xref: /dragonfly/contrib/binutils-2.27/bfd/syms.c (revision 799ba435)
1 /* Generic symbol-table support for the BFD library.
2    Copyright (C) 1990-2016 Free Software Foundation, Inc.
3    Written by Cygnus Support.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 /*
23 SECTION
24 	Symbols
25 
26 	BFD tries to maintain as much symbol information as it can when
27 	it moves information from file to file. BFD passes information
28 	to applications though the <<asymbol>> structure. When the
29 	application requests the symbol table, BFD reads the table in
30 	the native form and translates parts of it into the internal
31 	format. To maintain more than the information passed to
32 	applications, some targets keep some information ``behind the
33 	scenes'' in a structure only the particular back end knows
34 	about. For example, the coff back end keeps the original
35 	symbol table structure as well as the canonical structure when
36 	a BFD is read in. On output, the coff back end can reconstruct
37 	the output symbol table so that no information is lost, even
38 	information unique to coff which BFD doesn't know or
39 	understand. If a coff symbol table were read, but were written
40 	through an a.out back end, all the coff specific information
41 	would be lost. The symbol table of a BFD
42 	is not necessarily read in until a canonicalize request is
43 	made. Then the BFD back end fills in a table provided by the
44 	application with pointers to the canonical information.  To
45 	output symbols, the application provides BFD with a table of
46 	pointers to pointers to <<asymbol>>s. This allows applications
47 	like the linker to output a symbol as it was read, since the ``behind
48 	the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56 
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 	Reading symbols
61 
62 	There are two stages to reading a symbol table from a BFD:
63 	allocating storage, and the actual reading process. This is an
64 	excerpt from an application which reads the symbol table:
65 
66 |	  long storage_needed;
67 |	  asymbol **symbol_table;
68 |	  long number_of_symbols;
69 |	  long i;
70 |
71 |	  storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 |         if (storage_needed < 0)
74 |           FAIL
75 |
76 |	  if (storage_needed == 0)
77 |	    return;
78 |
79 |	  symbol_table = xmalloc (storage_needed);
80 |	    ...
81 |	  number_of_symbols =
82 |	     bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 |         if (number_of_symbols < 0)
85 |           FAIL
86 |
87 |	  for (i = 0; i < number_of_symbols; i++)
88 |	    process_symbol (symbol_table[i]);
89 
90 	All storage for the symbols themselves is in an objalloc
91 	connected to the BFD; it is freed when the BFD is closed.
92 
93 INODE
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95 SUBSECTION
96 	Writing symbols
97 
98 	Writing of a symbol table is automatic when a BFD open for
99 	writing is closed. The application attaches a vector of
100 	pointers to pointers to symbols to the BFD being written, and
101 	fills in the symbol count. The close and cleanup code reads
102 	through the table provided and performs all the necessary
103 	operations. The BFD output code must always be provided with an
104 	``owned'' symbol: one which has come from another BFD, or one
105 	which has been created using <<bfd_make_empty_symbol>>.  Here is an
106 	example showing the creation of a symbol table with only one element:
107 
108 |	#include "sysdep.h"
109 |	#include "bfd.h"
110 |	int main (void)
111 |	{
112 |	  bfd *abfd;
113 |	  asymbol *ptrs[2];
114 |	  asymbol *new;
115 |
116 |	  abfd = bfd_openw ("foo","a.out-sunos-big");
117 |	  bfd_set_format (abfd, bfd_object);
118 |	  new = bfd_make_empty_symbol (abfd);
119 |	  new->name = "dummy_symbol";
120 |	  new->section = bfd_make_section_old_way (abfd, ".text");
121 |	  new->flags = BSF_GLOBAL;
122 |	  new->value = 0x12345;
123 |
124 |	  ptrs[0] = new;
125 |	  ptrs[1] = 0;
126 |
127 |	  bfd_set_symtab (abfd, ptrs, 1);
128 |	  bfd_close (abfd);
129 |	  return 0;
130 |	}
131 |
132 |	./makesym
133 |	nm foo
134 |	00012345 A dummy_symbol
135 
136 	Many formats cannot represent arbitrary symbol information; for
137  	instance, the <<a.out>> object format does not allow an
138 	arbitrary number of sections. A symbol pointing to a section
139 	which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
140 	be described.
141 
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 	Mini Symbols
146 
147 	Mini symbols provide read-only access to the symbol table.
148 	They use less memory space, but require more time to access.
149 	They can be useful for tools like nm or objdump, which may
150 	have to handle symbol tables of extremely large executables.
151 
152 	The <<bfd_read_minisymbols>> function will read the symbols
153 	into memory in an internal form.  It will return a <<void *>>
154 	pointer to a block of memory, a symbol count, and the size of
155 	each symbol.  The pointer is allocated using <<malloc>>, and
156 	should be freed by the caller when it is no longer needed.
157 
158 	The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 	to a minisymbol, and a pointer to a structure returned by
160 	<<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 	The return value may or may not be the same as the value from
162 	<<bfd_make_empty_symbol>> which was passed in.
163 
164 */
165 
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170 
171 */
172 /*
173 SUBSECTION
174 	typedef asymbol
175 
176 	An <<asymbol>> has the form:
177 
178 */
179 
180 /*
181 CODE_FRAGMENT
182 
183 .
184 .typedef struct bfd_symbol
185 .{
186 .  {* A pointer to the BFD which owns the symbol. This information
187 .     is necessary so that a back end can work out what additional
188 .     information (invisible to the application writer) is carried
189 .     with the symbol.
190 .
191 .     This field is *almost* redundant, since you can use section->owner
192 .     instead, except that some symbols point to the global sections
193 .     bfd_{abs,com,und}_section.  This could be fixed by making
194 .     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
195 .  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
196 .
