1 // aarch64.cc -- aarch64 target support for gold.
2 
3 // Copyright (C) 2014-2016 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstring>
26 #include <map>
27 #include <set>
28 
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48 
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51 
52 
53 namespace
54 {
55 
56 using namespace gold;
57 
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60 
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63 
64 template<int size, bool big_endian>
65 class Target_aarch64;
66 
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69 
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73 
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79 
80   static const int BYTES_PER_INSN;
81 
82   // Zero register encoding - 31.
83   static const unsigned int AARCH64_ZR;
84 
85   static unsigned int
86   aarch64_bit(Insntype insn, int pos)
87   { return ((1 << pos)  & insn) >> pos; }
88 
89   static unsigned int
90   aarch64_bits(Insntype insn, int pos, int l)
91   { return (insn >> pos) & ((1 << l) - 1); }
92 
93   // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94   // the name defined in armv8 insn manual C3.5.9.
95   static unsigned int
96   aarch64_op31(Insntype insn)
97   { return aarch64_bits(insn, 21, 3); }
98 
99   // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100   // third source register. See armv8 insn manual C3.5.9.
101   static unsigned int
102   aarch64_ra(Insntype insn)
103   { return aarch64_bits(insn, 10, 5); }
104 
105   static bool
106   is_adr(const Insntype insn)
107   { return (insn & 0x9F000000) == 0x10000000; }
108 
109   static bool
110   is_adrp(const Insntype insn)
111   { return (insn & 0x9F000000) == 0x90000000; }
112 
113   static unsigned int
114   aarch64_rm(const Insntype insn)
115   { return aarch64_bits(insn, 16, 5); }
116 
117   static unsigned int
118   aarch64_rn(const Insntype insn)
119   { return aarch64_bits(insn, 5, 5); }
120 
121   static unsigned int
122   aarch64_rd(const Insntype insn)
123   { return aarch64_bits(insn, 0, 5); }
124 
125   static unsigned int
126   aarch64_rt(const Insntype insn)
127   { return aarch64_bits(insn, 0, 5); }
128 
129   static unsigned int
130   aarch64_rt2(const Insntype insn)
131   { return aarch64_bits(insn, 10, 5); }
132 
133   // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
134   static Insntype
135   aarch64_adr_encode_imm(Insntype adr, int imm21)
136   {
137     gold_assert(is_adr(adr));
138     gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
139     const int mask19 = (1 << 19) - 1;
140     const int mask2 = 3;
141     adr &= ~((mask19 << 5) | (mask2 << 29));
142     adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
143     return adr;
144   }
145 
146   // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
147   // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
148   // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
149   static int64_t
150   aarch64_adrp_decode_imm(const Insntype adrp)
151   {
152     const int mask19 = (1 << 19) - 1;
153     const int mask2 = 3;
154     gold_assert(is_adrp(adrp));
155     // 21-bit imm encoded in adrp.
156     uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
157     // Retrieve msb of 21-bit-signed imm for sign extension.
158     uint64_t msbt = (imm >> 20) & 1;
159     // Real value is imm multipled by 4k. Value now has 33-bit information.
160     int64_t value = imm << 12;
161     // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
162     // with value.
163     return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
164   }
165 
166   static bool
167   aarch64_b(const Insntype insn)
168   { return (insn & 0xFC000000) == 0x14000000; }
169 
170   static bool
171   aarch64_bl(const Insntype insn)
172   { return (insn & 0xFC000000) == 0x94000000; }
173 
174   static bool
175   aarch64_blr(const Insntype insn)
176   { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
177 
178   static bool
179   aarch64_br(const Insntype insn)
180   { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
181 
182   // All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
183   // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
184   static bool
185   aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
186 
187   static bool
188   aarch64_ldst(Insntype insn)
189   { return (insn & 0x0a000000) == 0x08000000; }
190 
191   static bool
192   aarch64_ldst_ex(Insntype insn)
193   { return (insn & 0x3f000000) == 0x08000000; }
194 
195   static bool
196   aarch64_ldst_pcrel(Insntype insn)
197   { return (insn & 0x3b000000) == 0x18000000; }
198 
199   static bool
200   aarch64_ldst_nap(Insntype insn)
201   { return (insn & 0x3b800000) == 0x28000000; }
202 
203   static bool
204   aarch64_ldstp_pi(Insntype insn)
205   { return (insn & 0x3b800000) == 0x28800000; }
206 
207   static bool
208   aarch64_ldstp_o(Insntype insn)
209   { return (insn & 0x3b800000) == 0x29000000; }
210 
211   static bool
212   aarch64_ldstp_pre(Insntype insn)
213   { return (insn & 0x3b800000) == 0x29800000; }
214 
215   static bool
216   aarch64_ldst_ui(Insntype insn)
217   { return (insn & 0x3b200c00) == 0x38000000; }
218 
219   static bool
220   aarch64_ldst_piimm(Insntype insn)
221   { return (insn & 0x3b200c00) == 0x38000400; }
222 
223   static bool
224   aarch64_ldst_u(Insntype insn)
225   { return (insn & 0x3b200c00) == 0x38000800; }
226 
227   static bool
228   aarch64_ldst_preimm(Insntype insn)
229   { return (insn & 0x3b200c00) == 0x38000c00; }
230 
231   static bool
232   aarch64_ldst_ro(Insntype insn)
233   { return (insn & 0x3b200c00) == 0x38200800; }
234 
235   static bool
236   aarch64_ldst_uimm(Insntype insn)
237   { return (insn & 0x3b000000) == 0x39000000; }
238 
239   static bool
240   aarch64_ldst_simd_m(Insntype insn)
241   { return (insn & 0xbfbf0000) == 0x0c000000; }
242 
243   static bool
244   aarch64_ldst_simd_m_pi(Insntype insn)
245   { return (insn & 0xbfa00000) == 0x0c800000; }
246 
247   static bool
248   aarch64_ldst_simd_s(Insntype insn)
249   { return (insn & 0xbf9f0000) == 0x0d000000; }
250 
251   static bool
252   aarch64_ldst_simd_s_pi(Insntype insn)
253   { return (insn & 0xbf800000) == 0x0d800000; }
254 
255   // Classify an INSN if it is indeed a load/store. Return true if INSN is a
256   // LD/ST instruction otherwise return false. For scalar LD/ST instructions
257   // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
258   // instructions PAIR is TRUE, RT and RT2 are returned.
259   static bool
260   aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
261 		   bool *pair, bool *load)
262   {
263     uint32_t opcode;
264     unsigned int r;
265     uint32_t opc = 0;
266     uint32_t v = 0;
267     uint32_t opc_v = 0;
268 
269     /* Bail out quickly if INSN doesn't fall into the the load-store
270        encoding space.  */
271     if (!aarch64_ldst (insn))
272       return false;
273 
274     *pair = false;
275     *load = false;
276     if (aarch64_ldst_ex (insn))
277       {
278 	*rt = aarch64_rt (insn);
279 	*rt2 = *rt;
280 	if (aarch64_bit (insn, 21) == 1)
281 	  {
282 	    *pair = true;
283 	    *rt2 = aarch64_rt2 (insn);
284 	  }
285 	*load = aarch64_ld (insn);
286 	return true;
287       }
288     else if (aarch64_ldst_nap (insn)
289 	     || aarch64_ldstp_pi (insn)
290 	     || aarch64_ldstp_o (insn)
291 	     || aarch64_ldstp_pre (insn))
292       {
293 	*pair = true;
294 	*rt = aarch64_rt (insn);
295 	*rt2 = aarch64_rt2 (insn);
296 	*load = aarch64_ld (insn);
297 	return true;
298       }
299     else if (aarch64_ldst_pcrel (insn)
300 	     || aarch64_ldst_ui (insn)
301 	     || aarch64_ldst_piimm (insn)
302 	     || aarch64_ldst_u (insn)
303 	     || aarch64_ldst_preimm (insn)
304 	     || aarch64_ldst_ro (insn)
305 	     || aarch64_ldst_uimm (insn))
306       {
307 	*rt = aarch64_rt (insn);
308 	*rt2 = *rt;
309 	if (aarch64_ldst_pcrel (insn))
310 	  *load = true;
311 	opc = aarch64_bits (insn, 22, 2);
312 	v = aarch64_bit (insn, 26);
313 	opc_v = opc | (v << 2);
314 	*load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
315 		  || opc_v == 5 || opc_v == 7);
316 	return true;
317       }
318     else if (aarch64_ldst_simd_m (insn)
319 	     || aarch64_ldst_simd_m_pi (insn))
320       {
321 	*rt = aarch64_rt (insn);
322 	*load = aarch64_bit (insn, 22);
323 	opcode = (insn >> 12) & 0xf;
324 	switch (opcode)
325 	  {
326 	  case 0:
327 	  case 2:
328 	    *rt2 = *rt + 3;
329 	    break;
330 
331 	  case 4:
332 	  case 6:
333 	    *rt2 = *rt + 2;
334 	    break;
335 
336 	  case 7:
337 	    *rt2 = *rt;
338 	    break;
339 
340 	  case 8:
341 	  case 10:
342 	    *rt2 = *rt + 1;
343 	    break;
344 
345 	  default:
346 	    return false;
347 	  }
348 	return true;
349       }
350     else if (aarch64_ldst_simd_s (insn)
351 	     || aarch64_ldst_simd_s_pi (insn))
352       {
353 	*rt = aarch64_rt (insn);
354 	r = (insn >> 21) & 1;
355 	*load = aarch64_bit (insn, 22);
356 	opcode = (insn >> 13) & 0x7;
357 	switch (opcode)
358 	  {
359 	  case 0:
360 	  case 2:
361 	  case 4:
362 	    *rt2 = *rt + r;
363 	    break;
364 
365 	  case 1:
366 	  case 3:
367 	  case 5:
368 	    *rt2 = *rt + (r == 0 ? 2 : 3);
369 	    break;
370 
371 	  case 6:
372 	    *rt2 = *rt + r;
373 	    break;
374 
375 	  case 7:
376 	    *rt2 = *rt + (r == 0 ? 2 : 3);
377 	    break;
378 
379 	  default:
380 	    return false;
381 	  }
382 	return true;
383       }
384     return false;
385   }  // End of "aarch64_mem_op_p".
386 
387   // Return true if INSN is mac insn.
388   static bool
389   aarch64_mac(Insntype insn)
390   { return (insn & 0xff000000) == 0x9b000000; }
391 
392   // Return true if INSN is multiply-accumulate.
393   // (This is similar to implementaton in elfnn-aarch64.c.)
394   static bool
395   aarch64_mlxl(Insntype insn)
396   {
397     uint32_t op31 = aarch64_op31(insn);
398     if (aarch64_mac(insn)
399 	&& (op31 == 0 || op31 == 1 || op31 == 5)
400 	/* Exclude MUL instructions which are encoded as a multiple-accumulate
401 	   with RA = XZR.  */
402 	&& aarch64_ra(insn) != AARCH64_ZR)
403       {
404 	return true;
405       }
406     return false;
407   }
408 };  // End of "AArch64_insn_utilities".
409 
410 
411 // Insn length in byte.
412 
413 template<bool big_endian>
414 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
415 
416 
417 // Zero register encoding - 31.
418 
419 template<bool big_endian>
420 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
421 
422 
423 // Output_data_got_aarch64 class.
424 
425 template<int size, bool big_endian>
426 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
427 {
428  public:
429   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
430   Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
431     : Output_data_got<size, big_endian>(),
432       symbol_table_(symtab), layout_(layout)
433   { }
434 
435   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
436   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
437   // applied in a static link.
438   void
439   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
440   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
441 
442 
443   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
444   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
445   // relocation that needs to be applied in a static link.
446   void
447   add_static_reloc(unsigned int got_offset, unsigned int r_type,
448 		   Sized_relobj_file<size, big_endian>* relobj,
449 		   unsigned int index)
450   {
451     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
452 						index));
453   }
454 
455 
456  protected:
457   // Write out the GOT table.
458   void
459   do_write(Output_file* of) {
460     // The first entry in the GOT is the address of the .dynamic section.
461     gold_assert(this->data_size() >= size / 8);
462     Output_section* dynamic = this->layout_->dynamic_section();
463     Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
464     this->replace_constant(0, dynamic_addr);
465     Output_data_got<size, big_endian>::do_write(of);
466 
467     // Handling static relocs
468     if (this->static_relocs_.empty())
469       return;
470 
471     typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
472 
473     gold_assert(parameters->doing_static_link());
474     const off_t offset = this->offset();
475     const section_size_type oview_size =
476       convert_to_section_size_type(this->data_size());
477     unsigned char* const oview = of->get_output_view(offset, oview_size);
478 
479     Output_segment* tls_segment = this->layout_->tls_segment();
480     gold_assert(tls_segment != NULL);
481 
482     AArch64_address aligned_tcb_address =
483       align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
484 		    tls_segment->maximum_alignment());
485 
486     for (size_t i = 0; i < this->static_relocs_.size(); ++i)
487       {
488 	Static_reloc& reloc(this->static_relocs_[i]);
489 	AArch64_address value;
490 
491 	if (!reloc.symbol_is_global())
492 	  {
493 	    Sized_relobj_file<size, big_endian>* object = reloc.relobj();
494 	    const Symbol_value<size>* psymval =
495 	      reloc.relobj()->local_symbol(reloc.index());
496 
497 	    // We are doing static linking.  Issue an error and skip this
498 	    // relocation if the symbol is undefined or in a discarded_section.
499 	    bool is_ordinary;
500 	    unsigned int shndx = psymval->input_shndx(&is_ordinary);
501 	    if ((shndx == elfcpp::SHN_UNDEF)
502 		|| (is_ordinary
503 		    && shndx != elfcpp::SHN_UNDEF
504 		    && !object->is_section_included(shndx)
505 		    && !this->symbol_table_->is_section_folded(object, shndx)))
506 	      {
507 		gold_error(_("undefined or discarded local symbol %u from "
508 			     " object %s in GOT"),
509 			   reloc.index(), reloc.relobj()->name().c_str());
510 		continue;
511 	      }
512 	    value = psymval->value(object, 0);
513 	  }
514 	else
515 	  {
516 	    const Symbol* gsym = reloc.symbol();
517 	    gold_assert(gsym != NULL);
518 	    if (gsym->is_forwarder())
519 	      gsym = this->symbol_table_->resolve_forwards(gsym);
520 
521 	    // We are doing static linking.  Issue an error and skip this
522 	    // relocation if the symbol is undefined or in a discarded_section
523 	    // unless it is a weakly_undefined symbol.
524 	    if ((gsym->is_defined_in_discarded_section()
525 		 || gsym->is_undefined())
526 		&& !gsym->is_weak_undefined())
527 	      {
528 		gold_error(_("undefined or discarded symbol %s in GOT"),
529 			   gsym->name());
530 		continue;
531 	      }
532 
533 	    if (!gsym->is_weak_undefined())
534 	      {
535 		const Sized_symbol<size>* sym =
536 		  static_cast<const Sized_symbol<size>*>(gsym);
537 		value = sym->value();
538 	      }
539 	    else
540 	      value = 0;
541 	  }
542 
543 	unsigned got_offset = reloc.got_offset();
544 	gold_assert(got_offset < oview_size);
545 
546 	typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
547 	Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
548 	Valtype x;
549 	switch (reloc.r_type())
550 	  {
551 	  case elfcpp::R_AARCH64_TLS_DTPREL64:
552 	    x = value;
553 	    break;
554 	  case elfcpp::R_AARCH64_TLS_TPREL64:
555 	    x = value + aligned_tcb_address;
556 	    break;
557 	  default:
558 	    gold_unreachable();
559 	  }
560 	elfcpp::Swap<size, big_endian>::writeval(wv, x);
561       }
562 
563     of->write_output_view(offset, oview_size, oview);
564   }
565 
566  private:
567   // Symbol table of the output object.
568   Symbol_table* symbol_table_;
569   // A pointer to the Layout class, so that we can find the .dynamic
570   // section when we write out the GOT section.
571   Layout* layout_;
572 
573   // This class represent dynamic relocations that need to be applied by
574   // gold because we are using TLS relocations in a static link.
575   class Static_reloc
576   {
577    public:
578     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
579       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
580     { this->u_.global.symbol = gsym; }
581 
582     Static_reloc(unsigned int got_offset, unsigned int r_type,
583 	  Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
584       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
585     {
586       this->u_.local.relobj = relobj;
587       this->u_.local.index = index;
588     }
589 
590     // Return the GOT offset.
591     unsigned int
592     got_offset() const
593     { return this->got_offset_; }
594 
595     // Relocation type.
596     unsigned int
597     r_type() const
598     { return this->r_type_; }
599 
600     // Whether the symbol is global or not.
601     bool
602     symbol_is_global() const
603     { return this->symbol_is_global_; }
604 
605     // For a relocation against a global symbol, the global symbol.
606     Symbol*
607     symbol() const
608     {
609       gold_assert(this->symbol_is_global_);
610       return this->u_.global.symbol;
611     }
612 
613     // For a relocation against a local symbol, the defining object.
614     Sized_relobj_file<size, big_endian>*
615     relobj() const
616     {
617       gold_assert(!this->symbol_is_global_);
618       return this->u_.local.relobj;
619     }
620 
621     // For a relocation against a local symbol, the local symbol index.
622     unsigned int
623     index() const
624     {
625       gold_assert(!this->symbol_is_global_);
626       return this->u_.local.index;
627     }
628 
629    private:
630     // GOT offset of the entry to which this relocation is applied.
631     unsigned int got_offset_;
632     // Type of relocation.
633     unsigned int r_type_;
634     // Whether this relocation is against a global symbol.
635     bool symbol_is_global_;
636     // A global or local symbol.
637     union
638     {
639       struct
640       {
641 	// For a global symbol, the symbol itself.
642 	Symbol* symbol;
643       } global;
644       struct
645       {
646 	// For a local symbol, the object defining the symbol.
647 	Sized_relobj_file<size, big_endian>* relobj;
648 	// For a local symbol, the symbol index.
649 	unsigned int index;
650       } local;
651     } u_;
652   };  // End of inner class Static_reloc
653 
654   std::vector<Static_reloc> static_relocs_;
655 };  // End of Output_data_got_aarch64
656 
657 
658 template<int size, bool big_endian>
659 class AArch64_input_section;
660 
661 
662 template<int size, bool big_endian>
663 class AArch64_output_section;
664 
665 
666 template<int size, bool big_endian>
667 class AArch64_relobj;
668 
669 
670 // Stub type enum constants.
671 
672 enum
673 {
674   ST_NONE = 0,
675 
676   // Using adrp/add pair, 4 insns (including alignment) without mem access,
677   // the fastest stub. This has a limited jump distance, which is tested by
678   // aarch64_valid_for_adrp_p.
679   ST_ADRP_BRANCH = 1,
680 
681   // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
682   // unlimited in jump distance.
683   ST_LONG_BRANCH_ABS = 2,
684 
685   // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
686   // mem access, slowest one. Only used in position independent executables.
687   ST_LONG_BRANCH_PCREL = 3,
688 
689   // Stub for erratum 843419 handling.
690   ST_E_843419 = 4,
691 
692   // Stub for erratum 835769 handling.
693   ST_E_835769 = 5,
694 
695   // Number of total stub types.
696   ST_NUMBER = 6
697 };
698 
699 
700 // Struct that wraps insns for a particular stub. All stub templates are
701 // created/initialized as constants by Stub_template_repertoire.
702 
703 template<bool big_endian>
704 struct Stub_template
705 {
706   const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
707   const int insn_num;
708 };
709 
710 
711 // Simple singleton class that creates/initializes/stores all types of stub
712 // templates.
713 
714 template<bool big_endian>
715 class Stub_template_repertoire
716 {
717 public:
718   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
719 
720   // Single static method to get stub template for a given stub type.
721   static const Stub_template<big_endian>*
722   get_stub_template(int type)
723   {
724     static Stub_template_repertoire<big_endian> singleton;
725     return singleton.stub_templates_[type];
726   }
727 
728 private:
729   // Constructor - creates/initializes all stub templates.
730   Stub_template_repertoire();
731   ~Stub_template_repertoire()
732   { }
733 
734   // Disallowing copy ctor and copy assignment operator.
735   Stub_template_repertoire(Stub_template_repertoire&);
736   Stub_template_repertoire& operator=(Stub_template_repertoire&);
737 
738   // Data that stores all insn templates.
739   const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
740 };  // End of "class Stub_template_repertoire".
741 
742 
743 // Constructor - creates/initilizes all stub templates.
744 
745 template<bool big_endian>
746 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
747 {
748   // Insn array definitions.
749   const static Insntype ST_NONE_INSNS[] = {};
750 
751   const static Insntype ST_ADRP_BRANCH_INSNS[] =
752     {
753       0x90000010,	/*	adrp	ip0, X		   */
754 			/*	  ADR_PREL_PG_HI21(X)	   */
755       0x91000210,	/*	add	ip0, ip0, :lo12:X  */
756 			/*	  ADD_ABS_LO12_NC(X)	   */
757       0xd61f0200,	/*	br	ip0		   */
758       0x00000000,	/*	alignment padding	   */
759     };
760 
761   const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
762     {
763       0x58000050,	/*	ldr   ip0, 0x8		   */
764       0xd61f0200,	/*	br    ip0		   */
765       0x00000000,	/*	address field		   */
766       0x00000000,	/*	address fields		   */
767     };
768 
769   const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
770     {
771       0x58000090,	/*	ldr   ip0, 0x10            */
772       0x10000011,	/*	adr   ip1, #0		   */
773       0x8b110210,	/*	add   ip0, ip0, ip1	   */
774       0xd61f0200,	/*	br    ip0		   */
775       0x00000000,	/*	address field		   */
776       0x00000000,	/*	address field		   */
777       0x00000000,	/*	alignment padding	   */
778       0x00000000,	/*	alignment padding	   */
779     };
780 
781   const static Insntype ST_E_843419_INSNS[] =
782     {
783       0x00000000,    /* Placeholder for erratum insn. */
784       0x14000000,    /* b <label> */
785     };
786 
787   // ST_E_835769 has the same stub template as ST_E_843419.
788   const static Insntype* ST_E_835769_INSNS = ST_E_843419_INSNS;
789 
790 #define install_insn_template(T) \
791   const static Stub_template<big_endian> template_##T = {  \
792     T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
793   this->stub_templates_[T] = &template_##T
794 
795   install_insn_template(ST_NONE);
796   install_insn_template(ST_ADRP_BRANCH);
797   install_insn_template(ST_LONG_BRANCH_ABS);
798   install_insn_template(ST_LONG_BRANCH_PCREL);
799   install_insn_template(ST_E_843419);
800   install_insn_template(ST_E_835769);
801 
802 #undef install_insn_template
803 }
804 
805 
806 // Base class for stubs.
807 
808 template<int size, bool big_endian>
809 class Stub_base
810 {
811 public:
812   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
813   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
814 
815   static const AArch64_address invalid_address =
816     static_cast<AArch64_address>(-1);
817 
818   static const section_offset_type invalid_offset =
819     static_cast<section_offset_type>(-1);
820 
821   Stub_base(int type)
822     : destination_address_(invalid_address),
823       offset_(invalid_offset),
824       type_(type)
825   {}
826 
827   ~Stub_base()
828   {}
829 
830   // Get stub type.
831   int
832   type() const
833   { return this->type_; }
834 
835   // Get stub template that provides stub insn information.
836   const Stub_template<big_endian>*
837   stub_template() const
838   {
839     return Stub_template_repertoire<big_endian>::
840       get_stub_template(this->type());
841   }
842 
843   // Get destination address.
844   AArch64_address
845   destination_address() const
846   {
847     gold_assert(this->destination_address_ != this->invalid_address);
848     return this->destination_address_;
849   }
850 
851   // Set destination address.
852   void
853   set_destination_address(AArch64_address address)
854   {
855     gold_assert(address != this->invalid_address);
856     this->destination_address_ = address;
857   }
858 
859   // Reset the destination address.
860   void
861   reset_destination_address()
862   { this->destination_address_ = this->invalid_address; }
863 
864   // Get offset of code stub. For Reloc_stub, it is the offset from the
865   // beginning of its containing stub table; for Erratum_stub, it is the offset
866   // from the end of reloc_stubs.
867   section_offset_type
868   offset() const
869   {
870     gold_assert(this->offset_ != this->invalid_offset);
871     return this->offset_;
872   }
873 
874   // Set stub offset.
875   void
876   set_offset(section_offset_type offset)
877   { this->offset_ = offset; }
878 
879   // Return the stub insn.
880   const Insntype*
881   insns() const
882   { return this->stub_template()->insns; }
883 
884   // Return num of stub insns.
885   unsigned int
886   insn_num() const
887   { return this->stub_template()->insn_num; }
888 
889   // Get size of the stub.
890   int
891   stub_size() const
892   {
893     return this->insn_num() *
894       AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
895   }
896 
897   // Write stub to output file.
898   void
899   write(unsigned char* view, section_size_type view_size)
900   { this->do_write(view, view_size); }
901 
902 protected:
903   // Abstract method to be implemented by sub-classes.
904   virtual void
905   do_write(unsigned char*, section_size_type) = 0;
906 
907 private:
908   // The last insn of a stub is a jump to destination insn. This field records
909   // the destination address.
910   AArch64_address destination_address_;
911   // The stub offset. Note this has difference interpretations between an
912   // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
913   // beginning of the containing stub_table, whereas for Erratum_stub, this is
914   // the offset from the end of reloc_stubs.
915   section_offset_type offset_;
916   // Stub type.
917   const int type_;
918 };  // End of "Stub_base".
919 
920 
921 // Erratum stub class. An erratum stub differs from a reloc stub in that for
922 // each erratum occurrence, we generate an erratum stub. We never share erratum
923 // stubs, whereas for reloc stubs, different branches insns share a single reloc
924 // stub as long as the branch targets are the same. (More to the point, reloc
925 // stubs can be shared because they're used to reach a specific target, whereas
926 // erratum stubs branch back to the original control flow.)
927 
928 template<int size, bool big_endian>
929 class Erratum_stub : public Stub_base<size, big_endian>
930 {
931 public:
932   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
933   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
934   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
935   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
936 
937   static const int STUB_ADDR_ALIGN;
938 
939   static const Insntype invalid_insn = static_cast<Insntype>(-1);
940 
941   Erratum_stub(The_aarch64_relobj* relobj, int type,
942 	       unsigned shndx, unsigned int sh_offset)
943     : Stub_base<size, big_endian>(type), relobj_(relobj),
944       shndx_(shndx), sh_offset_(sh_offset),
945       erratum_insn_(invalid_insn),
946       erratum_address_(this->invalid_address)
947   {}
948 
949   ~Erratum_stub() {}
950 
951   // Return the object that contains the erratum.
952   The_aarch64_relobj*
953   relobj()
954   { return this->relobj_; }
955 
956   // Get section index of the erratum.
957   unsigned int
958   shndx() const
959   { return this->shndx_; }
960 
961   // Get section offset of the erratum.
962   unsigned int
963   sh_offset() const
964   { return this->sh_offset_; }
965 
966   // Get the erratum insn. This is the insn located at erratum_insn_address.
967   Insntype
968   erratum_insn() const
969   {
970     gold_assert(this->erratum_insn_ != this->invalid_insn);
971     return this->erratum_insn_;
972   }
973 
974   // Set the insn that the erratum happens to.
975   void
976   set_erratum_insn(Insntype insn)
977   { this->erratum_insn_ = insn; }
978 
979   // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
980   // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
981   // is no longer the one we want to write out to the stub, update erratum_insn_
982   // with relocated version. Also note that in this case xn must not be "PC", so
983   // it is safe to move the erratum insn from the origin place to the stub. For
984   // 835769, the erratum insn is multiply-accumulate insn, which could not be a
985   // relocation spot (assertion added though).
986   void
987   update_erratum_insn(Insntype insn)
988   {
989     gold_assert(this->erratum_insn_ != this->invalid_insn);
990     switch (this->type())
991       {
992       case ST_E_843419:
993 	gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
994 	gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
995 	gold_assert(Insn_utilities::aarch64_rd(insn) ==
996 		    Insn_utilities::aarch64_rd(this->erratum_insn()));
997 	gold_assert(Insn_utilities::aarch64_rn(insn) ==
998 		    Insn_utilities::aarch64_rn(this->erratum_insn()));
999 	// Update plain ld/st insn with relocated insn.
1000 	this->erratum_insn_ = insn;
1001 	break;
1002       case ST_E_835769:
1003 	gold_assert(insn == this->erratum_insn());
1004 	break;
1005       default:
1006 	gold_unreachable();
1007       }
1008   }
1009 
1010 
1011   // Return the address where an erratum must be done.
1012   AArch64_address
1013   erratum_address() const
1014   {
1015     gold_assert(this->erratum_address_ != this->invalid_address);
1016     return this->erratum_address_;
1017   }
1018 
1019   // Set the address where an erratum must be done.
1020   void
1021   set_erratum_address(AArch64_address addr)
1022   { this->erratum_address_ = addr; }
1023 
1024   // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1025   // sh_offset). We do not include 'type' in the calculation, becuase there is
1026   // at most one stub type at (obj, shndx, sh_offset).
1027   bool
1028   operator<(const Erratum_stub<size, big_endian>& k) const
1029   {
1030     if (this == &k)
1031       return false;
1032     // We group stubs by relobj.
1033     if (this->relobj_ != k.relobj_)
1034       return this->relobj_ < k.relobj_;
1035     // Then by section index.
1036     if (this->shndx_ != k.shndx_)
1037       return this->shndx_ < k.shndx_;
1038     // Lastly by section offset.
1039     return this->sh_offset_ < k.sh_offset_;
1040   }
1041 
1042 protected:
1043   virtual void
1044   do_write(unsigned char*, section_size_type);
1045 
1046 private:
1047   // The object that needs to be fixed.
1048   The_aarch64_relobj* relobj_;
1049   // The shndx in the object that needs to be fixed.
1050   const unsigned int shndx_;
1051   // The section offset in the obejct that needs to be fixed.
1052   const unsigned int sh_offset_;
1053   // The insn to be fixed.
1054   Insntype erratum_insn_;
1055   // The address of the above insn.
1056   AArch64_address erratum_address_;
1057 };  // End of "Erratum_stub".
1058 
1059 
1060 // Erratum sub class to wrap additional info needed by 843419.  In fixing this
1061 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1062 // adrp's code position (two or three insns before erratum insn itself).
1063 
1064 template<int size, bool big_endian>
1065 class E843419_stub : public Erratum_stub<size, big_endian>
1066 {
1067 public:
1068   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1069 
1070   E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1071 		      unsigned int shndx, unsigned int sh_offset,
1072 		      unsigned int adrp_sh_offset)
1073     : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1074       adrp_sh_offset_(adrp_sh_offset)
1075   {}
1076 
1077   unsigned int
1078   adrp_sh_offset() const
1079   { return this->adrp_sh_offset_; }
1080 
1081 private:
1082   // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1083   // can can obtain it from its parent.)
1084   const unsigned int adrp_sh_offset_;
1085 };
1086 
1087 
1088 template<int size, bool big_endian>
1089 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1090 
1091 // Comparator used in set definition.
1092 template<int size, bool big_endian>
1093 struct Erratum_stub_less
1094 {
1095   bool
1096   operator()(const Erratum_stub<size, big_endian>* s1,
1097 	     const Erratum_stub<size, big_endian>* s2) const
1098   { return *s1 < *s2; }
1099 };
1100 
1101 // Erratum_stub implementation for writing stub to output file.
1102 
1103 template<int size, bool big_endian>
1104 void
1105 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1106 {
1107   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1108   const Insntype* insns = this->insns();
1109   uint32_t num_insns = this->insn_num();
1110   Insntype* ip = reinterpret_cast<Insntype*>(view);
1111   // For current implemented erratum 843419 and 835769, the first insn in the
1112   // stub is always a copy of the problematic insn (in 843419, the mem access
1113   // insn, in 835769, the mac insn), followed by a jump-back.
1114   elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1115   for (uint32_t i = 1; i < num_insns; ++i)
1116     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1117 }
1118 
1119 
1120 // Reloc stub class.
