1*a9fa9459Szrj@c Copyright (C) 1991-2016 Free Software Foundation, Inc.
2*a9fa9459Szrj@c This is part of the GAS manual.
3*a9fa9459Szrj@c For copying conditions, see the file as.texinfo.
4*a9fa9459Szrj@c man end
5*a9fa9459Szrj
6*a9fa9459Szrj@ifset GENERIC
7*a9fa9459Szrj@page
8*a9fa9459Szrj@node i386-Dependent
9*a9fa9459Szrj@chapter 80386 Dependent Features
10*a9fa9459Szrj@end ifset
11*a9fa9459Szrj@ifclear GENERIC
12*a9fa9459Szrj@node Machine Dependencies
13*a9fa9459Szrj@chapter 80386 Dependent Features
14*a9fa9459Szrj@end ifclear
15*a9fa9459Szrj
16*a9fa9459Szrj@cindex i386 support
17*a9fa9459Szrj@cindex i80386 support
18*a9fa9459Szrj@cindex x86-64 support
19*a9fa9459Szrj
20*a9fa9459SzrjThe i386 version @code{@value{AS}} supports both the original Intel 386
21*a9fa9459Szrjarchitecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22*a9fa9459Szrjextending the Intel architecture to 64-bits.
23*a9fa9459Szrj
24*a9fa9459Szrj@menu
25*a9fa9459Szrj* i386-Options::                Options
26*a9fa9459Szrj* i386-Directives::             X86 specific directives
27*a9fa9459Szrj* i386-Syntax::                 Syntactical considerations
28*a9fa9459Szrj* i386-Mnemonics::              Instruction Naming
29*a9fa9459Szrj* i386-Regs::                   Register Naming
30*a9fa9459Szrj* i386-Prefixes::               Instruction Prefixes
31*a9fa9459Szrj* i386-Memory::                 Memory References
32*a9fa9459Szrj* i386-Jumps::                  Handling of Jump Instructions
33*a9fa9459Szrj* i386-Float::                  Floating Point
34*a9fa9459Szrj* i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
35*a9fa9459Szrj* i386-LWP::                    AMD's Lightweight Profiling Instructions
36*a9fa9459Szrj* i386-BMI::                    Bit Manipulation Instruction
37*a9fa9459Szrj* i386-TBM::                    AMD's Trailing Bit Manipulation Instructions
38*a9fa9459Szrj* i386-16bit::                  Writing 16-bit Code
39*a9fa9459Szrj* i386-Arch::                   Specifying an x86 CPU architecture
40*a9fa9459Szrj* i386-Bugs::                   AT&T Syntax bugs
41*a9fa9459Szrj* i386-Notes::                  Notes
42*a9fa9459Szrj@end menu
43*a9fa9459Szrj
44*a9fa9459Szrj@node i386-Options
45*a9fa9459Szrj@section Options
46*a9fa9459Szrj
47*a9fa9459Szrj@cindex options for i386
48*a9fa9459Szrj@cindex options for x86-64
49*a9fa9459Szrj@cindex i386 options
50*a9fa9459Szrj@cindex x86-64 options
51*a9fa9459Szrj
52*a9fa9459SzrjThe i386 version of @code{@value{AS}} has a few machine
53*a9fa9459Szrjdependent options:
54*a9fa9459Szrj
55*a9fa9459Szrj@c man begin OPTIONS
56*a9fa9459Szrj@table @gcctabopt
57*a9fa9459Szrj@cindex @samp{--32} option, i386
58*a9fa9459Szrj@cindex @samp{--32} option, x86-64
59*a9fa9459Szrj@cindex @samp{--x32} option, i386
60*a9fa9459Szrj@cindex @samp{--x32} option, x86-64
61*a9fa9459Szrj@cindex @samp{--64} option, i386
62*a9fa9459Szrj@cindex @samp{--64} option, x86-64
63*a9fa9459Szrj@item --32 | --x32 | --64
64*a9fa9459SzrjSelect the word size, either 32 bits or 64 bits.  @samp{--32}
65*a9fa9459Szrjimplies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66*a9fa9459Szrjimply AMD x86-64 architecture with 32-bit or 64-bit word-size
67*a9fa9459Szrjrespectively.
68*a9fa9459Szrj
69*a9fa9459SzrjThese options are only available with the ELF object file format, and
70*a9fa9459Szrjrequire that the necessary BFD support has been included (on a 32-bit
71*a9fa9459Szrjplatform you have to add --enable-64-bit-bfd to configure enable 64-bit
72*a9fa9459Szrjusage and use x86-64 as target platform).
73*a9fa9459Szrj
74*a9fa9459Szrj@item -n
75*a9fa9459SzrjBy default, x86 GAS replaces multiple nop instructions used for
76*a9fa9459Szrjalignment within code sections with multi-byte nop instructions such
77*a9fa9459Szrjas leal 0(%esi,1),%esi.  This switch disables the optimization.
78*a9fa9459Szrj
79*a9fa9459Szrj@cindex @samp{--divide} option, i386
80*a9fa9459Szrj@item --divide
81*a9fa9459SzrjOn SVR4-derived platforms, the character @samp{/} is treated as a comment
82*a9fa9459Szrjcharacter, which means that it cannot be used in expressions.  The
83*a9fa9459Szrj@samp{--divide} option turns @samp{/} into a normal character.  This does
84*a9fa9459Szrjnot disable @samp{/} at the beginning of a line starting a comment, or
85*a9fa9459Szrjaffect using @samp{#} for starting a comment.
86*a9fa9459Szrj
87*a9fa9459Szrj@cindex @samp{-march=} option, i386
88*a9fa9459Szrj@cindex @samp{-march=} option, x86-64
89*a9fa9459Szrj@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90*a9fa9459SzrjThis option specifies the target processor.  The assembler will
91*a9fa9459Szrjissue an error message if an attempt is made to assemble an instruction
92*a9fa9459Szrjwhich will not execute on the target processor.  The following
93*a9fa9459Szrjprocessor names are recognized:
94*a9fa9459Szrj@code{i8086},
95*a9fa9459Szrj@code{i186},
96*a9fa9459Szrj@code{i286},
97*a9fa9459Szrj@code{i386},
98*a9fa9459Szrj@code{i486},
99*a9fa9459Szrj@code{i586},
100*a9fa9459Szrj@code{i686},
101*a9fa9459Szrj@code{pentium},
102*a9fa9459Szrj@code{pentiumpro},
103*a9fa9459Szrj@code{pentiumii},
104*a9fa9459Szrj@code{pentiumiii},
105*a9fa9459Szrj@code{pentium4},
106*a9fa9459Szrj@code{prescott},
107*a9fa9459Szrj@code{nocona},
108*a9fa9459Szrj@code{core},
109*a9fa9459Szrj@code{core2},
110*a9fa9459Szrj@code{corei7},
111*a9fa9459Szrj@code{l1om},
112*a9fa9459Szrj@code{k1om},
113*a9fa9459Szrj@code{iamcu},
114*a9fa9459Szrj@code{k6},
115*a9fa9459Szrj@code{k6_2},
116*a9fa9459Szrj@code{athlon},
117*a9fa9459Szrj@code{opteron},
118*a9fa9459Szrj@code{k8},
119*a9fa9459Szrj@code{amdfam10},
120*a9fa9459Szrj@code{bdver1},
121*a9fa9459Szrj@code{bdver2},
122*a9fa9459Szrj@code{bdver3},
123*a9fa9459Szrj@code{bdver4},
124*a9fa9459Szrj@code{znver1},
125*a9fa9459Szrj@code{btver1},
126*a9fa9459Szrj@code{btver2},
127*a9fa9459Szrj@code{generic32} and
128*a9fa9459Szrj@code{generic64}.