197 .  {* The text of the symbol. The name is left alone, and not copied; the
198 .     application may not alter it.  *}
199 .  const char *name;
200 .
201 .  {* The value of the symbol.  This really should be a union of a
202 .     numeric value with a pointer, since some flags indicate that
203 .     a pointer to another symbol is stored here.  *}
204 .  symvalue value;
205 .
206 .  {* Attributes of a symbol.  *}
207 .#define BSF_NO_FLAGS    	0x00
208 .
209 .  {* The symbol has local scope; <<static>> in <<C>>. The value
210 .     is the offset into the section of the data.  *}
211 .#define BSF_LOCAL		(1 << 0)
212 .
213 .  {* The symbol has global scope; initialized data in <<C>>. The
214 .     value is the offset into the section of the data.  *}
215 .#define BSF_GLOBAL		(1 << 1)
216 .
217 .  {* The symbol has global scope and is exported. The value is
218 .     the offset into the section of the data.  *}
219 .#define BSF_EXPORT	BSF_GLOBAL {* No real difference.  *}
220 .
221 .  {* A normal C symbol would be one of:
222 .     <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>.  *}
223 .
224 .  {* The symbol is a debugging record. The value has an arbitrary
225 .     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
226 .#define BSF_DEBUGGING		(1 << 2)
227 .
228 .  {* The symbol denotes a function entry point.  Used in ELF,
229 .     perhaps others someday.  *}
230 .#define BSF_FUNCTION		(1 << 3)
231 .
232 .  {* Used by the linker.  *}
233 .#define BSF_KEEP		(1 << 5)
234 .
235 .  {* An ELF common symbol.  *}
236 .#define BSF_ELF_COMMON		(1 << 6)
237 .
238 .  {* A weak global symbol, overridable without warnings by
239 .     a regular global symbol of the same name.  *}
240 .#define BSF_WEAK		(1 << 7)
241 .
242 .  {* This symbol was created to point to a section, e.g. ELF's
243 .     STT_SECTION symbols.  *}
244 .#define BSF_SECTION_SYM	(1 << 8)
245 .
246 .  {* The symbol used to be a common symbol, but now it is
247 .     allocated.  *}
248 .#define BSF_OLD_COMMON		(1 << 9)
249 .
250 .  {* In some files the type of a symbol sometimes alters its
251 .     location in an output file - ie in coff a <<ISFCN>> symbol
252 .     which is also <<C_EXT>> symbol appears where it was
253 .     declared and not at the end of a section.  This bit is set
254 .     by the target BFD part to convey this information.  *}
255 .#define BSF_NOT_AT_END		(1 << 10)
256 .
257 .  {* Signal that the symbol is the label of constructor section.  *}
258 .#define BSF_CONSTRUCTOR	(1 << 11)
259 .
260 .  {* Signal that the symbol is a warning symbol.  The name is a
261 .     warning.  The name of the next symbol is the one to warn about;
262 .     if a reference is made to a symbol with the same name as the next
263 .     symbol, a warning is issued by the linker.  *}
264 .#define BSF_WARNING		(1 << 12)
265 .
266 .  {* Signal that the symbol is indirect.  This symbol is an indirect
267 .     pointer to the symbol with the same name as the next symbol.  *}
268 .#define BSF_INDIRECT		(1 << 13)
269 .
270 .  {* BSF_FILE marks symbols that contain a file name.  This is used
271 .     for ELF STT_FILE symbols.  *}
272 .#define BSF_FILE		(1 << 14)
273 .
274 .  {* Symbol is from dynamic linking information.  *}
275 .#define BSF_DYNAMIC		(1 << 15)
276 .
277 .  {* The symbol denotes a data object.  Used in ELF, and perhaps
278 .     others someday.  *}
279 .#define BSF_OBJECT		(1 << 16)
280 .
281 .  {* This symbol is a debugging symbol.  The value is the offset
282 .     into the section of the data.  BSF_DEBUGGING should be set
283 .     as well.  *}
284 .#define BSF_DEBUGGING_RELOC	(1 << 17)
285 .
286 .  {* This symbol is thread local.  Used in ELF.  *}
287 .#define BSF_THREAD_LOCAL	(1 << 18)
288 .
289 .  {* This symbol represents a complex relocation expression,
290 .     with the expression tree serialized in the symbol name.  *}
291 .#define BSF_RELC		(1 << 19)
292 .
293 .  {* This symbol represents a signed complex relocation expression,
294 .     with the expression tree serialized in the symbol name.  *}
295 .#define BSF_SRELC		(1 << 20)
296 .
297 .  {* This symbol was created by bfd_get_synthetic_symtab.  *}
298 .#define BSF_SYNTHETIC		(1 << 21)
299 .
300 .  {* This symbol is an indirect code object.  Unrelated to BSF_INDIRECT.
301 .     The dynamic linker will compute the value of this symbol by
302 .     calling the function that it points to.  BSF_FUNCTION must
303 .     also be also set.  *}
304 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305 .  {* This symbol is a globally unique data object.  The dynamic linker
306 .     will make sure that in the entire process there is just one symbol
307 .     with this name and type in use.  BSF_OBJECT must also be set.  *}
308 .#define BSF_GNU_UNIQUE		(1 << 23)
309 .
310 .  flagword flags;
311 .
312 .  {* A pointer to the section to which this symbol is
313 .     relative.  This will always be non NULL, there are special
314 .     sections for undefined and absolute symbols.  *}
315 .  struct bfd_section *section;
316 .
317 .  {* Back end special data.  *}
318 .  union
319 .    {
320 .      void *p;
321 .      bfd_vma i;
322 .    }
323 .  udata;
324 .}
325 .asymbol;
326 .