1121 
1122 template<int size, bool big_endian>
1123 class Reloc_stub : public Stub_base<size, big_endian>
1124 {
1125  public:
1126   typedef Reloc_stub<size, big_endian> This;
1127   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1128 
1129   // Branch range. This is used to calculate the section group size, as well as
1130   // determine whether a stub is needed.
1131   static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1132   static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1133 
1134   // Constant used to determine if an offset fits in the adrp instruction
1135   // encoding.
1136   static const int MAX_ADRP_IMM = (1 << 20) - 1;
1137   static const int MIN_ADRP_IMM = -(1 << 20);
1138 
1139   static const int BYTES_PER_INSN = 4;
1140   static const int STUB_ADDR_ALIGN;
1141 
1142   // Determine whether the offset fits in the jump/branch instruction.
1143   static bool
1144   aarch64_valid_branch_offset_p(int64_t offset)
1145   { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1146 
1147   // Determine whether the offset fits in the adrp immediate field.
1148   static bool
1149   aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1150   {
1151     typedef AArch64_relocate_functions<size, big_endian> Reloc;
1152     int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1153     return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1154   }
1155 
1156   // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1157   // needed.
1158   static int
1159   stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1160 		      AArch64_address target);
1161 
1162   Reloc_stub(int type)
1163     : Stub_base<size, big_endian>(type)
1164   { }
1165 
1166   ~Reloc_stub()
1167   { }
1168 
1169   // The key class used to index the stub instance in the stub table's stub map.
1170   class Key
1171   {
1172    public:
1173     Key(int type, const Symbol* symbol, const Relobj* relobj,
1174 	unsigned int r_sym, int32_t addend)
1175       : type_(type), addend_(addend)
1176     {
1177       if (symbol != NULL)
1178 	{
1179 	  this->r_sym_ = Reloc_stub::invalid_index;
1180 	  this->u_.symbol = symbol;
1181 	}
1182       else
1183 	{
1184 	  gold_assert(relobj != NULL && r_sym != invalid_index);
1185 	  this->r_sym_ = r_sym;
1186 	  this->u_.relobj = relobj;
1187 	}
1188     }
1189 
1190     ~Key()
1191     { }
1192 
1193     // Return stub type.
1194     int
1195     type() const
1196     { return this->type_; }
1197 
1198     // Return the local symbol index or invalid_index.
1199     unsigned int
1200     r_sym() const
1201     { return this->r_sym_; }
1202 
1203     // Return the symbol if there is one.
1204     const Symbol*
1205     symbol() const
1206     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1207 
1208     // Return the relobj if there is one.
1209     const Relobj*
1210     relobj() const
1211     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1212 
1213     // Whether this equals to another key k.
1214     bool
1215     eq(const Key& k) const
1216     {
1217       return ((this->type_ == k.type_)
1218 	      && (this->r_sym_ == k.r_sym_)
1219 	      && ((this->r_sym_ != Reloc_stub::invalid_index)
1220 		  ? (this->u_.relobj == k.u_.relobj)
1221 		  : (this->u_.symbol == k.u_.symbol))
1222 	      && (this->addend_ == k.addend_));
1223     }
1224 
1225     // Return a hash value.
1226     size_t
1227     hash_value() const
1228     {
1229       size_t name_hash_value = gold::string_hash<char>(
1230 	  (this->r_sym_ != Reloc_stub::invalid_index)
1231 	  ? this->u_.relobj->name().c_str()
1232 	  : this->u_.symbol->name());
1233       // We only have 4 stub types.
1234       size_t stub_type_hash_value = 0x03 & this->type_;
1235       return (name_hash_value
1236 	      ^ stub_type_hash_value
1237 	      ^ ((this->r_sym_ & 0x3fff) << 2)
1238 	      ^ ((this->addend_ & 0xffff) << 16));
1239     }
1240 
1241     // Functors for STL associative containers.
1242     struct hash
1243     {
1244       size_t
1245       operator()(const Key& k) const
1246       { return k.hash_value(); }
1247     };
1248 
1249     struct equal_to
1250     {
1251       bool
1252       operator()(const Key& k1, const Key& k2) const
1253       { return k1.eq(k2); }
1254     };
1255 
1256    private:
1257     // Stub type.
1258     const int type_;
1259     // If this is a local symbol, this is the index in the defining object.
1260     // Otherwise, it is invalid_index for a global symbol.
1261     unsigned int r_sym_;
1262     // If r_sym_ is an invalid index, this points to a global symbol.
1263     // Otherwise, it points to a relobj.  We used the unsized and target
1264     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1265     // Arm_relobj, in order to avoid making the stub class a template
1266     // as most of the stub machinery is endianness-neutral.  However, it
1267     // may require a bit of casting done by users of this class.
1268     union
1269     {
1270       const Symbol* symbol;
1271       const Relobj* relobj;
1272     } u_;
1273     // Addend associated with a reloc.
1274     int32_t addend_;
1275   };  // End of inner class Reloc_stub::Key
1276 
1277  protected:
1278   // This may be overridden in the child class.
1279   virtual void
1280   do_write(unsigned char*, section_size_type);
1281 
1282  private:
1283   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1284 };  // End of Reloc_stub
1285 
1286 template<int size, bool big_endian>
1287 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1288 
1289 // Write data to output file.
1290 
1291 template<int size, bool big_endian>
1292 void
1293 Reloc_stub<size, big_endian>::
1294 do_write(unsigned char* view, section_size_type)
1295 {
1296   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1297   const uint32_t* insns = this->insns();
1298   uint32_t num_insns = this->insn_num();
1299   Insntype* ip = reinterpret_cast<Insntype*>(view);
1300   for (uint32_t i = 0; i < num_insns; ++i)
1301     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1302 }
1303 
1304 
1305 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1306 // needed.
1307 
1308 template<int size, bool big_endian>
1309 inline int
1310 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1311     unsigned int r_type, AArch64_address location, AArch64_address dest)
1312 {
1313   int64_t branch_offset = 0;
1314   switch(r_type)
1315     {
1316     case elfcpp::R_AARCH64_CALL26:
1317     case elfcpp::R_AARCH64_JUMP26:
1318       branch_offset = dest - location;
1319       break;
1320     default:
1321       gold_unreachable();
1322     }
1323 
1324   if (aarch64_valid_branch_offset_p(branch_offset))
1325     return ST_NONE;
1326 
1327   if (aarch64_valid_for_adrp_p(location, dest))
1328     return ST_ADRP_BRANCH;
1329 
1330   // Always use PC-relative addressing in case of -shared or -pie.
1331   if (parameters->options().output_is_position_independent())
1332     return ST_LONG_BRANCH_PCREL;
1333 
1334   // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1335   // But is only applicable to non-shared or non-pie.
1336   return ST_LONG_BRANCH_ABS;
1337 }
1338 
1339 // A class to hold stubs for the ARM target.
1340 
1341 template<int size, bool big_endian>
1342 class Stub_table : public Output_data
1343 {
1344  public:
1345   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1346   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1347   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1348   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1349   typedef Reloc_stub<size, big_endian> The_reloc_stub;
1350   typedef typename The_reloc_stub::Key The_reloc_stub_key;
1351   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1352   typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1353   typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1354   typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1355   typedef Stub_table<size, big_endian> The_stub_table;
1356   typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1357 			The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1358 			Reloc_stub_map;
1359   typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1360   typedef Relocate_info<size, big_endian> The_relocate_info;
1361 
1362   typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1363   typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1364 
1365   Stub_table(The_aarch64_input_section* owner)
1366     : Output_data(), owner_(owner), reloc_stubs_size_(0),
1367       erratum_stubs_size_(0), prev_data_size_(0)
1368   { }
1369 
1370   ~Stub_table()
1371   { }
1372 
1373   The_aarch64_input_section*
1374   owner() const
1375   { return owner_; }
1376 
1377   // Whether this stub table is empty.
1378   bool
1379   empty() const
1380   { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1381 
1382   // Return the current data size.
1383   off_t
1384   current_data_size() const
1385   { return this->current_data_size_for_child(); }
1386 
1387   // Add a STUB using KEY.  The caller is responsible for avoiding addition
1388   // if a STUB with the same key has already been added.
1389   void
1390   add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1391 
1392   // Add an erratum stub into the erratum stub set. The set is ordered by
1393   // (relobj, shndx, sh_offset).
1394   void
1395   add_erratum_stub(The_erratum_stub* stub);
1396 
1397   // Find if such erratum exists for any given (obj, shndx, sh_offset).
1398   The_erratum_stub*
1399   find_erratum_stub(The_aarch64_relobj* a64relobj,
1400 		    unsigned int shndx, unsigned int sh_offset);
1401 
1402   // Find all the erratums for a given input section. The return value is a pair
1403   // of iterators [begin, end).
1404   std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1405   find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1406 				       unsigned int shndx);
1407 
1408   // Compute the erratum stub address.
1409   AArch64_address
1410   erratum_stub_address(The_erratum_stub* stub) const
1411   {
1412     AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1413 				      The_erratum_stub::STUB_ADDR_ALIGN);
1414     r += stub->offset();
1415     return r;
1416   }
1417 
1418   // Finalize stubs. No-op here, just for completeness.
1419   void
1420   finalize_stubs()
1421   { }
1422 
1423   // Look up a relocation stub using KEY. Return NULL if there is none.
1424   The_reloc_stub*
1425   find_reloc_stub(The_reloc_stub_key& key)
1426   {
1427     Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1428     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1429   }
1430 
1431   // Relocate stubs in this stub table.
1432   void
1433   relocate_stubs(const The_relocate_info*,
1434 		 The_target_aarch64*,
1435 		 Output_section*,
1436 		 unsigned char*,
1437 		 AArch64_address,
1438 		 section_size_type);
1439 
1440   // Update data size at the end of a relaxation pass.  Return true if data size
1441   // is different from that of the previous relaxation pass.
1442   bool
1443   update_data_size_changed_p()
1444   {
1445     // No addralign changed here.
1446     off_t s = align_address(this->reloc_stubs_size_,
1447 			    The_erratum_stub::STUB_ADDR_ALIGN)
1448 	      + this->erratum_stubs_size_;
1449     bool changed = (s != this->prev_data_size_);
1450     this->prev_data_size_ = s;
1451     return changed;
1452   }
1453 
1454  protected:
1455   // Write out section contents.
1456   void
1457   do_write(Output_file*);
1458 
1459   // Return the required alignment.
1460   uint64_t
1461   do_addralign() const
1462   {
1463     return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1464 		    The_erratum_stub::STUB_ADDR_ALIGN);
1465   }
1466 
1467   // Reset address and file offset.
1468   void
1469   do_reset_address_and_file_offset()
1470   { this->set_current_data_size_for_child(this->prev_data_size_); }
1471 
1472   // Set final data size.
1473   void
1474   set_final_data_size()
1475   { this->set_data_size(this->current_data_size()); }
1476 
1477  private:
1478   // Relocate one stub.
1479   void
1480   relocate_stub(The_reloc_stub*,
1481 		const The_relocate_info*,
1482 		The_target_aarch64*,
1483 		Output_section*,
1484 		unsigned char*,
1485 		AArch64_address,
1486 		section_size_type);
1487 
1488  private:
1489   // Owner of this stub table.
1490   The_aarch64_input_section* owner_;
1491   // The relocation stubs.
1492   Reloc_stub_map reloc_stubs_;
1493   // The erratum stubs.
1494   Erratum_stub_set erratum_stubs_;
1495   // Size of reloc stubs.
1496   off_t reloc_stubs_size_;
1497   // Size of erratum stubs.
1498   off_t erratum_stubs_size_;
1499   // data size of this in the previous pass.
1500   off_t prev_data_size_;
1501 };  // End of Stub_table
1502 
1503 
1504 // Add an erratum stub into the erratum stub set. The set is ordered by
1505 // (relobj, shndx, sh_offset).
1506 
1507 template<int size, bool big_endian>
1508 void
1509 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1510 {
1511   std::pair<Erratum_stub_set_iter, bool> ret =
1512     this->erratum_stubs_.insert(stub);
1513   gold_assert(ret.second);
1514   this->erratum_stubs_size_ = align_address(
1515 	this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1516   stub->set_offset(this->erratum_stubs_size_);
1517   this->erratum_stubs_size_ += stub->stub_size();
1518 }
1519 
1520 
1521 // Find if such erratum exists for given (obj, shndx, sh_offset).
1522 
1523 template<int size, bool big_endian>
1524 Erratum_stub<size, big_endian>*
1525 Stub_table<size, big_endian>::find_erratum_stub(
1526     The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1527 {
1528   // A dummy object used as key to search in the set.
1529   The_erratum_stub key(a64relobj, ST_NONE,
1530 			 shndx, sh_offset);
1531   Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1532   if (i != this->erratum_stubs_.end())
1533     {
1534 	The_erratum_stub* stub(*i);
1535 	gold_assert(stub->erratum_insn() != 0);
1536 	return stub;
1537     }
1538   return NULL;
1539 }
1540 
1541 
1542 // Find all the errata for a given input section. The return value is a pair of
1543 // iterators [begin, end).
1544 
1545 template<int size, bool big_endian>
1546 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1547 	  typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1548 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1549     The_aarch64_relobj* a64relobj, unsigned int shndx)
1550 {
1551   typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1552   Erratum_stub_set_iter start, end;
1553   The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1554   start = this->erratum_stubs_.lower_bound(&low_key);
1555   if (start == this->erratum_stubs_.end())
1556     return Result_pair(this->erratum_stubs_.end(),
1557 		       this->erratum_stubs_.end());
1558   end = start;
1559   while (end != this->erratum_stubs_.end() &&
1560 	 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1561     ++end;
1562   return Result_pair(start, end);
1563 }
1564 
1565 
1566 // Add a STUB using KEY.  The caller is responsible for avoiding addition
1567 // if a STUB with the same key has already been added.
1568 
1569 template<int size, bool big_endian>
1570 void
1571 Stub_table<size, big_endian>::add_reloc_stub(
1572     The_reloc_stub* stub, const The_reloc_stub_key& key)
1573 {
1574   gold_assert(stub->type() == key.type());
1575   this->reloc_stubs_[key] = stub;
1576 
1577   // Assign stub offset early.  We can do this because we never remove
1578   // reloc stubs and they are in the beginning of the stub table.
1579   this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1580 					  The_reloc_stub::STUB_ADDR_ALIGN);
1581   stub->set_offset(this->reloc_stubs_size_);
1582   this->reloc_stubs_size_ += stub->stub_size();
1583 }
1584 
1585 
1586 // Relocate all stubs in this stub table.
1587 
1588 template<int size, bool big_endian>
1589 void
1590 Stub_table<size, big_endian>::
1591 relocate_stubs(const The_relocate_info* relinfo,
1592 	       The_target_aarch64* target_aarch64,
1593 	       Output_section* output_section,
1594 	       unsigned char* view,
1595 	       AArch64_address address,
1596 	       section_size_type view_size)
1597 {
1598   // "view_size" is the total size of the stub_table.
1599   gold_assert(address == this->address() &&
1600 	      view_size == static_cast<section_size_type>(this->data_size()));
1601   for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1602       p != this->reloc_stubs_.end(); ++p)
1603     relocate_stub(p->second, relinfo, target_aarch64, output_section,
1604 		  view, address, view_size);
1605 
1606   // Just for convenience.
1607   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1608 
1609   // Now 'relocate' erratum stubs.
1610   for(Erratum_stub_set_iter i = this->erratum_stubs_.begin();
1611       i != this->erratum_stubs_.end(); ++i)
1612     {
1613       AArch64_address stub_address = this->erratum_stub_address(*i);
1614       // The address of "b" in the stub that is to be "relocated".
1615       AArch64_address stub_b_insn_address;
1616       // Branch offset that is to be filled in "b" insn.
1617       int b_offset = 0;
1618       switch ((*i)->type())
1619 	{
1620 	case ST_E_843419:
1621 	case ST_E_835769:
1622 	  // The 1st insn of the erratum could be a relocation spot,
1623 	  // in this case we need to fix it with
1624 	  // "(*i)->erratum_insn()".
1625 	  elfcpp::Swap<32, big_endian>::writeval(
1626 	      view + (stub_address - this->address()),
1627 	      (*i)->erratum_insn());
1628 	  // For the erratum, the 2nd insn is a b-insn to be patched
1629 	  // (relocated).
1630 	  stub_b_insn_address = stub_address + 1 * BPI;
1631 	  b_offset = (*i)->destination_address() - stub_b_insn_address;
1632 	  AArch64_relocate_functions<size, big_endian>::construct_b(
1633 	      view + (stub_b_insn_address - this->address()),
1634 	      ((unsigned int)(b_offset)) & 0xfffffff);
1635 	  break;
1636 	default:
1637 	  gold_unreachable();
1638 	  break;
1639 	}
1640     }
1641 }
1642 
1643 
1644 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
1645 
1646 template<int size, bool big_endian>
1647 void
1648 Stub_table<size, big_endian>::
1649 relocate_stub(The_reloc_stub* stub,
1650 	      const The_relocate_info* relinfo,
1651 	      The_target_aarch64* target_aarch64,
1652 	      Output_section* output_section,
1653 	      unsigned char* view,
1654 	      AArch64_address address,
1655 	      section_size_type view_size)
1656 {
1657   // "offset" is the offset from the beginning of the stub_table.
1658   section_size_type offset = stub->offset();
1659   section_size_type stub_size = stub->stub_size();
1660   // "view_size" is the total size of the stub_table.
1661   gold_assert(offset + stub_size <= view_size);
1662 
1663   target_aarch64->relocate_stub(stub, relinfo, output_section,
1664 				view + offset, address + offset, view_size);
1665 }
1666 
1667 
1668 // Write out the stubs to file.
1669 
1670 template<int size, bool big_endian>
1671 void
1672 Stub_table<size, big_endian>::do_write(Output_file* of)
1673 {
1674   off_t offset = this->offset();
1675   const section_size_type oview_size =
1676     convert_to_section_size_type(this->data_size());
1677   unsigned char* const oview = of->get_output_view(offset, oview_size);
1678 
1679   // Write relocation stubs.
1680   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1681       p != this->reloc_stubs_.end(); ++p)
1682     {
1683       The_reloc_stub* stub = p->second;
1684       AArch64_address address = this->address() + stub->offset();
1685       gold_assert(address ==
1686 		  align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1687       stub->write(oview + stub->offset(), stub->stub_size());
1688     }
1689 
1690   // Write erratum stubs.
1691   unsigned int erratum_stub_start_offset =
1692     align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1693   for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1694        p != this->erratum_stubs_.end(); ++p)
1695     {
1696       The_erratum_stub* stub(*p);
1697       stub->write(oview + erratum_stub_start_offset + stub->offset(),
1698 		  stub->stub_size());
1699     }
1700 
1701   of->write_output_view(this->offset(), oview_size, oview);
1702 }
1703 
1704 
1705 // AArch64_relobj class.
1706 
1707 template<int size, bool big_endian>
1708 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1709 {
1710  public:
1711   typedef AArch64_relobj<size, big_endian> This;
1712   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1713   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1714   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1715   typedef Stub_table<size, big_endian> The_stub_table;
1716   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1717   typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1718   typedef std::vector<The_stub_table*> Stub_table_list;
1719   static const AArch64_address invalid_address =
1720       static_cast<AArch64_address>(-1);
1721 
1722   AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1723 		 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1724     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1725       stub_tables_()
1726   { }
1727 
1728   ~AArch64_relobj()
1729   { }
1730 
1731   // Return the stub table of the SHNDX-th section if there is one.
1732   The_stub_table*
1733   stub_table(unsigned int shndx) const
1734   {
1735     gold_assert(shndx < this->stub_tables_.size());
1736     return this->stub_tables_[shndx];
1737   }
1738 
1739   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1740   void
1741   set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1742   {
1743     gold_assert(shndx < this->stub_tables_.size());
1744     this->stub_tables_[shndx] = stub_table;
1745   }
1746 
1747   // Entrance to errata scanning.
1748   void
1749   scan_errata(unsigned int shndx,
1750 	      const elfcpp::Shdr<size, big_endian>&,
1751 	      Output_section*, const Symbol_table*,
1752 	      The_target_aarch64*);
1753 
1754   // Scan all relocation sections for stub generation.
1755   void
1756   scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1757 			  const Layout*);
1758 
1759   // Whether a section is a scannable text section.
1760   bool
1761   text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1762 			    const Output_section*, const Symbol_table*);
1763 
1764   // Convert regular input section with index SHNDX to a relaxed section.
1765   void
1766   convert_input_section_to_relaxed_section(unsigned /* shndx */)
1767   {
1768     // The stubs have relocations and we need to process them after writing
1769     // out the stubs.  So relocation now must follow section write.
1770     this->set_relocs_must_follow_section_writes();
1771   }
1772 
1773   // Structure for mapping symbol position.
1774   struct Mapping_symbol_position
1775   {
1776     Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1777       shndx_(shndx), offset_(offset)
1778     {}
1779 
1780     // "<" comparator used in ordered_map container.
1781     bool
1782     operator<(const Mapping_symbol_position& p) const
1783     {
1784       return (this->shndx_ < p.shndx_
1785 	      || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1786     }
1787 
1788     // Section index.
1789     unsigned int shndx_;
1790 
1791     // Section offset.
1792     AArch64_address offset_;
1793   };
1794 
1795   typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1796 
1797  protected:
1798   // Post constructor setup.
1799   void
1800   do_setup()
1801   {
1802     // Call parent's setup method.
1803     Sized_relobj_file<size, big_endian>::do_setup();
1804 
1805     // Initialize look-up tables.
1806     this->stub_tables_.resize(this->shnum());
1807   }
1808 
1809   virtual void
1810   do_relocate_sections(
1811       const Symbol_table* symtab, const Layout* layout,
1812       const unsigned char* pshdrs, Output_file* of,
1813       typename Sized_relobj_file<size, big_endian>::Views* pviews);
1814 
1815   // Count local symbols and (optionally) record mapping info.
1816   virtual void
1817   do_count_local_symbols(Stringpool_template<char>*,
1818 			 Stringpool_template<char>*);
1819 
1820  private:
1821   // Fix all errata in the object.
1822   void
1823   fix_errata(typename Sized_relobj_file<size, big_endian>::Views* pviews);
1824 
1825   // Try to fix erratum 843419 in an optimized way. Return true if patch is
1826   // applied.
1827   bool
1828   try_fix_erratum_843419_optimized(
1829       The_erratum_stub*,
1830       typename Sized_relobj_file<size, big_endian>::View_size&);
1831 
1832   // Whether a section needs to be scanned for relocation stubs.
1833   bool
1834   section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1835 				    const Relobj::Output_sections&,
1836 				    const Symbol_table*, const unsigned char*);
1837 
1838   // List of stub tables.
1839   Stub_table_list stub_tables_;
1840 
1841   // Mapping symbol information sorted by (section index, section_offset).
1842   Mapping_symbol_info mapping_symbol_info_;
1843 };  // End of AArch64_relobj
1844 
1845 
1846 // Override to record mapping symbol information.
1847 template<int size, bool big_endian>
1848 void
1849 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1850     Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1851 {
1852   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1853 
1854   // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1855   // processing if not fixing erratum.
1856   if (!parameters->options().fix_cortex_a53_843419()
1857       && !parameters->options().fix_cortex_a53_835769())
1858     return;
1859 
1860   const unsigned int loccount = this->local_symbol_count();
1861   if (loccount == 0)
1862     return;
1863 
1864   // Read the symbol table section header.
1865   const unsigned int symtab_shndx = this->symtab_shndx();
1866   elfcpp::Shdr<size, big_endian>
1867       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1868   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1869 
1870   // Read the local symbols.
1871   const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1872   gold_assert(loccount == symtabshdr.get_sh_info());
1873   off_t locsize = loccount * sym_size;
1874   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1875 					      locsize, true, true);
1876 
1877   // For mapping symbol processing, we need to read the symbol names.
1878   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1879   if (strtab_shndx >= this->shnum())
1880     {
1881       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1882       return;
1883     }
1884 
1885   elfcpp::Shdr<size, big_endian>
1886     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1887   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1888     {
1889       this->error(_("symbol table name section has wrong type: %u"),
1890 		  static_cast<unsigned int>(strtabshdr.get_sh_type()));
1891       return;
1892     }
1893 
1894   const char* pnames =
1895     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1896 						 strtabshdr.get_sh_size(),
1897 						 false, false));
1898 
1899   // Skip the first dummy symbol.
1900   psyms += sym_size;
1901   typename Sized_relobj_file<size, big_endian>::Local_values*
1902     plocal_values = this->local_values();
1903   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1904     {
1905       elfcpp::Sym<size, big_endian> sym(psyms);
1906       Symbol_value<size>& lv((*plocal_values)[i]);
1907       AArch64_address input_value = lv.input_value();
1908 
1909       // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1910       // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1911       // symbols.
1912       // Mapping symbols could be one of the following 4 forms -
1913       //   a) $x
1914       //   b) $x.<any...>
1915       //   c) $d
1916       //   d) $d.<any...>
1917       const char* sym_name = pnames + sym.get_st_name();
1918       if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1919 	  && (sym_name[2] == '\0' || sym_name[2] == '.'))
1920 	{
1921 	  bool is_ordinary;
1922 	  unsigned int input_shndx =
1923 	    this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1924 	  gold_assert(is_ordinary);
1925 
1926 	  Mapping_symbol_position msp(input_shndx, input_value);
1927 	  // Insert mapping_symbol_info into map whose ordering is defined by
1928 	  // (shndx, offset_within_section).
1929 	  this->mapping_symbol_info_[msp] = sym_name[1];
1930 	}
1931    }
1932 }
1933 
1934 
1935 // Fix all errata in the object.
1936 
1937 template<int size, bool big_endian>
1938 void
1939 AArch64_relobj<size, big_endian>::fix_errata(
1940     typename Sized_relobj_file<size, big_endian>::Views* pviews)
1941 {
1942   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1943   unsigned int shnum = this->shnum();
1944   for (unsigned int i = 1; i < shnum; ++i)
1945     {
1946       The_stub_table* stub_table = this->stub_table(i);
1947       if (!stub_table)
1948 	continue;
1949       std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1950 	ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
1951       Erratum_stub_set_iter p = ipair.first, end = ipair.second;
1952       while (p != end)
1953 	{
1954 	  The_erratum_stub* stub = *p;
1955 	  typename Sized_relobj_file<size, big_endian>::View_size&
1956 	    pview((*pviews)[i]);
1957 
1958 	  // Double check data before fix.
1959 	  gold_assert(pview.address + stub->sh_offset()
1960 		      == stub->erratum_address());
1961 
1962 	  // Update previously recorded erratum insn with relocated
1963 	  // version.
1964 	  Insntype* ip =
1965 	    reinterpret_cast<Insntype*>(pview.view + stub->sh_offset());
1966 	  Insntype insn_to_fix = ip[0];
1967 	  stub->update_erratum_insn(insn_to_fix);
1968 
1969 	  // First try to see if erratum is 843419 and if it can be fixed
1970 	  // without using branch-to-stub.
1971 	  if (!try_fix_erratum_843419_optimized(stub, pview))
1972 	    {
1973 	      // Replace the erratum insn with a branch-to-stub.
1974 	      AArch64_address stub_address =
1975 		stub_table->erratum_stub_address(stub);
1976 	      unsigned int b_offset = stub_address - stub->erratum_address();
1977 	      AArch64_relocate_functions<size, big_endian>::construct_b(
1978 		pview.view + stub->sh_offset(), b_offset & 0xfffffff);
1979 	    }
1980 	  ++p;
1981 	}
1982     }
1983 }
1984 
1985 
1986 // This is an optimization for 843419. This erratum requires the sequence begin
1987 // with 'adrp', when final value calculated by adrp fits in adr, we can just
1988 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
1989 // in this case, we do not delete the erratum stub (too late to do so), it is
1990 // merely generated without ever being called.)
1991 
1992 template<int size, bool big_endian>
1993 bool
1994 AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
1995     The_erratum_stub* stub,
1996     typename Sized_relobj_file<size, big_endian>::View_size& pview)
1997 {
1998   if (stub->type() != ST_E_843419)
1999     return false;
2000 
2001   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2002   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2003   E843419_stub<size, big_endian>* e843419_stub =
2004     reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2005   AArch64_address pc = pview.address + e843419_stub->adrp_sh_offset();
2006   Insntype* adrp_view = reinterpret_cast<Insntype*>(
2007     pview.view + e843419_stub->adrp_sh_offset());
2008   Insntype adrp_insn = adrp_view[0];
2009   gold_assert(Insn_utilities::is_adrp(adrp_insn));
2010   // Get adrp 33-bit signed imm value.
2011   int64_t adrp_imm = Insn_utilities::
2012     aarch64_adrp_decode_imm(adrp_insn);
2013   // adrp - final value transferred to target register is calculated as:
2014   //     PC[11:0] = Zeros(12)
2015   //     adrp_dest_value = PC + adrp_imm;
2016   int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2017   // adr -final value transferred to target register is calucalted as:
2018   //     PC + adr_imm
2019   // So we have:
2020   //     PC + adr_imm = adrp_dest_value
2021   //   ==>
2022   //     adr_imm = adrp_dest_value - PC
2023   int64_t adr_imm = adrp_dest_value - pc;
2024   // Check if imm fits in adr (21-bit signed).
2025   if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2026     {
2027       // Convert 'adrp' into 'adr'.
2028       Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
2029       adr_insn = Insn_utilities::
2030 	aarch64_adr_encode_imm(adr_insn, adr_imm);
2031       elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2032       return true;
2033     }
2034   return false;
2035 }
2036 
2037 
2038 // Relocate sections.
2039 
2040 template<int size, bool big_endian>
2041 void
2042 AArch64_relobj<size, big_endian>::do_relocate_sections(
2043     const Symbol_table* symtab, const Layout* layout,
2044     const unsigned char* pshdrs, Output_file* of,
2045     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2046 {
2047   // Call parent to relocate sections.
2048   Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
2049 							    pshdrs, of, pviews);
2050 
2051   // We do not generate stubs if doing a relocatable link.
2052   if (parameters->options().relocatable())
2053     return;
2054 
2055   if (parameters->options().fix_cortex_a53_843419()
2056       || parameters->options().fix_cortex_a53_835769())
2057     this->fix_errata(pviews);
2058 
2059   Relocate_info<size, big_endian> relinfo;
2060   relinfo.symtab = symtab;
2061   relinfo.layout = layout;
2062   relinfo.object = this;
2063 
2064   // Relocate stub tables.
2065   unsigned int shnum = this->shnum();
2066   The_target_aarch64* target = The_target_aarch64::current_target();
2067 
2068   for (unsigned int i = 1; i < shnum; ++i)
2069     {
2070       The_aarch64_input_section* aarch64_input_section =
2071 	  target->find_aarch64_input_section(this, i);
2072       if (aarch64_input_section != NULL
2073 	  && aarch64_input_section->is_stub_table_owner()
2074 	  && !aarch64_input_section->stub_table()->empty())
2075 	{
2076 	  Output_section* os = this->output_section(i);
2077 	  gold_assert(os != NULL);
2078 
2079 	  relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2080 	  relinfo.reloc_shdr = NULL;
2081 	  relinfo.data_shndx = i;
2082 	  relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2083 
2084 	  typename Sized_relobj_file<size, big_endian>::View_size&
2085 	      view_struct = (*pviews)[i];
2086 	  gold_assert(view_struct.view != NULL);
2087 
2088 	  The_stub_table* stub_table = aarch64_input_section->stub_table();
2089 	  off_t offset = stub_table->address() - view_struct.address;
2090 	  unsigned char* view = view_struct.view + offset;
2091 	  AArch64_address address = stub_table->address();
2092 	  section_size_type view_size = stub_table->data_size();
2093 	  stub_table->relocate_stubs(&relinfo, target, os, view, address,
2094 				     view_size);
2095 	}
2096     }
2097 }
2098 
2099 
2100 // Determine if an input section is scannable for stub processing.  SHDR is
2101 // the header of the section and SHNDX is the section index.  OS is the output
2102 // section for the input section and SYMTAB is the global symbol table used to
2103 // look up ICF information.
