1@c Copyright (C) 1991-2016 Free Software Foundation, Inc.
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4@c man end
5
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80386 support
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
24@menu
25* i386-Options::                Options
26* i386-Directives::             X86 specific directives
27* i386-Syntax::                 Syntactical considerations
28* i386-Mnemonics::              Instruction Naming
29* i386-Regs::                   Register Naming
30* i386-Prefixes::               Instruction Prefixes
31* i386-Memory::                 Memory References
32* i386-Jumps::                  Handling of Jump Instructions
33* i386-Float::                  Floating Point
34* i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
35* i386-LWP::                    AMD's Lightweight Profiling Instructions
36* i386-BMI::                    Bit Manipulation Instruction
37* i386-TBM::                    AMD's Trailing Bit Manipulation Instructions
38* i386-16bit::                  Writing 16-bit Code
39* i386-Arch::                   Specifying an x86 CPU architecture
40* i386-Bugs::                   AT&T Syntax bugs
41* i386-Notes::                  Notes
42@end menu
43
44@node i386-Options
45@section Options
46
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
50@cindex x86-64 options
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
55@c man begin OPTIONS
56@table @gcctabopt
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
63@item --32 | --x32 | --64
64Select the word size, either 32 bits or 64 bits.  @samp{--32}
65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi.  This switch disables the optimization.
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions.  The
83@samp{--divide} option turns @samp{/} into a normal character.  This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor.  The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor.  The following
93processor names are recognized:
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
108@code{core},
109@code{core2},
110@code{corei7},
111@code{l1om},
112@code{k1om},
113@code{iamcu},
114@code{k6},
115@code{k6_2},
116@code{athlon},
117@code{opteron},
118@code{k8},
119@code{amdfam10},
120@code{bdver1},
121@code{bdver2},
122@code{bdver3},
123@code{bdver4},
124@code{znver1},
125@code{btver1},
126@code{btver2},
127@code{generic32} and
128@code{generic64}.
129
130In addition to the basic instruction set, the assembler can be told to
131accept various extension mnemonics.  For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}.  The following extensions are currently supported:
134@code{8087},
135@code{287},
136@code{387},
137@code{687},
138@code{no87},
139@code{no287},
140@code{no387},
141@code{no687},
142@code{mmx},
143@code{nommx},
144@code{sse},
145@code{sse2},
146@code{sse3},
147@code{ssse3},
148@code{sse4.1},
149@code{sse4.2},
150@code{sse4},
151@code{nosse},
152@code{nosse2},
153@code{nosse3},
154@code{nossse3},
155@code{nosse4.1},
156@code{nosse4.2},
157@code{nosse4},
158@code{avx},
159@code{avx2},
160@code{noavx},
161@code{noavx2},
162@code{adx},
163@code{rdseed},
164@code{prfchw},
165@code{smap},
166@code{mpx},
167@code{sha},
168@code{rdpid},
169@code{prefetchwt1},
170@code{clflushopt},
171@code{se1},
172@code{clwb},
173@code{pcommit},
174@code{avx512f},
175@code{avx512cd},
176@code{avx512er},
177@code{avx512pf},
178@code{avx512vl},
179@code{avx512bw},
180@code{avx512dq},
181@code{avx512ifma},
182@code{avx512vbmi},
183@code{noavx512f},
184@code{noavx512cd},
185@code{noavx512er},
186@code{noavx512pf},
187@code{noavx512vl},
188@code{noavx512bw},
189@code{noavx512dq},
190@code{noavx512ifma},
191@code{noavx512vbmi},
192@code{vmx},
193@code{vmfunc},
194@code{smx},
195@code{xsave},
196@code{xsaveopt},
197@code{xsavec},
198@code{xsaves},
199@code{aes},
200@code{pclmul},
201@code{fsgsbase},
202@code{rdrnd},
203@code{f16c},
204@code{bmi2},
205@code{fma},
206@code{movbe},
207@code{ept},
208@code{lzcnt},
209@code{hle},
210@code{rtm},
211@code{invpcid},
212@code{clflush},
213@code{mwaitx},
214@code{clzero},
215@code{lwp},
216@code{fma4},
217@code{xop},
218@code{cx16},
219@code{syscall},
220@code{rdtscp},
221@code{3dnow},
222@code{3dnowa},
223@code{sse4a},
224@code{sse5},
225@code{svme},
226@code{abm} and
227@code{padlock}.
228Note that rather than extending a basic instruction set, the extension
229mnemonics starting with @code{no} revoke the respective functionality.
230
231When the @code{.arch} directive is used with @option{-march}, the
232@code{.arch} directive will take precedent.
233
234@cindex @samp{-mtune=} option, i386
235@cindex @samp{-mtune=} option, x86-64
236@item -mtune=@var{CPU}
237This option specifies a processor to optimize for. When used in
238conjunction with the @option{-march} option, only instructions
239of the processor specified by the @option{-march} option will be
240generated.