129*a9fa9459Szrj
130*a9fa9459SzrjIn addition to the basic instruction set, the assembler can be told to
131*a9fa9459Szrjaccept various extension mnemonics.  For example,
132*a9fa9459Szrj@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133*a9fa9459Szrj@var{vmx}.  The following extensions are currently supported:
134*a9fa9459Szrj@code{8087},
135*a9fa9459Szrj@code{287},
136*a9fa9459Szrj@code{387},
137*a9fa9459Szrj@code{687},
138*a9fa9459Szrj@code{no87},
139*a9fa9459Szrj@code{no287},
140*a9fa9459Szrj@code{no387},
141*a9fa9459Szrj@code{no687},
142*a9fa9459Szrj@code{mmx},
143*a9fa9459Szrj@code{nommx},
144*a9fa9459Szrj@code{sse},
145*a9fa9459Szrj@code{sse2},
146*a9fa9459Szrj@code{sse3},
147*a9fa9459Szrj@code{ssse3},
148*a9fa9459Szrj@code{sse4.1},
149*a9fa9459Szrj@code{sse4.2},
150*a9fa9459Szrj@code{sse4},
151*a9fa9459Szrj@code{nosse},
152*a9fa9459Szrj@code{nosse2},
153*a9fa9459Szrj@code{nosse3},
154*a9fa9459Szrj@code{nossse3},
155*a9fa9459Szrj@code{nosse4.1},
156*a9fa9459Szrj@code{nosse4.2},
157*a9fa9459Szrj@code{nosse4},
158*a9fa9459Szrj@code{avx},
159*a9fa9459Szrj@code{avx2},
160*a9fa9459Szrj@code{noavx},
161*a9fa9459Szrj@code{noavx2},
162*a9fa9459Szrj@code{adx},
163*a9fa9459Szrj@code{rdseed},
164*a9fa9459Szrj@code{prfchw},
165*a9fa9459Szrj@code{smap},
166*a9fa9459Szrj@code{mpx},
167*a9fa9459Szrj@code{sha},
168*a9fa9459Szrj@code{rdpid},
169*a9fa9459Szrj@code{prefetchwt1},
170*a9fa9459Szrj@code{clflushopt},
171*a9fa9459Szrj@code{se1},
172*a9fa9459Szrj@code{clwb},
173*a9fa9459Szrj@code{pcommit},
174*a9fa9459Szrj@code{avx512f},
175*a9fa9459Szrj@code{avx512cd},
176*a9fa9459Szrj@code{avx512er},
177*a9fa9459Szrj@code{avx512pf},
178*a9fa9459Szrj@code{avx512vl},
179*a9fa9459Szrj@code{avx512bw},
180*a9fa9459Szrj@code{avx512dq},
181*a9fa9459Szrj@code{avx512ifma},
182*a9fa9459Szrj@code{avx512vbmi},
183*a9fa9459Szrj@code{noavx512f},
184*a9fa9459Szrj@code{noavx512cd},
185*a9fa9459Szrj@code{noavx512er},
186*a9fa9459Szrj@code{noavx512pf},
187*a9fa9459Szrj@code{noavx512vl},
188*a9fa9459Szrj@code{noavx512bw},
189*a9fa9459Szrj@code{noavx512dq},
190*a9fa9459Szrj@code{noavx512ifma},
191*a9fa9459Szrj@code{noavx512vbmi},
192*a9fa9459Szrj@code{vmx},
193*a9fa9459Szrj@code{vmfunc},
194*a9fa9459Szrj@code{smx},
195*a9fa9459Szrj@code{xsave},
196*a9fa9459Szrj@code{xsaveopt},
197*a9fa9459Szrj@code{xsavec},
198*a9fa9459Szrj@code{xsaves},
199*a9fa9459Szrj@code{aes},
200*a9fa9459Szrj@code{pclmul},
201*a9fa9459Szrj@code{fsgsbase},
202*a9fa9459Szrj@code{rdrnd},
203*a9fa9459Szrj@code{f16c},
204*a9fa9459Szrj@code{bmi2},
205*a9fa9459Szrj@code{fma},
206*a9fa9459Szrj@code{movbe},
207*a9fa9459Szrj@code{ept},
208*a9fa9459Szrj@code{lzcnt},
209*a9fa9459Szrj@code{hle},
210*a9fa9459Szrj@code{rtm},
211*a9fa9459Szrj@code{invpcid},
212*a9fa9459Szrj@code{clflush},
213*a9fa9459Szrj@code{mwaitx},
214*a9fa9459Szrj@code{clzero},
215*a9fa9459Szrj@code{lwp},
216*a9fa9459Szrj@code{fma4},
217*a9fa9459Szrj@code{xop},
218*a9fa9459Szrj@code{cx16},
219*a9fa9459Szrj@code{syscall},
220*a9fa9459Szrj@code{rdtscp},
221*a9fa9459Szrj@code{3dnow},
222*a9fa9459Szrj@code{3dnowa},
223*a9fa9459Szrj@code{sse4a},
224*a9fa9459Szrj@code{sse5},
225*a9fa9459Szrj@code{svme},
226*a9fa9459Szrj@code{abm} and
227*a9fa9459Szrj@code{padlock}.
228*a9fa9459SzrjNote that rather than extending a basic instruction set, the extension
229*a9fa9459Szrjmnemonics starting with @code{no} revoke the respective functionality.
230*a9fa9459Szrj
231*a9fa9459SzrjWhen the @code{.arch} directive is used with @option{-march}, the
232*a9fa9459Szrj@code{.arch} directive will take precedent.
233*a9fa9459Szrj
234*a9fa9459Szrj@cindex @samp{-mtune=} option, i386
235*a9fa9459Szrj@cindex @samp{-mtune=} option, x86-64
236*a9fa9459Szrj@item -mtune=@var{CPU}
237*a9fa9459SzrjThis option specifies a processor to optimize for. When used in
238*a9fa9459Szrjconjunction with the @option{-march} option, only instructions
239*a9fa9459Szrjof the processor specified by the @option{-march} option will be
240*a9fa9459Szrjgenerated.
241*a9fa9459Szrj
242*a9fa9459SzrjValid @var{CPU} values are identical to the processor list of
243*a9fa9459Szrj@option{-march=@var{CPU}}.
244*a9fa9459Szrj
245*a9fa9459Szrj@cindex @samp{-msse2avx} option, i386
246*a9fa9459Szrj@cindex @samp{-msse2avx} option, x86-64
247*a9fa9459Szrj@item -msse2avx
248*a9fa9459SzrjThis option specifies that the assembler should encode SSE instructions
249*a9fa9459Szrjwith VEX prefix.
250*a9fa9459Szrj
251*a9fa9459Szrj@cindex @samp{-msse-check=} option, i386
252*a9fa9459Szrj@cindex @samp{-msse-check=} option, x86-64
253*a9fa9459Szrj@item -msse-check=@var{none}
254*a9fa9459Szrj@itemx -msse-check=@var{warning}
255*a9fa9459Szrj@itemx -msse-check=@var{error}
256*a9fa9459SzrjThese options control if the assembler should check SSE instructions.
257*a9fa9459Szrj@option{-msse-check=@var{none}} will make the assembler not to check SSE
258*a9fa9459Szrjinstructions,  which is the default.  @option{-msse-check=@var{warning}}
259*a9fa9459Szrjwill make the assembler issue a warning for any SSE instruction.
260*a9fa9459Szrj@option{-msse-check=@var{error}} will make the assembler issue an error
261*a9fa9459Szrjfor any SSE instruction.
262*a9fa9459Szrj
263*a9fa9459Szrj@cindex @samp{-mavxscalar=} option, i386
264*a9fa9459Szrj@cindex @samp{-mavxscalar=} option, x86-64
265*a9fa9459Szrj@item -mavxscalar=@var{128}
266*a9fa9459Szrj@itemx -mavxscalar=@var{256}
267*a9fa9459SzrjThese options control how the assembler should encode scalar AVX
268*a9fa9459Szrjinstructions.  @option{-mavxscalar=@var{128}} will encode scalar
269*a9fa9459SzrjAVX instructions with 128bit vector length, which is the default.
270*a9fa9459Szrj@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
271*a9fa9459Szrjwith 256bit vector length.
272*a9fa9459Szrj
273*a9fa9459Szrj@cindex @samp{-mevexlig=} option, i386
274*a9fa9459Szrj@cindex @samp{-mevexlig=} option, x86-64
275*a9fa9459Szrj@item -mevexlig=@var{128}
276*a9fa9459Szrj@itemx -mevexlig=@var{256}
277*a9fa9459Szrj@itemx -mevexlig=@var{512}
278*a9fa9459SzrjThese options control how the assembler should encode length-ignored
279*a9fa9459Szrj(LIG) EVEX instructions.  @option{-mevexlig=@var{128}} will encode LIG
280*a9fa9459SzrjEVEX instructions with 128bit vector length, which is the default.
281*a9fa9459Szrj@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
282*a9fa9459Szrjencode LIG EVEX instructions with 256bit and 512bit vector length,
283*a9fa9459Szrjrespectively.
284*a9fa9459Szrj
285*a9fa9459Szrj@cindex @samp{-mevexwig=} option, i386
286*a9fa9459Szrj@cindex @samp{-mevexwig=} option, x86-64
287*a9fa9459Szrj@item -mevexwig=@var{0}
288*a9fa9459Szrj@itemx -mevexwig=@var{1}
289*a9fa9459SzrjThese options control how the assembler should encode w-ignored (WIG)
290*a9fa9459SzrjEVEX instructions.  @option{-mevexwig=@var{0}} will encode WIG
291*a9fa9459SzrjEVEX instructions with evex.w = 0, which is the default.
292*a9fa9459Szrj@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
293*a9fa9459Szrjevex.w = 1.
294*a9fa9459Szrj
295*a9fa9459Szrj@cindex @samp{-mmnemonic=} option, i386
296*a9fa9459Szrj@cindex @samp{-mmnemonic=} option, x86-64
297*a9fa9459Szrj@item -mmnemonic=@var{att}
298*a9fa9459Szrj@itemx -mmnemonic=@var{intel}
299*a9fa9459SzrjThis option specifies instruction mnemonic for matching instructions.
300*a9fa9459SzrjThe @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
301*a9fa9459Szrjtake precedent.
302*a9fa9459Szrj
303*a9fa9459Szrj@cindex @samp{-msyntax=} option, i386
304*a9fa9459Szrj@cindex @samp{-msyntax=} option, x86-64
305*a9fa9459Szrj@item -msyntax=@var{att}
306*a9fa9459Szrj@itemx -msyntax=@var{intel}
307*a9fa9459SzrjThis option specifies instruction syntax when processing instructions.
308*a9fa9459SzrjThe @code{.att_syntax} and @code{.intel_syntax} directives will
309*a9fa9459Szrjtake precedent.
310*a9fa9459Szrj
311*a9fa9459Szrj@cindex @samp{-mnaked-reg} option, i386
312*a9fa9459Szrj@cindex @samp{-mnaked-reg} option, x86-64
313*a9fa9459Szrj@item -mnaked-reg
314*a9fa9459SzrjThis opetion specifies that registers don't require a @samp{%} prefix.