2104 
2105 template<int size, bool big_endian>
2106 bool
2107 AArch64_relobj<size, big_endian>::text_section_is_scannable(
2108     const elfcpp::Shdr<size, big_endian>& text_shdr,
2109     unsigned int text_shndx,
2110     const Output_section* os,
2111     const Symbol_table* symtab)
2112 {
2113   // Skip any empty sections, unallocated sections or sections whose
2114   // type are not SHT_PROGBITS.
2115   if (text_shdr.get_sh_size() == 0
2116       || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2117       || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2118     return false;
2119 
2120   // Skip any discarded or ICF'ed sections.
2121   if (os == NULL || symtab->is_section_folded(this, text_shndx))
2122     return false;
2123 
2124   // Skip exception frame.
2125   if (strcmp(os->name(), ".eh_frame") == 0)
2126     return false ;
2127 
2128   gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2129 	      os->find_relaxed_input_section(this, text_shndx) != NULL);
2130 
2131   return true;
2132 }
2133 
2134 
2135 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2136 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2137 
2138 template<int size, bool big_endian>
2139 bool
2140 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2141     const elfcpp::Shdr<size, big_endian>& shdr,
2142     const Relobj::Output_sections& out_sections,
2143     const Symbol_table* symtab,
2144     const unsigned char* pshdrs)
2145 {
2146   unsigned int sh_type = shdr.get_sh_type();
2147   if (sh_type != elfcpp::SHT_RELA)
2148     return false;
2149 
2150   // Ignore empty section.
2151   off_t sh_size = shdr.get_sh_size();
2152   if (sh_size == 0)
2153     return false;
2154 
2155   // Ignore reloc section with unexpected symbol table.  The
2156   // error will be reported in the final link.
2157   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2158     return false;
2159 
2160   gold_assert(sh_type == elfcpp::SHT_RELA);
2161   unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2162 
2163   // Ignore reloc section with unexpected entsize or uneven size.
2164   // The error will be reported in the final link.
2165   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2166     return false;
2167 
2168   // Ignore reloc section with bad info.  This error will be
2169   // reported in the final link.
2170   unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2171   if (text_shndx >= this->shnum())
2172     return false;
2173 
2174   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2175   const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2176 						 text_shndx * shdr_size);
2177   return this->text_section_is_scannable(text_shdr, text_shndx,
2178 					 out_sections[text_shndx], symtab);
2179 }
2180 
2181 
2182 // Scan section SHNDX for erratum 843419 and 835769.
2183 
2184 template<int size, bool big_endian>
2185 void
2186 AArch64_relobj<size, big_endian>::scan_errata(
2187     unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2188     Output_section* os, const Symbol_table* symtab,
2189     The_target_aarch64* target)
2190 {
2191   if (shdr.get_sh_size() == 0
2192       || (shdr.get_sh_flags() &
2193 	  (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2194       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2195     return;
2196 
2197   if (!os || symtab->is_section_folded(this, shndx)) return;
2198 
2199   AArch64_address output_offset = this->get_output_section_offset(shndx);
2200   AArch64_address output_address;
2201   if (output_offset != invalid_address)
2202     output_address = os->address() + output_offset;
2203   else
2204     {
2205       const Output_relaxed_input_section* poris =
2206 	os->find_relaxed_input_section(this, shndx);
2207       if (!poris) return;
2208       output_address = poris->address();
2209     }
2210 
2211   section_size_type input_view_size = 0;
2212   const unsigned char* input_view =
2213     this->section_contents(shndx, &input_view_size, false);
2214 
2215   Mapping_symbol_position section_start(shndx, 0);
2216   // Find the first mapping symbol record within section shndx.
2217   typename Mapping_symbol_info::const_iterator p =
2218     this->mapping_symbol_info_.lower_bound(section_start);
2219   while (p != this->mapping_symbol_info_.end() &&
2220 	 p->first.shndx_ == shndx)
2221     {
2222       typename Mapping_symbol_info::const_iterator prev = p;
2223       ++p;
2224       if (prev->second == 'x')
2225 	{
2226 	  section_size_type span_start =
2227 	    convert_to_section_size_type(prev->first.offset_);
2228 	  section_size_type span_end;
2229 	  if (p != this->mapping_symbol_info_.end()
2230 	      && p->first.shndx_ == shndx)
2231 	    span_end = convert_to_section_size_type(p->first.offset_);
2232 	  else
2233 	    span_end = convert_to_section_size_type(shdr.get_sh_size());
2234 
2235 	  // Here we do not share the scanning code of both errata. For 843419,
2236 	  // only the last few insns of each page are examined, which is fast,
2237 	  // whereas, for 835769, every insn pair needs to be checked.
2238 
2239 	  if (parameters->options().fix_cortex_a53_843419())
2240 	    target->scan_erratum_843419_span(
2241 	      this, shndx, span_start, span_end,
2242 	      const_cast<unsigned char*>(input_view), output_address);
2243 
2244 	  if (parameters->options().fix_cortex_a53_835769())
2245 	    target->scan_erratum_835769_span(
2246 	      this, shndx, span_start, span_end,
2247 	      const_cast<unsigned char*>(input_view), output_address);
2248 	}
2249     }
2250 }
2251 
2252 
2253 // Scan relocations for stub generation.
2254 
2255 template<int size, bool big_endian>
2256 void
2257 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2258     The_target_aarch64* target,
2259     const Symbol_table* symtab,
2260     const Layout* layout)
2261 {
2262   unsigned int shnum = this->shnum();
2263   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2264 
2265   // Read the section headers.
2266   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2267 					       shnum * shdr_size,
2268 					       true, true);
2269 
2270   // To speed up processing, we set up hash tables for fast lookup of
2271   // input offsets to output addresses.
2272   this->initialize_input_to_output_maps();
2273 
2274   const Relobj::Output_sections& out_sections(this->output_sections());
2275 
2276   Relocate_info<size, big_endian> relinfo;
2277   relinfo.symtab = symtab;
2278   relinfo.layout = layout;
2279   relinfo.object = this;
2280 
2281   // Do relocation stubs scanning.
2282   const unsigned char* p = pshdrs + shdr_size;
2283   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2284     {
2285       const elfcpp::Shdr<size, big_endian> shdr(p);
2286       if (parameters->options().fix_cortex_a53_843419()
2287 	  || parameters->options().fix_cortex_a53_835769())
2288 	scan_errata(i, shdr, out_sections[i], symtab, target);
2289       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2290 						  pshdrs))
2291 	{
2292 	  unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2293 	  AArch64_address output_offset =
2294 	      this->get_output_section_offset(index);
2295 	  AArch64_address output_address;
2296 	  if (output_offset != invalid_address)
2297 	    {
2298 	      output_address = out_sections[index]->address() + output_offset;
2299 	    }
2300 	  else
2301 	    {
2302 	      // Currently this only happens for a relaxed section.
2303 	      const Output_relaxed_input_section* poris =
2304 		  out_sections[index]->find_relaxed_input_section(this, index);
2305 	      gold_assert(poris != NULL);
2306 	      output_address = poris->address();
2307 	    }
2308 
2309 	  // Get the relocations.
2310 	  const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2311 							shdr.get_sh_size(),
2312 							true, false);
2313 
2314 	  // Get the section contents.
2315 	  section_size_type input_view_size = 0;
2316 	  const unsigned char* input_view =
2317 	      this->section_contents(index, &input_view_size, false);
2318 
2319 	  relinfo.reloc_shndx = i;
2320 	  relinfo.data_shndx = index;
2321 	  unsigned int sh_type = shdr.get_sh_type();
2322 	  unsigned int reloc_size;
2323 	  gold_assert (sh_type == elfcpp::SHT_RELA);
2324 	  reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2325 
2326 	  Output_section* os = out_sections[index];
2327 	  target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2328 					 shdr.get_sh_size() / reloc_size,
2329 					 os,
2330 					 output_offset == invalid_address,
2331 					 input_view, output_address,
2332 					 input_view_size);
2333 	}
2334     }
2335 }
2336 
2337 
2338 // A class to wrap an ordinary input section containing executable code.
2339 
2340 template<int size, bool big_endian>
2341 class AArch64_input_section : public Output_relaxed_input_section
2342 {
2343  public:
2344   typedef Stub_table<size, big_endian> The_stub_table;
2345 
2346   AArch64_input_section(Relobj* relobj, unsigned int shndx)
2347     : Output_relaxed_input_section(relobj, shndx, 1),
2348       stub_table_(NULL),
2349       original_contents_(NULL), original_size_(0),
2350       original_addralign_(1)
2351   { }
2352 
2353   ~AArch64_input_section()
2354   { delete[] this->original_contents_; }
2355 
2356   // Initialize.
2357   void
2358   init();
2359 
2360   // Set the stub_table.
2361   void
2362   set_stub_table(The_stub_table* st)
2363   { this->stub_table_ = st; }
2364 
2365   // Whether this is a stub table owner.
2366   bool
2367   is_stub_table_owner() const
2368   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2369 
2370   // Return the original size of the section.
2371   uint32_t
2372   original_size() const
2373   { return this->original_size_; }
2374 
2375   // Return the stub table.
2376   The_stub_table*
2377   stub_table()
2378   { return stub_table_; }
2379 
2380  protected:
2381   // Write out this input section.
2382   void
2383   do_write(Output_file*);
2384 
2385   // Return required alignment of this.
2386   uint64_t
2387   do_addralign() const
2388   {
2389     if (this->is_stub_table_owner())
2390       return std::max(this->stub_table_->addralign(),
2391 		      static_cast<uint64_t>(this->original_addralign_));
2392     else
2393       return this->original_addralign_;
2394   }
2395 
2396   // Finalize data size.
2397   void
2398   set_final_data_size();
2399 
2400   // Reset address and file offset.
2401   void
2402   do_reset_address_and_file_offset();
2403 
2404   // Output offset.
2405   bool
2406   do_output_offset(const Relobj* object, unsigned int shndx,
2407 		   section_offset_type offset,
2408 		   section_offset_type* poutput) const
2409   {
2410     if ((object == this->relobj())
2411 	&& (shndx == this->shndx())
2412 	&& (offset >= 0)
2413 	&& (offset <=
2414 	    convert_types<section_offset_type, uint32_t>(this->original_size_)))
2415       {
2416 	*poutput = offset;
2417 	return true;
2418       }
2419     else
2420       return false;
2421   }
2422 
2423  private:
2424   // Copying is not allowed.
2425   AArch64_input_section(const AArch64_input_section&);
2426   AArch64_input_section& operator=(const AArch64_input_section&);
2427 
2428   // The relocation stubs.
2429   The_stub_table* stub_table_;
2430   // Original section contents.  We have to make a copy here since the file
2431   // containing the original section may not be locked when we need to access
2432   // the contents.
2433   unsigned char* original_contents_;
2434   // Section size of the original input section.
2435   uint32_t original_size_;
2436   // Address alignment of the original input section.
2437   uint32_t original_addralign_;
2438 };  // End of AArch64_input_section
2439 
2440 
2441 // Finalize data size.
2442 
2443 template<int size, bool big_endian>
2444 void
2445 AArch64_input_section<size, big_endian>::set_final_data_size()
2446 {
2447   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2448 
2449   if (this->is_stub_table_owner())
2450     {
2451       this->stub_table_->finalize_data_size();
2452       off = align_address(off, this->stub_table_->addralign());
2453       off += this->stub_table_->data_size();
2454     }
2455   this->set_data_size(off);
2456 }
2457 
2458 
2459 // Reset address and file offset.
2460 
2461 template<int size, bool big_endian>
2462 void
2463 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2464 {
2465   // Size of the original input section contents.
2466   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2467 
2468   // If this is a stub table owner, account for the stub table size.
2469   if (this->is_stub_table_owner())
2470     {
2471       The_stub_table* stub_table = this->stub_table_;
2472 
2473       // Reset the stub table's address and file offset.  The
2474       // current data size for child will be updated after that.
2475       stub_table_->reset_address_and_file_offset();
2476       off = align_address(off, stub_table_->addralign());
2477       off += stub_table->current_data_size();
2478     }
2479 
2480   this->set_current_data_size(off);
2481 }
2482 
2483 
2484 // Initialize an Arm_input_section.
2485 
2486 template<int size, bool big_endian>
2487 void
2488 AArch64_input_section<size, big_endian>::init()
2489 {
2490   Relobj* relobj = this->relobj();
2491   unsigned int shndx = this->shndx();
2492 
2493   // We have to cache original size, alignment and contents to avoid locking
2494   // the original file.
2495   this->original_addralign_ =
2496       convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2497 
2498   // This is not efficient but we expect only a small number of relaxed
2499   // input sections for stubs.
2500   section_size_type section_size;
2501   const unsigned char* section_contents =
2502       relobj->section_contents(shndx, &section_size, false);
2503   this->original_size_ =
2504       convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2505 
2506   gold_assert(this->original_contents_ == NULL);
2507   this->original_contents_ = new unsigned char[section_size];
2508   memcpy(this->original_contents_, section_contents, section_size);
2509 
2510   // We want to make this look like the original input section after
2511   // output sections are finalized.
2512   Output_section* os = relobj->output_section(shndx);
2513   off_t offset = relobj->output_section_offset(shndx);
2514   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2515   this->set_address(os->address() + offset);
2516   this->set_file_offset(os->offset() + offset);
2517   this->set_current_data_size(this->original_size_);
2518   this->finalize_data_size();
2519 }
2520 
2521 
2522 // Write data to output file.
2523 
2524 template<int size, bool big_endian>
2525 void
2526 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2527 {
2528   // We have to write out the original section content.
2529   gold_assert(this->original_contents_ != NULL);
2530   of->write(this->offset(), this->original_contents_,
2531 	    this->original_size_);
2532 
2533   // If this owns a stub table and it is not empty, write it.
2534   if (this->is_stub_table_owner() && !this->stub_table_->empty())
2535     this->stub_table_->write(of);
2536 }
2537 
2538 
2539 // Arm output section class.  This is defined mainly to add a number of stub
2540 // generation methods.
2541 
2542 template<int size, bool big_endian>
2543 class AArch64_output_section : public Output_section
2544 {
2545  public:
2546   typedef Target_aarch64<size, big_endian> The_target_aarch64;
2547   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2548   typedef Stub_table<size, big_endian> The_stub_table;
2549   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2550 
2551  public:
2552   AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2553 			 elfcpp::Elf_Xword flags)
2554     : Output_section(name, type, flags)
2555   { }
2556 
2557   ~AArch64_output_section() {}
2558 
2559   // Group input sections for stub generation.
2560   void
2561   group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2562 		 const Task*);
2563 
2564  private:
2565   typedef Output_section::Input_section Input_section;
2566   typedef Output_section::Input_section_list Input_section_list;
2567 
2568   // Create a stub group.
2569   void
2570   create_stub_group(Input_section_list::const_iterator,
2571 		    Input_section_list::const_iterator,
2572 		    Input_section_list::const_iterator,
2573 		    The_target_aarch64*,
2574 		    std::vector<Output_relaxed_input_section*>&,
2575 		    const Task*);
2576 };  // End of AArch64_output_section
2577 
2578 
2579 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2580 // the input section that will be the owner of the stub table.
2581 
2582 template<int size, bool big_endian> void
2583 AArch64_output_section<size, big_endian>::create_stub_group(
2584     Input_section_list::const_iterator first,
2585     Input_section_list::const_iterator last,
2586     Input_section_list::const_iterator owner,
2587     The_target_aarch64* target,
2588     std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2589     const Task* task)
2590 {
2591   // Currently we convert ordinary input sections into relaxed sections only
2592   // at this point.
2593   The_aarch64_input_section* input_section;
2594   if (owner->is_relaxed_input_section())
2595     gold_unreachable();
2596   else
2597     {
2598       gold_assert(owner->is_input_section());
2599       // Create a new relaxed input section.  We need to lock the original
2600       // file.
2601       Task_lock_obj<Object> tl(task, owner->relobj());
2602       input_section =
2603 	  target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2604       new_relaxed_sections.push_back(input_section);
2605     }
2606 
2607   // Create a stub table.
2608   The_stub_table* stub_table =
2609       target->new_stub_table(input_section);
2610 
2611   input_section->set_stub_table(stub_table);
2612 
2613   Input_section_list::const_iterator p = first;
2614   // Look for input sections or relaxed input sections in [first ... last].
2615   do
2616     {
2617       if (p->is_input_section() || p->is_relaxed_input_section())
2618 	{
2619 	  // The stub table information for input sections live
2620 	  // in their objects.
2621 	  The_aarch64_relobj* aarch64_relobj =
2622 	      static_cast<The_aarch64_relobj*>(p->relobj());
2623 	  aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2624 	}
2625     }
2626   while (p++ != last);
2627 }
2628 
2629 
2630 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2631 // stub groups. We grow a stub group by adding input section until the size is
2632 // just below GROUP_SIZE. The last input section will be converted into a stub
2633 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2634 // after the stub table, effectively doubling the group size.
2635 //
2636 // This is similar to the group_sections() function in elf32-arm.c but is
2637 // implemented differently.
2638 
2639 template<int size, bool big_endian>
2640 void AArch64_output_section<size, big_endian>::group_sections(
2641     section_size_type group_size,
2642     bool stubs_always_after_branch,
2643     Target_aarch64<size, big_endian>* target,
2644     const Task* task)
2645 {
2646   typedef enum
2647   {
2648     NO_GROUP,
2649     FINDING_STUB_SECTION,
2650     HAS_STUB_SECTION
2651   } State;
2652 
2653   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2654 
2655   State state = NO_GROUP;
2656   section_size_type off = 0;
2657   section_size_type group_begin_offset = 0;
2658   section_size_type group_end_offset = 0;
2659   section_size_type stub_table_end_offset = 0;
2660   Input_section_list::const_iterator group_begin =
2661       this->input_sections().end();
2662   Input_section_list::const_iterator stub_table =
2663       this->input_sections().end();
2664   Input_section_list::const_iterator group_end = this->input_sections().end();
2665   for (Input_section_list::const_iterator p = this->input_sections().begin();
2666        p != this->input_sections().end();
2667        ++p)
2668     {
2669       section_size_type section_begin_offset =
2670 	align_address(off, p->addralign());
2671       section_size_type section_end_offset =
2672 	section_begin_offset + p->data_size();
2673 
2674       // Check to see if we should group the previously seen sections.
2675       switch (state)
2676 	{
2677 	case NO_GROUP:
2678 	  break;
2679 
2680 	case FINDING_STUB_SECTION:
2681 	  // Adding this section makes the group larger than GROUP_SIZE.
2682 	  if (section_end_offset - group_begin_offset >= group_size)
2683 	    {
2684 	      if (stubs_always_after_branch)
2685 		{
2686 		  gold_assert(group_end != this->input_sections().end());
2687 		  this->create_stub_group(group_begin, group_end, group_end,
2688 					  target, new_relaxed_sections,
2689 					  task);
2690 		  state = NO_GROUP;
2691 		}
2692 	      else
2693 		{
2694 		  // Input sections up to stub_group_size bytes after the stub
2695 		  // table can be handled by it too.
2696 		  state = HAS_STUB_SECTION;
2697 		  stub_table = group_end;
2698 		  stub_table_end_offset = group_end_offset;
2699 		}
2700 	    }
2701 	    break;
2702 
2703 	case HAS_STUB_SECTION:
2704 	  // Adding this section makes the post stub-section group larger
2705 	  // than GROUP_SIZE.
2706 	  gold_unreachable();
2707 	  // NOT SUPPORTED YET. For completeness only.
2708 	  if (section_end_offset - stub_table_end_offset >= group_size)
2709 	   {
2710 	     gold_assert(group_end != this->input_sections().end());
2711 	     this->create_stub_group(group_begin, group_end, stub_table,
2712 				     target, new_relaxed_sections, task);
2713 	     state = NO_GROUP;
2714 	   }
2715 	   break;
2716 
2717 	  default:
2718 	    gold_unreachable();
2719 	}
2720 
2721       // If we see an input section and currently there is no group, start
2722       // a new one.  Skip any empty sections.  We look at the data size
2723       // instead of calling p->relobj()->section_size() to avoid locking.
2724       if ((p->is_input_section() || p->is_relaxed_input_section())
2725 	  && (p->data_size() != 0))
2726 	{
2727 	  if (state == NO_GROUP)
2728 	    {
2729 	      state = FINDING_STUB_SECTION;
2730 	      group_begin = p;
2731 	      group_begin_offset = section_begin_offset;
2732 	    }
2733 
2734 	  // Keep track of the last input section seen.
2735 	  group_end = p;
2736 	  group_end_offset = section_end_offset;
2737 	}
2738 
2739       off = section_end_offset;
2740     }
2741 
2742   // Create a stub group for any ungrouped sections.
2743   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2744     {
2745       gold_assert(group_end != this->input_sections().end());
2746       this->create_stub_group(group_begin, group_end,
2747 			      (state == FINDING_STUB_SECTION
2748 			       ? group_end
2749 			       : stub_table),
2750 			      target, new_relaxed_sections, task);
2751     }
2752 
2753   if (!new_relaxed_sections.empty())
2754     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2755 
2756   // Update the section offsets
2757   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2758     {
2759       The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2760 	  new_relaxed_sections[i]->relobj());
2761       unsigned int shndx = new_relaxed_sections[i]->shndx();
2762       // Tell AArch64_relobj that this input section is converted.
2763       relobj->convert_input_section_to_relaxed_section(shndx);
2764     }
2765 }  // End of AArch64_output_section::group_sections
2766 
2767 
2768 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2769 
2770 
2771 // The aarch64 target class.
2772 // See the ABI at
2773 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2774 template<int size, bool big_endian>
2775 class Target_aarch64 : public Sized_target<size, big_endian>
2776 {
2777  public:
2778   typedef Target_aarch64<size, big_endian> This;
2779   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2780       Reloc_section;
2781   typedef Relocate_info<size, big_endian> The_relocate_info;
2782   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2783   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2784   typedef Reloc_stub<size, big_endian> The_reloc_stub;
2785   typedef Erratum_stub<size, big_endian> The_erratum_stub;
2786   typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2787   typedef Stub_table<size, big_endian> The_stub_table;
2788   typedef std::vector<The_stub_table*> Stub_table_list;
2789   typedef typename Stub_table_list::iterator Stub_table_iterator;
2790   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2791   typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2792   typedef Unordered_map<Section_id,
2793 			AArch64_input_section<size, big_endian>*,
2794 			Section_id_hash> AArch64_input_section_map;
2795   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2796   const static int TCB_SIZE = size / 8 * 2;
2797 
2798   Target_aarch64(const Target::Target_info* info = &aarch64_info)
2799     : Sized_target<size, big_endian>(info),
2800       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2801       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2802       rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2803       got_mod_index_offset_(-1U),
2804       tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2805       stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2806   { }
2807 
2808   // Scan the relocations to determine unreferenced sections for
2809   // garbage collection.
2810   void
2811   gc_process_relocs(Symbol_table* symtab,
2812 		    Layout* layout,
2813 		    Sized_relobj_file<size, big_endian>* object,
2814 		    unsigned int data_shndx,
2815 		    unsigned int sh_type,
2816 		    const unsigned char* prelocs,
2817 		    size_t reloc_count,
2818 		    Output_section* output_section,
2819 		    bool needs_special_offset_handling,
2820 		    size_t local_symbol_count,
2821 		    const unsigned char* plocal_symbols);
2822 
2823   // Scan the relocations to look for symbol adjustments.
2824   void
2825   scan_relocs(Symbol_table* symtab,
2826 	      Layout* layout,
2827 	      Sized_relobj_file<size, big_endian>* object,
2828 	      unsigned int data_shndx,
2829 	      unsigned int sh_type,
2830 	      const unsigned char* prelocs,
2831 	      size_t reloc_count,
2832 	      Output_section* output_section,
2833 	      bool needs_special_offset_handling,
2834 	      size_t local_symbol_count,
2835 	      const unsigned char* plocal_symbols);
2836 
2837   // Finalize the sections.
2838   void
2839   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2840 
2841   // Return the value to use for a dynamic which requires special
2842   // treatment.
2843   uint64_t
2844   do_dynsym_value(const Symbol*) const;
2845 
2846   // Relocate a section.
2847   void
2848   relocate_section(const Relocate_info<size, big_endian>*,
2849 		   unsigned int sh_type,
2850 		   const unsigned char* prelocs,
2851 		   size_t reloc_count,
2852 		   Output_section* output_section,
2853 		   bool needs_special_offset_handling,
2854 		   unsigned char* view,
2855 		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2856 		   section_size_type view_size,
2857 		   const Reloc_symbol_changes*);
2858 
2859   // Scan the relocs during a relocatable link.
2860   void
2861   scan_relocatable_relocs(Symbol_table* symtab,
2862 			  Layout* layout,
2863 			  Sized_relobj_file<size, big_endian>* object,
2864 			  unsigned int data_shndx,
2865 			  unsigned int sh_type,
2866 			  const unsigned char* prelocs,
2867 			  size_t reloc_count,
2868 			  Output_section* output_section,
2869 			  bool needs_special_offset_handling,
2870 			  size_t local_symbol_count,
2871 			  const unsigned char* plocal_symbols,
2872 			  Relocatable_relocs*);
2873 
2874   // Scan the relocs for --emit-relocs.
2875   void
2876   emit_relocs_scan(Symbol_table* symtab,
2877 		   Layout* layout,
2878 		   Sized_relobj_file<size, big_endian>* object,
2879 		   unsigned int data_shndx,
2880 		   unsigned int sh_type,
2881 		   const unsigned char* prelocs,
2882 		   size_t reloc_count,
2883 		   Output_section* output_section,
2884 		   bool needs_special_offset_handling,
2885 		   size_t local_symbol_count,
2886 		   const unsigned char* plocal_syms,
2887 		   Relocatable_relocs* rr);
2888 
2889   // Relocate a section during a relocatable link.
2890   void
2891   relocate_relocs(
2892       const Relocate_info<size, big_endian>*,
2893       unsigned int sh_type,
2894       const unsigned char* prelocs,
2895       size_t reloc_count,
2896       Output_section* output_section,
2897       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
2898       unsigned char* view,
2899       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2900       section_size_type view_size,
2901       unsigned char* reloc_view,
2902       section_size_type reloc_view_size);
2903 
2904   // Return the symbol index to use for a target specific relocation.
2905   // The only target specific relocation is R_AARCH64_TLSDESC for a
2906   // local symbol, which is an absolute reloc.
2907   unsigned int
2908   do_reloc_symbol_index(void*, unsigned int r_type) const
2909   {
2910     gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2911     return 0;
2912   }
2913 
2914   // Return the addend to use for a target specific relocation.
2915   uint64_t
2916   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
2917 
2918   // Return the PLT section.
2919   uint64_t
2920   do_plt_address_for_global(const Symbol* gsym) const
2921   { return this->plt_section()->address_for_global(gsym); }
2922 
2923   uint64_t
2924   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2925   { return this->plt_section()->address_for_local(relobj, symndx); }
2926 
2927   // This function should be defined in targets that can use relocation
2928   // types to determine (implemented in local_reloc_may_be_function_pointer
2929   // and global_reloc_may_be_function_pointer)
2930   // if a function's pointer is taken.  ICF uses this in safe mode to only
2931   // fold those functions whose pointer is defintely not taken.
2932   bool
2933   do_can_check_for_function_pointers() const
2934   { return true; }
2935 
2936   // Return the number of entries in the PLT.
2937   unsigned int
2938   plt_entry_count() const;
2939 
2940   //Return the offset of the first non-reserved PLT entry.
2941   unsigned int
2942   first_plt_entry_offset() const;
2943 
2944   // Return the size of each PLT entry.
2945   unsigned int
2946   plt_entry_size() const;
2947 
2948   // Create a stub table.
2949   The_stub_table*
2950   new_stub_table(The_aarch64_input_section*);
2951 
2952   // Create an aarch64 input section.
2953   The_aarch64_input_section*
2954   new_aarch64_input_section(Relobj*, unsigned int);
2955 
2956   // Find an aarch64 input section instance for a given OBJ and SHNDX.
2957   The_aarch64_input_section*
2958   find_aarch64_input_section(Relobj*, unsigned int) const;
2959 
2960   // Return the thread control block size.
2961   unsigned int
2962   tcb_size() const { return This::TCB_SIZE; }
2963 
2964   // Scan a section for stub generation.
2965   void
2966   scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
2967 			 const unsigned char*, size_t, Output_section*,
2968 			 bool, const unsigned char*,
2969 			 Address,
2970 			 section_size_type);
2971 
2972   // Scan a relocation section for stub.
2973   template<int sh_type>
2974   void
2975   scan_reloc_section_for_stubs(
2976       const The_relocate_info* relinfo,
2977       const unsigned char* prelocs,
2978       size_t reloc_count,
2979       Output_section* output_section,
2980       bool needs_special_offset_handling,
2981       const unsigned char* view,
2982       Address view_address,
2983       section_size_type);
2984 
2985   // Relocate a single stub.
2986   void
2987   relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
2988 		Output_section*, unsigned char*, Address,
2989 		section_size_type);
2990 
2991   // Get the default AArch64 target.
2992   static This*
2993   current_target()
2994   {
2995     gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
2996 		&& parameters->target().get_size() == size
2997 		&& parameters->target().is_big_endian() == big_endian);
2998     return static_cast<This*>(parameters->sized_target<size, big_endian>());
2999   }
3000 
3001 
3002   // Scan erratum 843419 for a part of a section.
3003   void
3004   scan_erratum_843419_span(
3005     AArch64_relobj<size, big_endian>*,
3006     unsigned int,
3007     const section_size_type,
3008     const section_size_type,
3009     unsigned char*,
3010     Address);
3011 
3012   // Scan erratum 835769 for a part of a section.
3013   void
3014   scan_erratum_835769_span(
3015     AArch64_relobj<size, big_endian>*,
3016     unsigned int,
3017     const section_size_type,
3018     const section_size_type,
3019     unsigned char*,
3020     Address);
3021 
3022  protected:
3023   void
3024   do_select_as_default_target()
3025   {
3026     gold_assert(aarch64_reloc_property_table == NULL);
3027     aarch64_reloc_property_table = new AArch64_reloc_property_table();
3028   }
3029 
3030   // Add a new reloc argument, returning the index in the vector.
3031   size_t
3032   add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3033 		   unsigned int r_sym)
3034   {
3035     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3036     return this->tlsdesc_reloc_info_.size() - 1;
3037   }
3038 
3039   virtual Output_data_plt_aarch64<size, big_endian>*
3040   do_make_data_plt(Layout* layout,
3041 		   Output_data_got_aarch64<size, big_endian>* got,
3042 		   Output_data_space* got_plt,
3043 		   Output_data_space* got_irelative)
3044   {
3045     return new Output_data_plt_aarch64_standard<size, big_endian>(
3046       layout, got, got_plt, got_irelative);
3047   }
3048 
3049 
3050   // do_make_elf_object to override the same function in the base class.
3051   Object*
3052   do_make_elf_object(const std::string&, Input_file*, off_t,
3053 		     const elfcpp::Ehdr<size, big_endian>&);
3054 
3055   Output_data_plt_aarch64<size, big_endian>*
3056   make_data_plt(Layout* layout,
3057 		Output_data_got_aarch64<size, big_endian>* got,
3058 		Output_data_space* got_plt,
3059 		Output_data_space* got_irelative)
3060   {
3061     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3062   }
3063 
3064   // We only need to generate stubs, and hence perform relaxation if we are
3065   // not doing relocatable linking.
3066   virtual bool
3067   do_may_relax() const
3068   { return !parameters->options().relocatable(); }
3069 
3070   // Relaxation hook.  This is where we do stub generation.
3071   virtual bool
3072   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3073 
3074   void
3075   group_sections(Layout* layout,
3076 		 section_size_type group_size,
3077 		 bool stubs_always_after_branch,
3078 		 const Task* task);
3079 
3080   void
3081   scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3082 		      const Sized_symbol<size>*, unsigned int,
3083 		      const Symbol_value<size>*,
3084 		      typename elfcpp::Elf_types<size>::Elf_Swxword,
3085 		      Address Elf_Addr);
3086 
3087   // Make an output section.