241
242Valid @var{CPU} values are identical to the processor list of
243@option{-march=@var{CPU}}.
244
245@cindex @samp{-msse2avx} option, i386
246@cindex @samp{-msse2avx} option, x86-64
247@item -msse2avx
248This option specifies that the assembler should encode SSE instructions
249with VEX prefix.
250
251@cindex @samp{-msse-check=} option, i386
252@cindex @samp{-msse-check=} option, x86-64
253@item -msse-check=@var{none}
254@itemx -msse-check=@var{warning}
255@itemx -msse-check=@var{error}
256These options control if the assembler should check SSE instructions.
257@option{-msse-check=@var{none}} will make the assembler not to check SSE
258instructions,  which is the default.  @option{-msse-check=@var{warning}}
259will make the assembler issue a warning for any SSE instruction.
260@option{-msse-check=@var{error}} will make the assembler issue an error
261for any SSE instruction.
262
263@cindex @samp{-mavxscalar=} option, i386
264@cindex @samp{-mavxscalar=} option, x86-64
265@item -mavxscalar=@var{128}
266@itemx -mavxscalar=@var{256}
267These options control how the assembler should encode scalar AVX
268instructions.  @option{-mavxscalar=@var{128}} will encode scalar
269AVX instructions with 128bit vector length, which is the default.
270@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
271with 256bit vector length.
272
273@cindex @samp{-mevexlig=} option, i386
274@cindex @samp{-mevexlig=} option, x86-64
275@item -mevexlig=@var{128}
276@itemx -mevexlig=@var{256}
277@itemx -mevexlig=@var{512}
278These options control how the assembler should encode length-ignored
279(LIG) EVEX instructions.  @option{-mevexlig=@var{128}} will encode LIG
280EVEX instructions with 128bit vector length, which is the default.
281@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
282encode LIG EVEX instructions with 256bit and 512bit vector length,
283respectively.
284
285@cindex @samp{-mevexwig=} option, i386
286@cindex @samp{-mevexwig=} option, x86-64
287@item -mevexwig=@var{0}
288@itemx -mevexwig=@var{1}
289These options control how the assembler should encode w-ignored (WIG)
290EVEX instructions.  @option{-mevexwig=@var{0}} will encode WIG
291EVEX instructions with evex.w = 0, which is the default.
292@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
293evex.w = 1.
294
295@cindex @samp{-mmnemonic=} option, i386
296@cindex @samp{-mmnemonic=} option, x86-64
297@item -mmnemonic=@var{att}
298@itemx -mmnemonic=@var{intel}
299This option specifies instruction mnemonic for matching instructions.
300The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
301take precedent.
302
303@cindex @samp{-msyntax=} option, i386
304@cindex @samp{-msyntax=} option, x86-64
305@item -msyntax=@var{att}
306@itemx -msyntax=@var{intel}
307This option specifies instruction syntax when processing instructions.
308The @code{.att_syntax} and @code{.intel_syntax} directives will
309take precedent.
310
311@cindex @samp{-mnaked-reg} option, i386
312@cindex @samp{-mnaked-reg} option, x86-64
313@item -mnaked-reg
314This opetion specifies that registers don't require a @samp{%} prefix.
315The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
316
317@cindex @samp{-madd-bnd-prefix} option, i386
318@cindex @samp{-madd-bnd-prefix} option, x86-64
319@item -madd-bnd-prefix
320This option forces the assembler to add BND prefix to all branches, even
321if such prefix was not explicitly specified in the source code.
322
323@cindex @samp{-mshared} option, i386
324@cindex @samp{-mshared} option, x86-64
325@item -mno-shared
326On ELF target, the assembler normally optimizes out non-PLT relocations
327against defined non-weak global branch targets with default visibility.
328The @samp{-mshared} option tells the assembler to generate code which
329may go into a shared library where all non-weak global branch targets
330with default visibility can be preempted.  The resulting code is
331slightly bigger.  This option only affects the handling of branch
332instructions.
333
334@cindex @samp{-mbig-obj} option, x86-64
335@item -mbig-obj
336On x86-64 PE/COFF target this option forces the use of big object file
337format, which allows more than 32768 sections.
338
339@cindex @samp{-momit-lock-prefix=} option, i386
340@cindex @samp{-momit-lock-prefix=} option, x86-64
341@item -momit-lock-prefix=@var{no}
342@itemx -momit-lock-prefix=@var{yes}
343These options control how the assembler should encode lock prefix.
344This option is intended as a workaround for processors, that fail on
345lock prefix. This option can only be safely used with single-core,
346single-thread computers
347@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
348@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
349which is the default.