315*a9fa9459SzrjThe @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
316*a9fa9459Szrj
317*a9fa9459Szrj@cindex @samp{-madd-bnd-prefix} option, i386
318*a9fa9459Szrj@cindex @samp{-madd-bnd-prefix} option, x86-64
319*a9fa9459Szrj@item -madd-bnd-prefix
320*a9fa9459SzrjThis option forces the assembler to add BND prefix to all branches, even
321*a9fa9459Szrjif such prefix was not explicitly specified in the source code.
322*a9fa9459Szrj
323*a9fa9459Szrj@cindex @samp{-mshared} option, i386
324*a9fa9459Szrj@cindex @samp{-mshared} option, x86-64
325*a9fa9459Szrj@item -mno-shared
326*a9fa9459SzrjOn ELF target, the assembler normally optimizes out non-PLT relocations
327*a9fa9459Szrjagainst defined non-weak global branch targets with default visibility.
328*a9fa9459SzrjThe @samp{-mshared} option tells the assembler to generate code which
329*a9fa9459Szrjmay go into a shared library where all non-weak global branch targets
330*a9fa9459Szrjwith default visibility can be preempted.  The resulting code is
331*a9fa9459Szrjslightly bigger.  This option only affects the handling of branch
332*a9fa9459Szrjinstructions.
333*a9fa9459Szrj
334*a9fa9459Szrj@cindex @samp{-mbig-obj} option, x86-64
335*a9fa9459Szrj@item -mbig-obj
336*a9fa9459SzrjOn x86-64 PE/COFF target this option forces the use of big object file
337*a9fa9459Szrjformat, which allows more than 32768 sections.
338*a9fa9459Szrj
339*a9fa9459Szrj@cindex @samp{-momit-lock-prefix=} option, i386
340*a9fa9459Szrj@cindex @samp{-momit-lock-prefix=} option, x86-64
341*a9fa9459Szrj@item -momit-lock-prefix=@var{no}
342*a9fa9459Szrj@itemx -momit-lock-prefix=@var{yes}
343*a9fa9459SzrjThese options control how the assembler should encode lock prefix.
344*a9fa9459SzrjThis option is intended as a workaround for processors, that fail on
345*a9fa9459Szrjlock prefix. This option can only be safely used with single-core,
346*a9fa9459Szrjsingle-thread computers
347*a9fa9459Szrj@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
348*a9fa9459Szrj@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
349*a9fa9459Szrjwhich is the default.
350*a9fa9459Szrj
351*a9fa9459Szrj@cindex @samp{-mfence-as-lock-add=} option, i386
352*a9fa9459Szrj@cindex @samp{-mfence-as-lock-add=} option, x86-64
353*a9fa9459Szrj@item -mfence-as-lock-add=@var{no}
354*a9fa9459Szrj@itemx -mfence-as-lock-add=@var{yes}
355*a9fa9459SzrjThese options control how the assembler should encode lfence, mfence and
356*a9fa9459Szrjsfence.
357*a9fa9459Szrj@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
358*a9fa9459Szrjsfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
359*a9fa9459Szrj@samp{lock addl $0x0, (%esp)} in 32-bit mode.
360*a9fa9459Szrj@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
361*a9fa9459Szrjsfence as usual, which is the default.
362*a9fa9459Szrj
363*a9fa9459Szrj@cindex @samp{-mrelax-relocations=} option, i386
364*a9fa9459Szrj@cindex @samp{-mrelax-relocations=} option, x86-64
365*a9fa9459Szrj@item -mrelax-relocations=@var{no}
366*a9fa9459Szrj@itemx -mrelax-relocations=@var{yes}
367*a9fa9459SzrjThese options control whether the assembler should generate relax
368*a9fa9459Szrjrelocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
369*a9fa9459SzrjR_X86_64_REX_GOTPCRELX, in 64-bit mode.
370*a9fa9459Szrj@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
371*a9fa9459Szrj@option{-mrelax-relocations=@var{no}} will not generate relax
372*a9fa9459Szrjrelocations.  The default can be controlled by a configure option
373*a9fa9459Szrj@option{--enable-x86-relax-relocations}.
374*a9fa9459Szrj
375*a9fa9459Szrj@cindex @samp{-mevexrcig=} option, i386
376*a9fa9459Szrj@cindex @samp{-mevexrcig=} option, x86-64
377*a9fa9459Szrj@item -mevexrcig=@var{rne}
378*a9fa9459Szrj@itemx -mevexrcig=@var{rd}
379*a9fa9459Szrj@itemx -mevexrcig=@var{ru}
380*a9fa9459Szrj@itemx -mevexrcig=@var{rz}
381*a9fa9459SzrjThese options control how the assembler should encode SAE-only
382*a9fa9459SzrjEVEX instructions.  @option{-mevexrcig=@var{rne}} will encode RC bits
383*a9fa9459Szrjof EVEX instruction with 00, which is the default.
384*a9fa9459Szrj@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
385*a9fa9459Szrjand @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
386*a9fa9459Szrjwith 01, 10 and 11 RC bits, respectively.
387*a9fa9459Szrj
388*a9fa9459Szrj@cindex @samp{-mamd64} option, x86-64
389*a9fa9459Szrj@cindex @samp{-mintel64} option, x86-64
390*a9fa9459Szrj@item -mamd64
391*a9fa9459Szrj@itemx -mintel64
392*a9fa9459SzrjThis option specifies that the assembler should accept only AMD64 or
393*a9fa9459SzrjIntel64 ISA in 64-bit mode.  The default is to accept both.
394*a9fa9459Szrj
395*a9fa9459Szrj@end table
396*a9fa9459Szrj@c man end
397*a9fa9459Szrj
398*a9fa9459Szrj@node i386-Directives
399*a9fa9459Szrj@section x86 specific Directives
400*a9fa9459Szrj
401*a9fa9459Szrj@cindex machine directives, x86
402*a9fa9459Szrj@cindex x86 machine directives
403*a9fa9459Szrj@table @code
404*a9fa9459Szrj
405*a9fa9459Szrj@cindex @code{lcomm} directive, COFF
406*a9fa9459Szrj@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
407*a9fa9459SzrjReserve @var{length} (an absolute expression) bytes for a local common
408*a9fa9459Szrjdenoted by @var{symbol}.  The section and value of @var{symbol} are
409*a9fa9459Szrjthose of the new local common.  The addresses are allocated in the bss
410*a9fa9459Szrjsection, so that at run-time the bytes start off zeroed.  Since
411*a9fa9459Szrj@var{symbol} is not declared global, it is normally not visible to
412*a9fa9459Szrj@code{@value{LD}}.  The optional third parameter, @var{alignment},
413*a9fa9459Szrjspecifies the desired alignment of the symbol in the bss section.
414*a9fa9459Szrj
415*a9fa9459SzrjThis directive is only available for COFF based x86 targets.
416*a9fa9459Szrj
417*a9fa9459Szrj@c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
418*a9fa9459Szrj@c .largecomm
419*a9fa9459Szrj
420*a9fa9459Szrj@end table
421*a9fa9459Szrj
422*a9fa9459Szrj@node i386-Syntax
423*a9fa9459Szrj@section i386 Syntactical Considerations
424*a9fa9459Szrj@menu
425*a9fa9459Szrj* i386-Variations::           AT&T Syntax versus Intel Syntax
426*a9fa9459Szrj* i386-Chars::                Special Characters
427*a9fa9459Szrj@end menu
428*a9fa9459Szrj
429*a9fa9459Szrj@node i386-Variations
430*a9fa9459Szrj@subsection AT&T Syntax versus Intel Syntax
431*a9fa9459Szrj
432*a9fa9459Szrj@cindex i386 intel_syntax pseudo op
433*a9fa9459Szrj@cindex intel_syntax pseudo op, i386
434*a9fa9459Szrj@cindex i386 att_syntax pseudo op
435*a9fa9459Szrj@cindex att_syntax pseudo op, i386
436*a9fa9459Szrj@cindex i386 syntax compatibility
437*a9fa9459Szrj@cindex syntax compatibility, i386
438*a9fa9459Szrj@cindex x86-64 intel_syntax pseudo op
439*a9fa9459Szrj@cindex intel_syntax pseudo op, x86-64
440*a9fa9459Szrj@cindex x86-64 att_syntax pseudo op
441*a9fa9459Szrj@cindex att_syntax pseudo op, x86-64
442*a9fa9459Szrj@cindex x86-64 syntax compatibility
443*a9fa9459Szrj@cindex syntax compatibility, x86-64
444*a9fa9459Szrj
445*a9fa9459Szrj@code{@value{AS}} now supports assembly using Intel assembler syntax.