3088   Output_section*
3089   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3090 			 elfcpp::Elf_Xword flags)
3091   { return new The_aarch64_output_section(name, type, flags); }
3092 
3093  private:
3094   // The class which scans relocations.
3095   class Scan
3096   {
3097   public:
3098     Scan()
3099       : issued_non_pic_error_(false)
3100     { }
3101 
3102     inline void
3103     local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3104 	  Sized_relobj_file<size, big_endian>* object,
3105 	  unsigned int data_shndx,
3106 	  Output_section* output_section,
3107 	  const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3108 	  const elfcpp::Sym<size, big_endian>& lsym,
3109 	  bool is_discarded);
3110 
3111     inline void
3112     global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3113 	   Sized_relobj_file<size, big_endian>* object,
3114 	   unsigned int data_shndx,
3115 	   Output_section* output_section,
3116 	   const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3117 	   Symbol* gsym);
3118 
3119     inline bool
3120     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3121 					Target_aarch64<size, big_endian>* ,
3122 					Sized_relobj_file<size, big_endian>* ,
3123 					unsigned int ,
3124 					Output_section* ,
3125 					const elfcpp::Rela<size, big_endian>& ,
3126 					unsigned int r_type,
3127 					const elfcpp::Sym<size, big_endian>&);
3128 
3129     inline bool
3130     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3131 					 Target_aarch64<size, big_endian>* ,
3132 					 Sized_relobj_file<size, big_endian>* ,
3133 					 unsigned int ,
3134 					 Output_section* ,
3135 					 const elfcpp::Rela<size, big_endian>& ,
3136 					 unsigned int r_type,
3137 					 Symbol* gsym);
3138 
3139   private:
3140     static void
3141     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3142 			    unsigned int r_type);
3143 
3144     static void
3145     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3146 			     unsigned int r_type, Symbol*);
3147 
3148     inline bool
3149     possible_function_pointer_reloc(unsigned int r_type);
3150 
3151     void
3152     check_non_pic(Relobj*, unsigned int r_type);
3153 
3154     bool
3155     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3156 			      unsigned int r_type);
3157 
3158     // Whether we have issued an error about a non-PIC compilation.
3159     bool issued_non_pic_error_;
3160   };
3161 
3162   // The class which implements relocation.
3163   class Relocate
3164   {
3165    public:
3166     Relocate()
3167       : skip_call_tls_get_addr_(false)
3168     { }
3169 
3170     ~Relocate()
3171     { }
3172 
3173     // Do a relocation.  Return false if the caller should not issue
3174     // any warnings about this relocation.
3175     inline bool
3176     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3177 	     Target_aarch64*, Output_section*, size_t, const unsigned char*,
3178 	     const Sized_symbol<size>*, const Symbol_value<size>*,
3179 	     unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3180 	     section_size_type);
3181 
3182   private:
3183     inline typename AArch64_relocate_functions<size, big_endian>::Status
3184     relocate_tls(const Relocate_info<size, big_endian>*,
3185 		 Target_aarch64<size, big_endian>*,
3186 		 size_t,
3187 		 const elfcpp::Rela<size, big_endian>&,
3188 		 unsigned int r_type, const Sized_symbol<size>*,
3189 		 const Symbol_value<size>*,
3190 		 unsigned char*,
3191 		 typename elfcpp::Elf_types<size>::Elf_Addr);
3192 
3193     inline typename AArch64_relocate_functions<size, big_endian>::Status
3194     tls_gd_to_le(
3195 		 const Relocate_info<size, big_endian>*,
3196 		 Target_aarch64<size, big_endian>*,
3197 		 const elfcpp::Rela<size, big_endian>&,
3198 		 unsigned int,
3199 		 unsigned char*,
3200 		 const Symbol_value<size>*);
3201 
3202     inline typename AArch64_relocate_functions<size, big_endian>::Status
3203     tls_ld_to_le(
3204 		 const Relocate_info<size, big_endian>*,
3205 		 Target_aarch64<size, big_endian>*,
3206 		 const elfcpp::Rela<size, big_endian>&,
3207 		 unsigned int,
3208 		 unsigned char*,
3209 		 const Symbol_value<size>*);
3210 
3211     inline typename AArch64_relocate_functions<size, big_endian>::Status
3212     tls_ie_to_le(
3213 		 const Relocate_info<size, big_endian>*,
3214 		 Target_aarch64<size, big_endian>*,
3215 		 const elfcpp::Rela<size, big_endian>&,
3216 		 unsigned int,
3217 		 unsigned char*,
3218 		 const Symbol_value<size>*);
3219 
3220     inline typename AArch64_relocate_functions<size, big_endian>::Status
3221     tls_desc_gd_to_le(
3222 		 const Relocate_info<size, big_endian>*,
3223 		 Target_aarch64<size, big_endian>*,
3224 		 const elfcpp::Rela<size, big_endian>&,
3225 		 unsigned int,
3226 		 unsigned char*,
3227 		 const Symbol_value<size>*);
3228 
3229     inline typename AArch64_relocate_functions<size, big_endian>::Status
3230     tls_desc_gd_to_ie(
3231 		 const Relocate_info<size, big_endian>*,
3232 		 Target_aarch64<size, big_endian>*,
3233 		 const elfcpp::Rela<size, big_endian>&,
3234 		 unsigned int,
3235 		 unsigned char*,
3236 		 const Symbol_value<size>*,
3237 		 typename elfcpp::Elf_types<size>::Elf_Addr,
3238 		 typename elfcpp::Elf_types<size>::Elf_Addr);
3239 
3240     bool skip_call_tls_get_addr_;
3241 
3242   };  // End of class Relocate
3243 
3244   // Adjust TLS relocation type based on the options and whether this
3245   // is a local symbol.
3246   static tls::Tls_optimization
3247   optimize_tls_reloc(bool is_final, int r_type);
3248 
3249   // Get the GOT section, creating it if necessary.
3250   Output_data_got_aarch64<size, big_endian>*
3251   got_section(Symbol_table*, Layout*);
3252 
3253   // Get the GOT PLT section.
3254   Output_data_space*
3255   got_plt_section() const
3256   {
3257     gold_assert(this->got_plt_ != NULL);
3258     return this->got_plt_;
3259   }
3260 
3261   // Get the GOT section for TLSDESC entries.
3262   Output_data_got<size, big_endian>*
3263   got_tlsdesc_section() const
3264   {
3265     gold_assert(this->got_tlsdesc_ != NULL);
3266     return this->got_tlsdesc_;
3267   }
3268 
3269   // Create the PLT section.
3270   void
3271   make_plt_section(Symbol_table* symtab, Layout* layout);
3272 
3273   // Create a PLT entry for a global symbol.
3274   void
3275   make_plt_entry(Symbol_table*, Layout*, Symbol*);
3276 
3277   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3278   void
3279   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3280 			     Sized_relobj_file<size, big_endian>* relobj,
3281 			     unsigned int local_sym_index);
3282 
3283   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3284   void
3285   define_tls_base_symbol(Symbol_table*, Layout*);
3286 
3287   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3288   void
3289   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3290 
3291   // Create a GOT entry for the TLS module index.
3292   unsigned int
3293   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3294 		      Sized_relobj_file<size, big_endian>* object);
3295 
3296   // Get the PLT section.
3297   Output_data_plt_aarch64<size, big_endian>*
3298   plt_section() const
3299   {
3300     gold_assert(this->plt_ != NULL);
3301     return this->plt_;
3302   }
3303 
3304   // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3305   // ST_E_843419, we need an additional field for adrp offset.
3306   void create_erratum_stub(
3307     AArch64_relobj<size, big_endian>* relobj,
3308     unsigned int shndx,
3309     section_size_type erratum_insn_offset,
3310     Address erratum_address,
3311     typename Insn_utilities::Insntype erratum_insn,
3312     int erratum_type,
3313     unsigned int e843419_adrp_offset=0);
3314 
3315   // Return whether this is a 3-insn erratum sequence.
3316   bool is_erratum_843419_sequence(
3317       typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3318       typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3319       typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3320 
3321   // Return whether this is a 835769 sequence.
3322   // (Similarly implemented as in elfnn-aarch64.c.)
3323   bool is_erratum_835769_sequence(
3324       typename elfcpp::Swap<32,big_endian>::Valtype,
3325       typename elfcpp::Swap<32,big_endian>::Valtype);
3326 
3327   // Get the dynamic reloc section, creating it if necessary.
3328   Reloc_section*
3329   rela_dyn_section(Layout*);
3330 
3331   // Get the section to use for TLSDESC relocations.
3332   Reloc_section*
3333   rela_tlsdesc_section(Layout*) const;
3334 
3335   // Get the section to use for IRELATIVE relocations.
3336   Reloc_section*
3337   rela_irelative_section(Layout*);
3338 
3339   // Add a potential copy relocation.
3340   void
3341   copy_reloc(Symbol_table* symtab, Layout* layout,
3342 	     Sized_relobj_file<size, big_endian>* object,
3343 	     unsigned int shndx, Output_section* output_section,
3344 	     Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3345   {
3346     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3347     this->copy_relocs_.copy_reloc(symtab, layout,
3348 				  symtab->get_sized_symbol<size>(sym),
3349 				  object, shndx, output_section,
3350 				  r_type, reloc.get_r_offset(),
3351 				  reloc.get_r_addend(),
3352 				  this->rela_dyn_section(layout));
3353   }
3354 
3355   // Information about this specific target which we pass to the
3356   // general Target structure.
3357   static const Target::Target_info aarch64_info;
3358 
3359   // The types of GOT entries needed for this platform.
3360   // These values are exposed to the ABI in an incremental link.
3361   // Do not renumber existing values without changing the version
3362   // number of the .gnu_incremental_inputs section.
3363   enum Got_type
3364   {
3365     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
3366     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
3367     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
3368     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
3369   };
3370 
3371   // This type is used as the argument to the target specific
3372   // relocation routines.  The only target specific reloc is
3373   // R_AARCh64_TLSDESC against a local symbol.
3374   struct Tlsdesc_info
3375   {
3376     Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3377 		 unsigned int a_r_sym)
3378       : object(a_object), r_sym(a_r_sym)
3379     { }
3380 
3381     // The object in which the local symbol is defined.
3382     Sized_relobj_file<size, big_endian>* object;
3383     // The local symbol index in the object.
3384     unsigned int r_sym;
3385   };
3386 
3387   // The GOT section.
3388   Output_data_got_aarch64<size, big_endian>* got_;
3389   // The PLT section.
3390   Output_data_plt_aarch64<size, big_endian>* plt_;
3391   // The GOT PLT section.
3392   Output_data_space* got_plt_;
3393   // The GOT section for IRELATIVE relocations.
3394   Output_data_space* got_irelative_;
3395   // The GOT section for TLSDESC relocations.
3396   Output_data_got<size, big_endian>* got_tlsdesc_;
3397   // The _GLOBAL_OFFSET_TABLE_ symbol.
3398   Symbol* global_offset_table_;
3399   // The dynamic reloc section.
3400   Reloc_section* rela_dyn_;
3401   // The section to use for IRELATIVE relocs.
3402   Reloc_section* rela_irelative_;
3403   // Relocs saved to avoid a COPY reloc.
3404   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3405   // Offset of the GOT entry for the TLS module index.
3406   unsigned int got_mod_index_offset_;
3407   // We handle R_AARCH64_TLSDESC against a local symbol as a target
3408   // specific relocation. Here we store the object and local symbol
3409   // index for the relocation.
3410   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3411   // True if the _TLS_MODULE_BASE_ symbol has been defined.
3412   bool tls_base_symbol_defined_;
3413   // List of stub_tables
3414   Stub_table_list stub_tables_;
3415   // Actual stub group size
3416   section_size_type stub_group_size_;
3417   AArch64_input_section_map aarch64_input_section_map_;
3418 };  // End of Target_aarch64
3419 
3420 
3421 template<>
3422 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3423 {
3424   64,			// size
3425   false,		// is_big_endian
3426   elfcpp::EM_AARCH64,	// machine_code
3427   false,		// has_make_symbol
3428   false,		// has_resolve
3429   false,		// has_code_fill
3430   true,			// is_default_stack_executable
3431   true,			// can_icf_inline_merge_sections
3432   '\0',			// wrap_char
3433   "/lib/ld.so.1",	// program interpreter
3434   0x400000,		// default_text_segment_address
3435   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3436   0x1000,		// common_pagesize (overridable by -z common-page-size)
3437   false,                // isolate_execinstr
3438   0,                    // rosegment_gap
3439   elfcpp::SHN_UNDEF,	// small_common_shndx
3440   elfcpp::SHN_UNDEF,	// large_common_shndx
3441   0,			// small_common_section_flags
3442   0,			// large_common_section_flags
3443   NULL,			// attributes_section
3444   NULL,			// attributes_vendor
3445   "_start",		// entry_symbol_name
3446   32,			// hash_entry_size
3447 };
3448 
3449 template<>
3450 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3451 {
3452   32,			// size
3453   false,		// is_big_endian
3454   elfcpp::EM_AARCH64,	// machine_code
3455   false,		// has_make_symbol
3456   false,		// has_resolve
3457   false,		// has_code_fill
3458   true,			// is_default_stack_executable
3459   false,		// can_icf_inline_merge_sections
3460   '\0',			// wrap_char
3461   "/lib/ld.so.1",	// program interpreter
3462   0x400000,		// default_text_segment_address
3463   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3464   0x1000,		// common_pagesize (overridable by -z common-page-size)
3465   false,                // isolate_execinstr
3466   0,                    // rosegment_gap
3467   elfcpp::SHN_UNDEF,	// small_common_shndx
3468   elfcpp::SHN_UNDEF,	// large_common_shndx
3469   0,			// small_common_section_flags
3470   0,			// large_common_section_flags
3471   NULL,			// attributes_section
3472   NULL,			// attributes_vendor
3473   "_start",		// entry_symbol_name
3474   32,			// hash_entry_size
3475 };
3476 
3477 template<>
3478 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3479 {
3480   64,			// size
3481   true,			// is_big_endian
3482   elfcpp::EM_AARCH64,	// machine_code
3483   false,		// has_make_symbol
3484   false,		// has_resolve
3485   false,		// has_code_fill
3486   true,			// is_default_stack_executable
3487   true,			// can_icf_inline_merge_sections
3488   '\0',			// wrap_char
3489   "/lib/ld.so.1",	// program interpreter
3490   0x400000,		// default_text_segment_address
3491   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3492   0x1000,		// common_pagesize (overridable by -z common-page-size)
3493   false,                // isolate_execinstr
3494   0,                    // rosegment_gap
3495   elfcpp::SHN_UNDEF,	// small_common_shndx
3496   elfcpp::SHN_UNDEF,	// large_common_shndx
3497   0,			// small_common_section_flags
3498   0,			// large_common_section_flags
3499   NULL,			// attributes_section
3500   NULL,			// attributes_vendor
3501   "_start",		// entry_symbol_name
3502   32,			// hash_entry_size
3503 };
3504 
3505 template<>
3506 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3507 {
3508   32,			// size
3509   true,			// is_big_endian
3510   elfcpp::EM_AARCH64,	// machine_code
3511   false,		// has_make_symbol
3512   false,		// has_resolve
3513   false,		// has_code_fill
3514   true,			// is_default_stack_executable
3515   false,		// can_icf_inline_merge_sections
3516   '\0',			// wrap_char
3517   "/lib/ld.so.1",	// program interpreter
3518   0x400000,		// default_text_segment_address
3519   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3520   0x1000,		// common_pagesize (overridable by -z common-page-size)
3521   false,                // isolate_execinstr
3522   0,                    // rosegment_gap
3523   elfcpp::SHN_UNDEF,	// small_common_shndx
3524   elfcpp::SHN_UNDEF,	// large_common_shndx
3525   0,			// small_common_section_flags
3526   0,			// large_common_section_flags
3527   NULL,			// attributes_section
3528   NULL,			// attributes_vendor
3529   "_start",		// entry_symbol_name
3530   32,			// hash_entry_size
3531 };
3532 
3533 // Get the GOT section, creating it if necessary.
3534 
3535 template<int size, bool big_endian>
3536 Output_data_got_aarch64<size, big_endian>*
3537 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3538 					      Layout* layout)
3539 {
3540   if (this->got_ == NULL)
3541     {
3542       gold_assert(symtab != NULL && layout != NULL);
3543 
3544       // When using -z now, we can treat .got.plt as a relro section.
3545       // Without -z now, it is modified after program startup by lazy
3546       // PLT relocations.
3547       bool is_got_plt_relro = parameters->options().now();
3548       Output_section_order got_order = (is_got_plt_relro
3549 					? ORDER_RELRO
3550 					: ORDER_RELRO_LAST);
3551       Output_section_order got_plt_order = (is_got_plt_relro
3552 					    ? ORDER_RELRO
3553 					    : ORDER_NON_RELRO_FIRST);
3554 
3555       // Layout of .got and .got.plt sections.
3556       // .got[0] &_DYNAMIC                          <-_GLOBAL_OFFSET_TABLE_
3557       // ...
3558       // .gotplt[0] reserved for ld.so (&linkmap)   <--DT_PLTGOT
3559       // .gotplt[1] reserved for ld.so (resolver)
3560       // .gotplt[2] reserved
3561 
3562       // Generate .got section.
3563       this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3564 								 layout);
3565       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3566 				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3567 				      this->got_, got_order, true);
3568       // The first word of GOT is reserved for the address of .dynamic.
3569       // We put 0 here now. The value will be replaced later in
3570       // Output_data_got_aarch64::do_write.
3571       this->got_->add_constant(0);
3572 
3573       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3574       // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3575       // even if there is a .got.plt section.
3576       this->global_offset_table_ =
3577 	symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3578 				      Symbol_table::PREDEFINED,
3579 				      this->got_,
3580 				      0, 0, elfcpp::STT_OBJECT,
3581 				      elfcpp::STB_LOCAL,
3582 				      elfcpp::STV_HIDDEN, 0,
3583 				      false, false);
3584 
3585       // Generate .got.plt section.
3586       this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3587       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3588 				      (elfcpp::SHF_ALLOC
3589 				       | elfcpp::SHF_WRITE),
3590 				      this->got_plt_, got_plt_order,
3591 				      is_got_plt_relro);
3592 
3593       // The first three entries are reserved.
3594       this->got_plt_->set_current_data_size(
3595 	AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3596 
3597       // If there are any IRELATIVE relocations, they get GOT entries
3598       // in .got.plt after the jump slot entries.
3599       this->got_irelative_ = new Output_data_space(size / 8,
3600 						   "** GOT IRELATIVE PLT");
3601       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3602 				      (elfcpp::SHF_ALLOC
3603 				       | elfcpp::SHF_WRITE),
3604 				      this->got_irelative_,
3605 				      got_plt_order,
3606 				      is_got_plt_relro);
3607 
3608       // If there are any TLSDESC relocations, they get GOT entries in
3609       // .got.plt after the jump slot and IRELATIVE entries.
3610       this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3611       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3612 				      (elfcpp::SHF_ALLOC
3613 				       | elfcpp::SHF_WRITE),
3614 				      this->got_tlsdesc_,
3615 				      got_plt_order,
3616 				      is_got_plt_relro);
3617 
3618       if (!is_got_plt_relro)
3619 	{
3620 	  // Those bytes can go into the relro segment.
3621 	  layout->increase_relro(
3622 	    AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3623 	}
3624 
3625     }
3626   return this->got_;
3627 }
3628 
3629 // Get the dynamic reloc section, creating it if necessary.
3630 
3631 template<int size, bool big_endian>
3632 typename Target_aarch64<size, big_endian>::Reloc_section*
3633 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3634 {
3635   if (this->rela_dyn_ == NULL)
3636     {
3637       gold_assert(layout != NULL);
3638       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3639       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3640 				      elfcpp::SHF_ALLOC, this->rela_dyn_,
3641 				      ORDER_DYNAMIC_RELOCS, false);
3642     }
3643   return this->rela_dyn_;
3644 }
3645 
3646 // Get the section to use for IRELATIVE relocs, creating it if
3647 // necessary.  These go in .rela.dyn, but only after all other dynamic
3648 // relocations.  They need to follow the other dynamic relocations so
3649 // that they can refer to global variables initialized by those
3650 // relocs.
3651 
3652 template<int size, bool big_endian>
3653 typename Target_aarch64<size, big_endian>::Reloc_section*
3654 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3655 {
3656   if (this->rela_irelative_ == NULL)
3657     {
3658       // Make sure we have already created the dynamic reloc section.
3659       this->rela_dyn_section(layout);
3660       this->rela_irelative_ = new Reloc_section(false);
3661       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3662 				      elfcpp::SHF_ALLOC, this->rela_irelative_,
3663 				      ORDER_DYNAMIC_RELOCS, false);
3664       gold_assert(this->rela_dyn_->output_section()
3665 		  == this->rela_irelative_->output_section());
3666     }
3667   return this->rela_irelative_;
3668 }
3669 
3670 
3671 // do_make_elf_object to override the same function in the base class.  We need
3672 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3673 // store backend specific information. Hence we need to have our own ELF object
3674 // creation.
3675 
3676 template<int size, bool big_endian>
3677 Object*
3678 Target_aarch64<size, big_endian>::do_make_elf_object(
3679     const std::string& name,
3680     Input_file* input_file,
3681     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3682 {
3683   int et = ehdr.get_e_type();
3684   // ET_EXEC files are valid input for --just-symbols/-R,
3685   // and we treat them as relocatable objects.
3686   if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3687     return Sized_target<size, big_endian>::do_make_elf_object(
3688 	name, input_file, offset, ehdr);
3689   else if (et == elfcpp::ET_REL)
3690     {
3691       AArch64_relobj<size, big_endian>* obj =
3692 	new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3693       obj->setup();
3694       return obj;
3695     }
3696   else if (et == elfcpp::ET_DYN)
3697     {
3698       // Keep base implementation.
3699       Sized_dynobj<size, big_endian>* obj =
3700 	  new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3701       obj->setup();
3702       return obj;
3703     }
3704   else
3705     {
3706       gold_error(_("%s: unsupported ELF file type %d"),
3707 		 name.c_str(), et);
3708       return NULL;
3709     }
3710 }
3711 
3712 
3713 // Scan a relocation for stub generation.
3714 
3715 template<int size, bool big_endian>
3716 void
3717 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3718     const Relocate_info<size, big_endian>* relinfo,
3719     unsigned int r_type,
3720     const Sized_symbol<size>* gsym,
3721     unsigned int r_sym,
3722     const Symbol_value<size>* psymval,
3723     typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3724     Address address)
3725 {
3726   const AArch64_relobj<size, big_endian>* aarch64_relobj =
3727       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3728 
3729   Symbol_value<size> symval;
3730   if (gsym != NULL)
3731     {
3732       const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3733 	get_reloc_property(r_type);
3734       if (gsym->use_plt_offset(arp->reference_flags()))
3735 	{
3736 	  // This uses a PLT, change the symbol value.
3737 	  symval.set_output_value(this->plt_section()->address()
3738 				  + gsym->plt_offset());
3739 	  psymval = &symval;
3740 	}
3741       else if (gsym->is_undefined())
3742 	// There is no need to generate a stub symbol is undefined.
3743 	return;
3744     }
3745 
3746   // Get the symbol value.
3747   typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3748 
3749   // Owing to pipelining, the PC relative branches below actually skip
3750   // two instructions when the branch offset is 0.
3751   Address destination = static_cast<Address>(-1);
3752   switch (r_type)
3753     {
3754     case elfcpp::R_AARCH64_CALL26:
3755     case elfcpp::R_AARCH64_JUMP26:
3756       destination = value + addend;
3757       break;
3758     default:
3759       gold_unreachable();
3760     }
3761 
3762   int stub_type = The_reloc_stub::
3763       stub_type_for_reloc(r_type, address, destination);
3764   if (stub_type == ST_NONE)
3765     return;
3766 
3767   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3768   gold_assert(stub_table != NULL);
3769 
3770   The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3771   The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3772   if (stub == NULL)
3773     {
3774       stub = new The_reloc_stub(stub_type);
3775       stub_table->add_reloc_stub(stub, key);
3776     }
3777   stub->set_destination_address(destination);
3778 }  // End of Target_aarch64::scan_reloc_for_stub
3779 
3780 
3781 // This function scans a relocation section for stub generation.
3782 // The template parameter Relocate must be a class type which provides
3783 // a single function, relocate(), which implements the machine
3784 // specific part of a relocation.
3785 
3786 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
3787 // SHT_REL or SHT_RELA.
3788 
3789 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
3790 // of relocs.  OUTPUT_SECTION is the output section.
3791 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3792 // mapped to output offsets.
3793 
3794 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3795 // VIEW_SIZE is the size.  These refer to the input section, unless
3796 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3797 // the output section.
3798 
3799 template<int size, bool big_endian>
3800 template<int sh_type>
3801 void inline
3802 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3803     const Relocate_info<size, big_endian>* relinfo,
3804     const unsigned char* prelocs,
3805     size_t reloc_count,
3806     Output_section* /*output_section*/,
3807     bool /*needs_special_offset_handling*/,
3808     const unsigned char* /*view*/,
3809     Address view_address,
3810     section_size_type)
3811 {
3812   typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3813 
3814   const int reloc_size =
3815       Reloc_types<sh_type,size,big_endian>::reloc_size;
3816   AArch64_relobj<size, big_endian>* object =
3817       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3818   unsigned int local_count = object->local_symbol_count();
3819 
3820   gold::Default_comdat_behavior default_comdat_behavior;
3821   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3822 
3823   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3824     {
3825       Reltype reloc(prelocs);
3826       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3827       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3828       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3829       if (r_type != elfcpp::R_AARCH64_CALL26
3830 	  && r_type != elfcpp::R_AARCH64_JUMP26)
3831 	continue;
3832 
3833       section_offset_type offset =
3834 	  convert_to_section_size_type(reloc.get_r_offset());
3835 
3836       // Get the addend.
3837       typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3838 	  reloc.get_r_addend();
3839 
3840       const Sized_symbol<size>* sym;
3841       Symbol_value<size> symval;
3842       const Symbol_value<size> *psymval;
3843       bool is_defined_in_discarded_section;
3844       unsigned int shndx;
3845       if (r_sym < local_count)
3846 	{
3847 	  sym = NULL;
3848 	  psymval = object->local_symbol(r_sym);
3849 
3850 	  // If the local symbol belongs to a section we are discarding,
3851 	  // and that section is a debug section, try to find the
3852 	  // corresponding kept section and map this symbol to its
3853 	  // counterpart in the kept section.  The symbol must not
3854 	  // correspond to a section we are folding.
3855 	  bool is_ordinary;
3856 	  shndx = psymval->input_shndx(&is_ordinary);
3857 	  is_defined_in_discarded_section =
3858 	    (is_ordinary
3859 	     && shndx != elfcpp::SHN_UNDEF
3860 	     && !object->is_section_included(shndx)
3861 	     && !relinfo->symtab->is_section_folded(object, shndx));
3862 
3863 	  // We need to compute the would-be final value of this local
3864 	  // symbol.
3865 	  if (!is_defined_in_discarded_section)
3866 	    {
3867 	      typedef Sized_relobj_file<size, big_endian> ObjType;
3868 	      typename ObjType::Compute_final_local_value_status status =
3869 		object->compute_final_local_value(r_sym, psymval, &symval,
3870 						  relinfo->symtab);
3871 	      if (status == ObjType::CFLV_OK)
3872 		{
3873 		  // Currently we cannot handle a branch to a target in
3874 		  // a merged section.  If this is the case, issue an error
3875 		  // and also free the merge symbol value.
3876 		  if (!symval.has_output_value())
3877 		    {
3878 		      const std::string& section_name =
3879 			object->section_name(shndx);
3880 		      object->error(_("cannot handle branch to local %u "
3881 					  "in a merged section %s"),
3882 					r_sym, section_name.c_str());
3883 		    }
3884 		  psymval = &symval;
3885 		}
3886 	      else
3887 		{
3888 		  // We cannot determine the final value.
3889 		  continue;
3890 		}
3891 	    }
3892 	}
3893       else
3894 	{
3895 	  const Symbol* gsym;
3896 	  gsym = object->global_symbol(r_sym);
3897 	  gold_assert(gsym != NULL);
3898 	  if (gsym->is_forwarder())
3899 	    gsym = relinfo->symtab->resolve_forwards(gsym);
3900 
3901 	  sym = static_cast<const Sized_symbol<size>*>(gsym);
3902 	  if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3903 	    symval.set_output_symtab_index(sym->symtab_index());
3904 	  else
3905 	    symval.set_no_output_symtab_entry();
3906 
3907 	  // We need to compute the would-be final value of this global
3908 	  // symbol.
3909 	  const Symbol_table* symtab = relinfo->symtab;
3910 	  const Sized_symbol<size>* sized_symbol =
3911 	      symtab->get_sized_symbol<size>(gsym);
3912 	  Symbol_table::Compute_final_value_status status;
3913 	  typename elfcpp::Elf_types<size>::Elf_Addr value =
3914 	      symtab->compute_final_value<size>(sized_symbol, &status);
3915 
3916 	  // Skip this if the symbol has not output section.
3917 	  if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3918 	    continue;
3919 	  symval.set_output_value(value);
3920 
3921 	  if (gsym->type() == elfcpp::STT_TLS)
3922 	    symval.set_is_tls_symbol();
3923 	  else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3924 	    symval.set_is_ifunc_symbol();
3925 	  psymval = &symval;
3926 
3927 	  is_defined_in_discarded_section =
3928 	      (gsym->is_defined_in_discarded_section()
3929 	       && gsym->is_undefined());
3930 	  shndx = 0;
3931 	}
3932 
3933       Symbol_value<size> symval2;
3934       if (is_defined_in_discarded_section)
3935 	{
3936 	  if (comdat_behavior == CB_UNDETERMINED)
3937 	    {
3938 	      std::string name = object->section_name(relinfo->data_shndx);
3939 	      comdat_behavior = default_comdat_behavior.get(name.c_str());
3940 	    }
3941 	  if (comdat_behavior == CB_PRETEND)
3942 	    {
3943 	      bool found;
3944 	      typename elfcpp::Elf_types<size>::Elf_Addr value =
3945 		object->map_to_kept_section(shndx, &found);
3946 	      if (found)
3947 		symval2.set_output_value(value + psymval->input_value());
3948 	      else
3949 		symval2.set_output_value(0);
3950 	    }
3951 	  else
3952 	    {
3953 	      if (comdat_behavior == CB_WARNING)
3954 		gold_warning_at_location(relinfo, i, offset,
3955 					 _("relocation refers to discarded "
3956 					   "section"));
3957 	      symval2.set_output_value(0);
3958 	    }
3959 	  symval2.set_no_output_symtab_entry();
3960 	  psymval = &symval2;
3961 	}
3962 
3963       // If symbol is a section symbol, we don't know the actual type of
3964       // destination.  Give up.
3965       if (psymval->is_section_symbol())
3966 	continue;
3967 
3968       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
3969 				addend, view_address + offset);
3970     }  // End of iterating relocs in a section
3971 }  // End of Target_aarch64::scan_reloc_section_for_stubs
3972 
3973 
3974 // Scan an input section for stub generation.
3975 
3976 template<int size, bool big_endian>
3977 void
3978 Target_aarch64<size, big_endian>::scan_section_for_stubs(
3979     const Relocate_info<size, big_endian>* relinfo,
3980     unsigned int sh_type,
3981     const unsigned char* prelocs,
3982     size_t reloc_count,
3983     Output_section* output_section,
3984     bool needs_special_offset_handling,
3985     const unsigned char* view,
3986     Address view_address,
3987     section_size_type view_size)
3988 {
3989   gold_assert(sh_type == elfcpp::SHT_RELA);
3990   this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
3991       relinfo,
3992       prelocs,
3993       reloc_count,
3994       output_section,
3995       needs_special_offset_handling,
3996       view,
3997       view_address,
3998       view_size);
3999 }
4000 
4001 
4002 // Relocate a single stub.