350
351@cindex @samp{-mfence-as-lock-add=} option, i386
352@cindex @samp{-mfence-as-lock-add=} option, x86-64
353@item -mfence-as-lock-add=@var{no}
354@itemx -mfence-as-lock-add=@var{yes}
355These options control how the assembler should encode lfence, mfence and
356sfence.
357@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
358sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
359@samp{lock addl $0x0, (%esp)} in 32-bit mode.
360@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
361sfence as usual, which is the default.
362
363@cindex @samp{-mrelax-relocations=} option, i386
364@cindex @samp{-mrelax-relocations=} option, x86-64
365@item -mrelax-relocations=@var{no}
366@itemx -mrelax-relocations=@var{yes}
367These options control whether the assembler should generate relax
368relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
369R_X86_64_REX_GOTPCRELX, in 64-bit mode.
370@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
371@option{-mrelax-relocations=@var{no}} will not generate relax
372relocations.  The default can be controlled by a configure option
373@option{--enable-x86-relax-relocations}.
374
375@cindex @samp{-mevexrcig=} option, i386
376@cindex @samp{-mevexrcig=} option, x86-64
377@item -mevexrcig=@var{rne}
378@itemx -mevexrcig=@var{rd}
379@itemx -mevexrcig=@var{ru}
380@itemx -mevexrcig=@var{rz}
381These options control how the assembler should encode SAE-only
382EVEX instructions.  @option{-mevexrcig=@var{rne}} will encode RC bits
383of EVEX instruction with 00, which is the default.
384@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
385and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
386with 01, 10 and 11 RC bits, respectively.
387
388@cindex @samp{-mamd64} option, x86-64
389@cindex @samp{-mintel64} option, x86-64
390@item -mamd64
391@itemx -mintel64
392This option specifies that the assembler should accept only AMD64 or
393Intel64 ISA in 64-bit mode.  The default is to accept both.
394
395@end table
396@c man end
397
398@node i386-Directives
399@section x86 specific Directives
400
401@cindex machine directives, x86
402@cindex x86 machine directives
403@table @code
404
405@cindex @code{lcomm} directive, COFF
406@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
407Reserve @var{length} (an absolute expression) bytes for a local common
408denoted by @var{symbol}.  The section and value of @var{symbol} are
409those of the new local common.  The addresses are allocated in the bss
410section, so that at run-time the bytes start off zeroed.  Since
411@var{symbol} is not declared global, it is normally not visible to
412@code{@value{LD}}.  The optional third parameter, @var{alignment},
413specifies the desired alignment of the symbol in the bss section.
414
415This directive is only available for COFF based x86 targets.
416
417@c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
418@c .largecomm
419
420@end table
421
422@node i386-Syntax
423@section i386 Syntactical Considerations
424@menu
425* i386-Variations::           AT&T Syntax versus Intel Syntax
426* i386-Chars::                Special Characters
427@end menu
428
429@node i386-Variations
430@subsection AT&T Syntax versus Intel Syntax
431
432@cindex i386 intel_syntax pseudo op
433@cindex intel_syntax pseudo op, i386
434@cindex i386 att_syntax pseudo op
435@cindex att_syntax pseudo op, i386
436@cindex i386 syntax compatibility
437@cindex syntax compatibility, i386
438@cindex x86-64 intel_syntax pseudo op
439@cindex intel_syntax pseudo op, x86-64
440@cindex x86-64 att_syntax pseudo op
441@cindex att_syntax pseudo op, x86-64
442@cindex x86-64 syntax compatibility
443@cindex syntax compatibility, x86-64
444
445@code{@value{AS}} now supports assembly using Intel assembler syntax.
446@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
447back to the usual AT&T mode for compatibility with the output of
448@code{@value{GCC}}.  Either of these directives may have an optional
449argument, @code{prefix}, or @code{noprefix} specifying whether registers
450require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
451different from Intel syntax.  We mention these differences because
452almost all 80386 documents use Intel syntax.  Notable differences
453between the two syntaxes are:
454
455@cindex immediate operands, i386
456@cindex i386 immediate operands
457@cindex register operands, i386
458@cindex i386 register operands
459@cindex jump/call operands, i386
460@cindex i386 jump/call operands
461@cindex operand delimiters, i386
462
463@cindex immediate operands, x86-64
464@cindex x86-64 immediate operands
465@cindex register operands, x86-64
466@cindex x86-64 register operands
467@cindex jump/call operands, x86-64
468@cindex x86-64 jump/call operands
469@cindex operand delimiters, x86-64
470@itemize @bullet
471@item
472AT&T immediate operands are preceded by @samp{$}; Intel immediate
473operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
474AT&T register operands are preceded by @samp{%}; Intel register operands
475are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
476operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
477
478@cindex i386 source, destination operands
479@cindex source, destination operands; i386
480@cindex x86-64 source, destination operands
481@cindex source, destination operands; x86-64
482@item
483AT&T and Intel syntax use the opposite order for source and destination
484operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
485@samp{source, dest} convention is maintained for compatibility with
486previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
487instructions with 2 immediate operands, such as the @samp{enter}
488instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
489
490@cindex mnemonic suffixes, i386
491@cindex sizes operands, i386
492@cindex i386 size suffixes
493@cindex mnemonic suffixes, x86-64
494@cindex sizes operands, x86-64
495@cindex x86-64 size suffixes
496@item
497In AT&T syntax the size of memory operands is determined from the last
498character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
499@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
500(32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
501this by prefixing memory operands (@emph{not} the instruction mnemonics) with
502@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
503Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
504syntax.
