev = prev->prev)
3010     if ((prev->flags & SEC_EXCLUDE) == 0
3011 	&& !bfd_section_removed_from_list (obfd, prev))
3012       break;
3013 
3014   /* Find following kept section.  Start at prev->next because
3015      other sections may have been added after S was removed.  */
3016   if (s->prev != NULL)
3017     next = s->prev->next;
3018   else
3019     next = s->owner->sections;
3020   for (; next != NULL; next = next->next)
3021     if ((next->flags & SEC_EXCLUDE) == 0
3022 	&& !bfd_section_removed_from_list (obfd, next))
3023       break;
3024 
3025   /* Choose better of two sections, based on flags.  The idea
3026      is to choose a section that will be in the same segment
3027      as S would have been if it was kept.  */
3028   best = next;
3029   if (prev == NULL)
3030     {
3031       if (next == NULL)
3032 	best = bfd_abs_section_ptr;
3033     }
3034   else if (next == NULL)
3035     best = prev;
3036   else if (((prev->flags ^ next->flags)
3037 	    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3038     {
3039       if (((next->flags ^ s->flags)
3040 	   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3041 	  /* We prefer to choose a loaded section.  Section S
3042 	     doesn't have SEC_LOAD set (it being excluded, that
3043 	     part of the flag processing didn't happen) so we
3044 	     can't compare that flag to those of NEXT and PREV.  */
3045 	  || ((prev->flags & SEC_LOAD) != 0
3046 	      && (next->flags & SEC_LOAD) == 0))
3047 	best = prev;
3048     }
3049   else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3050     {
3051       if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3052 	best = prev;
3053     }
3054   else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3055     {
3056       if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3057 	best = prev;
3058     }
3059   else
3060     {
3061       /* Flags we care about are the same.  Prefer the following
3062 	 section if that will result in a positive valued sym.  */
3063       if (addr < next->vma)
3064 	best = prev;
3065     }
3066 
3067   return best;
3068 }
3069 
3070 /* Convert symbols in excluded output sections to use a kept section.  */
3071 
3072 static bfd_boolean
3073 fix_syms (struct bfd_link_hash_entry *h, void *data)
3074 {
3075   bfd *obfd = (bfd *) data;
3076 
3077   if (h->type == bfd_link_hash_defined
3078       || h->type == bfd_link_hash_defweak)
3079     {
3080       asection *s = h->u.def.section;
3081       if (s != NULL
3082 	  && s->output_section != NULL
3083 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3084 	  && bfd_section_removed_from_list (obfd, s->output_section))
3085 	{
3086 	  asection *op;
3087 
3088 	  h->u.def.value += s->output_offset + s->output_section->vma;
3089 	  op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3090 	  h->u.def.value -= op->vma;
3091 	  h->u.def.section = op;
3092 	}
3093     }
3094 
3095   return TRUE;
3096 }
3097 
3098 void
3099 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3100 {
3101   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3102 }
3103 
3104 /*
3105 FUNCTION
3106 	bfd_generic_define_common_symbol
3107 
3108 SYNOPSIS
3109 	bfd_boolean bfd_generic_define_common_symbol
3110 	  (bfd *output_bfd, struct bfd_link_info *info,
3111 	   struct bfd_link_hash_entry *h);
3112 
3113 DESCRIPTION
3114 	Convert common symbol @var{h} into a defined symbol.
3115 	Return TRUE on success and FALSE on failure.
3116 
3117 .#define bfd_define_common_symbol(output_bfd, info, h) \
3118 .       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3119 .
3120 */
3121 
3122 bfd_boolean
3123 bfd_generic_define_common_symbol (bfd *output_bfd,
3124 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3125 				  struct bfd_link_hash_entry *h)
3126 {
3127   unsigned int power_of_two;
3128   bfd_vma alignment, size;
3129   asection *section;
3130 
3131   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3132 
3133   size = h->u.c.size;
3134   power_of_two = h->u.c.p->alignment_power;
3135   section = h->u.c.p->section;
3136 
3137   /* Increase the size of the section to align the common symbol.
3138      The alignment must be a power of two.  */
3139   alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3140   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3141   section->size += alignment - 1;
3142   section->size &= -alignment;
3143 
3144   /* Adjust the section's overall alignment if necessary.  */
3145   if (power_of_two > section->alignment_power)
3146     section->alignment_power = power_of_two;
3147 
3148   /* Change the symbol from common to defined.  */
3149   h->type = bfd_link_hash_defined;
3150   h->u.def.section = section;
3151   h->u.def.value = section->size;
3152 
3153   /* Increase the size of the section.  */
3154   section->size += size;
3155 
3156   /* Make sure the section is allocated in memory, and make sure that
3157      it is no longer a common section.  */
3158   section->flags |= SEC_ALLOC;
3159   section->flags &= ~SEC_IS_COMMON;
3160   return TRUE;
3161 }
3162 
3163 /*
3164 FUNCTION
3165 	bfd_find_version_for_sym
3166 
3167 SYNOPSIS
3168 	struct bfd_elf_version_tree * bfd_find_version_for_sym
3169 	  (struct bfd_elf_version_tree *verdefs,
3170 	   const char *sym_name, bfd_boolean *hide);
3171 
3172 DESCRIPTION
3173 	Search an elf version script tree for symbol versioning
3174 	info and export / don't-export status for a given symbol.