4003 
4004 template<int size, bool big_endian>
4005 void Target_aarch64<size, big_endian>::
4006 relocate_stub(The_reloc_stub* stub,
4007 	      const The_relocate_info*,
4008 	      Output_section*,
4009 	      unsigned char* view,
4010 	      Address address,
4011 	      section_size_type)
4012 {
4013   typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4014   typedef typename The_reloc_functions::Status The_reloc_functions_status;
4015   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4016 
4017   Insntype* ip = reinterpret_cast<Insntype*>(view);
4018   int insn_number = stub->insn_num();
4019   const uint32_t* insns = stub->insns();
4020   // Check the insns are really those stub insns.
4021   for (int i = 0; i < insn_number; ++i)
4022     {
4023       Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4024       gold_assert(((uint32_t)insn == insns[i]));
4025     }
4026 
4027   Address dest = stub->destination_address();
4028 
4029   switch(stub->type())
4030     {
4031     case ST_ADRP_BRANCH:
4032       {
4033 	// 1st reloc is ADR_PREL_PG_HI21
4034 	The_reloc_functions_status status =
4035 	    The_reloc_functions::adrp(view, dest, address);
4036 	// An error should never arise in the above step. If so, please
4037 	// check 'aarch64_valid_for_adrp_p'.
4038 	gold_assert(status == The_reloc_functions::STATUS_OKAY);
4039 
4040 	// 2nd reloc is ADD_ABS_LO12_NC
4041 	const AArch64_reloc_property* arp =
4042 	    aarch64_reloc_property_table->get_reloc_property(
4043 		elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4044 	gold_assert(arp != NULL);
4045 	status = The_reloc_functions::template
4046 	    rela_general<32>(view + 4, dest, 0, arp);
4047 	// An error should never arise, it is an "_NC" relocation.
4048 	gold_assert(status == The_reloc_functions::STATUS_OKAY);
4049       }
4050       break;
4051 
4052     case ST_LONG_BRANCH_ABS:
4053       // 1st reloc is R_AARCH64_PREL64, at offset 8
4054       elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4055       break;
4056 
4057     case ST_LONG_BRANCH_PCREL:
4058       {
4059 	// "PC" calculation is the 2nd insn in the stub.
4060 	uint64_t offset = dest - (address + 4);
4061 	// Offset is placed at offset 4 and 5.
4062 	elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4063       }
4064       break;
4065 
4066     default:
4067       gold_unreachable();
4068     }
4069 }
4070 
4071 
4072 // A class to handle the PLT data.
4073 // This is an abstract base class that handles most of the linker details
4074 // but does not know the actual contents of PLT entries.  The derived
4075 // classes below fill in those details.
4076 
4077 template<int size, bool big_endian>
4078 class Output_data_plt_aarch64 : public Output_section_data
4079 {
4080  public:
4081   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4082       Reloc_section;
4083   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4084 
4085   Output_data_plt_aarch64(Layout* layout,
4086 			  uint64_t addralign,
4087 			  Output_data_got_aarch64<size, big_endian>* got,
4088 			  Output_data_space* got_plt,
4089 			  Output_data_space* got_irelative)
4090     : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4091       got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4092       count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4093   { this->init(layout); }
4094 
4095   // Initialize the PLT section.
4096   void
4097   init(Layout* layout);
4098 
4099   // Add an entry to the PLT.
4100   void
4101   add_entry(Symbol_table*, Layout*, Symbol* gsym);
4102 
4103   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4104   unsigned int
4105   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4106 			Sized_relobj_file<size, big_endian>* relobj,
4107 			unsigned int local_sym_index);
4108 
4109   // Add the relocation for a PLT entry.
4110   void
4111   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4112 		 unsigned int got_offset);
4113 
4114   // Add the reserved TLSDESC_PLT entry to the PLT.
4115   void
4116   reserve_tlsdesc_entry(unsigned int got_offset)
4117   { this->tlsdesc_got_offset_ = got_offset; }
4118 
4119   // Return true if a TLSDESC_PLT entry has been reserved.
4120   bool
4121   has_tlsdesc_entry() const
4122   { return this->tlsdesc_got_offset_ != -1U; }
4123 
4124   // Return the GOT offset for the reserved TLSDESC_PLT entry.
4125   unsigned int
4126   get_tlsdesc_got_offset() const
4127   { return this->tlsdesc_got_offset_; }
4128 
4129   // Return the PLT offset of the reserved TLSDESC_PLT entry.
4130   unsigned int
4131   get_tlsdesc_plt_offset() const
4132   {
4133     return (this->first_plt_entry_offset() +
4134 	    (this->count_ + this->irelative_count_)
4135 	    * this->get_plt_entry_size());
4136   }
4137 
4138   // Return the .rela.plt section data.
4139   Reloc_section*
4140   rela_plt()
4141   { return this->rel_; }
4142 
4143   // Return where the TLSDESC relocations should go.
4144   Reloc_section*
4145   rela_tlsdesc(Layout*);
4146 
4147   // Return where the IRELATIVE relocations should go in the PLT
4148   // relocations.
4149   Reloc_section*
4150   rela_irelative(Symbol_table*, Layout*);
4151 
4152   // Return whether we created a section for IRELATIVE relocations.
4153   bool
4154   has_irelative_section() const
4155   { return this->irelative_rel_ != NULL; }
4156 
4157   // Return the number of PLT entries.
4158   unsigned int
4159   entry_count() const
4160   { return this->count_ + this->irelative_count_; }
4161 
4162   // Return the offset of the first non-reserved PLT entry.
4163   unsigned int
4164   first_plt_entry_offset() const
4165   { return this->do_first_plt_entry_offset(); }
4166 
4167   // Return the size of a PLT entry.
4168   unsigned int
4169   get_plt_entry_size() const
4170   { return this->do_get_plt_entry_size(); }
4171 
4172   // Return the reserved tlsdesc entry size.
4173   unsigned int
4174   get_plt_tlsdesc_entry_size() const
4175   { return this->do_get_plt_tlsdesc_entry_size(); }
4176 
4177   // Return the PLT address to use for a global symbol.
4178   uint64_t
4179   address_for_global(const Symbol*);
4180 
4181   // Return the PLT address to use for a local symbol.
4182   uint64_t
4183   address_for_local(const Relobj*, unsigned int symndx);
4184 
4185  protected:
4186   // Fill in the first PLT entry.
4187   void
4188   fill_first_plt_entry(unsigned char* pov,
4189 		       Address got_address,
4190 		       Address plt_address)
4191   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4192 
4193   // Fill in a normal PLT entry.
4194   void
4195   fill_plt_entry(unsigned char* pov,
4196 		 Address got_address,
4197 		 Address plt_address,
4198 		 unsigned int got_offset,
4199 		 unsigned int plt_offset)
4200   {
4201     this->do_fill_plt_entry(pov, got_address, plt_address,
4202 			    got_offset, plt_offset);
4203   }
4204 
4205   // Fill in the reserved TLSDESC PLT entry.
4206   void
4207   fill_tlsdesc_entry(unsigned char* pov,
4208 		     Address gotplt_address,
4209 		     Address plt_address,
4210 		     Address got_base,
4211 		     unsigned int tlsdesc_got_offset,
4212 		     unsigned int plt_offset)
4213   {
4214     this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4215 				tlsdesc_got_offset, plt_offset);
4216   }
4217 
4218   virtual unsigned int
4219   do_first_plt_entry_offset() const = 0;
4220 
4221   virtual unsigned int
4222   do_get_plt_entry_size() const = 0;
4223 
4224   virtual unsigned int
4225   do_get_plt_tlsdesc_entry_size() const = 0;
4226 
4227   virtual void
4228   do_fill_first_plt_entry(unsigned char* pov,
4229 			  Address got_addr,
4230 			  Address plt_addr) = 0;
4231 
4232   virtual void
4233   do_fill_plt_entry(unsigned char* pov,
4234 		    Address got_address,
4235 		    Address plt_address,
4236 		    unsigned int got_offset,
4237 		    unsigned int plt_offset) = 0;
4238 
4239   virtual void
4240   do_fill_tlsdesc_entry(unsigned char* pov,
4241 			Address gotplt_address,
4242 			Address plt_address,
4243 			Address got_base,
4244 			unsigned int tlsdesc_got_offset,
4245 			unsigned int plt_offset) = 0;
4246 
4247   void
4248   do_adjust_output_section(Output_section* os);
4249 
4250   // Write to a map file.
4251   void
4252   do_print_to_mapfile(Mapfile* mapfile) const
4253   { mapfile->print_output_data(this, _("** PLT")); }
4254 
4255  private:
4256   // Set the final size.
4257   void
4258   set_final_data_size();
4259 
4260   // Write out the PLT data.
4261   void
4262   do_write(Output_file*);
4263 
4264   // The reloc section.
4265   Reloc_section* rel_;
4266 
4267   // The TLSDESC relocs, if necessary.  These must follow the regular
4268   // PLT relocs.
4269   Reloc_section* tlsdesc_rel_;
4270 
4271   // The IRELATIVE relocs, if necessary.  These must follow the
4272   // regular PLT relocations.
4273   Reloc_section* irelative_rel_;
4274 
4275   // The .got section.
4276   Output_data_got_aarch64<size, big_endian>* got_;
4277 
4278   // The .got.plt section.
4279   Output_data_space* got_plt_;
4280 
4281   // The part of the .got.plt section used for IRELATIVE relocs.
4282   Output_data_space* got_irelative_;
4283 
4284   // The number of PLT entries.
4285   unsigned int count_;
4286 
4287   // Number of PLT entries with R_AARCH64_IRELATIVE relocs.  These
4288   // follow the regular PLT entries.
4289   unsigned int irelative_count_;
4290 
4291   // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4292   // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4293   // indicates an offset is not allocated.
4294   unsigned int tlsdesc_got_offset_;
4295 };
4296 
4297 // Initialize the PLT section.
4298 
4299 template<int size, bool big_endian>
4300 void
4301 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4302 {
4303   this->rel_ = new Reloc_section(false);
4304   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4305 				  elfcpp::SHF_ALLOC, this->rel_,
4306 				  ORDER_DYNAMIC_PLT_RELOCS, false);
4307 }
4308 
4309 template<int size, bool big_endian>
4310 void
4311 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4312     Output_section* os)
4313 {
4314   os->set_entsize(this->get_plt_entry_size());
4315 }
4316 
4317 // Add an entry to the PLT.
4318 
4319 template<int size, bool big_endian>
4320 void
4321 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4322     Layout* layout, Symbol* gsym)
4323 {
4324   gold_assert(!gsym->has_plt_offset());
4325 
4326   unsigned int* pcount;
4327   unsigned int plt_reserved;
4328   Output_section_data_build* got;
4329 
4330   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4331       && gsym->can_use_relative_reloc(false))
4332     {
4333       pcount = &this->irelative_count_;
4334       plt_reserved = 0;
4335       got = this->got_irelative_;
4336     }
4337   else
4338     {
4339       pcount = &this->count_;
4340       plt_reserved = this->first_plt_entry_offset();
4341       got = this->got_plt_;
4342     }
4343 
4344   gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4345 		       + plt_reserved);
4346 
4347   ++*pcount;
4348 
4349   section_offset_type got_offset = got->current_data_size();
4350 
4351   // Every PLT entry needs a GOT entry which points back to the PLT
4352   // entry (this will be changed by the dynamic linker, normally
4353   // lazily when the function is called).
4354   got->set_current_data_size(got_offset + size / 8);
4355 
4356   // Every PLT entry needs a reloc.
4357   this->add_relocation(symtab, layout, gsym, got_offset);
4358 
4359   // Note that we don't need to save the symbol. The contents of the
4360   // PLT are independent of which symbols are used. The symbols only
4361   // appear in the relocations.
4362 }
4363 
4364 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
4365 // the PLT offset.
4366 
4367 template<int size, bool big_endian>
4368 unsigned int
4369 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4370     Symbol_table* symtab,
4371     Layout* layout,
4372     Sized_relobj_file<size, big_endian>* relobj,
4373     unsigned int local_sym_index)
4374 {
4375   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4376   ++this->irelative_count_;
4377 
4378   section_offset_type got_offset = this->got_irelative_->current_data_size();
4379 
4380   // Every PLT entry needs a GOT entry which points back to the PLT
4381   // entry.
4382   this->got_irelative_->set_current_data_size(got_offset + size / 8);
4383 
4384   // Every PLT entry needs a reloc.
4385   Reloc_section* rela = this->rela_irelative(symtab, layout);
4386   rela->add_symbolless_local_addend(relobj, local_sym_index,
4387 				    elfcpp::R_AARCH64_IRELATIVE,
4388 				    this->got_irelative_, got_offset, 0);
4389 
4390   return plt_offset;
4391 }
4392 
4393 // Add the relocation for a PLT entry.
4394 
4395 template<int size, bool big_endian>
4396 void
4397 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4398     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4399 {
4400   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4401       && gsym->can_use_relative_reloc(false))
4402     {
4403       Reloc_section* rela = this->rela_irelative(symtab, layout);
4404       rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4405 					 this->got_irelative_, got_offset, 0);
4406     }
4407   else
4408     {
4409       gsym->set_needs_dynsym_entry();
4410       this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4411 			     got_offset, 0);
4412     }
4413 }
4414 
4415 // Return where the TLSDESC relocations should go, creating it if
4416 // necessary.  These follow the JUMP_SLOT relocations.
4417 
4418 template<int size, bool big_endian>
4419 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4420 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4421 {
4422   if (this->tlsdesc_rel_ == NULL)
4423     {
4424       this->tlsdesc_rel_ = new Reloc_section(false);
4425       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4426 				      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4427 				      ORDER_DYNAMIC_PLT_RELOCS, false);
4428       gold_assert(this->tlsdesc_rel_->output_section()
4429 		  == this->rel_->output_section());
4430     }
4431   return this->tlsdesc_rel_;
4432 }
4433 
4434 // Return where the IRELATIVE relocations should go in the PLT.  These
4435 // follow the JUMP_SLOT and the TLSDESC relocations.
4436 
4437 template<int size, bool big_endian>
4438 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4439 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4440 							  Layout* layout)
4441 {
4442   if (this->irelative_rel_ == NULL)
4443     {
4444       // Make sure we have a place for the TLSDESC relocations, in
4445       // case we see any later on.
4446       this->rela_tlsdesc(layout);
4447       this->irelative_rel_ = new Reloc_section(false);
4448       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4449 				      elfcpp::SHF_ALLOC, this->irelative_rel_,
4450 				      ORDER_DYNAMIC_PLT_RELOCS, false);
4451       gold_assert(this->irelative_rel_->output_section()
4452 		  == this->rel_->output_section());
4453 
4454       if (parameters->doing_static_link())
4455 	{
4456 	  // A statically linked executable will only have a .rela.plt
4457 	  // section to hold R_AARCH64_IRELATIVE relocs for
4458 	  // STT_GNU_IFUNC symbols.  The library will use these
4459 	  // symbols to locate the IRELATIVE relocs at program startup
4460 	  // time.
4461 	  symtab->define_in_output_data("__rela_iplt_start", NULL,
4462 					Symbol_table::PREDEFINED,
4463 					this->irelative_rel_, 0, 0,
4464 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4465 					elfcpp::STV_HIDDEN, 0, false, true);
4466 	  symtab->define_in_output_data("__rela_iplt_end", NULL,
4467 					Symbol_table::PREDEFINED,
4468 					this->irelative_rel_, 0, 0,
4469 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4470 					elfcpp::STV_HIDDEN, 0, true, true);
4471 	}
4472     }
4473   return this->irelative_rel_;
4474 }
4475 
4476 // Return the PLT address to use for a global symbol.
4477 
4478 template<int size, bool big_endian>
4479 uint64_t
4480 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4481   const Symbol* gsym)
4482 {
4483   uint64_t offset = 0;
4484   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4485       && gsym->can_use_relative_reloc(false))
4486     offset = (this->first_plt_entry_offset() +
4487 	      this->count_ * this->get_plt_entry_size());
4488   return this->address() + offset + gsym->plt_offset();
4489 }
4490 
4491 // Return the PLT address to use for a local symbol.  These are always
4492 // IRELATIVE relocs.
4493 
4494 template<int size, bool big_endian>
4495 uint64_t
4496 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4497     const Relobj* object,
4498     unsigned int r_sym)
4499 {
4500   return (this->address()
4501 	  + this->first_plt_entry_offset()
4502 	  + this->count_ * this->get_plt_entry_size()
4503 	  + object->local_plt_offset(r_sym));
4504 }
4505 
4506 // Set the final size.
4507 
4508 template<int size, bool big_endian>
4509 void
4510 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4511 {
4512   unsigned int count = this->count_ + this->irelative_count_;
4513   unsigned int extra_size = 0;
4514   if (this->has_tlsdesc_entry())
4515     extra_size += this->get_plt_tlsdesc_entry_size();
4516   this->set_data_size(this->first_plt_entry_offset()
4517 		      + count * this->get_plt_entry_size()
4518 		      + extra_size);
4519 }
4520 
4521 template<int size, bool big_endian>
4522 class Output_data_plt_aarch64_standard :
4523   public Output_data_plt_aarch64<size, big_endian>
4524 {
4525  public:
4526   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4527   Output_data_plt_aarch64_standard(
4528       Layout* layout,
4529       Output_data_got_aarch64<size, big_endian>* got,
4530       Output_data_space* got_plt,
4531       Output_data_space* got_irelative)
4532     : Output_data_plt_aarch64<size, big_endian>(layout,
4533 						size == 32 ? 4 : 8,
4534 						got, got_plt,
4535 						got_irelative)
4536   { }
4537 
4538  protected:
4539   // Return the offset of the first non-reserved PLT entry.
4540   virtual unsigned int
4541   do_first_plt_entry_offset() const
4542   { return this->first_plt_entry_size; }
4543 
4544   // Return the size of a PLT entry
4545   virtual unsigned int
4546   do_get_plt_entry_size() const
4547   { return this->plt_entry_size; }
4548 
4549   // Return the size of a tlsdesc entry
4550   virtual unsigned int
4551   do_get_plt_tlsdesc_entry_size() const
4552   { return this->plt_tlsdesc_entry_size; }
4553 
4554   virtual void
4555   do_fill_first_plt_entry(unsigned char* pov,
4556 			  Address got_address,
4557 			  Address plt_address);
4558 
4559   virtual void
4560   do_fill_plt_entry(unsigned char* pov,
4561 		    Address got_address,
4562 		    Address plt_address,
4563 		    unsigned int got_offset,
4564 		    unsigned int plt_offset);
4565 
4566   virtual void
4567   do_fill_tlsdesc_entry(unsigned char* pov,
4568 			Address gotplt_address,
4569 			Address plt_address,
4570 			Address got_base,
4571 			unsigned int tlsdesc_got_offset,
4572 			unsigned int plt_offset);
4573 
4574  private:
4575   // The size of the first plt entry size.
4576   static const int first_plt_entry_size = 32;
4577   // The size of the plt entry size.
4578   static const int plt_entry_size = 16;
4579   // The size of the plt tlsdesc entry size.
4580   static const int plt_tlsdesc_entry_size = 32;
4581   // Template for the first PLT entry.
4582   static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4583   // Template for subsequent PLT entries.
4584   static const uint32_t plt_entry[plt_entry_size / 4];
4585   // The reserved TLSDESC entry in the PLT for an executable.
4586   static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4587 };
4588 
4589 // The first entry in the PLT for an executable.
4590 
4591 template<>
4592 const uint32_t
4593 Output_data_plt_aarch64_standard<32, false>::
4594     first_plt_entry[first_plt_entry_size / 4] =
4595 {
4596   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4597   0x90000010,	/* adrp x16, PLT_GOT+0x8  */
4598   0xb9400A11,	/* ldr w17, [x16, #PLT_GOT+0x8]  */
4599   0x11002210,	/* add w16, w16,#PLT_GOT+0x8   */
4600   0xd61f0220,	/* br x17  */
4601   0xd503201f,	/* nop */
4602   0xd503201f,	/* nop */
4603   0xd503201f,	/* nop */
4604 };
4605 
4606 
4607 template<>
4608 const uint32_t
4609 Output_data_plt_aarch64_standard<32, true>::
4610     first_plt_entry[first_plt_entry_size / 4] =
4611 {
4612   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4613   0x90000010,	/* adrp x16, PLT_GOT+0x8  */
4614   0xb9400A11,	/* ldr w17, [x16, #PLT_GOT+0x8]  */
4615   0x11002210,	/* add w16, w16,#PLT_GOT+0x8   */
4616   0xd61f0220,	/* br x17  */
4617   0xd503201f,	/* nop */
4618   0xd503201f,	/* nop */
4619   0xd503201f,	/* nop */
4620 };
4621 
4622 
4623 template<>
4624 const uint32_t
4625 Output_data_plt_aarch64_standard<64, false>::
4626     first_plt_entry[first_plt_entry_size / 4] =
4627 {
4628   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4629   0x90000010,	/* adrp x16, PLT_GOT+16  */
4630   0xf9400A11,	/* ldr x17, [x16, #PLT_GOT+0x10]  */
4631   0x91004210,	/* add x16, x16,#PLT_GOT+0x10   */
4632   0xd61f0220,	/* br x17  */
4633   0xd503201f,	/* nop */
4634   0xd503201f,	/* nop */
4635   0xd503201f,	/* nop */
4636 };
4637 
4638 
4639 template<>
4640 const uint32_t
4641 Output_data_plt_aarch64_standard<64, true>::
4642     first_plt_entry[first_plt_entry_size / 4] =
4643 {
4644   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4645   0x90000010,	/* adrp x16, PLT_GOT+16  */
4646   0xf9400A11,	/* ldr x17, [x16, #PLT_GOT+0x10]  */
4647   0x91004210,	/* add x16, x16,#PLT_GOT+0x10   */
4648   0xd61f0220,	/* br x17  */
4649   0xd503201f,	/* nop */
4650   0xd503201f,	/* nop */
4651   0xd503201f,	/* nop */
4652 };
4653 
4654 
4655 template<>
4656 const uint32_t
4657 Output_data_plt_aarch64_standard<32, false>::
4658     plt_entry[plt_entry_size / 4] =
4659 {
4660   0x90000010,	/* adrp x16, PLTGOT + n * 4  */
4661   0xb9400211,	/* ldr w17, [w16, PLTGOT + n * 4] */
4662   0x11000210,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
4663   0xd61f0220,	/* br x17.  */
4664 };
4665 
4666 
4667 template<>
4668 const uint32_t
4669 Output_data_plt_aarch64_standard<32, true>::
4670     plt_entry[plt_entry_size / 4] =
4671 {
4672   0x90000010,	/* adrp x16, PLTGOT + n * 4  */
4673   0xb9400211,	/* ldr w17, [w16, PLTGOT + n * 4] */
4674   0x11000210,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
4675   0xd61f0220,	/* br x17.  */
4676 };
4677 
4678 
4679 template<>
4680 const uint32_t
4681 Output_data_plt_aarch64_standard<64, false>::
4682     plt_entry[plt_entry_size / 4] =
4683 {
4684   0x90000010,	/* adrp x16, PLTGOT + n * 8  */
4685   0xf9400211,	/* ldr x17, [x16, PLTGOT + n * 8] */
4686   0x91000210,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
4687   0xd61f0220,	/* br x17.  */
4688 };
4689 
4690 
4691 template<>
4692 const uint32_t
4693 Output_data_plt_aarch64_standard<64, true>::
4694     plt_entry[plt_entry_size / 4] =
4695 {
4696   0x90000010,	/* adrp x16, PLTGOT + n * 8  */
4697   0xf9400211,	/* ldr x17, [x16, PLTGOT + n * 8] */
4698   0x91000210,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
4699   0xd61f0220,	/* br x17.  */
4700 };
4701 
4702 
4703 template<int size, bool big_endian>
4704 void
4705 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4706     unsigned char* pov,
4707     Address got_address,
4708     Address plt_address)
4709 {
4710   // PLT0 of the small PLT looks like this in ELF64 -
4711   // stp x16, x30, [sp, #-16]!	 	Save the reloc and lr on stack.
4712   // adrp x16, PLT_GOT + 16		Get the page base of the GOTPLT
4713   // ldr  x17, [x16, #:lo12:PLT_GOT+16]	Load the address of the
4714   // 					symbol resolver
4715   // add  x16, x16, #:lo12:PLT_GOT+16	Load the lo12 bits of the
4716   // 					GOTPLT entry for this.
4717   // br   x17
4718   // PLT0 will be slightly different in ELF32 due to different got entry
4719   // size.
4720   memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4721   Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4722 
4723   // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4724   // ADRP:  (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4725   // FIXME: This only works for 64bit
4726   AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4727       gotplt_2nd_ent, plt_address + 4);
4728 
4729   // Fill in R_AARCH64_LDST8_LO12
4730   elfcpp::Swap<32, big_endian>::writeval(
4731       pov + 8,
4732       ((this->first_plt_entry[2] & 0xffc003ff)
4733        | ((gotplt_2nd_ent & 0xff8) << 7)));
4734 
4735   // Fill in R_AARCH64_ADD_ABS_LO12
4736   elfcpp::Swap<32, big_endian>::writeval(
4737       pov + 12,
4738       ((this->first_plt_entry[3] & 0xffc003ff)
4739        | ((gotplt_2nd_ent & 0xfff) << 10)));
4740 }
4741 
4742 
4743 // Subsequent entries in the PLT for an executable.
4744 // FIXME: This only works for 64bit
4745 
4746 template<int size, bool big_endian>
4747 void
4748 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4749     unsigned char* pov,
4750     Address got_address,
4751     Address plt_address,
4752     unsigned int got_offset,
4753     unsigned int plt_offset)
4754 {
4755   memcpy(pov, this->plt_entry, this->plt_entry_size);
4756 
4757   Address gotplt_entry_address = got_address + got_offset;
4758   Address plt_entry_address = plt_address + plt_offset;
4759 
4760   // Fill in R_AARCH64_PCREL_ADR_HI21
4761   AArch64_relocate_functions<size, big_endian>::adrp(
4762       pov,
4763       gotplt_entry_address,
4764       plt_entry_address);
4765 
4766   // Fill in R_AARCH64_LDST64_ABS_LO12
4767   elfcpp::Swap<32, big_endian>::writeval(
4768       pov + 4,
4769       ((this->plt_entry[1] & 0xffc003ff)
4770        | ((gotplt_entry_address & 0xff8) << 7)));
4771 
4772   // Fill in R_AARCH64_ADD_ABS_LO12
4773   elfcpp::Swap<32, big_endian>::writeval(
4774       pov + 8,
4775       ((this->plt_entry[2] & 0xffc003ff)
4776        | ((gotplt_entry_address & 0xfff) <<10)));
4777 
4778 }
4779 
4780 
4781 template<>
4782 const uint32_t
4783 Output_data_plt_aarch64_standard<32, false>::
4784     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4785 {
4786   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4787   0x90000002,	/* adrp x2, 0 */
4788   0x90000003,	/* adrp x3, 0 */
4789   0xb9400042,	/* ldr w2, [w2, #0] */
4790   0x11000063,	/* add w3, w3, 0 */
4791   0xd61f0040,	/* br x2 */
4792   0xd503201f,	/* nop */
4793   0xd503201f,	/* nop */
4794 };
4795 
4796 template<>
4797 const uint32_t
4798 Output_data_plt_aarch64_standard<32, true>::
4799     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4800 {
4801   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4802   0x90000002,	/* adrp x2, 0 */
4803   0x90000003,	/* adrp x3, 0 */
4804   0xb9400042,	/* ldr w2, [w2, #0] */
4805   0x11000063,	/* add w3, w3, 0 */
4806   0xd61f0040,	/* br x2 */
4807   0xd503201f,	/* nop */
4808   0xd503201f,	/* nop */
4809 };
4810 
4811 template<>
4812 const uint32_t
4813 Output_data_plt_aarch64_standard<64, false>::
4814     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4815 {
4816   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4817   0x90000002,	/* adrp x2, 0 */
4818   0x90000003,	/* adrp x3, 0 */
4819   0xf9400042,	/* ldr x2, [x2, #0] */
4820   0x91000063,	/* add x3, x3, 0 */
4821   0xd61f0040,	/* br x2 */
4822   0xd503201f,	/* nop */
4823   0xd503201f,	/* nop */
4824 };
4825 
4826 template<>
4827 const uint32_t
4828 Output_data_plt_aarch64_standard<64, true>::
4829     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4830 {
4831   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4832   0x90000002,	/* adrp x2, 0 */
4833   0x90000003,	/* adrp x3, 0 */
4834   0xf9400042,	/* ldr x2, [x2, #0] */
4835   0x91000063,	/* add x3, x3, 0 */
4836   0xd61f0040,	/* br x2 */
4837   0xd503201f,	/* nop */
4838   0xd503201f,	/* nop */
4839 };
4840 
4841 template<int size, bool big_endian>
4842 void
4843 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4844     unsigned char* pov,
4845     Address gotplt_address,
4846     Address plt_address,
4847     Address got_base,
4848     unsigned int tlsdesc_got_offset,
4849     unsigned int plt_offset)
4850 {
4851   memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4852 
4853   // move DT_TLSDESC_GOT address into x2
4854   // move .got.plt address into x3
4855   Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4856   Address plt_entry_address = plt_address + plt_offset;
4857 
4858   // R_AARCH64_ADR_PREL_PG_HI21
4859   AArch64_relocate_functions<size, big_endian>::adrp(
4860       pov + 4,
4861       tlsdesc_got_entry,
4862       plt_entry_address + 4);
4863 
4864   // R_AARCH64_ADR_PREL_PG_HI21
4865   AArch64_relocate_functions<size, big_endian>::adrp(
4866       pov + 8,
4867       gotplt_address,
4868       plt_entry_address + 8);
4869 
4870   // R_AARCH64_LDST64_ABS_LO12
4871   elfcpp::Swap<32, big_endian>::writeval(
4872       pov + 12,
4873       ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4874        | ((tlsdesc_got_entry & 0xff8) << 7)));
4875 
4876   // R_AARCH64_ADD_ABS_LO12
4877   elfcpp::Swap<32, big_endian>::writeval(
4878       pov + 16,
4879       ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4880        | ((gotplt_address & 0xfff) << 10)));
4881 }
4882 
4883 // Write out the PLT.  This uses the hand-coded instructions above,
4884 // and adjusts them as needed.  This is specified by the AMD64 ABI.
4885 
4886 template<int size, bool big_endian>
4887 void
4888 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4889 {
4890   const off_t offset = this->offset();
4891   const section_size_type oview_size =
4892     convert_to_section_size_type(this->data_size());
4893   unsigned char* const oview = of->get_output_view(offset, oview_size);
4894 
4895   const off_t got_file_offset = this->got_plt_->offset();
4896   gold_assert(got_file_offset + this->got_plt_->data_size()
4897 	      == this->got_irelative_->offset());
4898 
4899   const section_size_type got_size =
4900       convert_to_section_size_type(this->got_plt_->data_size()
4901 				   + this->got_irelative_->data_size());
4902   unsigned char* const got_view = of->get_output_view(got_file_offset,
4903 						      got_size);
4904 
4905   unsigned char* pov = oview;
4906 
4907   // The base address of the .plt section.
4908   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
4909   // The base address of the PLT portion of the .got section.
4910   typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4911       = this->got_plt_->address();
4912 
4913   this->fill_first_plt_entry(pov, gotplt_address, plt_address);
4914   pov += this->first_plt_entry_offset();
4915 
4916   // The first three entries in .got.plt are reserved.
4917   unsigned char* got_pov = got_view;
4918   memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4919   got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4920 
4921   unsigned int plt_offset = this->first_plt_entry_offset();
4922   unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4923   const unsigned int count = this->count_ + this->irelative_count_;
4924   for (unsigned int plt_index = 0;
4925        plt_index < count;
4926        ++plt_index,
4927 	 pov += this->get_plt_entry_size(),
4928 	 got_pov += size / 8,
4929 	 plt_offset += this->get_plt_entry_size(),
4930 	 got_offset += size / 8)
4931     {
4932       // Set and adjust the PLT entry itself.