327 */
328 
329 #include "sysdep.h"
330 #include "bfd.h"
331 #include "libbfd.h"
332 #include "safe-ctype.h"
333 #include "bfdlink.h"
334 #include "aout/stab_gnu.h"
335 
336 /*
337 DOCDD
338 INODE
339 symbol handling functions,  , typedef asymbol, Symbols
340 SUBSECTION
341 	Symbol handling functions
342 */
343 
344 /*
345 FUNCTION
346 	bfd_get_symtab_upper_bound
347 
348 DESCRIPTION
349 	Return the number of bytes required to store a vector of pointers
350 	to <<asymbols>> for all the symbols in the BFD @var{abfd},
351 	including a terminal NULL pointer. If there are no symbols in
352 	the BFD, then return 0.  If an error occurs, return -1.
353 
354 .#define bfd_get_symtab_upper_bound(abfd) \
355 .     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
356 .
357 */
358 
359 /*
360 FUNCTION
361 	bfd_is_local_label
362 
363 SYNOPSIS
364         bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365 
366 DESCRIPTION
367 	Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368 	a compiler generated local label, else return FALSE.
369 */
370 
371 bfd_boolean
372 bfd_is_local_label (bfd *abfd, asymbol *sym)
373 {
374   /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375      starts with '.' is local.  This would accidentally catch section names
376      if we didn't reject them here.  */
377   if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
378     return FALSE;
379   if (sym->name == NULL)
380     return FALSE;
381   return bfd_is_local_label_name (abfd, sym->name);
382 }
383 
384 /*
385 FUNCTION
386 	bfd_is_local_label_name
387 
388 SYNOPSIS
389         bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390 
391 DESCRIPTION
392 	Return TRUE if a symbol with the name @var{name} in the BFD
393 	@var{abfd} is a compiler generated local label, else return
394 	FALSE.  This just checks whether the name has the form of a
395 	local label.
396 
397 .#define bfd_is_local_label_name(abfd, name) \
398 .  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
399 .
400 */
401 
402 /*
403 FUNCTION
404 	bfd_is_target_special_symbol
405 
406 SYNOPSIS
407         bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408 
409 DESCRIPTION
410 	Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411 	special to the particular target represented by the BFD.  Such symbols
412 	should normally not be mentioned to the user.
413 
414 .#define bfd_is_target_special_symbol(abfd, sym) \
415 .  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
416 .
417 */
418 
419 /*
420 FUNCTION
421 	bfd_canonicalize_symtab
422 
423 DESCRIPTION
424 	Read the symbols from the BFD @var{abfd}, and fills in
425 	the vector @var{location} with pointers to the symbols and
426 	a trailing NULL.
427 	Return the actual number of symbol pointers, not
428 	including the NULL.
429 
430 .#define bfd_canonicalize_symtab(abfd, location) \
431 .  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
432 .
433 */
434 
435 /*
436 FUNCTION
437 	bfd_set_symtab
438 
439 SYNOPSIS
440 	bfd_boolean bfd_set_symtab
441 	  (bfd *abfd, asymbol **location, unsigned int count);
442 
443 DESCRIPTION
444 	Arrange that when the output BFD @var{abfd} is closed,
445 	the table @var{location} of @var{count} pointers to symbols
446 	will be written.
447 */
448 
449 bfd_boolean
450 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
451 {
452   if (abfd->format != bfd_object || bfd_read_p (abfd))
453     {
454       bfd_set_error (bfd_error_invalid_operation);
455       return FALSE;
456     }
457 
458   bfd_get_outsymbols (abfd) = location;
459   bfd_get_symcount (abfd) = symcount;
460   return TRUE;
461 }
462 
463 /*
464 FUNCTION
465 	bfd_print_symbol_vandf
466 
467 SYNOPSIS
468 	void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469 
470 DESCRIPTION
471 	Print the value and flags of the @var{symbol} supplied to the
472 	stream @var{file}.
473 */
474 void
475 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476 {
477   FILE *file = (FILE *) arg;
478 
479   flagword type = symbol->flags;
480 
481   if (symbol->section != NULL)
482     bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
483   else
484     bfd_fprintf_vma (abfd, file, symbol->value);
485 
486   /* This presumes that a symbol can not be both BSF_DEBUGGING and
487      BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488      BSF_OBJECT.  */
489   fprintf (file, " %c%c%c%c%c%c%c",
490 	   ((type & BSF_LOCAL)
491 	    ? (type & BSF_GLOBAL) ? '!' : 'l'
492 	    : (type & BSF_GLOBAL) ? 'g'
493 	    : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
494 	   (type & BSF_WEAK) ? 'w' : ' ',
495 	   (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
496 	   (type & BSF_WARNING) ? 'W' : ' ',
497 	   (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
498 	   (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
499 	   ((type & BSF_FUNCTION)
500 	    ? 'F'
501 	    : ((type & BSF_FILE)
502 	       ? 'f'
503 	       : ((type & BSF_OBJECT) ? 'O' : ' '))));
504 }
505 
506 /*
507 FUNCTION
508 	bfd_make_empty_symbol
509 
510 DESCRIPTION
511 	Create a new <<asymbol>> structure for the BFD @var{abfd}
512 	and return a pointer to it.
513 
514 	This routine is necessary because each back end has private
515 	information surrounding the <<asymbol>>. Building your own
516 	<<asymbol>> and pointing to it will not create the private
517 	information, and will cause problems later on.
518 
519 .#define bfd_make_empty_symbol(abfd) \
520 .  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
521 .