3175 	Return non-NULL on success and NULL on failure; also sets
3176 	the output @samp{hide} boolean parameter.
3177 
3178 */
3179 
3180 struct bfd_elf_version_tree *
3181 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3182 			  const char *sym_name,
3183 			  bfd_boolean *hide)
3184 {
3185   struct bfd_elf_version_tree *t;
3186   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3187   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3188 
3189   local_ver = NULL;
3190   global_ver = NULL;
3191   star_local_ver = NULL;
3192   star_global_ver = NULL;
3193   exist_ver = NULL;
3194   for (t = verdefs; t != NULL; t = t->next)
3195     {
3196       if (t->globals.list != NULL)
3197 	{
3198 	  struct bfd_elf_version_expr *d = NULL;
3199 
3200 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3201 	    {
3202 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3203 		global_ver = t;
3204 	      else
3205 		star_global_ver = t;
3206 	      if (d->symver)
3207 		exist_ver = t;
3208 	      d->script = 1;
3209 	      /* If the match is a wildcard pattern, keep looking for
3210 		 a more explicit, perhaps even local, match.  */
3211 	      if (d->literal)
3212 		break;
3213 	    }
3214 
3215 	  if (d != NULL)
3216 	    break;
3217 	}
3218 
3219       if (t->locals.list != NULL)
3220 	{
3221 	  struct bfd_elf_version_expr *d = NULL;
3222 
3223 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3224 	    {
3225 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3226 		local_ver = t;
3227 	      else
3228 		star_local_ver = t;
3229 	      /* If the match is a wildcard pattern, keep looking for
3230 		 a more explicit, perhaps even global, match.  */
3231 	      if (d->literal)
3232 		{
3233 		  /* An exact match overrides a global wildcard.  */
3234 		  global_ver = NULL;
3235 		  star_global_ver = NULL;
3236 		  break;
3237 		}
3238 	    }
3239 
3240 	  if (d != NULL)
3241 	    break;
3242 	}
3243     }
3244 
3245   if (global_ver == NULL && local_ver == NULL)
3246     global_ver = star_global_ver;
3247 
3248   if (global_ver != NULL)
3249     {
3250       /* If we already have a versioned symbol that matches the
3251 	 node for this symbol, then we don't want to create a
3252 	 duplicate from the unversioned symbol.  Instead hide the
3253 	 unversioned symbol.  */
3254       *hide = exist_ver == global_ver;
3255       return global_ver;
3256     }
3257 
3258   if (local_ver == NULL)
3259     local_ver = star_local_ver;
3260 
3261   if (local_ver != NULL)
3262     {
3263       *hide = TRUE;
3264       return local_ver;
3265     }
3266 
3267   return NULL;
3268 }
3269 
3270 /*
3271 FUNCTION
3272 	bfd_hide_sym_by_version
3273 
3274 SYNOPSIS
3275 	bfd_boolean bfd_hide_sym_by_version
3276 	  (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3277 
3278 DESCRIPTION
3279 	Search an elf version script tree for symbol versioning
3280 	info for a given symbol.  Return TRUE if the symbol is hidden.
3281 
3282 */
3283 
3284 bfd_boolean
3285 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3286 			 const char *sym_name)
3287 {
3288   bfd_boolean hidden = FALSE;
3289   bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3290   return hidden;
3291 }
3292 
3293 /*
3294 FUNCTION
3295 	bfd_link_check_relocs
3296 
3297 SYNOPSIS
3298 	bfd_boolean bfd_link_check_relocs
3299 	  (bfd *abfd, struct bfd_link_info *info);
3300 
3301 DESCRIPTION
3302 	Checks the relocs in ABFD for validity.
3303 	Does not execute the relocs.
3304 	Return TRUE if everything is OK, FALSE otherwise.
3305 	This is the external entry point to this code.
3306 */
3307 
3308 bfd_boolean
3309 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3310 {
3311   return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3312 }
3313 
3314 /*
3315 FUNCTION
3316 	_bfd_generic_link_check_relocs
3317 
3318 SYNOPSIS
3319 	bfd_boolean _bfd_generic_link_check_relocs
3320 	  (bfd *abfd, struct bfd_link_info *info);
3321 
3322 DESCRIPTION
3323         Stub function for targets that do not implement reloc checking.
3324 	Return TRUE.
3325 	This is an internal function.  It should not be called from
3326 	outside the BFD library.
3327 */
3328 
3329 bfd_boolean
3330 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3331 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
3332 {
3333   return TRUE;
3334 }
3335