446*a9fa9459Szrj@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
447*a9fa9459Szrjback to the usual AT&T mode for compatibility with the output of
448*a9fa9459Szrj@code{@value{GCC}}.  Either of these directives may have an optional
449*a9fa9459Szrjargument, @code{prefix}, or @code{noprefix} specifying whether registers
450*a9fa9459Szrjrequire a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
451*a9fa9459Szrjdifferent from Intel syntax.  We mention these differences because
452*a9fa9459Szrjalmost all 80386 documents use Intel syntax.  Notable differences
453*a9fa9459Szrjbetween the two syntaxes are:
454*a9fa9459Szrj
455*a9fa9459Szrj@cindex immediate operands, i386
456*a9fa9459Szrj@cindex i386 immediate operands
457*a9fa9459Szrj@cindex register operands, i386
458*a9fa9459Szrj@cindex i386 register operands
459*a9fa9459Szrj@cindex jump/call operands, i386
460*a9fa9459Szrj@cindex i386 jump/call operands
461*a9fa9459Szrj@cindex operand delimiters, i386
462*a9fa9459Szrj
463*a9fa9459Szrj@cindex immediate operands, x86-64
464*a9fa9459Szrj@cindex x86-64 immediate operands
465*a9fa9459Szrj@cindex register operands, x86-64
466*a9fa9459Szrj@cindex x86-64 register operands
467*a9fa9459Szrj@cindex jump/call operands, x86-64
468*a9fa9459Szrj@cindex x86-64 jump/call operands
469*a9fa9459Szrj@cindex operand delimiters, x86-64
470*a9fa9459Szrj@itemize @bullet
471*a9fa9459Szrj@item
472*a9fa9459SzrjAT&T immediate operands are preceded by @samp{$}; Intel immediate
473*a9fa9459Szrjoperands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
474*a9fa9459SzrjAT&T register operands are preceded by @samp{%}; Intel register operands
475*a9fa9459Szrjare undelimited.  AT&T absolute (as opposed to PC relative) jump/call
476*a9fa9459Szrjoperands are prefixed by @samp{*}; they are undelimited in Intel syntax.
477*a9fa9459Szrj
478*a9fa9459Szrj@cindex i386 source, destination operands
479*a9fa9459Szrj@cindex source, destination operands; i386
480*a9fa9459Szrj@cindex x86-64 source, destination operands
481*a9fa9459Szrj@cindex source, destination operands; x86-64
482*a9fa9459Szrj@item
483*a9fa9459SzrjAT&T and Intel syntax use the opposite order for source and destination
484*a9fa9459Szrjoperands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
485*a9fa9459Szrj@samp{source, dest} convention is maintained for compatibility with
486*a9fa9459Szrjprevious Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
487*a9fa9459Szrjinstructions with 2 immediate operands, such as the @samp{enter}
488*a9fa9459Szrjinstruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
489*a9fa9459Szrj
490*a9fa9459Szrj@cindex mnemonic suffixes, i386
491*a9fa9459Szrj@cindex sizes operands, i386
492*a9fa9459Szrj@cindex i386 size suffixes
493*a9fa9459Szrj@cindex mnemonic suffixes, x86-64
494*a9fa9459Szrj@cindex sizes operands, x86-64
495*a9fa9459Szrj@cindex x86-64 size suffixes
496*a9fa9459Szrj@item
497*a9fa9459SzrjIn AT&T syntax the size of memory operands is determined from the last
498*a9fa9459Szrjcharacter of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
499*a9fa9459Szrj@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
500*a9fa9459Szrj(32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
501*a9fa9459Szrjthis by prefixing memory operands (@emph{not} the instruction mnemonics) with
502*a9fa9459Szrj@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
503*a9fa9459SzrjIntel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
504*a9fa9459Szrjsyntax.
505*a9fa9459Szrj
506*a9fa9459SzrjIn 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
507*a9fa9459Szrjinstruction with the 64-bit displacement or immediate operand.
508*a9fa9459Szrj
509*a9fa9459Szrj@cindex return instructions, i386
510*a9fa9459Szrj@cindex i386 jump, call, return
511*a9fa9459Szrj@cindex return instructions, x86-64
512*a9fa9459Szrj@cindex x86-64 jump, call, return
513*a9fa9459Szrj@item
514*a9fa9459SzrjImmediate form long jumps and calls are
515*a9fa9459Szrj@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
516*a9fa9459SzrjIntel syntax is
517*a9fa9459Szrj@samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
518*a9fa9459Szrjinstruction
519*a9fa9459Szrjis @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
520*a9fa9459Szrj@samp{ret far @var{stack-adjust}}.
521*a9fa9459Szrj
522*a9fa9459Szrj@cindex sections, i386
523*a9fa9459Szrj@cindex i386 sections
524*a9fa9459Szrj@cindex sections, x86-64
525*a9fa9459Szrj@cindex x86-64 sections
526*a9fa9459Szrj@item
527*a9fa9459SzrjThe AT&T assembler does not provide support for multiple section
528*a9fa9459Szrjprograms.  Unix style systems expect all programs to be single sections.
529*a9fa9459Szrj@end itemize
530*a9fa9459Szrj
531*a9fa9459Szrj@node i386-Chars
532*a9fa9459Szrj@subsection Special Characters
533*a9fa9459Szrj
534*a9fa9459Szrj@cindex line comment character, i386
535*a9fa9459Szrj@cindex i386 line comment character
536*a9fa9459SzrjThe presence of a @samp{#} appearing anywhere on a line indicates the
537*a9fa9459Szrjstart of a comment that extends to the end of that line.
538*a9fa9459Szrj
539*a9fa9459SzrjIf a @samp{#} appears as the first character of a line then the whole
540*a9fa9459Szrjline is treated as a comment, but in this case the line can also be a
541*a9fa9459Szrjlogical line number directive (@pxref{Comments}) or a preprocessor
542*a9fa9459Szrjcontrol command (@pxref{Preprocessing}).
543*a9fa9459Szrj
544*a9fa9459SzrjIf the @option{--divide} command line option has not been specified
545*a9fa9459Szrjthen the @samp{/} character appearing anywhere on a line also
546*a9fa9459Szrjintroduces a line comment.
547*a9fa9459Szrj
548*a9fa9459Szrj@cindex line separator, i386
549*a9fa9459Szrj@cindex statement separator, i386
550*a9fa9459Szrj@cindex i386 line separator
551*a9fa9459SzrjThe @samp{;} character can be used to separate statements on the same
552*a9fa9459Szrjline.
553*a9fa9459Szrj
554*a9fa9459Szrj@node i386-Mnemonics
555*a9fa9459Szrj@section i386-Mnemonics
556*a9fa9459Szrj@subsection Instruction Naming
557*a9fa9459Szrj
558*a9fa9459Szrj@cindex i386 instruction naming
559*a9fa9459Szrj@cindex instruction naming, i386
560*a9fa9459Szrj@cindex x86-64 instruction naming
561*a9fa9459Szrj@cindex instruction naming, x86-64
562*a9fa9459Szrj
563*a9fa9459SzrjInstruction mnemonics are suffixed with one character modifiers which
564*a9fa9459Szrjspecify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
565*a9fa9459Szrjand @samp{q} specify byte, word, long and quadruple word operands.  If
566*a9fa9459Szrjno suffix is specified by an instruction then @code{@value{AS}} tries to
567*a9fa9459Szrjfill in the missing suffix based on the destination register operand
568*a9fa9459Szrj(the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
569*a9fa9459Szrjto @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
570*a9fa9459Szrj@samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
571*a9fa9459Szrjassembler which assumes that a missing mnemonic suffix implies long
572*a9fa9459Szrjoperand size.  (This incompatibility does not affect compiler output
573*a9fa9459Szrjsince compilers always explicitly specify the mnemonic suffix.)
574*a9fa9459Szrj
575*a9fa9459SzrjAlmost all instructions have the same names in AT&T and Intel format.
576*a9fa9459SzrjThere are a few exceptions.  The sign extend and zero extend
577*a9fa9459Szrjinstructions need two sizes to specify them.  They need a size to
578*a9fa9459Szrjsign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
579*a9fa9459Szrjis accomplished by using two instruction mnemonic suffixes in AT&T
580*a9fa9459Szrjsyntax.  Base names for sign extend and zero extend are
581*a9fa9459Szrj@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
582*a9fa9459Szrjand @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
583*a9fa9459Szrjare tacked on to this base name, the @emph{from} suffix before the
584*a9fa9459Szrj@emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
585*a9fa9459Szrj``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
586*a9fa9459Szrjthus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
587*a9fa9459Szrj@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
588*a9fa9459Szrj@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
589*a9fa9459Szrjquadruple word).
590*a9fa9459Szrj
591*a9fa9459Szrj@cindex encoding options, i386
592*a9fa9459Szrj@cindex encoding options, x86-64
593*a9fa9459Szrj
594*a9fa9459SzrjDifferent encoding options can be specified via optional mnemonic
595*a9fa9459Szrjsuffix.  @samp{.s} suffix swaps 2 register operands in encoding when
596*a9fa9459Szrjmoving from one register to another.  @samp{.d8} or @samp{.d32} suffix
597*a9fa9459Szrjprefers 8bit or 32bit displacement in encoding.
598*a9fa9459Szrj
599*a9fa9459Szrj@cindex conversion instructions, i386
600*a9fa9459Szrj@cindex i386 conversion instructions
601*a9fa9459Szrj@cindex conversion instructions, x86-64
602*a9fa9459Szrj@cindex x86-64 conversion instructions
603*a9fa9459SzrjThe Intel-syntax conversion instructions
604*a9fa9459Szrj
605*a9fa9459Szrj@itemize @bullet
606*a9fa9459Szrj@item
607*a9fa9459Szrj@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
608*a9fa9459Szrj
609*a9fa9459Szrj@item
610*a9fa9459Szrj@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
611*a9fa9459Szrj
612*a9fa9459Szrj@item
613*a9fa9459Szrj@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
614*a9fa9459Szrj
615*a9fa9459Szrj@item
616*a9fa9459Szrj@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
617*a9fa9459Szrj
618*a9fa9459Szrj@item
619*a9fa9459Szrj@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
620*a9fa9459Szrj(x86-64 only),
621*a9fa9459Szrj
622*a9fa9459Szrj@item
623*a9fa9459Szrj@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
624*a9fa9459Szrj@samp{%rdx:%rax} (x86-64 only),
625*a9fa9459Szrj@end itemize
626*a9fa9459Szrj
627*a9fa9459Szrj@noindent
628*a9fa9459Szrjare called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
629*a9fa9459Szrj@samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
630*a9fa9459Szrjinstructions.