505
506In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
507instruction with the 64-bit displacement or immediate operand.
508
509@cindex return instructions, i386
510@cindex i386 jump, call, return
511@cindex return instructions, x86-64
512@cindex x86-64 jump, call, return
513@item
514Immediate form long jumps and calls are
515@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
516Intel syntax is
517@samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
518instruction
519is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
520@samp{ret far @var{stack-adjust}}.
521
522@cindex sections, i386
523@cindex i386 sections
524@cindex sections, x86-64
525@cindex x86-64 sections
526@item
527The AT&T assembler does not provide support for multiple section
528programs.  Unix style systems expect all programs to be single sections.
529@end itemize
530
531@node i386-Chars
532@subsection Special Characters
533
534@cindex line comment character, i386
535@cindex i386 line comment character
536The presence of a @samp{#} appearing anywhere on a line indicates the
537start of a comment that extends to the end of that line.
538
539If a @samp{#} appears as the first character of a line then the whole
540line is treated as a comment, but in this case the line can also be a
541logical line number directive (@pxref{Comments}) or a preprocessor
542control command (@pxref{Preprocessing}).
543
544If the @option{--divide} command line option has not been specified
545then the @samp{/} character appearing anywhere on a line also
546introduces a line comment.
547
548@cindex line separator, i386
549@cindex statement separator, i386
550@cindex i386 line separator
551The @samp{;} character can be used to separate statements on the same
552line.
553
554@node i386-Mnemonics
555@section i386-Mnemonics
556@subsection Instruction Naming
557
558@cindex i386 instruction naming
559@cindex instruction naming, i386
560@cindex x86-64 instruction naming
561@cindex instruction naming, x86-64
562
563Instruction mnemonics are suffixed with one character modifiers which
564specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
565and @samp{q} specify byte, word, long and quadruple word operands.  If
566no suffix is specified by an instruction then @code{@value{AS}} tries to
567fill in the missing suffix based on the destination register operand
568(the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
569to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
570@samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
571assembler which assumes that a missing mnemonic suffix implies long
572operand size.  (This incompatibility does not affect compiler output
573since compilers always explicitly specify the mnemonic suffix.)
574
575Almost all instructions have the same names in AT&T and Intel format.
576There are a few exceptions.  The sign extend and zero extend
577instructions need two sizes to specify them.  They need a size to
578sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
579is accomplished by using two instruction mnemonic suffixes in AT&T
580syntax.  Base names for sign extend and zero extend are
581@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
582and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
583are tacked on to this base name, the @emph{from} suffix before the
584@emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
585``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
586thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
587@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
588@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
589quadruple word).
590
591@cindex encoding options, i386
592@cindex encoding options, x86-64
593
594Different encoding options can be specified via optional mnemonic
595suffix.  @samp{.s} suffix swaps 2 register operands in encoding when
596moving from one register to another.  @samp{.d8} or @samp{.d32} suffix
597prefers 8bit or 32bit displacement in encoding.
598
599@cindex conversion instructions, i386
600@cindex i386 conversion instructions
601@cindex conversion instructions, x86-64
602@cindex x86-64 conversion instructions
603The Intel-syntax conversion instructions
604
605@itemize @bullet
606@item
607@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
608
609@item
610@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
611
612@item
613@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
614
615@item
616@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
617
618@item
619@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
620(x86-64 only),
621
622@item
623@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
624@samp{%rdx:%rax} (x86-64 only),
625@end itemize
626
627@noindent
628are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
629@samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
630instructions.
631
632@cindex jump instructions, i386
633@cindex call instructions, i386
634@cindex jump instructions, x86-64
635@cindex call instructions, x86-64
636Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
637AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
638convention.
639
640@subsection AT&T Mnemonic versus Intel Mnemonic
641
642@cindex i386 mnemonic compatibility
643@cindex mnemonic compatibility, i386
644
645@code{@value{AS}} supports assembly using Intel mnemonic.
646@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
647@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
648syntax for compatibility with the output of @code{@value{GCC}}.
649Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
650@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
651@samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
652assembler with different mnemonics from those in Intel IA32 specification.