4933       this->fill_plt_entry(pov, gotplt_address, plt_address,
4934 			   got_offset, plt_offset);
4935 
4936       // Set the entry in the GOT, which points to plt0.
4937       elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
4938     }
4939 
4940   if (this->has_tlsdesc_entry())
4941     {
4942       // Set and adjust the reserved TLSDESC PLT entry.
4943       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4944       // The base address of the .base section.
4945       typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4946 	  this->got_->address();
4947       this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4948 			       tlsdesc_got_offset, plt_offset);
4949       pov += this->get_plt_tlsdesc_entry_size();
4950     }
4951 
4952   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4953   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4954 
4955   of->write_output_view(offset, oview_size, oview);
4956   of->write_output_view(got_file_offset, got_size, got_view);
4957 }
4958 
4959 // Telling how to update the immediate field of an instruction.
4960 struct AArch64_howto
4961 {
4962   // The immediate field mask.
4963   elfcpp::Elf_Xword dst_mask;
4964 
4965   // The offset to apply relocation immediate
4966   int doffset;
4967 
4968   // The second part offset, if the immediate field has two parts.
4969   // -1 if the immediate field has only one part.
4970   int doffset2;
4971 };
4972 
4973 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
4974 {
4975   {0, -1, -1},		// DATA
4976   {0x1fffe0, 5, -1},	// MOVW  [20:5]-imm16
4977   {0xffffe0, 5, -1},	// LD    [23:5]-imm19
4978   {0x60ffffe0, 29, 5},	// ADR   [30:29]-immlo  [23:5]-immhi
4979   {0x60ffffe0, 29, 5},	// ADRP  [30:29]-immlo  [23:5]-immhi
4980   {0x3ffc00, 10, -1},	// ADD   [21:10]-imm12
4981   {0x3ffc00, 10, -1},	// LDST  [21:10]-imm12
4982   {0x7ffe0, 5, -1},	// TBZNZ [18:5]-imm14
4983   {0xffffe0, 5, -1},	// CONDB [23:5]-imm19
4984   {0x3ffffff, 0, -1},	// B     [25:0]-imm26
4985   {0x3ffffff, 0, -1},	// CALL  [25:0]-imm26
4986 };
4987 
4988 // AArch64 relocate function class
4989 
4990 template<int size, bool big_endian>
4991 class AArch64_relocate_functions
4992 {
4993  public:
4994   typedef enum
4995   {
4996     STATUS_OKAY,	// No error during relocation.
4997     STATUS_OVERFLOW,	// Relocation overflow.
4998     STATUS_BAD_RELOC,	// Relocation cannot be applied.
4999   } Status;
5000 
5001   typedef AArch64_relocate_functions<size, big_endian> This;
5002   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5003   typedef Relocate_info<size, big_endian> The_relocate_info;
5004   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
5005   typedef Reloc_stub<size, big_endian> The_reloc_stub;
5006   typedef Stub_table<size, big_endian> The_stub_table;
5007   typedef elfcpp::Rela<size, big_endian> The_rela;
5008   typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
5009 
5010   // Return the page address of the address.
5011   // Page(address) = address & ~0xFFF
5012 
5013   static inline AArch64_valtype
5014   Page(Address address)
5015   {
5016     return (address & (~static_cast<Address>(0xFFF)));
5017   }
5018 
5019  private:
5020   // Update instruction (pointed by view) with selected bits (immed).
5021   // val = (val & ~dst_mask) | (immed << doffset)
5022 
5023   template<int valsize>
5024   static inline void
5025   update_view(unsigned char* view,
5026 	      AArch64_valtype immed,
5027 	      elfcpp::Elf_Xword doffset,
5028 	      elfcpp::Elf_Xword dst_mask)
5029   {
5030     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5031     Valtype* wv = reinterpret_cast<Valtype*>(view);
5032     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5033 
5034     // Clear immediate fields.
5035     val &= ~dst_mask;
5036     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5037       static_cast<Valtype>(val | (immed << doffset)));
5038   }
5039 
5040   // Update two parts of an instruction (pointed by view) with selected
5041   // bits (immed1 and immed2).
5042   // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5043 
5044   template<int valsize>
5045   static inline void
5046   update_view_two_parts(
5047     unsigned char* view,
5048     AArch64_valtype immed1,
5049     AArch64_valtype immed2,
5050     elfcpp::Elf_Xword doffset1,
5051     elfcpp::Elf_Xword doffset2,
5052     elfcpp::Elf_Xword dst_mask)
5053   {
5054     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5055     Valtype* wv = reinterpret_cast<Valtype*>(view);
5056     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5057     val &= ~dst_mask;
5058     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5059       static_cast<Valtype>(val | (immed1 << doffset1) |
5060 			   (immed2 << doffset2)));
5061   }
5062 
5063   // Update adr or adrp instruction with immed.
5064   // In adr and adrp: [30:29] immlo   [23:5] immhi
5065 
5066   static inline void
5067   update_adr(unsigned char* view, AArch64_valtype immed)
5068   {
5069     elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5070     This::template update_view_two_parts<32>(
5071       view,
5072       immed & 0x3,
5073       (immed & 0x1ffffc) >> 2,
5074       29,
5075       5,
5076       dst_mask);
5077   }
5078 
5079   // Update movz/movn instruction with bits immed.
5080   // Set instruction to movz if is_movz is true, otherwise set instruction
5081   // to movn.
5082 
5083   static inline void
5084   update_movnz(unsigned char* view,
5085 	       AArch64_valtype immed,
5086 	       bool is_movz)
5087   {
5088     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5089     Valtype* wv = reinterpret_cast<Valtype*>(view);
5090     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5091 
5092     const elfcpp::Elf_Xword doffset =
5093 	aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5094     const elfcpp::Elf_Xword dst_mask =
5095 	aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5096 
5097     // Clear immediate fields and opc code.
5098     val &= ~(dst_mask | (0x3 << 29));
5099 
5100     // Set instruction to movz or movn.
5101     // movz: [30:29] is 10   movn: [30:29] is 00
5102     if (is_movz)
5103       val |= (0x2 << 29);
5104 
5105     elfcpp::Swap<32, big_endian>::writeval(wv,
5106       static_cast<Valtype>(val | (immed << doffset)));
5107   }
5108 
5109  public:
5110 
5111   // Update selected bits in text.
5112 
5113   template<int valsize>
5114   static inline typename This::Status
5115   reloc_common(unsigned char* view, Address x,
5116 		const AArch64_reloc_property* reloc_property)
5117   {
5118     // Select bits from X.
5119     Address immed = reloc_property->select_x_value(x);
5120 
5121     // Update view.
5122     const AArch64_reloc_property::Reloc_inst inst =
5123       reloc_property->reloc_inst();
5124     // If it is a data relocation or instruction has 2 parts of immediate
5125     // fields, you should not call pcrela_general.
5126     gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5127 		aarch64_howto[inst].doffset != -1);
5128     This::template update_view<valsize>(view, immed,
5129 					aarch64_howto[inst].doffset,
5130 					aarch64_howto[inst].dst_mask);
5131 
5132     // Do check overflow or alignment if needed.
5133     return (reloc_property->checkup_x_value(x)
5134 	    ? This::STATUS_OKAY
5135 	    : This::STATUS_OVERFLOW);
5136   }
5137 
5138   // Construct a B insn. Note, although we group it here with other relocation
5139   // operation, there is actually no 'relocation' involved here.
5140   static inline void
5141   construct_b(unsigned char* view, unsigned int branch_offset)
5142   {
5143     update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5144 			      26, 0, 0xffffffff);
5145   }
5146 
5147   // Do a simple rela relocation at unaligned addresses.
5148 
5149   template<int valsize>
5150   static inline typename This::Status
5151   rela_ua(unsigned char* view,
5152 	  const Sized_relobj_file<size, big_endian>* object,
5153 	  const Symbol_value<size>* psymval,
5154 	  AArch64_valtype addend,
5155 	  const AArch64_reloc_property* reloc_property)
5156   {
5157     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5158       Valtype;
5159     typename elfcpp::Elf_types<size>::Elf_Addr x =
5160 	psymval->value(object, addend);
5161     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5162       static_cast<Valtype>(x));
5163     return (reloc_property->checkup_x_value(x)
5164 	    ? This::STATUS_OKAY
5165 	    : This::STATUS_OVERFLOW);
5166   }
5167 
5168   // Do a simple pc-relative relocation at unaligned addresses.
5169 
5170   template<int valsize>
5171   static inline typename This::Status
5172   pcrela_ua(unsigned char* view,
5173 	    const Sized_relobj_file<size, big_endian>* object,
5174 	    const Symbol_value<size>* psymval,
5175 	    AArch64_valtype addend,
5176 	    Address address,
5177 	    const AArch64_reloc_property* reloc_property)
5178   {
5179     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5180       Valtype;
5181     Address x = psymval->value(object, addend) - address;
5182     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5183       static_cast<Valtype>(x));
5184     return (reloc_property->checkup_x_value(x)
5185 	    ? This::STATUS_OKAY
5186 	    : This::STATUS_OVERFLOW);
5187   }
5188 
5189   // Do a simple rela relocation at aligned addresses.
5190 
5191   template<int valsize>
5192   static inline typename This::Status
5193   rela(
5194     unsigned char* view,
5195     const Sized_relobj_file<size, big_endian>* object,
5196     const Symbol_value<size>* psymval,
5197     AArch64_valtype addend,
5198     const AArch64_reloc_property* reloc_property)
5199   {
5200     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5201     Valtype* wv = reinterpret_cast<Valtype*>(view);
5202     Address x = psymval->value(object, addend);
5203     elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5204     return (reloc_property->checkup_x_value(x)
5205 	    ? This::STATUS_OKAY
5206 	    : This::STATUS_OVERFLOW);
5207   }
5208 
5209   // Do relocate. Update selected bits in text.
5210   // new_val = (val & ~dst_mask) | (immed << doffset)
5211 
5212   template<int valsize>
5213   static inline typename This::Status
5214   rela_general(unsigned char* view,
5215 	       const Sized_relobj_file<size, big_endian>* object,
5216 	       const Symbol_value<size>* psymval,
5217 	       AArch64_valtype addend,
5218 	       const AArch64_reloc_property* reloc_property)
5219   {
5220     // Calculate relocation.
5221     Address x = psymval->value(object, addend);
5222     return This::template reloc_common<valsize>(view, x, reloc_property);
5223   }
5224 
5225   // Do relocate. Update selected bits in text.
5226   // new val = (val & ~dst_mask) | (immed << doffset)
5227 
5228   template<int valsize>
5229   static inline typename This::Status
5230   rela_general(
5231     unsigned char* view,
5232     AArch64_valtype s,
5233     AArch64_valtype addend,
5234     const AArch64_reloc_property* reloc_property)
5235   {
5236     // Calculate relocation.
5237     Address x = s + addend;
5238     return This::template reloc_common<valsize>(view, x, reloc_property);
5239   }
5240 
5241   // Do address relative relocate. Update selected bits in text.
5242   // new val = (val & ~dst_mask) | (immed << doffset)
5243 
5244   template<int valsize>
5245   static inline typename This::Status
5246   pcrela_general(
5247     unsigned char* view,
5248     const Sized_relobj_file<size, big_endian>* object,
5249     const Symbol_value<size>* psymval,
5250     AArch64_valtype addend,
5251     Address address,
5252     const AArch64_reloc_property* reloc_property)
5253   {
5254     // Calculate relocation.
5255     Address x = psymval->value(object, addend) - address;
5256     return This::template reloc_common<valsize>(view, x, reloc_property);
5257   }
5258 
5259 
5260   // Calculate (S + A) - address, update adr instruction.
5261 
5262   static inline typename This::Status
5263   adr(unsigned char* view,
5264       const Sized_relobj_file<size, big_endian>* object,
5265       const Symbol_value<size>* psymval,
5266       Address addend,
5267       Address address,
5268       const AArch64_reloc_property* /* reloc_property */)
5269   {
5270     AArch64_valtype x = psymval->value(object, addend) - address;
5271     // Pick bits [20:0] of X.
5272     AArch64_valtype immed = x & 0x1fffff;
5273     update_adr(view, immed);
5274     // Check -2^20 <= X < 2^20
5275     return (size == 64 && Bits<21>::has_overflow((x))
5276 	    ? This::STATUS_OVERFLOW
5277 	    : This::STATUS_OKAY);
5278   }
5279 
5280   // Calculate PG(S+A) - PG(address), update adrp instruction.
5281   // R_AARCH64_ADR_PREL_PG_HI21
5282 
5283   static inline typename This::Status
5284   adrp(
5285     unsigned char* view,
5286     Address sa,
5287     Address address)
5288   {
5289     AArch64_valtype x = This::Page(sa) - This::Page(address);
5290     // Pick [32:12] of X.
5291     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5292     update_adr(view, immed);
5293     // Check -2^32 <= X < 2^32
5294     return (size == 64 && Bits<33>::has_overflow((x))
5295 	    ? This::STATUS_OVERFLOW
5296 	    : This::STATUS_OKAY);
5297   }
5298 
5299   // Calculate PG(S+A) - PG(address), update adrp instruction.
5300   // R_AARCH64_ADR_PREL_PG_HI21
5301 
5302   static inline typename This::Status
5303   adrp(unsigned char* view,
5304        const Sized_relobj_file<size, big_endian>* object,
5305        const Symbol_value<size>* psymval,
5306        Address addend,
5307        Address address,
5308        const AArch64_reloc_property* reloc_property)
5309   {
5310     Address sa = psymval->value(object, addend);
5311     AArch64_valtype x = This::Page(sa) - This::Page(address);
5312     // Pick [32:12] of X.
5313     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5314     update_adr(view, immed);
5315     return (reloc_property->checkup_x_value(x)
5316 	    ? This::STATUS_OKAY
5317 	    : This::STATUS_OVERFLOW);
5318   }
5319 
5320   // Update mov[n/z] instruction. Check overflow if needed.
5321   // If X >=0, set the instruction to movz and its immediate value to the
5322   // selected bits S.
5323   // If X < 0, set the instruction to movn and its immediate value to
5324   // NOT (selected bits of).
5325 
5326   static inline typename This::Status
5327   movnz(unsigned char* view,
5328 	AArch64_valtype x,
5329 	const AArch64_reloc_property* reloc_property)
5330   {
5331     // Select bits from X.
5332     Address immed;
5333     bool is_movz;
5334     typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5335     if (static_cast<SignedW>(x) >= 0)
5336       {
5337 	immed = reloc_property->select_x_value(x);
5338         is_movz = true;
5339       }
5340     else
5341       {
5342 	immed = reloc_property->select_x_value(~x);;
5343 	is_movz = false;
5344       }
5345 
5346     // Update movnz instruction.
5347     update_movnz(view, immed, is_movz);
5348 
5349     // Do check overflow or alignment if needed.
5350     return (reloc_property->checkup_x_value(x)
5351 	    ? This::STATUS_OKAY
5352 	    : This::STATUS_OVERFLOW);
5353   }
5354 
5355   static inline bool
5356   maybe_apply_stub(unsigned int,
5357 		   const The_relocate_info*,
5358 		   const The_rela&,
5359 		   unsigned char*,
5360 		   Address,
5361 		   const Sized_symbol<size>*,
5362 		   const Symbol_value<size>*,
5363 		   const Sized_relobj_file<size, big_endian>*,
5364 		   section_size_type);
5365 
5366 };  // End of AArch64_relocate_functions
5367 
5368 
5369 // For a certain relocation type (usually jump/branch), test to see if the
5370 // destination needs a stub to fulfil. If so, re-route the destination of the
5371 // original instruction to the stub, note, at this time, the stub has already
5372 // been generated.
5373 
5374 template<int size, bool big_endian>
5375 bool
5376 AArch64_relocate_functions<size, big_endian>::
5377 maybe_apply_stub(unsigned int r_type,
5378 		 const The_relocate_info* relinfo,
5379 		 const The_rela& rela,
5380 		 unsigned char* view,
5381 		 Address address,
5382 		 const Sized_symbol<size>* gsym,
5383 		 const Symbol_value<size>* psymval,
5384 		 const Sized_relobj_file<size, big_endian>* object,
5385 		 section_size_type current_group_size)
5386 {
5387   if (parameters->options().relocatable())
5388     return false;
5389 
5390   typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5391   Address branch_target = psymval->value(object, 0) + addend;
5392   int stub_type =
5393     The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5394   if (stub_type == ST_NONE)
5395     return false;
5396 
5397   const The_aarch64_relobj* aarch64_relobj =
5398       static_cast<const The_aarch64_relobj*>(object);
5399   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5400   gold_assert(stub_table != NULL);
5401 
5402   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5403   typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5404   The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5405   gold_assert(stub != NULL);
5406 
5407   Address new_branch_target = stub_table->address() + stub->offset();
5408   typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5409       new_branch_target - address;
5410   const AArch64_reloc_property* arp =
5411       aarch64_reloc_property_table->get_reloc_property(r_type);
5412   gold_assert(arp != NULL);
5413   typename This::Status status = This::template
5414       rela_general<32>(view, branch_offset, 0, arp);
5415   if (status != This::STATUS_OKAY)
5416     gold_error(_("Stub is too far away, try a smaller value "
5417 		 "for '--stub-group-size'. The current value is 0x%lx."),
5418 	       static_cast<unsigned long>(current_group_size));
5419   return true;
5420 }
5421 
5422 
5423 // Group input sections for stub generation.
5424 //
5425 // We group input sections in an output section so that the total size,
5426 // including any padding space due to alignment is smaller than GROUP_SIZE
5427 // unless the only input section in group is bigger than GROUP_SIZE already.
5428 // Then an ARM stub table is created to follow the last input section
5429 // in group.  For each group an ARM stub table is created an is placed
5430 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
5431 // extend the group after the stub table.
5432 
5433 template<int size, bool big_endian>
5434 void
5435 Target_aarch64<size, big_endian>::group_sections(
5436     Layout* layout,
5437     section_size_type group_size,
5438     bool stubs_always_after_branch,
5439     const Task* task)
5440 {
5441   // Group input sections and insert stub table
5442   Layout::Section_list section_list;
5443   layout->get_executable_sections(&section_list);
5444   for (Layout::Section_list::const_iterator p = section_list.begin();
5445        p != section_list.end();
5446        ++p)
5447     {
5448       AArch64_output_section<size, big_endian>* output_section =
5449 	  static_cast<AArch64_output_section<size, big_endian>*>(*p);
5450       output_section->group_sections(group_size, stubs_always_after_branch,
5451 				     this, task);
5452     }
5453 }
5454 
5455 
5456 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5457 // section of RELOBJ.
5458 
5459 template<int size, bool big_endian>
5460 AArch64_input_section<size, big_endian>*
5461 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5462     Relobj* relobj, unsigned int shndx) const
5463 {
5464   Section_id sid(relobj, shndx);
5465   typename AArch64_input_section_map::const_iterator p =
5466     this->aarch64_input_section_map_.find(sid);
5467   return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5468 }
5469 
5470 
5471 // Make a new AArch64_input_section object.
5472 
5473 template<int size, bool big_endian>
5474 AArch64_input_section<size, big_endian>*
5475 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5476     Relobj* relobj, unsigned int shndx)
5477 {
5478   Section_id sid(relobj, shndx);
5479 
5480   AArch64_input_section<size, big_endian>* input_section =
5481       new AArch64_input_section<size, big_endian>(relobj, shndx);
5482   input_section->init();
5483 
5484   // Register new AArch64_input_section in map for look-up.
5485   std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5486       this->aarch64_input_section_map_.insert(
5487 	  std::make_pair(sid, input_section));
5488 
5489   // Make sure that it we have not created another AArch64_input_section
5490   // for this input section already.
5491   gold_assert(ins.second);
5492 
5493   return input_section;
5494 }
5495 
5496 
5497 // Relaxation hook.  This is where we do stub generation.
5498 
5499 template<int size, bool big_endian>
5500 bool
5501 Target_aarch64<size, big_endian>::do_relax(
5502     int pass,
5503     const Input_objects* input_objects,
5504     Symbol_table* symtab,
5505     Layout* layout ,
5506     const Task* task)
5507 {
5508   gold_assert(!parameters->options().relocatable());
5509   if (pass == 1)
5510     {
5511       // We don't handle negative stub_group_size right now.
5512       this->stub_group_size_ = abs(parameters->options().stub_group_size());
5513       if (this->stub_group_size_ == 1)
5514 	{
5515 	  // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5516 	  // will fail to link.  The user will have to relink with an explicit
5517 	  // group size option.
5518 	  this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5519 				   4096 * 4;
5520 	}
5521       group_sections(layout, this->stub_group_size_, true, task);
5522     }
5523   else
5524     {
5525       // If this is not the first pass, addresses and file offsets have
5526       // been reset at this point, set them here.
5527       for (Stub_table_iterator sp = this->stub_tables_.begin();
5528 	   sp != this->stub_tables_.end(); ++sp)
5529 	{
5530 	  The_stub_table* stt = *sp;
5531 	  The_aarch64_input_section* owner = stt->owner();
5532 	  off_t off = align_address(owner->original_size(),
5533 				    stt->addralign());
5534 	  stt->set_address_and_file_offset(owner->address() + off,
5535 					   owner->offset() + off);
5536 	}
5537     }
5538 
5539   // Scan relocs for relocation stubs
5540   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5541        op != input_objects->relobj_end();
5542        ++op)
5543     {
5544       The_aarch64_relobj* aarch64_relobj =
5545 	  static_cast<The_aarch64_relobj*>(*op);
5546       // Lock the object so we can read from it.  This is only called
5547       // single-threaded from Layout::finalize, so it is OK to lock.
5548       Task_lock_obj<Object> tl(task, aarch64_relobj);
5549       aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5550     }
5551 
5552   bool any_stub_table_changed = false;
5553   for (Stub_table_iterator siter = this->stub_tables_.begin();
5554        siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5555     {
5556       The_stub_table* stub_table = *siter;
5557       if (stub_table->update_data_size_changed_p())
5558 	{
5559 	  The_aarch64_input_section* owner = stub_table->owner();
5560 	  uint64_t address = owner->address();
5561 	  off_t offset = owner->offset();
5562 	  owner->reset_address_and_file_offset();
5563 	  owner->set_address_and_file_offset(address, offset);
5564 
5565 	  any_stub_table_changed = true;
5566 	}
5567     }
5568 
5569   // Do not continue relaxation.
5570   bool continue_relaxation = any_stub_table_changed;
5571   if (!continue_relaxation)
5572     for (Stub_table_iterator sp = this->stub_tables_.begin();
5573 	 (sp != this->stub_tables_.end());
5574 	 ++sp)
5575       (*sp)->finalize_stubs();
5576 
5577   return continue_relaxation;
5578 }
5579 
5580 
5581 // Make a new Stub_table.
5582 
5583 template<int size, bool big_endian>
5584 Stub_table<size, big_endian>*
5585 Target_aarch64<size, big_endian>::new_stub_table(
5586     AArch64_input_section<size, big_endian>* owner)
5587 {
5588   Stub_table<size, big_endian>* stub_table =
5589       new Stub_table<size, big_endian>(owner);
5590   stub_table->set_address(align_address(
5591       owner->address() + owner->data_size(), 8));
5592   stub_table->set_file_offset(owner->offset() + owner->data_size());
5593   stub_table->finalize_data_size();
5594 
5595   this->stub_tables_.push_back(stub_table);
5596 
5597   return stub_table;
5598 }
5599 
5600 
5601 template<int size, bool big_endian>
5602 uint64_t
5603 Target_aarch64<size, big_endian>::do_reloc_addend(
5604     void* arg, unsigned int r_type, uint64_t) const
5605 {
5606   gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5607   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5608   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5609   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5610   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5611   gold_assert(psymval->is_tls_symbol());
5612   // The value of a TLS symbol is the offset in the TLS segment.
5613   return psymval->value(ti.object, 0);
5614 }
5615 
5616 // Return the number of entries in the PLT.
5617 
5618 template<int size, bool big_endian>
5619 unsigned int
5620 Target_aarch64<size, big_endian>::plt_entry_count() const
5621 {
5622   if (this->plt_ == NULL)
5623     return 0;
5624   return this->plt_->entry_count();
5625 }
5626 
5627 // Return the offset of the first non-reserved PLT entry.
5628 
5629 template<int size, bool big_endian>
5630 unsigned int
5631 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5632 {
5633   return this->plt_->first_plt_entry_offset();
5634 }
5635 
5636 // Return the size of each PLT entry.
5637 
5638 template<int size, bool big_endian>
5639 unsigned int
5640 Target_aarch64<size, big_endian>::plt_entry_size() const
5641 {
5642   return this->plt_->get_plt_entry_size();
5643 }
5644 
5645 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5646 
5647 template<int size, bool big_endian>
5648 void
5649 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5650     Symbol_table* symtab, Layout* layout)
5651 {
5652   if (this->tls_base_symbol_defined_)
5653     return;
5654 
5655   Output_segment* tls_segment = layout->tls_segment();
5656   if (tls_segment != NULL)
5657     {
5658       // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5659       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5660 				       Symbol_table::PREDEFINED,
5661 				       tls_segment, 0, 0,
5662 				       elfcpp::STT_TLS,
5663 				       elfcpp::STB_LOCAL,
5664 				       elfcpp::STV_HIDDEN, 0,
5665 				       Symbol::SEGMENT_START,
5666 				       true);
5667     }
5668   this->tls_base_symbol_defined_ = true;
5669 }
5670 
5671 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5672 
5673 template<int size, bool big_endian>
5674 void
5675 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5676     Symbol_table* symtab, Layout* layout)
5677 {
5678   if (this->plt_ == NULL)
5679     this->make_plt_section(symtab, layout);
5680 
5681   if (!this->plt_->has_tlsdesc_entry())
5682     {
5683       // Allocate the TLSDESC_GOT entry.
5684       Output_data_got_aarch64<size, big_endian>* got =
5685 	  this->got_section(symtab, layout);
5686       unsigned int got_offset = got->add_constant(0);
5687 
5688       // Allocate the TLSDESC_PLT entry.
5689       this->plt_->reserve_tlsdesc_entry(got_offset);
5690     }
5691 }
5692 
5693 // Create a GOT entry for the TLS module index.
5694 
5695 template<int size, bool big_endian>
5696 unsigned int
5697 Target_aarch64<size, big_endian>::got_mod_index_entry(
5698     Symbol_table* symtab, Layout* layout,
5699     Sized_relobj_file<size, big_endian>* object)
5700 {
5701   if (this->got_mod_index_offset_ == -1U)
5702     {
5703       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5704       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5705       Output_data_got_aarch64<size, big_endian>* got =
5706 	  this->got_section(symtab, layout);
5707       unsigned int got_offset = got->add_constant(0);
5708       rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5709 			  got_offset, 0);
5710       got->add_constant(0);
5711       this->got_mod_index_offset_ = got_offset;
5712     }
5713   return this->got_mod_index_offset_;
5714 }
5715 
5716 // Optimize the TLS relocation type based on what we know about the
5717 // symbol.  IS_FINAL is true if the final address of this symbol is
5718 // known at link time.
5719 
5720 template<int size, bool big_endian>
5721 tls::Tls_optimization
5722 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5723 						     int r_type)
5724 {
5725   // If we are generating a shared library, then we can't do anything
5726   // in the linker
5727   if (parameters->options().shared())
5728     return tls::TLSOPT_NONE;
5729 
5730   switch (r_type)
5731     {
5732     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5733     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5734     case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5735     case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5736     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5737     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5738     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5739     case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5740     case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5741     case elfcpp::R_AARCH64_TLSDESC_LDR:
5742     case elfcpp::R_AARCH64_TLSDESC_ADD:
5743     case elfcpp::R_AARCH64_TLSDESC_CALL:
5744       // These are General-Dynamic which permits fully general TLS
5745       // access.  Since we know that we are generating an executable,
5746       // we can convert this to Initial-Exec.  If we also know that
5747       // this is a local symbol, we can further switch to Local-Exec.
5748       if (is_final)
5749 	return tls::TLSOPT_TO_LE;
5750       return tls::TLSOPT_TO_IE;
5751 
5752     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5753     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5754     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5755     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5756     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5757     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5758       // These are Local-Dynamic, which refer to local symbols in the
5759       // dynamic TLS block. Since we know that we generating an
5760       // executable, we can switch to Local-Exec.
5761       return tls::TLSOPT_TO_LE;
5762 
5763     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5764     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5765     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5766     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5767     case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5768       // These are Initial-Exec relocs which get the thread offset
5769       // from the GOT. If we know that we are linking against the
5770       // local symbol, we can switch to Local-Exec, which links the
5771       // thread offset into the instruction.
5772       if (is_final)
5773 	return tls::TLSOPT_TO_LE;
5774       return tls::TLSOPT_NONE;
5775 
5776     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5777     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5778     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5779     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5780     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5781     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5782     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5783     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5784       // When we already have Local-Exec, there is nothing further we
5785       // can do.
5786       return tls::TLSOPT_NONE;
5787 
5788     default:
5789       gold_unreachable();
5790     }
5791 }
5792 
5793 // Returns true if this relocation type could be that of a function pointer.
5794 
5795 template<int size, bool big_endian>
5796 inline bool
5797 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5798   unsigned int r_type)
5799 {
5800   switch (r_type)
5801     {
5802     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5803     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5804     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5805     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5806     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5807       {
5808 	return true;
5809       }
5810     }
5811   return false;
5812 }
5813 
5814 // For safe ICF, scan a relocation for a local symbol to check if it
5815 // corresponds to a function pointer being taken.  In that case mark
5816 // the function whose pointer was taken as not foldable.
5817 
5818 template<int size, bool big_endian>
5819 inline bool
5820 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5821   Symbol_table* ,
5822   Layout* ,
5823   Target_aarch64<size, big_endian>* ,
5824   Sized_relobj_file<size, big_endian>* ,
5825   unsigned int ,
5826   Output_section* ,
5827   const elfcpp::Rela<size, big_endian>& ,
5828   unsigned int r_type,
5829   const elfcpp::Sym<size, big_endian>&)
5830 {
5831   // When building a shared library, do not fold any local symbols.
5832   return (parameters->options().shared()
5833 	  || possible_function_pointer_reloc(r_type));
5834 }
5835 
5836 // For safe ICF, scan a relocation for a global symbol to check if it
5837 // corresponds to a function pointer being taken.  In that case mark
5838 // the function whose pointer was taken as not foldable.
5839 
5840 template<int size, bool big_endian>
5841 inline bool
5842 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5843   Symbol_table* ,
5844   Layout* ,
5845   Target_aarch64<size, big_endian>* ,
5846   Sized_relobj_file<size, big_endian>* ,
5847   unsigned int ,
5848   Output_section* ,
5849   const elfcpp::Rela<size, big_endian>& ,
5850   unsigned int r_type,
5851   Symbol* gsym)
5852 {
5853   // When building a shared library, do not fold symbols whose visibility
5854   // is hidden, internal or protected.
5855   return ((parameters->options().shared()
5856 	   && (gsym->visibility() == elfcpp::STV_INTERNAL
5857 	       || gsym->visibility() == elfcpp::STV_PROTECTED
5858 	       || gsym->visibility() == elfcpp::STV_HIDDEN))
5859 	  || possible_function_pointer_reloc(r_type));
5860 }
5861 
5862 // Report an unsupported relocation against a local symbol.
5863 
5864 template<int size, bool big_endian>
5865 void
5866 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5867      Sized_relobj_file<size, big_endian>* object,
5868      unsigned int r_type)
5869 {
5870   gold_error(_("%s: unsupported reloc %u against local symbol"),
5871 	     object->name().c_str(), r_type);
5872 }
5873 
5874 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5875 // dynamic linker does not support it, issue an error.
5876 
5877 template<int size, bool big_endian>
5878 void
5879 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
5880 						      unsigned int r_type)
5881 {
5882   gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5883 
5884   switch (r_type)
5885     {
5886     // These are the relocation types supported by glibc for AARCH64.