522 */
523 
524 /*
525 FUNCTION
526 	_bfd_generic_make_empty_symbol
527 
528 SYNOPSIS
529 	asymbol *_bfd_generic_make_empty_symbol (bfd *);
530 
531 DESCRIPTION
532 	Create a new <<asymbol>> structure for the BFD @var{abfd}
533 	and return a pointer to it.  Used by core file routines,
534 	binary back-end and anywhere else where no private info
535 	is needed.
536 */
537 
538 asymbol *
539 _bfd_generic_make_empty_symbol (bfd *abfd)
540 {
541   bfd_size_type amt = sizeof (asymbol);
542   asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
543   if (new_symbol)
544     new_symbol->the_bfd = abfd;
545   return new_symbol;
546 }
547 
548 /*
549 FUNCTION
550 	bfd_make_debug_symbol
551 
552 DESCRIPTION
553 	Create a new <<asymbol>> structure for the BFD @var{abfd},
554 	to be used as a debugging symbol.  Further details of its use have
555 	yet to be worked out.
556 
557 .#define bfd_make_debug_symbol(abfd,ptr,size) \
558 .  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
559 .
560 */
561 
562 struct section_to_type
563 {
564   const char *section;
565   char type;
566 };
567 
568 /* Map section names to POSIX/BSD single-character symbol types.
569    This table is probably incomplete.  It is sorted for convenience of
570    adding entries.  Since it is so short, a linear search is used.  */
571 static const struct section_to_type stt[] =
572 {
573   {".bss", 'b'},
574   {"code", 't'},		/* MRI .text */
575   {".data", 'd'},
576   {"*DEBUG*", 'N'},
577   {".debug", 'N'},              /* MSVC's .debug (non-standard debug syms) */
578   {".drectve", 'i'},            /* MSVC's .drective section */
579   {".edata", 'e'},              /* MSVC's .edata (export) section */
580   {".fini", 't'},		/* ELF fini section */
581   {".idata", 'i'},              /* MSVC's .idata (import) section */
582   {".init", 't'},		/* ELF init section */
583   {".pdata", 'p'},              /* MSVC's .pdata (stack unwind) section */
584   {".rdata", 'r'},		/* Read only data.  */
585   {".rodata", 'r'},		/* Read only data.  */
586   {".sbss", 's'},		/* Small BSS (uninitialized data).  */
587   {".scommon", 'c'},		/* Small common.  */
588   {".sdata", 'g'},		/* Small initialized data.  */
589   {".text", 't'},
590   {"vars", 'd'},		/* MRI .data */
591   {"zerovars", 'b'},		/* MRI .bss */
592   {0, 0}
593 };
594 
595 /* Return the single-character symbol type corresponding to
596    section S, or '?' for an unknown COFF section.
597 
598    Check for any leading string which matches, so .text5 returns
599    't' as well as .text */
600 
601 static char
602 coff_section_type (const char *s)
603 {
604   const struct section_to_type *t;
605 
606   for (t = &stt[0]; t->section; t++)
607     if (!strncmp (s, t->section, strlen (t->section)))
608       return t->type;
609 
610   return '?';
611 }
612 
613 /* Return the single-character symbol type corresponding to section
614    SECTION, or '?' for an unknown section.  This uses section flags to
615    identify sections.
616 
617    FIXME These types are unhandled: c, i, e, p.  If we handled these also,
618    we could perhaps obsolete coff_section_type.  */
619 
620 static char
621 decode_section_type (const struct bfd_section *section)
622 {
623   if (section->flags & SEC_CODE)
624     return 't';
625   if (section->flags & SEC_DATA)
626     {
627       if (section->flags & SEC_READONLY)
628 	return 'r';
629       else if (section->flags & SEC_SMALL_DATA)
630 	return 'g';
631       else
632 	return 'd';
633     }
634   if ((section->flags & SEC_HAS_CONTENTS) == 0)
635     {
636       if (section->flags & SEC_SMALL_DATA)
637 	return 's';
638       else
639 	return 'b';
640     }
641   if (section->flags & SEC_DEBUGGING)
642     return 'N';
643   if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
644     return 'n';
645 
646   return '?';
647 }
648 
649 /*
650 FUNCTION
651 	bfd_decode_symclass
652 
653 DESCRIPTION
654 	Return a character corresponding to the symbol
655 	class of @var{symbol}, or '?' for an unknown class.
656 
657 SYNOPSIS
658 	int bfd_decode_symclass (asymbol *symbol);
659 */
660 int
661 bfd_decode_symclass (asymbol *symbol)
662 {
663   char c;
664 
665   if (symbol->section && bfd_is_com_section (symbol->section))
666     return 'C';
667   if (bfd_is_und_section (symbol->section))
668     {
669       if (symbol->flags & BSF_WEAK)
670 	{
671 	  /* If weak, determine if it's specifically an object
672 	     or non-object weak.  */
673 	  if (symbol->flags & BSF_OBJECT)
674 	    return 'v';
675 	  else
676 	    return 'w';
677 	}
678       else
679 	return 'U';
680     }
681   if (bfd_is_ind_section (symbol->section))
682     return 'I';
683   if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
684     return 'i';
685   if (symbol->flags & BSF_WEAK)
686     {
687       /* If weak, determine if it's specifically an object
688 	 or non-object weak.  */
689       if (symbol->flags & BSF_OBJECT)
690 	return 'V';
691       else
692 	return 'W';
693     }
694   if (symbol->flags & BSF_GNU_UNIQUE)
695     return 'u';
696   if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
697     return '?';
698 
699   if (bfd_is_abs_section (symbol->section))
700     c = 'a';
701   else if (symbol->section)
702     {
703       c = coff_section_type (symbol->section->name);
704       if (c == '?')