653@code{@value{GCC}} generates those instructions with AT&T mnemonic.
654
655@node i386-Regs
656@section Register Naming
657
658@cindex i386 registers
659@cindex registers, i386
660@cindex x86-64 registers
661@cindex registers, x86-64
662Register operands are always prefixed with @samp{%}.  The 80386 registers
663consist of
664
665@itemize @bullet
666@item
667the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
668@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
669frame pointer), and @samp{%esp} (the stack pointer).
670
671@item
672the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
673@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
674
675@item
676the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
677@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
678are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
679@samp{%cx}, and @samp{%dx})
680
681@item
682the 6 section registers @samp{%cs} (code section), @samp{%ds}
683(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
684and @samp{%gs}.
685
686@item
687the 5 processor control registers @samp{%cr0}, @samp{%cr2},
688@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
689
690@item
691the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
692@samp{%db3}, @samp{%db6}, and @samp{%db7}.
693
694@item
695the 2 test registers @samp{%tr6} and @samp{%tr7}.
696
697@item
698the 8 floating point register stack @samp{%st} or equivalently
699@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
700@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
701These registers are overloaded by 8 MMX registers @samp{%mm0},
702@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
703@samp{%mm6} and @samp{%mm7}.
704
705@item
706the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
707@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
708@end itemize
709
710The AMD x86-64 architecture extends the register set by:
711
712@itemize @bullet
713@item
714enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
715accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
716@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
717pointer)
718
719@item
720the 8 extended registers @samp{%r8}--@samp{%r15}.
721
722@item
723the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
724
725@item
726the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
727
728@item
729the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
730
731@item
732the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
733
734@item
735the 8 debug registers: @samp{%db8}--@samp{%db15}.
736
737@item
738the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
739@end itemize
740
741With the AVX extensions more registers were made available:
742
743@itemize @bullet
744
745@item
746the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
747available in 32-bit mode).  The bottom 128 bits are overlaid with the
748@samp{xmm0}--@samp{xmm15} registers.
749
750@end itemize
751
752The AVX2 extensions made in 64-bit mode more registers available:
753
754@itemize @bullet
755
756@item
757the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
758registers @samp{%ymm16}--@samp{%ymm31}.
759
760@end itemize
761
762The AVX512 extensions added the following registers:
763
764@itemize @bullet
765
766@item
767the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
768available in 32-bit mode).  The bottom 128 bits are overlaid with the
769@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
770overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
771
772@item
773the 8 mask registers @samp{%k0}--@samp{%k7}.
774
775@end itemize
776
777@node i386-Prefixes
778@section Instruction Prefixes
779
780@cindex i386 instruction prefixes
781@cindex instruction prefixes, i386
782@cindex prefixes, i386
783Instruction prefixes are used to modify the following instruction.  They
784are used to repeat string instructions, to provide section overrides, to
785perform bus lock operations, and to change operand and address sizes.
786(Most instructions that normally operate on 32-bit operands will use
78716-bit operands if the instruction has an ``operand size'' prefix.)
788Instruction prefixes are best written on the same line as the instruction
789they act upon. For example, the @samp{scas} (scan string) instruction is
790repeated with:
791
792@smallexample
793        repne scas %es:(%edi),%al
794@end smallexample
795
796You may also place prefixes on the lines immediately preceding the
797instruction, but this circumvents checks that @code{@value{AS}} does
798with prefixes, and will not work with all prefixes.
799
800Here is a list of instruction prefixes:
801
802@cindex section override prefixes, i386
803@itemize @bullet
804@item
805Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
806@samp{fs}, @samp{gs}.  These are automatically added by specifying
807using the @var{section}:@var{memory-operand} form for memory references.
808
809@cindex size prefixes, i386
810@item
811Operand/Address size prefixes @samp{data16} and @samp{addr16}
812change 32-bit operands/addresses into 16-bit operands/addresses,
813while @samp{data32} and @samp{addr32} change 16-bit ones (in a
814@code{.code16} section) into 32-bit operands/addresses.  These prefixes
815@emph{must} appear on the same line of code as the instruction they
816modify. For example, in a 16-bit @code{.code16} section, you might
817write:
818
819@smallexample
820        addr32 jmpl *(%ebx)
821@end smallexample
822
823@cindex bus lock prefixes, i386
824@cindex inhibiting interrupts, i386
825@item
826The bus lock prefix @samp{lock} inhibits interrupts during execution of
827the instruction it precedes.  (This is only valid with certain
828instructions; see a 80386 manual for details).
829
830@cindex coprocessor wait, i386
831@item
832The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
833complete the current instruction.  This should never be needed for the
83480386/80387 combination.
835
836@cindex repeat prefixes, i386
837@item
838The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
839to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
840times if the current address size is 16-bits).