631*a9fa9459Szrj
632*a9fa9459Szrj@cindex jump instructions, i386
633*a9fa9459Szrj@cindex call instructions, i386
634*a9fa9459Szrj@cindex jump instructions, x86-64
635*a9fa9459Szrj@cindex call instructions, x86-64
636*a9fa9459SzrjFar call/jump instructions are @samp{lcall} and @samp{ljmp} in
637*a9fa9459SzrjAT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
638*a9fa9459Szrjconvention.
639*a9fa9459Szrj
640*a9fa9459Szrj@subsection AT&T Mnemonic versus Intel Mnemonic
641*a9fa9459Szrj
642*a9fa9459Szrj@cindex i386 mnemonic compatibility
643*a9fa9459Szrj@cindex mnemonic compatibility, i386
644*a9fa9459Szrj
645*a9fa9459Szrj@code{@value{AS}} supports assembly using Intel mnemonic.
646*a9fa9459Szrj@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
647*a9fa9459Szrj@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
648*a9fa9459Szrjsyntax for compatibility with the output of @code{@value{GCC}}.
649*a9fa9459SzrjSeveral x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
650*a9fa9459Szrj@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
651*a9fa9459Szrj@samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
652*a9fa9459Szrjassembler with different mnemonics from those in Intel IA32 specification.
653*a9fa9459Szrj@code{@value{GCC}} generates those instructions with AT&T mnemonic.
654*a9fa9459Szrj
655*a9fa9459Szrj@node i386-Regs
656*a9fa9459Szrj@section Register Naming
657*a9fa9459Szrj
658*a9fa9459Szrj@cindex i386 registers
659*a9fa9459Szrj@cindex registers, i386
660*a9fa9459Szrj@cindex x86-64 registers
661*a9fa9459Szrj@cindex registers, x86-64
662*a9fa9459SzrjRegister operands are always prefixed with @samp{%}.  The 80386 registers
663*a9fa9459Szrjconsist of
664*a9fa9459Szrj
665*a9fa9459Szrj@itemize @bullet
666*a9fa9459Szrj@item
667*a9fa9459Szrjthe 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
668*a9fa9459Szrj@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
669*a9fa9459Szrjframe pointer), and @samp{%esp} (the stack pointer).
670*a9fa9459Szrj
671*a9fa9459Szrj@item
672*a9fa9459Szrjthe 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
673*a9fa9459Szrj@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
674*a9fa9459Szrj
675*a9fa9459Szrj@item
676*a9fa9459Szrjthe 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
677*a9fa9459Szrj@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
678*a9fa9459Szrjare the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
679*a9fa9459Szrj@samp{%cx}, and @samp{%dx})
680*a9fa9459Szrj
681*a9fa9459Szrj@item
682*a9fa9459Szrjthe 6 section registers @samp{%cs} (code section), @samp{%ds}
683*a9fa9459Szrj(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
684*a9fa9459Szrjand @samp{%gs}.
685*a9fa9459Szrj
686*a9fa9459Szrj@item
687*a9fa9459Szrjthe 5 processor control registers @samp{%cr0}, @samp{%cr2},
688*a9fa9459Szrj@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
689*a9fa9459Szrj
690*a9fa9459Szrj@item
691*a9fa9459Szrjthe 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
692*a9fa9459Szrj@samp{%db3}, @samp{%db6}, and @samp{%db7}.
693*a9fa9459Szrj
694*a9fa9459Szrj@item
695*a9fa9459Szrjthe 2 test registers @samp{%tr6} and @samp{%tr7}.
696*a9fa9459Szrj
697*a9fa9459Szrj@item
698*a9fa9459Szrjthe 8 floating point register stack @samp{%st} or equivalently
699*a9fa9459Szrj@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
700*a9fa9459Szrj@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
701*a9fa9459SzrjThese registers are overloaded by 8 MMX registers @samp{%mm0},
702*a9fa9459Szrj@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
703*a9fa9459Szrj@samp{%mm6} and @samp{%mm7}.
704*a9fa9459Szrj
705*a9fa9459Szrj@item
706*a9fa9459Szrjthe 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
707*a9fa9459Szrj@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
708*a9fa9459Szrj@end itemize
709*a9fa9459Szrj
710*a9fa9459SzrjThe AMD x86-64 architecture extends the register set by:
711*a9fa9459Szrj
712*a9fa9459Szrj@itemize @bullet
713*a9fa9459Szrj@item
714*a9fa9459Szrjenhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
715*a9fa9459Szrjaccumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
716*a9fa9459Szrj@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
717*a9fa9459Szrjpointer)
718*a9fa9459Szrj
719*a9fa9459Szrj@item
720*a9fa9459Szrjthe 8 extended registers @samp{%r8}--@samp{%r15}.
721*a9fa9459Szrj
722*a9fa9459Szrj@item
723*a9fa9459Szrjthe 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
724*a9fa9459Szrj
725*a9fa9459Szrj@item
726*a9fa9459Szrjthe 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
727*a9fa9459Szrj
728*a9fa9459Szrj@item
729*a9fa9459Szrjthe 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
730*a9fa9459Szrj
731*a9fa9459Szrj@item
732*a9fa9459Szrjthe 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
733*a9fa9459Szrj
734*a9fa9459Szrj@item
735*a9fa9459Szrjthe 8 debug registers: @samp{%db8}--@samp{%db15}.
736*a9fa9459Szrj
737*a9fa9459Szrj@item
738*a9fa9459Szrjthe 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
739*a9fa9459Szrj@end itemize
740*a9fa9459Szrj
741*a9fa9459SzrjWith the AVX extensions more registers were made available:
742*a9fa9459Szrj
743*a9fa9459Szrj@itemize @bullet
744*a9fa9459Szrj
745*a9fa9459Szrj@item
746*a9fa9459Szrjthe 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
747*a9fa9459Szrjavailable in 32-bit mode).  The bottom 128 bits are overlaid with the
748*a9fa9459Szrj@samp{xmm0}--@samp{xmm15} registers.
749*a9fa9459Szrj
750*a9fa9459Szrj@end itemize
751*a9fa9459Szrj
752*a9fa9459SzrjThe AVX2 extensions made in 64-bit mode more registers available:
753*a9fa9459Szrj
754*a9fa9459Szrj@itemize @bullet
755*a9fa9459Szrj
756*a9fa9459Szrj@item
757*a9fa9459Szrjthe 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
758*a9fa9459Szrjregisters @samp{%ymm16}--@samp{%ymm31}.
759*a9fa9459Szrj
760*a9fa9459Szrj@end itemize
761*a9fa9459Szrj
762*a9fa9459SzrjThe AVX512 extensions added the following registers:
763*a9fa9459Szrj
764*a9fa9459Szrj@itemize @bullet
765*a9fa9459Szrj
766*a9fa9459Szrj@item
767*a9fa9459Szrjthe 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
768*a9fa9459Szrjavailable in 32-bit mode).  The bottom 128 bits are overlaid with the
769*a9fa9459Szrj@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
770*a9fa9459Szrjoverlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
771*a9fa9459Szrj
772*a9fa9459Szrj@item
773*a9fa9459Szrjthe 8 mask registers @samp{%k0}--@samp{%k7}.
774*a9fa9459Szrj
775*a9fa9459Szrj@end itemize
776*a9fa9459Szrj
777*a9fa9459Szrj@node i386-Prefixes
778*a9fa9459Szrj@section Instruction Prefixes
779*a9fa9459Szrj
780*a9fa9459Szrj@cindex i386 instruction prefixes
781*a9fa9459Szrj@cindex instruction prefixes, i386
782*a9fa9459Szrj@cindex prefixes, i386
783*a9fa9459SzrjInstruction prefixes are used to modify the following instruction.  They
784*a9fa9459Szrjare used to repeat string instructions, to provide section overrides, to
785*a9fa9459Szrjperform bus lock operations, and to change operand and address sizes.
786*a9fa9459Szrj(Most instructions that normally operate on 32-bit operands will use
787*a9fa9459Szrj16-bit operands if the instruction has an ``operand size'' prefix.)
788*a9fa9459SzrjInstruction prefixes are best written on the same line as the instruction
789*a9fa9459Szrjthey act upon. For example, the @samp{scas} (scan string) instruction is
790*a9fa9459Szrjrepeated with:
791*a9fa9459Szrj
792*a9fa9459Szrj@smallexample
793*a9fa9459Szrj        repne scas %es:(%edi),%al
794*a9fa9459Szrj@end smallexample
795*a9fa9459Szrj
796*a9fa9459SzrjYou may also place prefixes on the lines immediately preceding the
797*a9fa9459Szrjinstruction, but this circumvents checks that @code{@value{AS}} does
798*a9fa9459Szrjwith prefixes, and will not work with all prefixes.
799*a9fa9459Szrj
800*a9fa9459SzrjHere is a list of instruction prefixes:
801*a9fa9459Szrj
802*a9fa9459Szrj@cindex section override prefixes, i386
803*a9fa9459Szrj@itemize @bullet
804*a9fa9459Szrj@item
805*a9fa9459SzrjSection override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
806*a9fa9459Szrj@samp{fs}, @samp{gs}.  These are automatically added by specifying
807*a9fa9459Szrjusing the @var{section}:@var{memory-operand} form for memory references.