705 	c = decode_section_type (symbol->section);
706     }
707   else
708     return '?';
709   if (symbol->flags & BSF_GLOBAL)
710     c = TOUPPER (c);
711   return c;
712 
713   /* We don't have to handle these cases just yet, but we will soon:
714      N_SETV: 'v';
715      N_SETA: 'l';
716      N_SETT: 'x';
717      N_SETD: 'z';
718      N_SETB: 's';
719      N_INDR: 'i';
720      */
721 }
722 
723 /*
724 FUNCTION
725 	bfd_is_undefined_symclass
726 
727 DESCRIPTION
728 	Returns non-zero if the class symbol returned by
729 	bfd_decode_symclass represents an undefined symbol.
730 	Returns zero otherwise.
731 
732 SYNOPSIS
733 	bfd_boolean bfd_is_undefined_symclass (int symclass);
734 */
735 
736 bfd_boolean
737 bfd_is_undefined_symclass (int symclass)
738 {
739   return symclass == 'U' || symclass == 'w' || symclass == 'v';
740 }
741 
742 /*
743 FUNCTION
744 	bfd_symbol_info
745 
746 DESCRIPTION
747 	Fill in the basic info about symbol that nm needs.
748 	Additional info may be added by the back-ends after
749 	calling this function.
750 
751 SYNOPSIS
752 	void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
753 */
754 
755 void
756 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
757 {
758   ret->type = bfd_decode_symclass (symbol);
759 
760   if (bfd_is_undefined_symclass (ret->type))
761     ret->value = 0;
762   else
763     ret->value = symbol->value + symbol->section->vma;
764 
765   ret->name = symbol->name;
766 }
767 
768 /*
769 FUNCTION
770 	bfd_copy_private_symbol_data
771 
772 SYNOPSIS
773 	bfd_boolean bfd_copy_private_symbol_data
774 	  (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
775 
776 DESCRIPTION
777 	Copy private symbol information from @var{isym} in the BFD
778 	@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
779 	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
780 	returns are:
781 
782 	o <<bfd_error_no_memory>> -
783 	Not enough memory exists to create private data for @var{osec}.
784 
785 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
786 .  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
787 .            (ibfd, isymbol, obfd, osymbol))
788 .
789 */
790 
791 /* The generic version of the function which returns mini symbols.
792    This is used when the backend does not provide a more efficient
793    version.  It just uses BFD asymbol structures as mini symbols.  */
794 
795 long
796 _bfd_generic_read_minisymbols (bfd *abfd,
797 			       bfd_boolean dynamic,
798 			       void **minisymsp,
799 			       unsigned int *sizep)
800 {
801   long storage;
802   asymbol **syms = NULL;
803   long symcount;
804 
805   if (dynamic)
806     storage = bfd_get_dynamic_symtab_upper_bound (abfd);
807   else
808     storage = bfd_get_symtab_upper_bound (abfd);
809   if (storage < 0)
810     goto error_return;
811   if (storage == 0)
812     return 0;
813 
814   syms = (asymbol **) bfd_malloc (storage);
815   if (syms == NULL)
816     goto error_return;
817 
818   if (dynamic)
819     symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
820   else
821     symcount = bfd_canonicalize_symtab (abfd, syms);
822   if (symcount < 0)
823     goto error_return;
824 
825   *minisymsp = syms;
826   *sizep = sizeof (asymbol *);
827 
828   return symcount;
829 
830  error_return:
831   bfd_set_error (bfd_error_no_symbols);
832   if (syms != NULL)
833     free (syms);
834   return -1;
835 }
836 
837 /* The generic version of the function which converts a minisymbol to
838    an asymbol.  We don't worry about the sym argument we are passed;
839    we just return the asymbol the minisymbol points to.  */
840 
841 asymbol *
842 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
843 				   bfd_boolean dynamic ATTRIBUTE_UNUSED,
844 				   const void *minisym,
845 				   asymbol *sym ATTRIBUTE_UNUSED)
846 {
847   return *(asymbol **) minisym;
848 }
849 
850 /* Look through stabs debugging information in .stab and .stabstr
851    sections to find the source file and line closest to a desired
852    location.  This is used by COFF and ELF targets.  It sets *pfound
853    to TRUE if it finds some information.  The *pinfo field is used to
854    pass cached information in and out of this routine; this first time
855    the routine is called for a BFD, *pinfo should be NULL.  The value
856    placed in *pinfo should be saved with the BFD, and passed back each
857    time this function is called.  */
858 
859 /* We use a cache by default.  */
860 
861 #define ENABLE_CACHING
862 
863 /* We keep an array of indexentry structures to record where in the
864    stabs section we should look to find line number information for a
865    particular address.  */
866 
867 struct indexentry
868 {
869   bfd_vma val;
870   bfd_byte *stab;
871   bfd_byte *str;
872   char *directory_name;
873   char *file_name;
874   char *function_name;
875 };
876 
877 /* Compare two indexentry structures.  This is called via qsort.  */
878 
879 static int
880 cmpindexentry (const void *a, const void *b)
881 {
882   const struct indexentry *contestantA = (const struct indexentry *) a;
883   const struct indexentry *contestantB = (const struct indexentry *) b;
884 
885   if (contestantA->val < contestantB->val)
886     return -1;
887   else if (contestantA->val > contestantB->val)
888     return 1;
889   else
890     return 0;
891 }
892 
893 /* A pointer to this structure is stored in *pinfo.  */
894 
895 struct stab_find_info
896 {
897   /* The .stab section.  */
898   asection *stabsec;
899   /* The .stabstr section.  */
900   asection *strsec;
901   /* The contents of the .stab section.  */
902   bfd_byte *stabs;
903   /* The contents of the .stabstr section.  */
904   bfd_byte *strs;
905 
906   /* A table that indexes stabs by memory address.  */
907   struct indexentry *indextable;
908   /* The number of entries in indextable.  */
909   int indextablesize;
910 
911 #ifdef ENABLE_CACHING
912   /* Cached values to restart quickly.  */
913   struct indexentry *cached_indexentry;
914   bfd_vma cached_offset;
915   bfd_byte *cached_stab;
916   char *cached_file_name;
917 #endif
918 
919   /* Saved ptr to malloc'ed filename.  */
920   char *filename;
921 };
922 
923 bfd_boolean
924 _bfd_stab_section_find_nearest_line (bfd *abfd,
925 				     asymbol **symbols,
926 				     asection *section,
927 				     bfd_vma offset,
928 				     bfd_boolean *pfound,
929 				     const char **pfilename,
930 				     const char **pfnname,
931 				     unsigned int *pline,
932 				     void **pinfo)
933 {
934   struct stab_find_info *info;
935   bfd_size_type stabsize, strsize;
936   bfd_byte *stab, *str;
937   bfd_byte *nul_fun, *nul_str;
938   bfd_size_type stroff;
939   struct indexentry *indexentry;
940   char *file_name;
941   char *directory_name;
942   bfd_boolean saw_line, saw_func;
943 
944   *pfound = FALSE;
945   *pfilename = bfd_get_filename (abfd);
946   *pfnname = NULL;
947   *pline = 0;
948 
949   /* Stabs entries use a 12 byte format:
950        4 byte string table index
951        1 byte stab type
952        1 byte stab other field
953        2 byte stab desc field
954        4 byte stab value
955      FIXME: This will have to change for a 64 bit object format.
956 
957      The stabs symbols are divided into compilation units.  For the
958      first entry in each unit, the type of 0, the value is the length
959      of the string table for this unit, and the desc field is the
960      number of stabs symbols for this unit.  */
961 
962 #define STRDXOFF (0)
963 #define TYPEOFF (4)
964 #define OTHEROFF (5)
965 #define DESCOFF (6)
966 #define VALOFF (8)
967 #define STABSIZE (12)
968 
969   info = (struct stab_find_info *) *pinfo;
970   if (info != NULL)
971     {
972       if (info->stabsec == NULL || info->strsec == NULL)
973 	{
974 	  /* No stabs debugging information.  */
975 	  return TRUE;
976 	}
977 
978       stabsize = (info->stabsec->rawsize
979 		  ? info->stabsec->rawsize
980 		  : info->stabsec->size);
981       strsize = (info->strsec->rawsize
982 		 ? info->strsec->rawsize
983 		 : info->strsec->size);
984     }
985   else
986     {
987       long reloc_size, reloc_count;
988       arelent **reloc_vector;
989       int i;
990       char *function_name;
991       bfd_size_type amt = sizeof *info;
992 
993       info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
994       if (info == NULL)
995 	return FALSE;
996 
997       /* FIXME: When using the linker --split-by-file or
998 	 --split-by-reloc options, it is possible for the .stab and
999 	 .stabstr sections to be split.  We should handle that.  */
1000 
1001       info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1002       info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1003 
1004       if (info->stabsec == NULL || info->strsec == NULL)
1005 	{
1006 	  /* Try SOM section names.  */
1007 	  info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1008 	  info->strsec  = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1009 
1010 	  if (info->stabsec == NULL || info->strsec == NULL)
1011 	    {
1012 	      /* No stabs debugging information.  Set *pinfo so that we
1013 		 can return quickly in the info != NULL case above.  */
1014 	      *pinfo = info;
1015 	      return TRUE;
1016 	    }
1017 	}
1018 
1019       stabsize = (info->stabsec->rawsize
1020 		  ? info->stabsec->rawsize
1021 		  : info->stabsec->size);
1022       stabsize = (stabsize / STABSIZE) * STABSIZE;
1023       strsize = (info->strsec->rawsize
1024 		 ? info->strsec->rawsize
1025 		 : info->strsec->size);
1026 
1027       info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1028       info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1029       if (info->stabs == NULL || info->strs == NULL)
1030 	return FALSE;
1031 
1032       if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1033 				      0, stabsize)
1034 	  || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1035 					 0, strsize))
1036 	return FALSE;
1037 
1038       /* If this is a relocatable object file, we have to relocate
1039 	 the entries in .stab.  This should always be simple 32 bit
1040 	 relocations against symbols defined in this object file, so
1041 	 this should be no big deal.  */
1042       reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1043       if (reloc_size < 0)
1044 	return FALSE;
1045       reloc_vector = (arelent **) bfd_malloc (reloc_size);
1046       if (reloc_vector == NULL && reloc_size != 0)
1047 	return FALSE;
1048       reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1049 					    symbols);
1050       if (reloc_count < 0)
1051 	{
1052 	  if (reloc_vector != NULL)
1053 	    free (reloc_vector);
1054 	  return FALSE;
1055 	}
1056       if (reloc_count > 0)
1057 	{
1058 	  arelent **pr;
1059 
1060 	  for (pr = reloc_vector; *pr != NULL; pr++)
1061 	    {
1062 	      arelent *r;
1063 	      unsigned long val;
1064 	      asymbol *sym;
1065 
1066 	      r = *pr;
1067 	      /* Ignore R_*_NONE relocs.  */
1068 	      if (r->howto->dst_mask == 0)
1069 		continue;
1070 
1071 	      if (r->howto->rightshift != 0
1072 		  || r->howto->size != 2
1073 		  || r->howto->bitsize != 32
1074 		  || r->howto->pc_relative
1075 		  || r->howto->bitpos != 0
1076 		  || r->howto->dst_mask != 0xffffffff)
1077 		{
1078 		  (*_bfd_error_handler)
1079 		    (_("Unsupported .stab relocation"));
1080 		  bfd_set_error (bfd_error_invalid_operation);
1081 		  if (reloc_vector != NULL)
1082 		    free (reloc_vector);
1083 		  return FALSE;
1084 		}
1085 
1086 	      val = bfd_get_32 (abfd, info->stabs
1087 				+ r->address * bfd_octets_per_byte (abfd));
1088 	      val &= r->howto->src_mask;
1089 	      sym = *r->sym_ptr_ptr;
1090 	      val += sym->value + sym->section->vma + r->addend;
1091 	      bfd_put_32 (abfd, (bfd_vma) val, info->stabs
1092 			  + r->address * bfd_octets_per_byte (abfd));
1093 	    }
1094 	}
1095 
1096       if (reloc_vector != NULL)
1097 	free (reloc_vector);
1098 
1099       /* First time through this function, build a table matching
1100 	 function VM addresses to stabs, then sort based on starting
1101 	 VM address.  Do this in two passes: once to count how many