841@cindex REX prefixes, i386
842@item
843The @samp{rex} family of prefixes is used by x86-64 to encode
844extensions to i386 instruction set.  The @samp{rex} prefix has four
845bits --- an operand size overwrite (@code{64}) used to change operand size
846from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
847register set.
848
849You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
850instruction emits @samp{rex} prefix with all the bits set.  By omitting
851the @code{64}, @code{x}, @code{y} or @code{z} you may write other
852prefixes as well.  Normally, there is no need to write the prefixes
853explicitly, since gas will automatically generate them based on the
854instruction operands.
855@end itemize
856
857@node i386-Memory
858@section Memory References
859
860@cindex i386 memory references
861@cindex memory references, i386
862@cindex x86-64 memory references
863@cindex memory references, x86-64
864An Intel syntax indirect memory reference of the form
865
866@smallexample
867@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
868@end smallexample
869
870@noindent
871is translated into the AT&T syntax
872
873@smallexample
874@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
875@end smallexample
876
877@noindent
878where @var{base} and @var{index} are the optional 32-bit base and
879index registers, @var{disp} is the optional displacement, and
880@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
881to calculate the address of the operand.  If no @var{scale} is
882specified, @var{scale} is taken to be 1.  @var{section} specifies the
883optional section register for the memory operand, and may override the
884default section register (see a 80386 manual for section register
885defaults). Note that section overrides in AT&T syntax @emph{must}
886be preceded by a @samp{%}.  If you specify a section override which
887coincides with the default section register, @code{@value{AS}} does @emph{not}
888output any section register override prefixes to assemble the given
889instruction.  Thus, section overrides can be specified to emphasize which
890section register is used for a given memory operand.
891
892Here are some examples of Intel and AT&T style memory references:
893
894@table @asis
895@item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
896@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
897missing, and the default section is used (@samp{%ss} for addressing with
898@samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
899
900@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
901@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
902@samp{foo}.  All other fields are missing.  The section register here
903defaults to @samp{%ds}.
904
905@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
906This uses the value pointed to by @samp{foo} as a memory operand.
907Note that @var{base} and @var{index} are both missing, but there is only
908@emph{one} @samp{,}.  This is a syntactic exception.
909
910@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
911This selects the contents of the variable @samp{foo} with section
912register @var{section} being @samp{%gs}.
913@end table
914
915Absolute (as opposed to PC relative) call and jump operands must be
916prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
917always chooses PC relative addressing for jump/call labels.
918
919Any instruction that has a memory operand, but no register operand,
920@emph{must} specify its size (byte, word, long, or quadruple) with an
921instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
922respectively).
923
924The x86-64 architecture adds an RIP (instruction pointer relative)
925addressing.  This addressing mode is specified by using @samp{rip} as a
926base register.  Only constant offsets are valid. For example:
927
928@table @asis
929@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
930Points to the address 1234 bytes past the end of the current
931instruction.
932
933@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
934Points to the @code{symbol} in RIP relative way, this is shorter than
935the default absolute addressing.
936@end table
937
938Other addressing modes remain unchanged in x86-64 architecture, except
939registers used are 64-bit instead of 32-bit.
940
941@node i386-Jumps
942@section Handling of Jump Instructions
943
944@cindex jump optimization, i386
945@cindex i386 jump optimization
946@cindex jump optimization, x86-64
947@cindex x86-64 jump optimization
948Jump instructions are always optimized to use the smallest possible
949displacements.  This is accomplished by using byte (8-bit) displacement
950jumps whenever the target is sufficiently close.  If a byte displacement
951is insufficient a long displacement is used.  We do not support
952word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
953instruction with the @samp{data16} instruction prefix), since the 80386
954insists upon masking @samp{%eip} to 16 bits after the word displacement
955is added. (See also @pxref{i386-Arch})
956
957Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
958@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
959displacements, so that if you use these instructions (@code{@value{GCC}} does
960not use them) you may get an error message (and incorrect code).  The AT&T
96180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
962to
963
964@smallexample
965         jcxz cx_zero
966         jmp cx_nonzero
967cx_zero: jmp foo
968cx_nonzero:
969@end smallexample
970
971@node i386-Float
972@section Floating Point
973
974@cindex i386 floating point
975@cindex floating point, i386
976@cindex x86-64 floating point
977@cindex floating point, x86-64
978All 80387 floating point types except packed BCD are supported.
979(BCD support may be added without much difficulty).  These data
980types are 16-, 32-, and 64- bit integers, and single (32-bit),
981double (64-bit), and extended (80-bit) precision floating point.
982Each supported type has an instruction mnemonic suffix and a constructor
983associated with it.  Instruction mnemonic suffixes specify the operand's
984data type.  Constructors build these data types into memory.