808*a9fa9459Szrj
809*a9fa9459Szrj@cindex size prefixes, i386
810*a9fa9459Szrj@item
811*a9fa9459SzrjOperand/Address size prefixes @samp{data16} and @samp{addr16}
812*a9fa9459Szrjchange 32-bit operands/addresses into 16-bit operands/addresses,
813*a9fa9459Szrjwhile @samp{data32} and @samp{addr32} change 16-bit ones (in a
814*a9fa9459Szrj@code{.code16} section) into 32-bit operands/addresses.  These prefixes
815*a9fa9459Szrj@emph{must} appear on the same line of code as the instruction they
816*a9fa9459Szrjmodify. For example, in a 16-bit @code{.code16} section, you might
817*a9fa9459Szrjwrite:
818*a9fa9459Szrj
819*a9fa9459Szrj@smallexample
820*a9fa9459Szrj        addr32 jmpl *(%ebx)
821*a9fa9459Szrj@end smallexample
822*a9fa9459Szrj
823*a9fa9459Szrj@cindex bus lock prefixes, i386
824*a9fa9459Szrj@cindex inhibiting interrupts, i386
825*a9fa9459Szrj@item
826*a9fa9459SzrjThe bus lock prefix @samp{lock} inhibits interrupts during execution of
827*a9fa9459Szrjthe instruction it precedes.  (This is only valid with certain
828*a9fa9459Szrjinstructions; see a 80386 manual for details).
829*a9fa9459Szrj
830*a9fa9459Szrj@cindex coprocessor wait, i386
831*a9fa9459Szrj@item
832*a9fa9459SzrjThe wait for coprocessor prefix @samp{wait} waits for the coprocessor to
833*a9fa9459Szrjcomplete the current instruction.  This should never be needed for the
834*a9fa9459Szrj80386/80387 combination.
835*a9fa9459Szrj
836*a9fa9459Szrj@cindex repeat prefixes, i386
837*a9fa9459Szrj@item
838*a9fa9459SzrjThe @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
839*a9fa9459Szrjto string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
840*a9fa9459Szrjtimes if the current address size is 16-bits).
841*a9fa9459Szrj@cindex REX prefixes, i386
842*a9fa9459Szrj@item
843*a9fa9459SzrjThe @samp{rex} family of prefixes is used by x86-64 to encode
844*a9fa9459Szrjextensions to i386 instruction set.  The @samp{rex} prefix has four
845*a9fa9459Szrjbits --- an operand size overwrite (@code{64}) used to change operand size
846*a9fa9459Szrjfrom 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
847*a9fa9459Szrjregister set.
848*a9fa9459Szrj
849*a9fa9459SzrjYou may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
850*a9fa9459Szrjinstruction emits @samp{rex} prefix with all the bits set.  By omitting
851*a9fa9459Szrjthe @code{64}, @code{x}, @code{y} or @code{z} you may write other
852*a9fa9459Szrjprefixes as well.  Normally, there is no need to write the prefixes
853*a9fa9459Szrjexplicitly, since gas will automatically generate them based on the
854*a9fa9459Szrjinstruction operands.
855*a9fa9459Szrj@end itemize
856*a9fa9459Szrj
857*a9fa9459Szrj@node i386-Memory
858*a9fa9459Szrj@section Memory References
859*a9fa9459Szrj
860*a9fa9459Szrj@cindex i386 memory references
861*a9fa9459Szrj@cindex memory references, i386
862*a9fa9459Szrj@cindex x86-64 memory references
863*a9fa9459Szrj@cindex memory references, x86-64
864*a9fa9459SzrjAn Intel syntax indirect memory reference of the form
865*a9fa9459Szrj
866*a9fa9459Szrj@smallexample
867*a9fa9459Szrj@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
868*a9fa9459Szrj@end smallexample
869*a9fa9459Szrj
870*a9fa9459Szrj@noindent
871*a9fa9459Szrjis translated into the AT&T syntax
872*a9fa9459Szrj
873*a9fa9459Szrj@smallexample
874*a9fa9459Szrj@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
875*a9fa9459Szrj@end smallexample
876*a9fa9459Szrj
877*a9fa9459Szrj@noindent
878*a9fa9459Szrjwhere @var{base} and @var{index} are the optional 32-bit base and
879*a9fa9459Szrjindex registers, @var{disp} is the optional displacement, and
880*a9fa9459Szrj@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
881*a9fa9459Szrjto calculate the address of the operand.  If no @var{scale} is
882*a9fa9459Szrjspecified, @var{scale} is taken to be 1.  @var{section} specifies the
883*a9fa9459Szrjoptional section register for the memory operand, and may override the
884*a9fa9459Szrjdefault section register (see a 80386 manual for section register
885*a9fa9459Szrjdefaults). Note that section overrides in AT&T syntax @emph{must}
886*a9fa9459Szrjbe preceded by a @samp{%}.  If you specify a section override which
887*a9fa9459Szrjcoincides with the default section register, @code{@value{AS}} does @emph{not}
888*a9fa9459Szrjoutput any section register override prefixes to assemble the given
889*a9fa9459Szrjinstruction.  Thus, section overrides can be specified to emphasize which
890*a9fa9459Szrjsection register is used for a given memory operand.
891*a9fa9459Szrj
892*a9fa9459SzrjHere are some examples of Intel and AT&T style memory references:
893*a9fa9459Szrj
894*a9fa9459Szrj@table @asis
895*a9fa9459Szrj@item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
896*a9fa9459Szrj@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
897*a9fa9459Szrjmissing, and the default section is used (@samp{%ss} for addressing with
898*a9fa9459Szrj@samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
899*a9fa9459Szrj
900*a9fa9459Szrj@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
901*a9fa9459Szrj@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
902*a9fa9459Szrj@samp{foo}.  All other fields are missing.  The section register here
903*a9fa9459Szrjdefaults to @samp{%ds}.
904*a9fa9459Szrj
905*a9fa9459Szrj@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
906*a9fa9459SzrjThis uses the value pointed to by @samp{foo} as a memory operand.
907*a9fa9459SzrjNote that @var{base} and @var{index} are both missing, but there is only
908*a9fa9459Szrj@emph{one} @samp{,}.  This is a syntactic exception.
909*a9fa9459Szrj
910*a9fa9459Szrj@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
911*a9fa9459SzrjThis selects the contents of the variable @samp{foo} with section
912*a9fa9459Szrjregister @var{section} being @samp{%gs}.
913*a9fa9459Szrj@end table
914*a9fa9459Szrj
915*a9fa9459SzrjAbsolute (as opposed to PC relative) call and jump operands must be
916*a9fa9459Szrjprefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
917*a9fa9459Szrjalways chooses PC relative addressing for jump/call labels.
918*a9fa9459Szrj
919*a9fa9459SzrjAny instruction that has a memory operand, but no register operand,
920*a9fa9459Szrj@emph{must} specify its size (byte, word, long, or quadruple) with an
921*a9fa9459Szrjinstruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
922*a9fa9459Szrjrespectively).
923*a9fa9459Szrj
924*a9fa9459SzrjThe x86-64 architecture adds an RIP (instruction pointer relative)
925*a9fa9459Szrjaddressing.  This addressing mode is specified by using @samp{rip} as a
926*a9fa9459Szrjbase register.  Only constant offsets are valid. For example:
927*a9fa9459Szrj
928*a9fa9459Szrj@table @asis
929*a9fa9459Szrj@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
930*a9fa9459SzrjPoints to the address 1234 bytes past the end of the current
931*a9fa9459Szrjinstruction.
932*a9fa9459Szrj
933*a9fa9459Szrj@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
934*a9fa9459SzrjPoints to the @code{symbol} in RIP relative way, this is shorter than
935*a9fa9459Szrjthe default absolute addressing.
936*a9fa9459Szrj@end table
937*a9fa9459Szrj
938*a9fa9459SzrjOther addressing modes remain unchanged in x86-64 architecture, except
939*a9fa9459Szrjregisters used are 64-bit instead of 32-bit.
940*a9fa9459Szrj
941*a9fa9459Szrj@node i386-Jumps
942*a9fa9459Szrj@section Handling of Jump Instructions
943*a9fa9459Szrj
944*a9fa9459Szrj@cindex jump optimization, i386
945*a9fa9459Szrj@cindex i386 jump optimization
946*a9fa9459Szrj@cindex jump optimization, x86-64
947*a9fa9459Szrj@cindex x86-64 jump optimization
948*a9fa9459SzrjJump instructions are always optimized to use the smallest possible
949*a9fa9459Szrjdisplacements.  This is accomplished by using byte (8-bit) displacement
950*a9fa9459Szrjjumps whenever the target is sufficiently close.  If a byte displacement
951*a9fa9459Szrjis insufficient a long displacement is used.  We do not support
952*a9fa9459Szrjword (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
953*a9fa9459Szrjinstruction with the @samp{data16} instruction prefix), since the 80386
954*a9fa9459Szrjinsists upon masking @samp{%eip} to 16 bits after the word displacement
955*a9fa9459Szrjis added. (See also @pxref{i386-Arch})
956*a9fa9459Szrj
957*a9fa9459SzrjNote that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
958*a9fa9459Szrj@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
959*a9fa9459Szrjdisplacements, so that if you use these instructions (@code{@value{GCC}} does
960*a9fa9459Szrjnot use them) you may get an error message (and incorrect code).  The AT&T
961*a9fa9459Szrj80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
962*a9fa9459Szrjto
963*a9fa9459Szrj
964*a9fa9459Szrj@smallexample
965*a9fa9459Szrj         jcxz cx_zero
966*a9fa9459Szrj         jmp cx_nonzero
967*a9fa9459Szrjcx_zero: jmp foo
968*a9fa9459Szrjcx_nonzero:
969*a9fa9459Szrj@end smallexample
970*a9fa9459Szrj
971*a9fa9459Szrj@node i386-Float
972*a9fa9459Szrj@section Floating Point
973*a9fa9459Szrj
974*a9fa9459Szrj@cindex i386 floating point
975*a9fa9459Szrj@cindex floating point, i386
976*a9fa9459Szrj@cindex x86-64 floating point
977*a9fa9459Szrj@cindex floating point, x86-64
978*a9fa9459SzrjAll 80387 floating point types except packed BCD are supported.