1102 	 table entries we'll need, and a second to actually build the
1103 	 table.  */
1104 
1105       info->indextablesize = 0;
1106       nul_fun = NULL;
1107       for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1108 	{
1109 	  if (stab[TYPEOFF] == (bfd_byte) N_SO)
1110 	    {
1111 	      /* if we did not see a function def, leave space for one.  */
1112 	      if (nul_fun != NULL)
1113 		++info->indextablesize;
1114 
1115 	      /* N_SO with null name indicates EOF */
1116 	      if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1117 		nul_fun = NULL;
1118 	      else
1119 		{
1120 		  nul_fun = stab;
1121 
1122 		  /* two N_SO's in a row is a filename and directory. Skip */
1123 		  if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1124 		      && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1125 		    stab += STABSIZE;
1126 		}
1127 	    }
1128 	  else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1129 		   && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1130 	    {
1131 	      nul_fun = NULL;
1132 	      ++info->indextablesize;
1133 	    }
1134 	}
1135 
1136       if (nul_fun != NULL)
1137 	++info->indextablesize;
1138 
1139       if (info->indextablesize == 0)
1140 	return TRUE;
1141       ++info->indextablesize;
1142 
1143       amt = info->indextablesize;
1144       amt *= sizeof (struct indexentry);
1145       info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1146       if (info->indextable == NULL)
1147 	return FALSE;
1148 
1149       file_name = NULL;
1150       directory_name = NULL;
1151       nul_fun = NULL;
1152       stroff = 0;
1153 
1154       for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1155 	   i < info->indextablesize && stab < info->stabs + stabsize;
1156 	   stab += STABSIZE)
1157 	{
1158 	  switch (stab[TYPEOFF])
1159 	    {
1160 	    case 0:
1161 	      /* This is the first entry in a compilation unit.  */
1162 	      if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1163 		break;
1164 	      str += stroff;
1165 	      stroff = bfd_get_32 (abfd, stab + VALOFF);
1166 	      break;
1167 
1168 	    case N_SO:
1169 	      /* The main file name.  */
1170 
1171 	      /* The following code creates a new indextable entry with
1172 	         a NULL function name if there were no N_FUNs in a file.
1173 	         Note that a N_SO without a file name is an EOF and
1174 	         there could be 2 N_SO following it with the new filename
1175 	         and directory.  */
1176 	      if (nul_fun != NULL)
1177 		{
1178 		  info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1179 		  info->indextable[i].stab = nul_fun;
1180 		  info->indextable[i].str = nul_str;
1181 		  info->indextable[i].directory_name = directory_name;
1182 		  info->indextable[i].file_name = file_name;
1183 		  info->indextable[i].function_name = NULL;
1184 		  ++i;
1185 		}
1186 
1187 	      directory_name = NULL;
1188 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1189 	      if (file_name == (char *) str)
1190 		{
1191 		  file_name = NULL;
1192 		  nul_fun = NULL;
1193 		}
1194 	      else
1195 		{
1196 		  nul_fun = stab;
1197 		  nul_str = str;
1198 		  if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1199 		    file_name = NULL;
1200 		  if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1201 		      && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1202 		    {
1203 		      /* Two consecutive N_SOs are a directory and a
1204 			 file name.  */
1205 		      stab += STABSIZE;
1206 		      directory_name = file_name;
1207 		      file_name = ((char *) str
1208 				   + bfd_get_32 (abfd, stab + STRDXOFF));
1209 		      if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1210 			file_name = NULL;
1211 		    }
1212 		}
1213 	      break;
1214 
1215 	    case N_SOL:
1216 	      /* The name of an include file.  */
1217 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1218 	      /* PR 17512: file: 0c680a1f.  */
1219 	      /* PR 17512: file: 5da8aec4.  */
1220 	      if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1221 		file_name = NULL;
1222 	      break;
1223 
1224 	    case N_FUN:
1225 	      /* A function name.  */
1226 	      function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1227 	      if (function_name == (char *) str)
1228 		continue;
1229 	      if (function_name >= (char *) info->strs + strsize)
1230 		function_name = NULL;
1231 
1232 	      nul_fun = NULL;
1233 	      info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1234 	      info->indextable[i].stab = stab;
1235 	      info->indextable[i].str = str;
1236 	      info->indextable[i].directory_name = directory_name;
1237 	      info->indextable[i].file_name = file_name;
1238 	      info->indextable[i].function_name = function_name;
1239 	      ++i;
1240 	      break;
1241 	    }
1242 	}
1243 
1244       if (nul_fun != NULL)
1245 	{
1246 	  info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1247 	  info->indextable[i].stab = nul_fun;
1248 	  info->indextable[i].str = nul_str;
1249 	  info->indextable[i].directory_name = directory_name;
1250 	  info->indextable[i].file_name = file_name;
1251 	  info->indextable[i].function_name = NULL;
1252 	  ++i;
1253 	}
1254 
1255       info->indextable[i].val = (bfd_vma) -1;