985
986@cindex @code{float} directive, i386
987@cindex @code{single} directive, i386
988@cindex @code{double} directive, i386
989@cindex @code{tfloat} directive, i386
990@cindex @code{float} directive, x86-64
991@cindex @code{single} directive, x86-64
992@cindex @code{double} directive, x86-64
993@cindex @code{tfloat} directive, x86-64
994@itemize @bullet
995@item
996Floating point constructors are @samp{.float} or @samp{.single},
997@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
998These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
999and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
1000only supports this format via the @samp{fldt} (load 80-bit real to stack
1001top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1002
1003@cindex @code{word} directive, i386
1004@cindex @code{long} directive, i386
1005@cindex @code{int} directive, i386
1006@cindex @code{quad} directive, i386
1007@cindex @code{word} directive, x86-64
1008@cindex @code{long} directive, x86-64
1009@cindex @code{int} directive, x86-64
1010@cindex @code{quad} directive, x86-64
1011@item
1012Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1013@samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
1014corresponding instruction mnemonic suffixes are @samp{s} (single),
1015@samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
1016the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1017quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1018stack) instructions.
1019@end itemize
1020
1021Register to register operations should not use instruction mnemonic suffixes.
1022@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1023wrote @samp{fst %st, %st(1)}, since all register to register operations
1024use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1025which converts @samp{%st} from 80-bit to 64-bit floating point format,
1026then stores the result in the 4 byte location @samp{mem})
1027
1028@node i386-SIMD
1029@section Intel's MMX and AMD's 3DNow! SIMD Operations
1030
1031@cindex MMX, i386
1032@cindex 3DNow!, i386
1033@cindex SIMD, i386
1034@cindex MMX, x86-64
1035@cindex 3DNow!, x86-64
1036@cindex SIMD, x86-64
1037
1038@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1039instructions for integer data), available on Intel's Pentium MMX
1040processors and Pentium II processors, AMD's K6 and K6-2 processors,
1041Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
1042instruction set (SIMD instructions for 32-bit floating point data)
1043available on AMD's K6-2 processor and possibly others in the future.
1044
1045Currently, @code{@value{AS}} does not support Intel's floating point
1046SIMD, Katmai (KNI).
1047
1048The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1049@samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
105016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1051floating point values.  The MMX registers cannot be used at the same time
1052as the floating point stack.
1053
1054See Intel and AMD documentation, keeping in mind that the operand order in
1055instructions is reversed from the Intel syntax.
1056
1057@node i386-LWP
1058@section AMD's Lightweight Profiling Instructions
1059
1060@cindex LWP, i386
1061@cindex LWP, x86-64
1062
1063@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1064instruction set, available on AMD's Family 15h (Orochi) processors.
1065
1066LWP enables applications to collect and manage performance data, and
1067react to performance events.  The collection of performance data
1068requires no context switches.  LWP runs in the context of a thread and
1069so several counters can be used independently across multiple threads.
1070LWP can be used in both 64-bit and legacy 32-bit modes.
1071
1072For detailed information on the LWP instruction set, see the
1073@cite{AMD Lightweight Profiling Specification} available at
1074@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1075
1076@node i386-BMI
1077@section Bit Manipulation Instructions
1078
1079@cindex BMI, i386
1080@cindex BMI, x86-64
1081
1082@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1083
1084BMI instructions provide several instructions implementing individual
1085bit manipulation operations such as isolation, masking, setting, or
1086resetting.
1087
1088@c Need to add a specification citation here when available.
1089
1090@node i386-TBM
1091@section AMD's Trailing Bit Manipulation Instructions
1092
1093@cindex TBM, i386
1094@cindex TBM, x86-64
1095
1096@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1097instruction set, available on AMD's BDVER2 processors (Trinity and
1098Viperfish).
1099
1100TBM instructions provide instructions implementing individual bit
1101manipulation operations such as isolating, masking, setting, resetting,
1102complementing, and operations on trailing zeros and ones.
1103
1104@c Need to add a specification citation here when available.
1105
1106@node i386-16bit
1107@section Writing 16-bit Code
1108
1109@cindex i386 16-bit code
1110@cindex 16-bit code, i386
1111@cindex real-mode code, i386
1112@cindex @code{code16gcc} directive, i386
1113@cindex @code{code16} directive, i386
1114@cindex @code{code32} directive, i386
1115@cindex @code{code64} directive, i386
1116@cindex @code{code64} directive, x86-64
1117While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1118or 64-bit x86-64 code depending on the default configuration,
1119it also supports writing code to run in real mode or in 16-bit protected
1120mode code segments.  To do this, put a @samp{.code16} or
1121@samp{.code16gcc} directive before the assembly language instructions to
1122be run in 16-bit mode.  You can switch @code{@value{AS}} to writing
112332-bit code with the @samp{.code32} directive or 64-bit code with the
1124@samp{.code64} directive.