979*a9fa9459Szrj(BCD support may be added without much difficulty).  These data
980*a9fa9459Szrjtypes are 16-, 32-, and 64- bit integers, and single (32-bit),
981*a9fa9459Szrjdouble (64-bit), and extended (80-bit) precision floating point.
982*a9fa9459SzrjEach supported type has an instruction mnemonic suffix and a constructor
983*a9fa9459Szrjassociated with it.  Instruction mnemonic suffixes specify the operand's
984*a9fa9459Szrjdata type.  Constructors build these data types into memory.
985*a9fa9459Szrj
986*a9fa9459Szrj@cindex @code{float} directive, i386
987*a9fa9459Szrj@cindex @code{single} directive, i386
988*a9fa9459Szrj@cindex @code{double} directive, i386
989*a9fa9459Szrj@cindex @code{tfloat} directive, i386
990*a9fa9459Szrj@cindex @code{float} directive, x86-64
991*a9fa9459Szrj@cindex @code{single} directive, x86-64
992*a9fa9459Szrj@cindex @code{double} directive, x86-64
993*a9fa9459Szrj@cindex @code{tfloat} directive, x86-64
994*a9fa9459Szrj@itemize @bullet
995*a9fa9459Szrj@item
996*a9fa9459SzrjFloating point constructors are @samp{.float} or @samp{.single},
997*a9fa9459Szrj@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
998*a9fa9459SzrjThese correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
999*a9fa9459Szrjand @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
1000*a9fa9459Szrjonly supports this format via the @samp{fldt} (load 80-bit real to stack
1001*a9fa9459Szrjtop) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1002*a9fa9459Szrj
1003*a9fa9459Szrj@cindex @code{word} directive, i386
1004*a9fa9459Szrj@cindex @code{long} directive, i386
1005*a9fa9459Szrj@cindex @code{int} directive, i386
1006*a9fa9459Szrj@cindex @code{quad} directive, i386
1007*a9fa9459Szrj@cindex @code{word} directive, x86-64
1008*a9fa9459Szrj@cindex @code{long} directive, x86-64
1009*a9fa9459Szrj@cindex @code{int} directive, x86-64
1010*a9fa9459Szrj@cindex @code{quad} directive, x86-64
1011*a9fa9459Szrj@item
1012*a9fa9459SzrjInteger constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1013*a9fa9459Szrj@samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
1014*a9fa9459Szrjcorresponding instruction mnemonic suffixes are @samp{s} (single),
1015*a9fa9459Szrj@samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
1016*a9fa9459Szrjthe 64-bit @samp{q} format is only present in the @samp{fildq} (load
1017*a9fa9459Szrjquad integer to stack top) and @samp{fistpq} (store quad integer and pop
1018*a9fa9459Szrjstack) instructions.
1019*a9fa9459Szrj@end itemize
1020*a9fa9459Szrj
1021*a9fa9459SzrjRegister to register operations should not use instruction mnemonic suffixes.
1022*a9fa9459Szrj@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1023*a9fa9459Szrjwrote @samp{fst %st, %st(1)}, since all register to register operations
1024*a9fa9459Szrjuse 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1025*a9fa9459Szrjwhich converts @samp{%st} from 80-bit to 64-bit floating point format,
1026*a9fa9459Szrjthen stores the result in the 4 byte location @samp{mem})
1027*a9fa9459Szrj
1028*a9fa9459Szrj@node i386-SIMD
1029*a9fa9459Szrj@section Intel's MMX and AMD's 3DNow! SIMD Operations
1030*a9fa9459Szrj
1031*a9fa9459Szrj@cindex MMX, i386
1032*a9fa9459Szrj@cindex 3DNow!, i386
1033*a9fa9459Szrj@cindex SIMD, i386
1034*a9fa9459Szrj@cindex MMX, x86-64
1035*a9fa9459Szrj@cindex 3DNow!, x86-64
1036*a9fa9459Szrj@cindex SIMD, x86-64
1037*a9fa9459Szrj
1038*a9fa9459Szrj@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1039*a9fa9459Szrjinstructions for integer data), available on Intel's Pentium MMX
1040*a9fa9459Szrjprocessors and Pentium II processors, AMD's K6 and K6-2 processors,
1041*a9fa9459SzrjCyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
1042*a9fa9459Szrjinstruction set (SIMD instructions for 32-bit floating point data)
1043*a9fa9459Szrjavailable on AMD's K6-2 processor and possibly others in the future.
1044*a9fa9459Szrj
1045*a9fa9459SzrjCurrently, @code{@value{AS}} does not support Intel's floating point
1046*a9fa9459SzrjSIMD, Katmai (KNI).
1047*a9fa9459Szrj
1048*a9fa9459SzrjThe eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1049*a9fa9459Szrj@samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
1050*a9fa9459Szrj16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1051*a9fa9459Szrjfloating point values.  The MMX registers cannot be used at the same time
1052*a9fa9459Szrjas the floating point stack.
1053*a9fa9459Szrj
1054*a9fa9459SzrjSee Intel and AMD documentation, keeping in mind that the operand order in
1055*a9fa9459Szrjinstructions is reversed from the Intel syntax.
1056*a9fa9459Szrj
1057*a9fa9459Szrj@node i386-LWP
1058*a9fa9459Szrj@section AMD's Lightweight Profiling Instructions
1059*a9fa9459Szrj
1060*a9fa9459Szrj@cindex LWP, i386
1061*a9fa9459Szrj@cindex LWP, x86-64
1062*a9fa9459Szrj
1063*a9fa9459Szrj@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1064*a9fa9459Szrjinstruction set, available on AMD's Family 15h (Orochi) processors.
1065*a9fa9459Szrj
1066*a9fa9459SzrjLWP enables applications to collect and manage performance data, and
1067*a9fa9459Szrjreact to performance events.  The collection of performance data
1068*a9fa9459Szrjrequires no context switches.  LWP runs in the context of a thread and
1069*a9fa9459Szrjso several counters can be used independently across multiple threads.
1070*a9fa9459SzrjLWP can be used in both 64-bit and legacy 32-bit modes.
1071*a9fa9459Szrj
1072*a9fa9459SzrjFor detailed information on the LWP instruction set, see the
1073*a9fa9459Szrj@cite{AMD Lightweight Profiling Specification} available at
1074*a9fa9459Szrj@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1075*a9fa9459Szrj
1076*a9fa9459Szrj@node i386-BMI
1077*a9fa9459Szrj@section Bit Manipulation Instructions
1078*a9fa9459Szrj
1079*a9fa9459Szrj@cindex BMI, i386
1080*a9fa9459Szrj@cindex BMI, x86-64
1081*a9fa9459Szrj
1082*a9fa9459Szrj@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1083*a9fa9459Szrj
1084*a9fa9459SzrjBMI instructions provide several instructions implementing individual
1085*a9fa9459Szrjbit manipulation operations such as isolation, masking, setting, or
1086*a9fa9459Szrjresetting.
1087*a9fa9459Szrj
1088*a9fa9459Szrj@c Need to add a specification citation here when available.
1089*a9fa9459Szrj
1090*a9fa9459Szrj@node i386-TBM
1091*a9fa9459Szrj@section AMD's Trailing Bit Manipulation Instructions
1092*a9fa9459Szrj
1093*a9fa9459Szrj@cindex TBM, i386
1094*a9fa9459Szrj@cindex TBM, x86-64
1095*a9fa9459Szrj
1096*a9fa9459Szrj@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1097*a9fa9459Szrjinstruction set, available on AMD's BDVER2 processors (Trinity and
1098*a9fa9459SzrjViperfish).
1099*a9fa9459Szrj
1100*a9fa9459SzrjTBM instructions provide instructions implementing individual bit
1101*a9fa9459Szrjmanipulation operations such as isolating, masking, setting, resetting,
1102*a9fa9459Szrjcomplementing, and operations on trailing zeros and ones.
1103*a9fa9459Szrj
1104*a9fa9459Szrj@c Need to add a specification citation here when available.
1105*a9fa9459Szrj
1106*a9fa9459Szrj@node i386-16bit
1107*a9fa9459Szrj@section Writing 16-bit Code
1108*a9fa9459Szrj
1109*a9fa9459Szrj@cindex i386 16-bit code
1110*a9fa9459Szrj@cindex 16-bit code, i386
1111*a9fa9459Szrj@cindex real-mode code, i386
1112*a9fa9459Szrj@cindex @code{code16gcc} directive, i386
1113*a9fa9459Szrj@cindex @code{code16} directive, i386
1114*a9fa9459Szrj@cindex @code{code32} directive, i386
1115*a9fa9459Szrj@cindex @code{code64} directive, i386
1116*a9fa9459Szrj@cindex @code{code64} directive, x86-64
1117*a9fa9459SzrjWhile @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1118*a9fa9459Szrjor 64-bit x86-64 code depending on the default configuration,
1119*a9fa9459Szrjit also supports writing code to run in real mode or in 16-bit protected
1120*a9fa9459Szrjmode code segments.  To do this, put a @samp{.code16} or
1121*a9fa9459Szrj@samp{.code16gcc} directive before the assembly language instructions to
1122*a9fa9459Szrjbe run in 16-bit mode.  You can switch @code{@value{AS}} to writing
1123*a9fa9459Szrj32-bit code with the @samp{.code32} directive or 64-bit code with the
1124*a9fa9459Szrj@samp{.code64} directive.