1256       info->indextable[i].stab = info->stabs + stabsize;
1257       info->indextable[i].str = str;
1258       info->indextable[i].directory_name = NULL;
1259       info->indextable[i].file_name = NULL;
1260       info->indextable[i].function_name = NULL;
1261       ++i;
1262 
1263       info->indextablesize = i;
1264       qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1265 	     cmpindexentry);
1266 
1267       *pinfo = info;
1268     }
1269 
1270   /* We are passed a section relative offset.  The offsets in the
1271      stabs information are absolute.  */
1272   offset += bfd_get_section_vma (abfd, section);
1273 
1274 #ifdef ENABLE_CACHING
1275   if (info->cached_indexentry != NULL
1276       && offset >= info->cached_offset
1277       && offset < (info->cached_indexentry + 1)->val)
1278     {
1279       stab = info->cached_stab;
1280       indexentry = info->cached_indexentry;
1281       file_name = info->cached_file_name;
1282     }
1283   else
1284 #endif
1285     {
1286       long low, high;
1287       long mid = -1;
1288 
1289       /* Cache non-existent or invalid.  Do binary search on
1290          indextable.  */
1291       indexentry = NULL;
1292 
1293       low = 0;
1294       high = info->indextablesize - 1;
1295       while (low != high)
1296 	{
1297 	  mid = (high + low) / 2;
1298 	  if (offset >= info->indextable[mid].val
1299 	      && offset < info->indextable[mid + 1].val)
1300 	    {
1301 	      indexentry = &info->indextable[mid];
1302 	      break;
1303 	    }
1304 
1305 	  if (info->indextable[mid].val > offset)
1306 	    high = mid;
1307 	  else
1308 	    low = mid + 1;
1309 	}
1310 
1311       if (indexentry == NULL)
1312 	return TRUE;
1313 
1314       stab = indexentry->stab + STABSIZE;
1315       file_name = indexentry->file_name;
1316     }
1317 
1318   directory_name = indexentry->directory_name;
1319   str = indexentry->str;
1320 
1321   saw_line = FALSE;
1322   saw_func = FALSE;
1323   for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1324     {
1325       bfd_boolean done;
1326       bfd_vma val;
1327 
1328       done = FALSE;
1329 
1330       switch (stab[TYPEOFF])
1331 	{
1332 	case N_SOL:
1333 	  /* The name of an include file.  */
1334 	  val = bfd_get_32 (abfd, stab + VALOFF);
1335 	  if (val <= offset)
1336 	    {
1337 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1338 	      if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1339 		file_name = NULL;
1340 	      *pline = 0;
1341 	    }
1342 	  break;
1343 
1344 	case N_SLINE:
1345 	case N_DSLINE:
1346 	case N_BSLINE:
1347 	  /* A line number.  If the function was specified, then the value
1348 	     is relative to the start of the function.  Otherwise, the
1349 	     value is an absolute address.  */
1350 	  val = ((indexentry->function_name ? indexentry->val : 0)
1351 		 + bfd_get_32 (abfd, stab + VALOFF));
1352 	  /* If this line starts before our desired offset, or if it's
1353 	     the first line we've been able to find, use it.  The
1354 	     !saw_line check works around a bug in GCC 2.95.3, which emits
1355 	     the first N_SLINE late.  */
1356 	  if (!saw_line || val <= offset)
1357 	    {
1358 	      *pline = bfd_get_16 (abfd, stab + DESCOFF);
1359 
1360 #ifdef ENABLE_CACHING
1361 	      info->cached_stab = stab;
1362 	      info->cached_offset = val;
1363 	      info->cached_file_name = file_name;
1364 	      info->cached_indexentry = indexentry;
1365 #endif
1366 	    }
1367 	  if (val > offset)
1368 	    done = TRUE;
1369 	  saw_line = TRUE;
1370 	  break;
1371 
1372 	case N_FUN:
1373 	case N_SO:
1374 	  if (saw_func || saw_line)
1375 	    done = TRUE;
1376 	  saw_func = TRUE;
1377 	  break;
1378 	}
1379 
1380       if (done)
1381 	break;
1382     }
1383 
1384   *pfound = TRUE;
1385 
1386   if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1387       || directory_name == NULL)
1388     *pfilename = file_name;
1389   else
1390     {
1391       size_t dirlen;
1392 
1393       dirlen = strlen (directory_name);
1394       if (info->filename == NULL
1395 	  || filename_ncmp (info->filename, directory_name, dirlen) != 0
1396 	  || filename_cmp (info->filename + dirlen, file_name) != 0)
1397 	{
1398 	  size_t len;
1399 
1400 	  /* Don't free info->filename here.  objdump and other
1401 	     apps keep a copy of a previously returned file name
1402 	     pointer.  */
1403 	  len = strlen (file_name) + 1;
1404 	  info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1405 	  if (info->filename == NULL)
1406 	    return FALSE;
1407 	  memcpy (info->filename, directory_name, dirlen);
1408 	  memcpy (info->filename + dirlen, file_name, len);
1409 	}
1410 
1411       *pfilename = info->filename;
1412     }
1413 
1414   if (indexentry->function_name != NULL)
1415     {
1416       char *s;
1417 
1418       /* This will typically be something like main:F(0,1), so we want
1419          to clobber the colon.  It's OK to change the name, since the
1420          string is in our own local storage anyhow.  */
1421       s = strchr (indexentry->function_name, ':');
1422       if (s != NULL)
1423 	*s = '\0';
1424 
1425       *pfnname = indexentry->function_name;
1426     }
1427 
1428   return TRUE;
1429 }
1430