5887     case elfcpp::R_AARCH64_NONE:
5888     case elfcpp::R_AARCH64_COPY:
5889     case elfcpp::R_AARCH64_GLOB_DAT:
5890     case elfcpp::R_AARCH64_JUMP_SLOT:
5891     case elfcpp::R_AARCH64_RELATIVE:
5892     case elfcpp::R_AARCH64_TLS_DTPREL64:
5893     case elfcpp::R_AARCH64_TLS_DTPMOD64:
5894     case elfcpp::R_AARCH64_TLS_TPREL64:
5895     case elfcpp::R_AARCH64_TLSDESC:
5896     case elfcpp::R_AARCH64_IRELATIVE:
5897     case elfcpp::R_AARCH64_ABS32:
5898     case elfcpp::R_AARCH64_ABS64:
5899       return;
5900 
5901     default:
5902       break;
5903     }
5904 
5905   // This prevents us from issuing more than one error per reloc
5906   // section. But we can still wind up issuing more than one
5907   // error per object file.
5908   if (this->issued_non_pic_error_)
5909     return;
5910   gold_assert(parameters->options().output_is_position_independent());
5911   object->error(_("requires unsupported dynamic reloc; "
5912 		  "recompile with -fPIC"));
5913   this->issued_non_pic_error_ = true;
5914   return;
5915 }
5916 
5917 // Return whether we need to make a PLT entry for a relocation of the
5918 // given type against a STT_GNU_IFUNC symbol.
5919 
5920 template<int size, bool big_endian>
5921 bool
5922 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5923     Sized_relobj_file<size, big_endian>* object,
5924     unsigned int r_type)
5925 {
5926   const AArch64_reloc_property* arp =
5927       aarch64_reloc_property_table->get_reloc_property(r_type);
5928   gold_assert(arp != NULL);
5929 
5930   int flags = arp->reference_flags();
5931   if (flags & Symbol::TLS_REF)
5932     {
5933       gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5934 		 object->name().c_str(), arp->name().c_str());
5935       return false;
5936     }
5937   return flags != 0;
5938 }
5939 
5940 // Scan a relocation for a local symbol.
5941 
5942 template<int size, bool big_endian>
5943 inline void
5944 Target_aarch64<size, big_endian>::Scan::local(
5945     Symbol_table* symtab,
5946     Layout* layout,
5947     Target_aarch64<size, big_endian>* target,
5948     Sized_relobj_file<size, big_endian>* object,
5949     unsigned int data_shndx,
5950     Output_section* output_section,
5951     const elfcpp::Rela<size, big_endian>& rela,
5952     unsigned int r_type,
5953     const elfcpp::Sym<size, big_endian>& lsym,
5954     bool is_discarded)
5955 {
5956   if (is_discarded)
5957     return;
5958 
5959   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
5960       Reloc_section;
5961   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5962 
5963   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5964   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5965   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
5966     target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5967 
5968   switch (r_type)
5969     {
5970     case elfcpp::R_AARCH64_NONE:
5971       break;
5972 
5973     case elfcpp::R_AARCH64_ABS32:
5974     case elfcpp::R_AARCH64_ABS16:
5975       if (parameters->options().output_is_position_independent())
5976 	{
5977 	  gold_error(_("%s: unsupported reloc %u in pos independent link."),
5978 		     object->name().c_str(), r_type);
5979 	}
5980       break;
5981 
5982     case elfcpp::R_AARCH64_ABS64:
5983       // If building a shared library or pie, we need to mark this as a dynmic
5984       // reloction, so that the dynamic loader can relocate it.
5985       if (parameters->options().output_is_position_independent())
5986 	{
5987 	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5988 	  rela_dyn->add_local_relative(object, r_sym,
5989 				       elfcpp::R_AARCH64_RELATIVE,
5990 				       output_section,
5991 				       data_shndx,
5992 				       rela.get_r_offset(),
5993 				       rela.get_r_addend(),
5994 				       is_ifunc);
5995 	}
5996       break;
5997 
5998     case elfcpp::R_AARCH64_PREL64:
5999     case elfcpp::R_AARCH64_PREL32:
6000     case elfcpp::R_AARCH64_PREL16:
6001       break;
6002 
6003     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6004     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6005     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6006       // The above relocations are used to access GOT entries.
6007       {
6008 	Output_data_got_aarch64<size, big_endian>* got =
6009 	    target->got_section(symtab, layout);
6010 	bool is_new = false;
6011 	// This symbol requires a GOT entry.
6012 	if (is_ifunc)
6013 	  is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6014 	else
6015 	  is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6016 	if (is_new && parameters->options().output_is_position_independent())
6017 	  target->rela_dyn_section(layout)->
6018 	    add_local_relative(object,
6019 			       r_sym,
6020 			       elfcpp::R_AARCH64_RELATIVE,
6021 			       got,
6022 			       object->local_got_offset(r_sym,
6023 							GOT_TYPE_STANDARD),
6024 			       0,
6025 			       false);
6026       }
6027       break;
6028 
6029     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6030     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6031     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6032     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6033     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6034     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6035     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6036     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6037     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6038     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6039        break;
6040 
6041     // Control flow, pc-relative. We don't need to do anything for a relative
6042     // addressing relocation against a local symbol if it does not reference
6043     // the GOT.
6044     case elfcpp::R_AARCH64_TSTBR14:
6045     case elfcpp::R_AARCH64_CONDBR19:
6046     case elfcpp::R_AARCH64_JUMP26:
6047     case elfcpp::R_AARCH64_CALL26:
6048       break;
6049 
6050     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6051     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6052       {
6053 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6054 	  optimize_tls_reloc(!parameters->options().shared(), r_type);
6055 	if (tlsopt == tls::TLSOPT_TO_LE)
6056 	  break;
6057 
6058 	layout->set_has_static_tls();
6059 	// Create a GOT entry for the tp-relative offset.
6060 	if (!parameters->doing_static_link())
6061 	  {
6062 	    Output_data_got_aarch64<size, big_endian>* got =
6063 		target->got_section(symtab, layout);
6064 	    got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6065 				    target->rela_dyn_section(layout),
6066 				    elfcpp::R_AARCH64_TLS_TPREL64);
6067 	  }
6068 	else if (!object->local_has_got_offset(r_sym,
6069 					       GOT_TYPE_TLS_OFFSET))
6070 	  {
6071 	    Output_data_got_aarch64<size, big_endian>* got =
6072 		target->got_section(symtab, layout);
6073 	    got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6074 	    unsigned int got_offset =
6075 		object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6076 	    const elfcpp::Elf_Xword addend = rela.get_r_addend();
6077 	    gold_assert(addend == 0);
6078 	    got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6079 				  object, r_sym);
6080 	  }
6081       }
6082       break;
6083 
6084     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6085     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6086       {
6087 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6088 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6089 	if (tlsopt == tls::TLSOPT_TO_LE)
6090 	  {
6091 	    layout->set_has_static_tls();
6092 	    break;
6093 	  }
6094 	gold_assert(tlsopt == tls::TLSOPT_NONE);
6095 
6096 	Output_data_got_aarch64<size, big_endian>* got =
6097 	    target->got_section(symtab, layout);
6098 	got->add_local_pair_with_rel(object,r_sym, data_shndx,
6099 				     GOT_TYPE_TLS_PAIR,
6100 				     target->rela_dyn_section(layout),
6101 				     elfcpp::R_AARCH64_TLS_DTPMOD64);
6102       }
6103       break;
6104 
6105     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6106     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6107     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6108     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6109     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6110     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6111     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6112     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6113       {
6114 	layout->set_has_static_tls();
6115 	bool output_is_shared = parameters->options().shared();
6116 	if (output_is_shared)
6117 	  gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6118 		     object->name().c_str(), r_type);
6119       }
6120       break;
6121 
6122     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6123     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6124       {
6125 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6126 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6127 	if (tlsopt == tls::TLSOPT_NONE)
6128 	  {
6129 	    // Create a GOT entry for the module index.
6130 	    target->got_mod_index_entry(symtab, layout, object);
6131 	  }
6132 	else if (tlsopt != tls::TLSOPT_TO_LE)
6133 	  unsupported_reloc_local(object, r_type);
6134       }
6135       break;
6136 
6137     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6138     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6139     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6140     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6141       break;
6142 
6143     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6144     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6145     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6146       {
6147 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6148 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6149 	target->define_tls_base_symbol(symtab, layout);
6150 	if (tlsopt == tls::TLSOPT_NONE)
6151 	  {
6152 	    // Create reserved PLT and GOT entries for the resolver.
6153 	    target->reserve_tlsdesc_entries(symtab, layout);
6154 
6155 	    // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6156 	    // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6157 	    // entry needs to be in an area in .got.plt, not .got. Call
6158 	    // got_section to make sure the section has been created.
6159 	    target->got_section(symtab, layout);
6160 	    Output_data_got<size, big_endian>* got =
6161 		target->got_tlsdesc_section();
6162 	    unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6163 	    if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6164 	      {
6165 		unsigned int got_offset = got->add_constant(0);
6166 		got->add_constant(0);
6167 		object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6168 					     got_offset);
6169 		Reloc_section* rt = target->rela_tlsdesc_section(layout);
6170 		// We store the arguments we need in a vector, and use
6171 		// the index into the vector as the parameter to pass
6172 		// to the target specific routines.
6173 		uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6174 		void* arg = reinterpret_cast<void*>(intarg);
6175 		rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6176 					got, got_offset, 0);
6177 	      }
6178 	  }
6179 	else if (tlsopt != tls::TLSOPT_TO_LE)
6180 	  unsupported_reloc_local(object, r_type);
6181       }
6182       break;
6183 
6184     case elfcpp::R_AARCH64_TLSDESC_CALL:
6185       break;
6186 
6187     default:
6188       unsupported_reloc_local(object, r_type);
6189     }
6190 }
6191 
6192 
6193 // Report an unsupported relocation against a global symbol.
6194 
6195 template<int size, bool big_endian>
6196 void
6197 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6198     Sized_relobj_file<size, big_endian>* object,
6199     unsigned int r_type,
6200     Symbol* gsym)
6201 {
6202   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6203 	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
6204 }
6205 
6206 template<int size, bool big_endian>
6207 inline void
6208 Target_aarch64<size, big_endian>::Scan::global(
6209     Symbol_table* symtab,
6210     Layout* layout,
6211     Target_aarch64<size, big_endian>* target,
6212     Sized_relobj_file<size, big_endian> * object,
6213     unsigned int data_shndx,
6214     Output_section* output_section,
6215     const elfcpp::Rela<size, big_endian>& rela,
6216     unsigned int r_type,
6217     Symbol* gsym)
6218 {
6219   // A STT_GNU_IFUNC symbol may require a PLT entry.
6220   if (gsym->type() == elfcpp::STT_GNU_IFUNC
6221       && this->reloc_needs_plt_for_ifunc(object, r_type))
6222     target->make_plt_entry(symtab, layout, gsym);
6223 
6224   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6225     Reloc_section;
6226   const AArch64_reloc_property* arp =
6227       aarch64_reloc_property_table->get_reloc_property(r_type);
6228   gold_assert(arp != NULL);
6229 
6230   switch (r_type)
6231     {
6232     case elfcpp::R_AARCH64_NONE:
6233       break;
6234 
6235     case elfcpp::R_AARCH64_ABS16:
6236     case elfcpp::R_AARCH64_ABS32:
6237     case elfcpp::R_AARCH64_ABS64:
6238       {
6239 	// Make a PLT entry if necessary.
6240 	if (gsym->needs_plt_entry())
6241 	  {
6242 	    target->make_plt_entry(symtab, layout, gsym);
6243 	    // Since this is not a PC-relative relocation, we may be
6244 	    // taking the address of a function. In that case we need to
6245 	    // set the entry in the dynamic symbol table to the address of
6246 	    // the PLT entry.
6247 	    if (gsym->is_from_dynobj() && !parameters->options().shared())
6248 	      gsym->set_needs_dynsym_value();
6249 	  }
6250 	// Make a dynamic relocation if necessary.
6251 	if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6252 	  {
6253 	    if (!parameters->options().output_is_position_independent()
6254 		&& gsym->may_need_copy_reloc())
6255 	      {
6256 		target->copy_reloc(symtab, layout, object,
6257 				   data_shndx, output_section, gsym, rela);
6258 	      }
6259 	    else if (r_type == elfcpp::R_AARCH64_ABS64
6260 		     && gsym->type() == elfcpp::STT_GNU_IFUNC
6261 		     && gsym->can_use_relative_reloc(false)
6262 		     && !gsym->is_from_dynobj()
6263 		     && !gsym->is_undefined()
6264 		     && !gsym->is_preemptible())
6265 	      {
6266 		// Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6267 		// symbol. This makes a function address in a PIE executable
6268 		// match the address in a shared library that it links against.
6269 		Reloc_section* rela_dyn =
6270 		    target->rela_irelative_section(layout);
6271 		unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6272 		rela_dyn->add_symbolless_global_addend(gsym, r_type,
6273 						       output_section, object,
6274 						       data_shndx,
6275 						       rela.get_r_offset(),
6276 						       rela.get_r_addend());
6277 	      }
6278 	    else if (r_type == elfcpp::R_AARCH64_ABS64
6279 		     && gsym->can_use_relative_reloc(false))
6280 	      {
6281 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6282 		rela_dyn->add_global_relative(gsym,
6283 					      elfcpp::R_AARCH64_RELATIVE,
6284 					      output_section,
6285 					      object,
6286 					      data_shndx,
6287 					      rela.get_r_offset(),
6288 					      rela.get_r_addend(),
6289 					      false);
6290 	      }
6291 	    else
6292 	      {
6293 		check_non_pic(object, r_type);
6294 		Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6295 		    rela_dyn = target->rela_dyn_section(layout);
6296 		rela_dyn->add_global(
6297 		  gsym, r_type, output_section, object,
6298 		  data_shndx, rela.get_r_offset(),rela.get_r_addend());
6299 	      }
6300 	  }
6301       }
6302       break;
6303 
6304     case elfcpp::R_AARCH64_PREL16:
6305     case elfcpp::R_AARCH64_PREL32:
6306     case elfcpp::R_AARCH64_PREL64:
6307       // This is used to fill the GOT absolute address.
6308       if (gsym->needs_plt_entry())
6309 	{
6310 	  target->make_plt_entry(symtab, layout, gsym);
6311 	}
6312       break;
6313 
6314     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6315     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6316     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6317     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6318     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6319     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6320     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6321     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6322     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6323     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6324       {
6325 	if (gsym->needs_plt_entry())
6326 	  target->make_plt_entry(symtab, layout, gsym);
6327 	// Make a dynamic relocation if necessary.
6328 	if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6329 	  {
6330 	    if (parameters->options().output_is_executable()
6331 		&& gsym->may_need_copy_reloc())
6332 	      {
6333 		target->copy_reloc(symtab, layout, object,
6334 				   data_shndx, output_section, gsym, rela);
6335 	      }
6336 	  }
6337 	break;
6338       }
6339 
6340     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6341     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6342     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6343       {
6344 	// The above relocations are used to access GOT entries.
6345 	// Note a GOT entry is an *address* to a symbol.
6346 	// The symbol requires a GOT entry
6347 	Output_data_got_aarch64<size, big_endian>* got =
6348 	  target->got_section(symtab, layout);
6349 	if (gsym->final_value_is_known())
6350 	  {
6351 	    // For a STT_GNU_IFUNC symbol we want the PLT address.
6352 	    if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6353 	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6354 	    else
6355 	      got->add_global(gsym, GOT_TYPE_STANDARD);
6356 	  }
6357 	else
6358 	  {
6359 	    // If this symbol is not fully resolved, we need to add a dynamic
6360 	    // relocation for it.
6361 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6362 
6363 	    // Use a GLOB_DAT rather than a RELATIVE reloc if:
6364 	    //
6365 	    // 1) The symbol may be defined in some other module.
6366 	    // 2) We are building a shared library and this is a protected
6367 	    // symbol; using GLOB_DAT means that the dynamic linker can use
6368 	    // the address of the PLT in the main executable when appropriate
6369 	    // so that function address comparisons work.
6370 	    // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6371 	    // again so that function address comparisons work.
6372 	    if (gsym->is_from_dynobj()
6373 		|| gsym->is_undefined()
6374 		|| gsym->is_preemptible()
6375 		|| (gsym->visibility() == elfcpp::STV_PROTECTED
6376 		    && parameters->options().shared())
6377 		|| (gsym->type() == elfcpp::STT_GNU_IFUNC
6378 		    && parameters->options().output_is_position_independent()))
6379 	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6380 				       rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6381 	    else
6382 	      {
6383 		// For a STT_GNU_IFUNC symbol we want to write the PLT
6384 		// offset into the GOT, so that function pointer
6385 		// comparisons work correctly.
6386 		bool is_new;
6387 		if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6388 		  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6389 		else
6390 		  {
6391 		    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6392 		    // Tell the dynamic linker to use the PLT address
6393 		    // when resolving relocations.
6394 		    if (gsym->is_from_dynobj()
6395 			&& !parameters->options().shared())
6396 		      gsym->set_needs_dynsym_value();
6397 		  }
6398 		if (is_new)
6399 		  {
6400 		    rela_dyn->add_global_relative(
6401 			gsym, elfcpp::R_AARCH64_RELATIVE,
6402 			got,
6403 			gsym->got_offset(GOT_TYPE_STANDARD),
6404 			0,
6405 			false);
6406 		  }
6407 	      }
6408 	  }
6409 	break;
6410       }
6411 
6412     case elfcpp::R_AARCH64_TSTBR14:
6413     case elfcpp::R_AARCH64_CONDBR19:
6414     case elfcpp::R_AARCH64_JUMP26:
6415     case elfcpp::R_AARCH64_CALL26:
6416       {
6417 	if (gsym->final_value_is_known())
6418 	  break;
6419 
6420 	if (gsym->is_defined() &&
6421 	    !gsym->is_from_dynobj() &&
6422 	    !gsym->is_preemptible())
6423 	  break;
6424 
6425 	// Make plt entry for function call.
6426 	target->make_plt_entry(symtab, layout, gsym);
6427 	break;
6428       }
6429 
6430     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6431     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // General dynamic
6432       {
6433 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6434 	    optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6435 	if (tlsopt == tls::TLSOPT_TO_LE)
6436 	  {
6437 	    layout->set_has_static_tls();
6438 	    break;
6439 	  }
6440 	gold_assert(tlsopt == tls::TLSOPT_NONE);
6441 
6442 	// General dynamic.
6443 	Output_data_got_aarch64<size, big_endian>* got =
6444 	    target->got_section(symtab, layout);
6445 	// Create 2 consecutive entries for module index and offset.
6446 	got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6447 				      target->rela_dyn_section(layout),
6448 				      elfcpp::R_AARCH64_TLS_DTPMOD64,
6449 				      elfcpp::R_AARCH64_TLS_DTPREL64);
6450       }
6451       break;
6452 
6453     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6454     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local dynamic
6455       {
6456 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6457 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6458 	if (tlsopt == tls::TLSOPT_NONE)
6459 	  {
6460 	    // Create a GOT entry for the module index.
6461 	    target->got_mod_index_entry(symtab, layout, object);
6462 	  }
6463 	else if (tlsopt != tls::TLSOPT_TO_LE)
6464 	  unsupported_reloc_local(object, r_type);
6465       }
6466       break;
6467 
6468     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6469     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6470     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6471     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local dynamic
6472       break;
6473 
6474     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6475     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial executable
6476       {
6477 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6478 	  optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6479 	if (tlsopt == tls::TLSOPT_TO_LE)
6480 	  break;
6481 
6482 	layout->set_has_static_tls();
6483 	// Create a GOT entry for the tp-relative offset.
6484 	Output_data_got_aarch64<size, big_endian>* got
6485 	  = target->got_section(symtab, layout);
6486 	if (!parameters->doing_static_link())
6487 	  {
6488 	    got->add_global_with_rel(
6489 	      gsym, GOT_TYPE_TLS_OFFSET,
6490 	      target->rela_dyn_section(layout),
6491 	      elfcpp::R_AARCH64_TLS_TPREL64);
6492 	  }
6493 	if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6494 	  {
6495 	    got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6496 	    unsigned int got_offset =
6497 	      gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6498 	    const elfcpp::Elf_Xword addend = rela.get_r_addend();
6499 	    gold_assert(addend == 0);
6500 	    got->add_static_reloc(got_offset,
6501 				  elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6502 	  }
6503       }
6504       break;
6505 
6506     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6507     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6508     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6509     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6510     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6511     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6512     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6513     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:  // Local executable
6514       layout->set_has_static_tls();
6515       if (parameters->options().shared())
6516 	gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6517 		   object->name().c_str(), r_type);
6518       break;
6519 
6520     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6521     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6522     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:  // TLS descriptor
6523       {
6524 	target->define_tls_base_symbol(symtab, layout);
6525 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6526 	    optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6527 	if (tlsopt == tls::TLSOPT_NONE)
6528 	  {
6529 	    // Create reserved PLT and GOT entries for the resolver.
6530 	    target->reserve_tlsdesc_entries(symtab, layout);
6531 
6532 	    // Create a double GOT entry with an R_AARCH64_TLSDESC
6533 	    // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6534 	    // entry needs to be in an area in .got.plt, not .got. Call
6535 	    // got_section to make sure the section has been created.
6536 	    target->got_section(symtab, layout);
6537 	    Output_data_got<size, big_endian>* got =
6538 		target->got_tlsdesc_section();
6539 	    Reloc_section* rt = target->rela_tlsdesc_section(layout);
6540 	    got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6541 					  elfcpp::R_AARCH64_TLSDESC, 0);
6542 	  }
6543 	else if (tlsopt == tls::TLSOPT_TO_IE)
6544 	  {
6545 	    // Create a GOT entry for the tp-relative offset.
6546 	    Output_data_got<size, big_endian>* got
6547 		= target->got_section(symtab, layout);
6548 	    got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6549 				     target->rela_dyn_section(layout),
6550 				     elfcpp::R_AARCH64_TLS_TPREL64);
6551 	  }
6552 	else if (tlsopt != tls::TLSOPT_TO_LE)
6553 	  unsupported_reloc_global(object, r_type, gsym);
6554       }
6555       break;
6556 
6557     case elfcpp::R_AARCH64_TLSDESC_CALL:
6558       break;
6559 
6560     default:
6561       gold_error(_("%s: unsupported reloc type in global scan"),
6562 		 aarch64_reloc_property_table->
6563 		 reloc_name_in_error_message(r_type).c_str());
6564     }
6565   return;
6566 }  // End of Scan::global
6567 
6568 
6569 // Create the PLT section.
6570 template<int size, bool big_endian>
6571 void
6572 Target_aarch64<size, big_endian>::make_plt_section(
6573   Symbol_table* symtab, Layout* layout)
6574 {
6575   if (this->plt_ == NULL)
6576     {
6577       // Create the GOT section first.
6578       this->got_section(symtab, layout);
6579 
6580       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6581 				       this->got_irelative_);
6582 
6583       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6584 				      (elfcpp::SHF_ALLOC
6585 				       | elfcpp::SHF_EXECINSTR),
6586 				      this->plt_, ORDER_PLT, false);
6587 
6588       // Make the sh_info field of .rela.plt point to .plt.
6589       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6590       rela_plt_os->set_info_section(this->plt_->output_section());
6591     }
6592 }
6593 
6594 // Return the section for TLSDESC relocations.
6595 
6596 template<int size, bool big_endian>
6597 typename Target_aarch64<size, big_endian>::Reloc_section*
6598 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6599 {
6600   return this->plt_section()->rela_tlsdesc(layout);
6601 }
6602 
6603 // Create a PLT entry for a global symbol.
6604 
6605 template<int size, bool big_endian>
6606 void
6607 Target_aarch64<size, big_endian>::make_plt_entry(
6608     Symbol_table* symtab,
6609     Layout* layout,
6610     Symbol* gsym)
6611 {
6612   if (gsym->has_plt_offset())
6613     return;
6614 
6615   if (this->plt_ == NULL)
6616     this->make_plt_section(symtab, layout);
6617 
6618   this->plt_->add_entry(symtab, layout, gsym);
6619 }
6620 
6621 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6622 
6623 template<int size, bool big_endian>
6624 void
6625 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6626     Symbol_table* symtab, Layout* layout,
6627     Sized_relobj_file<size, big_endian>* relobj,
6628     unsigned int local_sym_index)
6629 {
6630   if (relobj->local_has_plt_offset(local_sym_index))
6631     return;
6632   if (this->plt_ == NULL)
6633     this->make_plt_section(symtab, layout);
6634   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6635 							      relobj,
6636 							      local_sym_index);
6637   relobj->set_local_plt_offset(local_sym_index, plt_offset);
6638 }
6639 
6640 template<int size, bool big_endian>
6641 void
6642 Target_aarch64<size, big_endian>::gc_process_relocs(
6643     Symbol_table* symtab,
6644     Layout* layout,
6645     Sized_relobj_file<size, big_endian>* object,
6646     unsigned int data_shndx,
6647     unsigned int sh_type,
6648     const unsigned char* prelocs,
6649     size_t reloc_count,
6650     Output_section* output_section,
6651     bool needs_special_offset_handling,
6652     size_t local_symbol_count,
6653     const unsigned char* plocal_symbols)
6654 {
6655   typedef Target_aarch64<size, big_endian> Aarch64;
6656   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6657       Classify_reloc;
6658 
6659   if (sh_type == elfcpp::SHT_REL)
6660     {
6661       return;
6662     }
6663 
6664   gold::gc_process_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6665     symtab,
6666     layout,
6667     this,
6668     object,
6669     data_shndx,
6670     prelocs,
6671     reloc_count,
6672     output_section,
6673     needs_special_offset_handling,
6674     local_symbol_count,
6675     plocal_symbols);
6676 }
6677 
6678 // Scan relocations for a section.
6679 
6680 template<int size, bool big_endian>
6681 void
6682 Target_aarch64<size, big_endian>::scan_relocs(
6683     Symbol_table* symtab,
6684     Layout* layout,
6685     Sized_relobj_file<size, big_endian>* object,
6686     unsigned int data_shndx,
6687     unsigned int sh_type,
6688     const unsigned char* prelocs,
6689     size_t reloc_count,
6690     Output_section* output_section,
6691     bool needs_special_offset_handling,
6692     size_t local_symbol_count,
6693     const unsigned char* plocal_symbols)
6694 {
6695   typedef Target_aarch64<size, big_endian> Aarch64;
6696   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6697       Classify_reloc;
6698 
6699   if (sh_type == elfcpp::SHT_REL)
6700     {
6701       gold_error(_("%s: unsupported REL reloc section"),
6702 		 object->name().c_str());
6703       return;
6704     }
6705 
6706   gold::scan_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6707     symtab,
6708     layout,
6709     this,
6710     object,
6711     data_shndx,
6712     prelocs,
6713     reloc_count,
6714     output_section,
6715     needs_special_offset_handling,
6716     local_symbol_count,
6717     plocal_symbols);
6718 }
6719 
6720 // Return the value to use for a dynamic which requires special
6721 // treatment.  This is how we support equality comparisons of function
6722 // pointers across shared library boundaries, as described in the
6723 // processor specific ABI supplement.
6724 
6725 template<int size, bool big_endian>
6726 uint64_t
6727 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6728 {
6729   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6730   return this->plt_address_for_global(gsym);
6731 }
6732 
6733 
6734 // Finalize the sections.
6735 
6736 template<int size, bool big_endian>
6737 void
6738 Target_aarch64<size, big_endian>::do_finalize_sections(
6739     Layout* layout,
6740     const Input_objects*,
6741     Symbol_table* symtab)
6742 {
6743   const Reloc_section* rel_plt = (this->plt_ == NULL
6744 				  ? NULL
6745 				  : this->plt_->rela_plt());
6746   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6747 				  this->rela_dyn_, true, false);
6748 
6749   // Emit any relocs we saved in an attempt to avoid generating COPY
6750   // relocs.
6751   if (this->copy_relocs_.any_saved_relocs())
6752     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6753 
6754   // Fill in some more dynamic tags.
6755   Output_data_dynamic* const odyn = layout->dynamic_data();
6756   if (odyn != NULL)
6757     {
6758       if (this->plt_ != NULL
6759 	  && this->plt_->output_section() != NULL
6760 	  && this->plt_ ->has_tlsdesc_entry())
6761 	{
6762 	  unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6763 	  unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6764 	  this->got_->finalize_data_size();
6765 	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6766 					this->plt_, plt_offset);
6767 	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6768 					this->got_, got_offset);
6769 	}
6770     }
6771 
6772   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6773   // the .got.plt section.
6774   Symbol* sym = this->global_offset_table_;
6775   if (sym != NULL)
6776     {
6777       uint64_t data_size = this->got_plt_->current_data_size();
6778       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6779 
6780       // If the .got section is more than 0x8000 bytes, we add
6781       // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6782       // bit relocations have a greater chance of working.
6783       if (data_size >= 0x8000)
6784 	symtab->get_sized_symbol<size>(sym)->set_value(
6785 	  symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6786     }
6787 
6788   if (parameters->doing_static_link()
6789       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6790     {
6791       // If linking statically, make sure that the __rela_iplt symbols
6792       // were defined if necessary, even if we didn't create a PLT.
6793       static const Define_symbol_in_segment syms[] =
6794 	{
6795 	  {
6796 	    "__rela_iplt_start",	// name
6797 	    elfcpp::PT_LOAD,		// segment_type
6798 	    elfcpp::PF_W,		// segment_flags_set
6799 	    elfcpp::PF(0),		// segment_flags_clear
6800 	    0,				// value
6801 	    0,				// size
6802 	    elfcpp::STT_NOTYPE,		// type
6803 	    elfcpp::STB_GLOBAL,		// binding
6804 	    elfcpp::STV_HIDDEN,		// visibility
6805 	    0,				// nonvis
6806 	    Symbol::SEGMENT_START,	// offset_from_base
6807 	    true			// only_if_ref
6808 	  },
6809 	  {
6810 	    "__rela_iplt_end",		// name
6811 	    elfcpp::PT_LOAD,		// segment_type
6812 	    elfcpp::PF_W,		// segment_flags_set
6813 	    elfcpp::PF(0),		// segment_flags_clear
6814 	    0,				// value
6815 	    0,				// size
6816 	    elfcpp::STT_NOTYPE,		// type
6817 	    elfcpp::STB_GLOBAL,		// binding
6818 	    elfcpp::STV_HIDDEN,		// visibility
6819 	    0,				// nonvis
6820 	    Symbol::SEGMENT_START,	// offset_from_base
6821 	    true			// only_if_ref
6822 	  }
6823 	};
6824 
6825       symtab->define_symbols(layout, 2, syms,
6826 			     layout->script_options()->saw_sections_clause());
6827     }
6828 
6829   return;
6830 }
6831 
6832 // Perform a relocation.
6833 
6834 template<int size, bool big_endian>
6835 inline bool
6836 Target_aarch64<size, big_endian>::Relocate::relocate(
6837     const Relocate_info<size, big_endian>* relinfo,
6838     unsigned int,
6839     Target_aarch64<size, big_endian>* target,
6840     Output_section* ,
6841     size_t relnum,
6842     const unsigned char* preloc,
6843     const Sized_symbol<size>* gsym,
6844     const Symbol_value<size>* psymval,
6845     unsigned char* view,
6846     typename elfcpp::Elf_types<size>::Elf_Addr address,
6847     section_size_type /* view_size */)
6848 {
6849   if (view == NULL)
6850     return true;
6851 
6852   typedef AArch64_relocate_functions<size, big_endian> Reloc;
6853 
6854   const elfcpp::Rela<size, big_endian> rela(preloc);
6855   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
6856   const AArch64_reloc_property* reloc_property =
6857       aarch64_reloc_property_table->get_reloc_property(r_type);
6858 
6859   if (reloc_property == NULL)
6860     {
6861       std::string reloc_name =
6862 	  aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6863       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6864 			     _("cannot relocate %s in object file"),
6865 			     reloc_name.c_str());
6866       return true;
6867     }
6868 
6869   const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6870 
6871   // Pick the value to use for symbols defined in the PLT.