1125*a9fa9459Szrj
1126*a9fa9459Szrj@samp{.code16gcc} provides experimental support for generating 16-bit
1127*a9fa9459Szrjcode from gcc, and differs from @samp{.code16} in that @samp{call},
1128*a9fa9459Szrj@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1129*a9fa9459Szrj@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1130*a9fa9459Szrjdefault to 32-bit size.  This is so that the stack pointer is
1131*a9fa9459Szrjmanipulated in the same way over function calls, allowing access to
1132*a9fa9459Szrjfunction parameters at the same stack offsets as in 32-bit mode.
1133*a9fa9459Szrj@samp{.code16gcc} also automatically adds address size prefixes where
1134*a9fa9459Szrjnecessary to use the 32-bit addressing modes that gcc generates.
1135*a9fa9459Szrj
1136*a9fa9459SzrjThe code which @code{@value{AS}} generates in 16-bit mode will not
1137*a9fa9459Szrjnecessarily run on a 16-bit pre-80386 processor.  To write code that
1138*a9fa9459Szrjruns on such a processor, you must refrain from using @emph{any} 32-bit
1139*a9fa9459Szrjconstructs which require @code{@value{AS}} to output address or operand
1140*a9fa9459Szrjsize prefixes.
1141*a9fa9459Szrj
1142*a9fa9459SzrjNote that writing 16-bit code instructions by explicitly specifying a
1143*a9fa9459Szrjprefix or an instruction mnemonic suffix within a 32-bit code section
1144*a9fa9459Szrjgenerates different machine instructions than those generated for a
1145*a9fa9459Szrj16-bit code segment.  In a 32-bit code section, the following code
1146*a9fa9459Szrjgenerates the machine opcode bytes @samp{66 6a 04}, which pushes the
1147*a9fa9459Szrjvalue @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1148*a9fa9459Szrj
1149*a9fa9459Szrj@smallexample
1150*a9fa9459Szrj        pushw $4
1151*a9fa9459Szrj@end smallexample
1152*a9fa9459Szrj
1153*a9fa9459SzrjThe same code in a 16-bit code section would generate the machine
1154*a9fa9459Szrjopcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1155*a9fa9459Szrjis correct since the processor default operand size is assumed to be 16
1156*a9fa9459Szrjbits in a 16-bit code section.
1157*a9fa9459Szrj
1158*a9fa9459Szrj@node i386-Arch
1159*a9fa9459Szrj@section Specifying CPU Architecture
1160*a9fa9459Szrj
1161*a9fa9459Szrj@cindex arch directive, i386
1162*a9fa9459Szrj@cindex i386 arch directive
1163*a9fa9459Szrj@cindex arch directive, x86-64
1164*a9fa9459Szrj@cindex x86-64 arch directive
1165*a9fa9459Szrj
1166*a9fa9459Szrj@code{@value{AS}} may be told to assemble for a particular CPU
1167*a9fa9459Szrj(sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
1168*a9fa9459Szrjdirective enables a warning when gas detects an instruction that is not
1169*a9fa9459Szrjsupported on the CPU specified.  The choices for @var{cpu_type} are:
1170*a9fa9459Szrj
1171*a9fa9459Szrj@multitable @columnfractions .20 .20 .20 .20
1172*a9fa9459Szrj@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1173*a9fa9459Szrj@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1174*a9fa9459Szrj@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1175*a9fa9459Szrj@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1176*a9fa9459Szrj@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1177*a9fa9459Szrj@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1178*a9fa9459Szrj@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1179*a9fa9459Szrj@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1180*a9fa9459Szrj@item @samp{generic32} @tab @samp{generic64}
1181*a9fa9459Szrj@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1182*a9fa9459Szrj@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1183*a9fa9459Szrj@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1184*a9fa9459Szrj@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1185*a9fa9459Szrj@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1186*a9fa9459Szrj@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1187*a9fa9459Szrj@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1188*a9fa9459Szrj@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1189*a9fa9459Szrj@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1190*a9fa9459Szrj@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1191*a9fa9459Szrj@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1192*a9fa9459Szrj@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1193*a9fa9459Szrj@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1194*a9fa9459Szrj@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1195*a9fa9459Szrj@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1196*a9fa9459Szrj@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1197*a9fa9459Szrj@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpid}
1198*a9fa9459Szrj@end multitable
1199*a9fa9459Szrj
1200*a9fa9459SzrjApart from the warning, there are only two other effects on
1201*a9fa9459Szrj@code{@value{AS}} operation;  Firstly, if you specify a CPU other than
1202*a9fa9459Szrj@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1203*a9fa9459Szrjwill automatically use a two byte opcode sequence.  The larger three
1204*a9fa9459Szrjbyte opcode sequence is used on the 486 (and when no architecture is
1205*a9fa9459Szrjspecified) because it executes faster on the 486.  Note that you can
1206*a9fa9459Szrjexplicitly request the two byte opcode by writing @samp{sarl %eax}.
1207*a9fa9459SzrjSecondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1208*a9fa9459Szrj@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1209*a9fa9459Szrjconditional jumps will be promoted when necessary to a two instruction
1210*a9fa9459Szrjsequence consisting of a conditional jump of the opposite sense around
1211*a9fa9459Szrjan unconditional jump to the target.
1212*a9fa9459Szrj
1213*a9fa9459SzrjFollowing the CPU architecture (but not a sub-architecture, which are those
1214*a9fa9459Szrjstarting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1215*a9fa9459Szrjcontrol automatic promotion of conditional jumps. @samp{jumps} is the
1216*a9fa9459Szrjdefault, and enables jump promotion;  All external jumps will be of the long
1217*a9fa9459Szrjvariety, and file-local jumps will be promoted as necessary.
1218*a9fa9459Szrj(@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
1219*a9fa9459Szrjbyte offset jumps, and warns about file-local conditional jumps that
1220*a9fa9459Szrj@code{@value{AS}} promotes.
1221*a9fa9459SzrjUnconditional jumps are treated as for @samp{jumps}.
1222*a9fa9459Szrj
1223*a9fa9459SzrjFor example
1224*a9fa9459Szrj
1225*a9fa9459Szrj@smallexample
1226*a9fa9459Szrj .arch i8086,nojumps
1227*a9fa9459Szrj@end smallexample
1228*a9fa9459Szrj
1229*a9fa9459Szrj@node i386-Bugs
1230*a9fa9459Szrj@section AT&T Syntax bugs
1231*a9fa9459Szrj
1232*a9fa9459SzrjThe UnixWare assembler, and probably other AT&T derived ix86 Unix
1233*a9fa9459Szrjassemblers, generate floating point instructions with reversed source
1234*a9fa9459Szrjand destination registers in certain cases.  Unfortunately, gcc and
1235*a9fa9459Szrjpossibly many other programs use this reversed syntax, so we're stuck
1236*a9fa9459Szrjwith it.
1237*a9fa9459Szrj
1238*a9fa9459SzrjFor example
1239*a9fa9459Szrj
1240*a9fa9459Szrj@smallexample
1241*a9fa9459Szrj        fsub %st,%st(3)
1242*a9fa9459Szrj@end smallexample
1243*a9fa9459Szrj@noindent
1244*a9fa9459Szrjresults in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1245*a9fa9459Szrjthan the expected @samp{%st(3) - %st}.  This happens with all the
1246*a9fa9459Szrjnon-commutative arithmetic floating point operations with two register
1247*a9fa9459Szrjoperands where the source register is @samp{%st} and the destination
1248*a9fa9459Szrjregister is @samp{%st(i)}.
1249*a9fa9459Szrj
1250*a9fa9459Szrj@node i386-Notes
1251*a9fa9459Szrj@section Notes
1252*a9fa9459Szrj
1253*a9fa9459Szrj@cindex i386 @code{mul}, @code{imul} instructions
1254*a9fa9459Szrj@cindex @code{mul} instruction, i386
1255*a9fa9459Szrj@cindex @code{imul} instruction, i386
1256*a9fa9459Szrj@cindex @code{mul} instruction, x86-64
1257*a9fa9459Szrj@cindex @code{imul} instruction, x86-64
1258*a9fa9459SzrjThere is some trickery concerning the @samp{mul} and @samp{imul}
1259*a9fa9459Szrjinstructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
1260*a9fa9459Szrjmultiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1261*a9fa9459Szrjfor @samp{imul}) can be output only in the one operand form.  Thus,
1262*a9fa9459Szrj@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1263*a9fa9459Szrjthe expanding multiply would clobber the @samp{%edx} register, and this
1264*a9fa9459Szrjwould confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
1265*a9fa9459Szrj64-bit product in @samp{%edx:%eax}.
1266*a9fa9459Szrj
1267*a9fa9459SzrjWe have added a two operand form of @samp{imul} when the first operand
1268*a9fa9459Szrjis an immediate mode expression and the second operand is a register.
1269*a9fa9459SzrjThis is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1270*a9fa9459Szrjexample, can be done with @samp{imul $69, %eax} rather than @samp{imul
1271*a9fa9459Szrj$69, %eax, %eax}.
1272*a9fa9459Szrj
1273