1125
1126@samp{.code16gcc} provides experimental support for generating 16-bit
1127code from gcc, and differs from @samp{.code16} in that @samp{call},
1128@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1129@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1130default to 32-bit size.  This is so that the stack pointer is
1131manipulated in the same way over function calls, allowing access to
1132function parameters at the same stack offsets as in 32-bit mode.
1133@samp{.code16gcc} also automatically adds address size prefixes where
1134necessary to use the 32-bit addressing modes that gcc generates.
1135
1136The code which @code{@value{AS}} generates in 16-bit mode will not
1137necessarily run on a 16-bit pre-80386 processor.  To write code that
1138runs on such a processor, you must refrain from using @emph{any} 32-bit
1139constructs which require @code{@value{AS}} to output address or operand
1140size prefixes.
1141
1142Note that writing 16-bit code instructions by explicitly specifying a
1143prefix or an instruction mnemonic suffix within a 32-bit code section
1144generates different machine instructions than those generated for a
114516-bit code segment.  In a 32-bit code section, the following code
1146generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1147value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1148
1149@smallexample
1150        pushw $4
1151@end smallexample
1152
1153The same code in a 16-bit code section would generate the machine
1154opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1155is correct since the processor default operand size is assumed to be 16
1156bits in a 16-bit code section.
1157
1158@node i386-Arch
1159@section Specifying CPU Architecture
1160
1161@cindex arch directive, i386
1162@cindex i386 arch directive
1163@cindex arch directive, x86-64
1164@cindex x86-64 arch directive
1165
1166@code{@value{AS}} may be told to assemble for a particular CPU
1167(sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
1168directive enables a warning when gas detects an instruction that is not
1169supported on the CPU specified.  The choices for @var{cpu_type} are:
1170
1171@multitable @columnfractions .20 .20 .20 .20
1172@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1173@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1174@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1175@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1176@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1177@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1178@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1179@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1180@item @samp{generic32} @tab @samp{generic64}
1181@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1182@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1183@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1184@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1185@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1186@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1187@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1188@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1189@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1190@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1191@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1192@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1193@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1194@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1195@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1196@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1197@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpid}
1198@end multitable
1199
1200Apart from the warning, there are only two other effects on
1201@code{@value{AS}} operation;  Firstly, if you specify a CPU other than
1202@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1203will automatically use a two byte opcode sequence.  The larger three
1204byte opcode sequence is used on the 486 (and when no architecture is
1205specified) because it executes faster on the 486.  Note that you can
1206explicitly request the two byte opcode by writing @samp{sarl %eax}.
1207Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1208@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1209conditional jumps will be promoted when necessary to a two instruction
1210sequence consisting of a conditional jump of the opposite sense around
1211an unconditional jump to the target.
1212
1213Following the CPU architecture (but not a sub-architecture, which are those
1214starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1215control automatic promotion of conditional jumps. @samp{jumps} is the
1216default, and enables jump promotion;  All external jumps will be of the long
1217variety, and file-local jumps will be promoted as necessary.
1218(@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
1219byte offset jumps, and warns about file-local conditional jumps that
1220@code{@value{AS}} promotes.
1221Unconditional jumps are treated as for @samp{jumps}.
1222
1223For example
1224
1225@smallexample
1226 .arch i8086,nojumps
1227@end smallexample
1228
1229@node i386-Bugs
1230@section AT&T Syntax bugs
1231
1232The UnixWare assembler, and probably other AT&T derived ix86 Unix
1233assemblers, generate floating point instructions with reversed source
1234and destination registers in certain cases.  Unfortunately, gcc and
1235possibly many other programs use this reversed syntax, so we're stuck
1236with it.
1237
1238For example
1239
1240@smallexample
1241        fsub %st,%st(3)
1242@end smallexample
1243@noindent
1244results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1245than the expected @samp{%st(3) - %st}.  This happens with all the
1246non-commutative arithmetic floating point operations with two register
1247operands where the source register is @samp{%st} and the destination
1248register is @samp{%st(i)}.
1249
1250@node i386-Notes
1251@section Notes
1252
1253@cindex i386 @code{mul}, @code{imul} instructions
1254@cindex @code{mul} instruction, i386
1255@cindex @code{imul} instruction, i386
1256@cindex @code{mul} instruction, x86-64
1257@cindex @code{imul} instruction, x86-64
1258There is some trickery concerning the @samp{mul} and @samp{imul}
1259instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
1260multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1261for @samp{imul}) can be output only in the one operand form.  Thus,
1262@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1263the expanding multiply would clobber the @samp{%edx} register, and this
1264would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
126564-bit product in @samp{%edx:%eax}.
1266
1267We have added a two operand form of @samp{imul} when the first operand
1268is an immediate mode expression and the second operand is a register.
1269This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1270example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1271$69, %eax, %eax}.
1272
1273