6872   Symbol_value<size> symval;
6873   if (gsym != NULL
6874       && gsym->use_plt_offset(reloc_property->reference_flags()))
6875     {
6876       symval.set_output_value(target->plt_address_for_global(gsym));
6877       psymval = &symval;
6878     }
6879   else if (gsym == NULL && psymval->is_ifunc_symbol())
6880     {
6881       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6882       if (object->local_has_plt_offset(r_sym))
6883 	{
6884 	  symval.set_output_value(target->plt_address_for_local(object, r_sym));
6885 	  psymval = &symval;
6886 	}
6887     }
6888 
6889   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6890 
6891   // Get the GOT offset if needed.
6892   // For aarch64, the GOT pointer points to the start of the GOT section.
6893   bool have_got_offset = false;
6894   int got_offset = 0;
6895   int got_base = (target->got_ != NULL
6896 		  ? (target->got_->current_data_size() >= 0x8000
6897 		     ? 0x8000 : 0)
6898 		  : 0);
6899   switch (r_type)
6900     {
6901     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6902     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6903     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6904     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6905     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6906     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6907     case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6908     case elfcpp::R_AARCH64_GOTREL64:
6909     case elfcpp::R_AARCH64_GOTREL32:
6910     case elfcpp::R_AARCH64_GOT_LD_PREL19:
6911     case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6912     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6913     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6914     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6915       if (gsym != NULL)
6916 	{
6917 	  gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6918 	  got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
6919 	}
6920       else
6921 	{
6922 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6923 	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6924 	  got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
6925 			- got_base);
6926 	}
6927       have_got_offset = true;
6928       break;
6929 
6930     default:
6931       break;
6932     }
6933 
6934   typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
6935   typename elfcpp::Elf_types<size>::Elf_Addr value;
6936   switch (r_type)
6937     {
6938     case elfcpp::R_AARCH64_NONE:
6939       break;
6940 
6941     case elfcpp::R_AARCH64_ABS64:
6942       if (!parameters->options().apply_dynamic_relocs()
6943           && parameters->options().output_is_position_independent()
6944           && gsym != NULL
6945           && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
6946           && !gsym->can_use_relative_reloc(false))
6947         // We have generated an absolute dynamic relocation, so do not
6948         // apply the relocation statically. (Works around bugs in older
6949         // Android dynamic linkers.)
6950         break;
6951       reloc_status = Reloc::template rela_ua<64>(
6952 	view, object, psymval, addend, reloc_property);
6953       break;
6954 
6955     case elfcpp::R_AARCH64_ABS32:
6956       if (!parameters->options().apply_dynamic_relocs()
6957           && parameters->options().output_is_position_independent()
6958           && gsym != NULL
6959           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
6960         // We have generated an absolute dynamic relocation, so do not
6961         // apply the relocation statically. (Works around bugs in older
6962         // Android dynamic linkers.)
6963         break;
6964       reloc_status = Reloc::template rela_ua<32>(
6965 	view, object, psymval, addend, reloc_property);
6966       break;
6967 
6968     case elfcpp::R_AARCH64_ABS16:
6969       if (!parameters->options().apply_dynamic_relocs()
6970           && parameters->options().output_is_position_independent()
6971           && gsym != NULL
6972           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
6973         // We have generated an absolute dynamic relocation, so do not
6974         // apply the relocation statically. (Works around bugs in older
6975         // Android dynamic linkers.)
6976         break;
6977       reloc_status = Reloc::template rela_ua<16>(
6978 	view, object, psymval, addend, reloc_property);
6979       break;
6980 
6981     case elfcpp::R_AARCH64_PREL64:
6982       reloc_status = Reloc::template pcrela_ua<64>(
6983 	view, object, psymval, addend, address, reloc_property);
6984       break;
6985 
6986     case elfcpp::R_AARCH64_PREL32:
6987       reloc_status = Reloc::template pcrela_ua<32>(
6988 	view, object, psymval, addend, address, reloc_property);
6989       break;
6990 
6991     case elfcpp::R_AARCH64_PREL16:
6992       reloc_status = Reloc::template pcrela_ua<16>(
6993 	view, object, psymval, addend, address, reloc_property);
6994       break;
6995 
6996     case elfcpp::R_AARCH64_LD_PREL_LO19:
6997       reloc_status = Reloc::template pcrela_general<32>(
6998 	  view, object, psymval, addend, address, reloc_property);
6999       break;
7000 
7001     case elfcpp::R_AARCH64_ADR_PREL_LO21:
7002       reloc_status = Reloc::adr(view, object, psymval, addend,
7003 				address, reloc_property);
7004       break;
7005 
7006     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
7007     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
7008       reloc_status = Reloc::adrp(view, object, psymval, addend, address,
7009 				 reloc_property);
7010       break;
7011 
7012     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
7013     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
7014     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
7015     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
7016     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
7017     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
7018       reloc_status = Reloc::template rela_general<32>(
7019 	view, object, psymval, addend, reloc_property);
7020       break;
7021 
7022     case elfcpp::R_AARCH64_CALL26:
7023       if (this->skip_call_tls_get_addr_)
7024 	{
7025 	  // Double check that the TLSGD insn has been optimized away.
7026 	  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7027 	  Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7028 	      reinterpret_cast<Insntype*>(view));
7029 	  gold_assert((insn & 0xff000000) == 0x91000000);
7030 
7031 	  reloc_status = Reloc::STATUS_OKAY;
7032 	  this->skip_call_tls_get_addr_ = false;
7033 	  // Return false to stop further processing this reloc.
7034 	  return false;
7035 	}
7036       // Fallthrough
7037     case elfcpp::R_AARCH64_JUMP26:
7038       if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7039 				  gsym, psymval, object,
7040 				  target->stub_group_size_))
7041 	break;
7042       // Fallthrough
7043     case elfcpp::R_AARCH64_TSTBR14:
7044     case elfcpp::R_AARCH64_CONDBR19:
7045       reloc_status = Reloc::template pcrela_general<32>(
7046 	view, object, psymval, addend, address, reloc_property);
7047       break;
7048 
7049     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7050       gold_assert(have_got_offset);
7051       value = target->got_->address() + got_base + got_offset;
7052       reloc_status = Reloc::adrp(view, value + addend, address);
7053       break;
7054 
7055     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7056       gold_assert(have_got_offset);
7057       value = target->got_->address() + got_base + got_offset;
7058       reloc_status = Reloc::template rela_general<32>(
7059 	view, value, addend, reloc_property);
7060       break;
7061 
7062     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7063       {
7064 	gold_assert(have_got_offset);
7065 	value = target->got_->address() + got_base + got_offset + addend -
7066 	  Reloc::Page(target->got_->address() + got_base);
7067 	if ((value & 7) != 0)
7068 	  reloc_status = Reloc::STATUS_OVERFLOW;
7069 	else
7070 	  reloc_status = Reloc::template reloc_common<32>(
7071 	    view, value, reloc_property);
7072 	break;
7073       }
7074 
7075     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7076     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7077     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7078     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7079     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7080     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7081     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7082     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7083     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7084     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7085     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7086     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7087     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7088     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7089     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7090     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7091     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7092     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7093     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7094     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7095     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7096     case elfcpp::R_AARCH64_TLSDESC_CALL:
7097       reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7098 				  gsym, psymval, view, address);
7099       break;
7100 
7101     // These are dynamic relocations, which are unexpected when linking.
7102     case elfcpp::R_AARCH64_COPY:
7103     case elfcpp::R_AARCH64_GLOB_DAT:
7104     case elfcpp::R_AARCH64_JUMP_SLOT:
7105     case elfcpp::R_AARCH64_RELATIVE:
7106     case elfcpp::R_AARCH64_IRELATIVE:
7107     case elfcpp::R_AARCH64_TLS_DTPREL64:
7108     case elfcpp::R_AARCH64_TLS_DTPMOD64:
7109     case elfcpp::R_AARCH64_TLS_TPREL64:
7110     case elfcpp::R_AARCH64_TLSDESC:
7111       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7112 			     _("unexpected reloc %u in object file"),
7113 			     r_type);
7114       break;
7115 
7116     default:
7117       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7118 			     _("unsupported reloc %s"),
7119 			     reloc_property->name().c_str());
7120       break;
7121     }
7122 
7123   // Report any errors.
7124   switch (reloc_status)
7125     {
7126     case Reloc::STATUS_OKAY:
7127       break;
7128     case Reloc::STATUS_OVERFLOW:
7129       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7130 			     _("relocation overflow in %s"),
7131 			     reloc_property->name().c_str());
7132       break;
7133     case Reloc::STATUS_BAD_RELOC:
7134       gold_error_at_location(
7135 	  relinfo,
7136 	  relnum,
7137 	  rela.get_r_offset(),
7138 	  _("unexpected opcode while processing relocation %s"),
7139 	  reloc_property->name().c_str());
7140       break;
7141     default:
7142       gold_unreachable();
7143     }
7144 
7145   return true;
7146 }
7147 
7148 
7149 template<int size, bool big_endian>
7150 inline
7151 typename AArch64_relocate_functions<size, big_endian>::Status
7152 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7153     const Relocate_info<size, big_endian>* relinfo,
7154     Target_aarch64<size, big_endian>* target,
7155     size_t relnum,
7156     const elfcpp::Rela<size, big_endian>& rela,
7157     unsigned int r_type, const Sized_symbol<size>* gsym,
7158     const Symbol_value<size>* psymval,
7159     unsigned char* view,
7160     typename elfcpp::Elf_types<size>::Elf_Addr address)
7161 {
7162   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7163   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7164 
7165   Output_segment* tls_segment = relinfo->layout->tls_segment();
7166   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7167   const AArch64_reloc_property* reloc_property =
7168       aarch64_reloc_property_table->get_reloc_property(r_type);
7169   gold_assert(reloc_property != NULL);
7170 
7171   const bool is_final = (gsym == NULL
7172 			 ? !parameters->options().shared()
7173 			 : gsym->final_value_is_known());
7174   tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7175       optimize_tls_reloc(is_final, r_type);
7176 
7177   Sized_relobj_file<size, big_endian>* object = relinfo->object;
7178   int tls_got_offset_type;
7179   switch (r_type)
7180     {
7181     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7182     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // Global-dynamic
7183       {
7184 	if (tlsopt == tls::TLSOPT_TO_LE)
7185 	  {
7186 	    if (tls_segment == NULL)
7187 	      {
7188 		gold_assert(parameters->errors()->error_count() > 0
7189 			    || issue_undefined_symbol_error(gsym));
7190 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7191 	      }
7192 	    return tls_gd_to_le(relinfo, target, rela, r_type, view,
7193 				psymval);
7194 	  }
7195 	else if (tlsopt == tls::TLSOPT_NONE)
7196 	  {
7197 	    tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7198 	    // Firstly get the address for the got entry.
7199 	    typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7200 	    if (gsym != NULL)
7201 	      {
7202 		gold_assert(gsym->has_got_offset(tls_got_offset_type));
7203 		got_entry_address = target->got_->address() +
7204 				    gsym->got_offset(tls_got_offset_type);
7205 	      }
7206 	    else
7207 	      {
7208 		unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7209 		gold_assert(
7210 		  object->local_has_got_offset(r_sym, tls_got_offset_type));
7211 		got_entry_address = target->got_->address() +
7212 		  object->local_got_offset(r_sym, tls_got_offset_type);
7213 	      }
7214 
7215 	    // Relocate the address into adrp/ld, adrp/add pair.
7216 	    switch (r_type)
7217 	      {
7218 	      case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7219 		return aarch64_reloc_funcs::adrp(
7220 		  view, got_entry_address + addend, address);
7221 
7222 		break;
7223 
7224 	      case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7225 		return aarch64_reloc_funcs::template rela_general<32>(
7226 		  view, got_entry_address, addend, reloc_property);
7227 		break;
7228 
7229 	      default:
7230 		gold_unreachable();
7231 	      }
7232 	  }
7233 	gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7234 			       _("unsupported gd_to_ie relaxation on %u"),
7235 			       r_type);
7236       }
7237       break;
7238 
7239     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7240     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local-dynamic
7241       {
7242 	if (tlsopt == tls::TLSOPT_TO_LE)
7243 	  {
7244 	    if (tls_segment == NULL)
7245 	      {
7246 		gold_assert(parameters->errors()->error_count() > 0
7247 			    || issue_undefined_symbol_error(gsym));
7248 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7249 	      }
7250 	    return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7251 				      psymval);
7252 	  }
7253 
7254 	gold_assert(tlsopt == tls::TLSOPT_NONE);
7255 	// Relocate the field with the offset of the GOT entry for
7256 	// the module index.
7257 	typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7258 	got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7259 			     target->got_->address());
7260 
7261 	switch (r_type)
7262 	  {
7263 	  case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7264 	    return aarch64_reloc_funcs::adrp(
7265 	      view, got_entry_address + addend, address);
7266 	    break;
7267 
7268 	  case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7269 	    return aarch64_reloc_funcs::template rela_general<32>(
7270 	      view, got_entry_address, addend, reloc_property);
7271 	    break;
7272 
7273 	  default:
7274 	    gold_unreachable();
7275 	  }
7276       }
7277       break;
7278 
7279     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7280     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7281     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7282     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local-dynamic
7283       {
7284 	AArch64_address value = psymval->value(object, 0);
7285 	if (tlsopt == tls::TLSOPT_TO_LE)
7286 	  {
7287 	    if (tls_segment == NULL)
7288 	      {
7289 		gold_assert(parameters->errors()->error_count() > 0
7290 			    || issue_undefined_symbol_error(gsym));
7291 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7292 	      }
7293 	  }
7294 	switch (r_type)
7295 	  {
7296 	  case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7297 	    return aarch64_reloc_funcs::movnz(view, value + addend,
7298 					      reloc_property);
7299 	    break;
7300 
7301 	  case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7302 	  case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7303 	  case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7304 	    return aarch64_reloc_funcs::template rela_general<32>(
7305 		view, value, addend, reloc_property);
7306 	    break;
7307 
7308 	  default:
7309 	    gold_unreachable();
7310 	  }
7311 	// We should never reach here.
7312       }
7313       break;
7314 
7315     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7316     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial-exec
7317       {
7318 	if (tlsopt == tls::TLSOPT_TO_LE)
7319 	  {
7320 	    if (tls_segment == NULL)
7321 	      {
7322 		gold_assert(parameters->errors()->error_count() > 0
7323 			    || issue_undefined_symbol_error(gsym));
7324 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7325 	      }
7326 	    return tls_ie_to_le(relinfo, target, rela, r_type, view,
7327 				psymval);
7328 	  }
7329 	tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7330 
7331 	// Firstly get the address for the got entry.
7332 	typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7333 	if (gsym != NULL)
7334 	  {
7335 	    gold_assert(gsym->has_got_offset(tls_got_offset_type));
7336 	    got_entry_address = target->got_->address() +
7337 				gsym->got_offset(tls_got_offset_type);
7338 	  }
7339 	else
7340 	  {
7341 	    unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7342 	    gold_assert(
7343 		object->local_has_got_offset(r_sym, tls_got_offset_type));
7344 	    got_entry_address = target->got_->address() +
7345 		object->local_got_offset(r_sym, tls_got_offset_type);
7346 	  }
7347 	// Relocate the address into adrp/ld, adrp/add pair.
7348 	switch (r_type)
7349 	  {
7350 	  case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7351 	    return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7352 					     address);
7353 	    break;
7354 	  case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7355 	    return aarch64_reloc_funcs::template rela_general<32>(
7356 	      view, got_entry_address, addend, reloc_property);
7357 	  default:
7358 	    gold_unreachable();
7359 	  }
7360       }
7361       // We shall never reach here.
7362       break;
7363 
7364     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7365     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7366     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7367     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7368     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7369     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7370     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7371     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7372       {
7373 	gold_assert(tls_segment != NULL);
7374 	AArch64_address value = psymval->value(object, 0);
7375 
7376 	if (!parameters->options().shared())
7377 	  {
7378 	    AArch64_address aligned_tcb_size =
7379 		align_address(target->tcb_size(),
7380 			      tls_segment->maximum_alignment());
7381 	    value += aligned_tcb_size;
7382 	    switch (r_type)
7383 	      {
7384 	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7385 	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7386 	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7387 		return aarch64_reloc_funcs::movnz(view, value + addend,
7388 						  reloc_property);
7389 	      default:
7390 		return aarch64_reloc_funcs::template
7391 		  rela_general<32>(view,
7392 				   value,
7393 				   addend,
7394 				   reloc_property);
7395 	      }
7396 	  }
7397 	else
7398 	  gold_error(_("%s: unsupported reloc %u "
7399 		       "in non-static TLSLE mode."),
7400 		     object->name().c_str(), r_type);
7401       }
7402       break;
7403 
7404     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7405     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7406     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7407     case elfcpp::R_AARCH64_TLSDESC_CALL:
7408       {
7409 	if (tlsopt == tls::TLSOPT_TO_LE)
7410 	  {
7411 	    if (tls_segment == NULL)
7412 	      {
7413 		gold_assert(parameters->errors()->error_count() > 0
7414 			    || issue_undefined_symbol_error(gsym));
7415 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7416 	      }
7417 	    return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7418 				     view, psymval);
7419 	  }
7420 	else
7421 	  {
7422 	    tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7423 				   ? GOT_TYPE_TLS_OFFSET
7424 				   : GOT_TYPE_TLS_DESC);
7425 	    unsigned int got_tlsdesc_offset = 0;
7426 	    if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7427 		&& tlsopt == tls::TLSOPT_NONE)
7428 	      {
7429 		// We created GOT entries in the .got.tlsdesc portion of the
7430 		// .got.plt section, but the offset stored in the symbol is the
7431 		// offset within .got.tlsdesc.
7432 		got_tlsdesc_offset = (target->got_->data_size()
7433 				      + target->got_plt_section()->data_size());
7434 	      }
7435 	    typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7436 	    if (gsym != NULL)
7437 	      {
7438 		gold_assert(gsym->has_got_offset(tls_got_offset_type));
7439 		got_entry_address = target->got_->address()
7440 				    + got_tlsdesc_offset
7441 				    + gsym->got_offset(tls_got_offset_type);
7442 	      }
7443 	    else
7444 	      {
7445 		unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7446 		gold_assert(
7447 		    object->local_has_got_offset(r_sym, tls_got_offset_type));
7448 		got_entry_address = target->got_->address() +
7449 		  got_tlsdesc_offset +
7450 		  object->local_got_offset(r_sym, tls_got_offset_type);
7451 	      }
7452 	    if (tlsopt == tls::TLSOPT_TO_IE)
7453 	      {
7454 		return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7455 					 view, psymval, got_entry_address,
7456 					 address);
7457 	      }
7458 
7459 	    // Now do tlsdesc relocation.
7460 	    switch (r_type)
7461 	      {
7462 	      case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7463 		return aarch64_reloc_funcs::adrp(view,
7464 						 got_entry_address + addend,
7465 						 address);
7466 		break;
7467 	      case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7468 	      case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7469 		return aarch64_reloc_funcs::template rela_general<32>(
7470 		  view, got_entry_address, addend, reloc_property);
7471 		break;
7472 	      case elfcpp::R_AARCH64_TLSDESC_CALL:
7473 		return aarch64_reloc_funcs::STATUS_OKAY;
7474 		break;
7475 	      default:
7476 		gold_unreachable();
7477 	      }
7478 	  }
7479 	}
7480       break;
7481 
7482     default:
7483       gold_error(_("%s: unsupported TLS reloc %u."),
7484 		 object->name().c_str(), r_type);
7485     }
7486   return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7487 }  // End of relocate_tls.
7488 
7489 
7490 template<int size, bool big_endian>
7491 inline
7492 typename AArch64_relocate_functions<size, big_endian>::Status
7493 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7494 	     const Relocate_info<size, big_endian>* relinfo,
7495 	     Target_aarch64<size, big_endian>* target,
7496 	     const elfcpp::Rela<size, big_endian>& rela,
7497 	     unsigned int r_type,
7498 	     unsigned char* view,
7499 	     const Symbol_value<size>* psymval)
7500 {
7501   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7502   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7503   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7504 
7505   Insntype* ip = reinterpret_cast<Insntype*>(view);
7506   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7507   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7508   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7509 
7510   if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7511     {
7512       // This is the 2nd relocs, optimization should already have been
7513       // done.
7514       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7515       return aarch64_reloc_funcs::STATUS_OKAY;
7516     }
7517 
7518   // The original sequence is -
7519   //   90000000        adrp    x0, 0 <main>
7520   //   91000000        add     x0, x0, #0x0
7521   //   94000000        bl      0 <__tls_get_addr>
7522   // optimized to sequence -
7523   //   d53bd040        mrs     x0, tpidr_el0
7524   //   91400000        add     x0, x0, #0x0, lsl #12
7525   //   91000000        add     x0, x0, #0x0
7526 
7527   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7528   // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7529   // have to change "bl tls_get_addr", which does not have a corresponding tls
7530   // relocation type. So before proceeding, we need to make sure compiler
7531   // does not change the sequence.
7532   if(!(insn1 == 0x90000000      // adrp x0,0
7533        && insn2 == 0x91000000   // add x0, x0, #0x0
7534        && insn3 == 0x94000000)) // bl 0
7535     {
7536       // Ideally we should give up gd_to_le relaxation and do gd access.
7537       // However the gd_to_le relaxation decision has been made early
7538       // in the scan stage, where we did not allocate any GOT entry for
7539       // this symbol. Therefore we have to exit and report error now.
7540       gold_error(_("unexpected reloc insn sequence while relaxing "
7541 		   "tls gd to le for reloc %u."), r_type);
7542       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7543     }
7544 
7545   // Write new insns.
7546   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7547   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7548   insn3 = 0x91000000;  // add x0, x0, #0x0
7549   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7550   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7551   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7552 
7553   // Calculate tprel value.
7554   Output_segment* tls_segment = relinfo->layout->tls_segment();
7555   gold_assert(tls_segment != NULL);
7556   AArch64_address value = psymval->value(relinfo->object, 0);
7557   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7558   AArch64_address aligned_tcb_size =
7559       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7560   AArch64_address x = value + aligned_tcb_size;
7561 
7562   // After new insns are written, apply TLSLE relocs.
7563   const AArch64_reloc_property* rp1 =
7564       aarch64_reloc_property_table->get_reloc_property(
7565 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7566   const AArch64_reloc_property* rp2 =
7567       aarch64_reloc_property_table->get_reloc_property(
7568 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7569   gold_assert(rp1 != NULL && rp2 != NULL);
7570 
7571   typename aarch64_reloc_funcs::Status s1 =
7572       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7573 						     x,
7574 						     addend,
7575 						     rp1);
7576   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7577     return s1;
7578 
7579   typename aarch64_reloc_funcs::Status s2 =
7580       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7581 						     x,
7582 						     addend,
7583 						     rp2);
7584 
7585   this->skip_call_tls_get_addr_ = true;
7586   return s2;
7587 }  // End of tls_gd_to_le
7588 
7589 
7590 template<int size, bool big_endian>
7591 inline
7592 typename AArch64_relocate_functions<size, big_endian>::Status
7593 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7594 	     const Relocate_info<size, big_endian>* relinfo,
7595 	     Target_aarch64<size, big_endian>* target,
7596 	     const elfcpp::Rela<size, big_endian>& rela,
7597 	     unsigned int r_type,
7598 	     unsigned char* view,
7599 	     const Symbol_value<size>* psymval)
7600 {
7601   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7602   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7603   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7604 
7605   Insntype* ip = reinterpret_cast<Insntype*>(view);
7606   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7607   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7608   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7609 
7610   if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7611     {
7612       // This is the 2nd relocs, optimization should already have been
7613       // done.
7614       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7615       return aarch64_reloc_funcs::STATUS_OKAY;
7616     }
7617 
7618   // The original sequence is -
7619   //   90000000        adrp    x0, 0 <main>
7620   //   91000000        add     x0, x0, #0x0
7621   //   94000000        bl      0 <__tls_get_addr>
7622   // optimized to sequence -
7623   //   d53bd040        mrs     x0, tpidr_el0
7624   //   91400000        add     x0, x0, #0x0, lsl #12
7625   //   91000000        add     x0, x0, #0x0
7626 
7627   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7628   // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7629   // have to change "bl tls_get_addr", which does not have a corresponding tls
7630   // relocation type. So before proceeding, we need to make sure compiler
7631   // does not change the sequence.
7632   if(!(insn1 == 0x90000000      // adrp x0,0
7633        && insn2 == 0x91000000   // add x0, x0, #0x0
7634        && insn3 == 0x94000000)) // bl 0
7635     {
7636       // Ideally we should give up gd_to_le relaxation and do gd access.
7637       // However the gd_to_le relaxation decision has been made early
7638       // in the scan stage, where we did not allocate any GOT entry for
7639       // this symbol. Therefore we have to exit and report error now.
7640       gold_error(_("unexpected reloc insn sequence while relaxing "
7641 		   "tls gd to le for reloc %u."), r_type);
7642       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7643     }
7644 
7645   // Write new insns.
7646   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7647   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7648   insn3 = 0x91000000;  // add x0, x0, #0x0
7649   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7650   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7651   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7652 
7653   // Calculate tprel value.
7654   Output_segment* tls_segment = relinfo->layout->tls_segment();
7655   gold_assert(tls_segment != NULL);
7656   AArch64_address value = psymval->value(relinfo->object, 0);
7657   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7658   AArch64_address aligned_tcb_size =
7659       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7660   AArch64_address x = value + aligned_tcb_size;
7661 
7662   // After new insns are written, apply TLSLE relocs.
7663   const AArch64_reloc_property* rp1 =
7664       aarch64_reloc_property_table->get_reloc_property(
7665 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7666   const AArch64_reloc_property* rp2 =
7667       aarch64_reloc_property_table->get_reloc_property(
7668 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7669   gold_assert(rp1 != NULL && rp2 != NULL);
7670 
7671   typename aarch64_reloc_funcs::Status s1 =
7672       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7673 						     x,
7674 						     addend,
7675 						     rp1);
7676   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7677     return s1;
7678 
7679   typename aarch64_reloc_funcs::Status s2 =
7680       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7681 						     x,
7682 						     addend,
7683 						     rp2);
7684 
7685   this->skip_call_tls_get_addr_ = true;
7686   return s2;
7687 
7688 }  // End of tls_ld_to_le
7689 
7690 template<int size, bool big_endian>
7691 inline
7692 typename AArch64_relocate_functions<size, big_endian>::Status
7693 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7694 	     const Relocate_info<size, big_endian>* relinfo,
7695 	     Target_aarch64<size, big_endian>* target,
7696 	     const elfcpp::Rela<size, big_endian>& rela,
7697 	     unsigned int r_type,
7698 	     unsigned char* view,
7699 	     const Symbol_value<size>* psymval)
7700 {
7701   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7702   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7703   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7704 
7705   AArch64_address value = psymval->value(relinfo->object, 0);
7706   Output_segment* tls_segment = relinfo->layout->tls_segment();
7707   AArch64_address aligned_tcb_address =
7708       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7709   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7710   AArch64_address x = value + addend + aligned_tcb_address;
7711   // "x" is the offset to tp, we can only do this if x is within
7712   // range [0, 2^32-1]
7713   if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7714     {
7715       gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7716 		 r_type);
7717       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7718     }
7719 
7720   Insntype* ip = reinterpret_cast<Insntype*>(view);
7721   Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7722   unsigned int regno;
7723   Insntype newinsn;
7724   if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7725     {
7726       // Generate movz.
7727       regno = (insn & 0x1f);
7728       newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7729     }
7730   else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7731     {
7732       // Generate movk.
7733       regno = (insn & 0x1f);
7734       gold_assert(regno == ((insn >> 5) & 0x1f));
7735       newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7736     }
7737   else
7738     gold_unreachable();
7739 
7740   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7741   return aarch64_reloc_funcs::STATUS_OKAY;
7742 }  // End of tls_ie_to_le
7743 
7744 
7745 template<int size, bool big_endian>
7746 inline
7747 typename AArch64_relocate_functions<size, big_endian>::Status
7748 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7749 	     const Relocate_info<size, big_endian>* relinfo,
7750 	     Target_aarch64<size, big_endian>* target,
7751 	     const elfcpp::Rela<size, big_endian>& rela,
7752 	     unsigned int r_type,
7753 	     unsigned char* view,
7754 	     const Symbol_value<size>* psymval)
7755 {
7756   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7757   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7758   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7759 
7760   // TLSDESC-GD sequence is like:
7761   //   adrp  x0, :tlsdesc:v1
7762   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
7763   //   add   x0, x0, :tlsdesc_lo12:v1
7764   //   .tlsdesccall    v1
7765   //   blr   x1
7766   // After desc_gd_to_le optimization, the sequence will be like:
7767   //   movz  x0, #0x0, lsl #16
7768   //   movk  x0, #0x10
7769   //   nop
7770   //   nop
7771 
7772   // Calculate tprel value.
7773   Output_segment* tls_segment = relinfo->layout->tls_segment();
7774   gold_assert(tls_segment != NULL);
7775   Insntype* ip = reinterpret_cast<Insntype*>(view);
7776   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7777   AArch64_address value = psymval->value(relinfo->object, addend);
7778   AArch64_address aligned_tcb_size =
7779       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7780   AArch64_address x = value + aligned_tcb_size;
7781   // x is the offset to tp, we can only do this if x is within range
7782   // [0, 2^32-1]. If x is out of range, fail and exit.
7783   if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7784     {
7785       gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7786 		   "We Can't do gd_to_le relaxation.\n"), r_type);
7787       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7788     }
7789   Insntype newinsn;
7790   switch (r_type)
7791     {
7792     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7793     case elfcpp::R_AARCH64_TLSDESC_CALL:
7794       // Change to nop
7795       newinsn = 0xd503201f;
7796       break;
7797 
7798     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7799       // Change to movz.
7800       newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7801       break;
7802 
7803     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7804       // Change to movk.
7805       newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7806       break;
7807 
7808     default:
7809       gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7810 		 r_type);
7811       gold_unreachable();
7812     }
7813   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7814   return aarch64_reloc_funcs::STATUS_OKAY;
7815 }  // End of tls_desc_gd_to_le
7816 
7817 
7818 template<int size, bool big_endian>
7819 inline
7820 typename AArch64_relocate_functions<size, big_endian>::Status
7821 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
7822 	     const Relocate_info<size, big_endian>* /* relinfo */,
7823 	     Target_aarch64<size, big_endian>* /* target */,
7824 	     const elfcpp::Rela<size, big_endian>& rela,
7825 	     unsigned int r_type,
7826 	     unsigned char* view,
7827 	     const Symbol_value<size>* /* psymval */,
7828 	     typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7829 	     typename elfcpp::Elf_types<size>::Elf_Addr address)
7830 {
7831   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7832   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7833 
7834   // TLSDESC-GD sequence is like:
7835   //   adrp  x0, :tlsdesc:v1
7836   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
7837   //   add   x0, x0, :tlsdesc_lo12:v1
7838   //   .tlsdesccall    v1
7839   //   blr   x1
7840   // After desc_gd_to_ie optimization, the sequence will be like:
7841   //   adrp  x0, :tlsie:v1
7842   //   ldr   x0, [x0, :tlsie_lo12:v1]
7843   //   nop
7844   //   nop
7845 
7846   Insntype* ip = reinterpret_cast<Insntype*>(view);
7847   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7848   Insntype newinsn;
7849   switch (r_type)
7850     {
7851     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7852     case elfcpp::R_AARCH64_TLSDESC_CALL:
7853       // Change to nop
7854       newinsn = 0xd503201f;
7855       elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7856       break;
7857 
7858     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7859       {
7860 	return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7861 					 address);
7862       }
7863       break;
7864 
7865     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7866       {
7867        // Set ldr target register to be x0.
7868        Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7869        insn &= 0xffffffe0;
7870        elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7871        // Do relocation.
7872 	const AArch64_reloc_property* reloc_property =
7873 	    aarch64_reloc_property_table->get_reloc_property(
7874 	      elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7875 	return aarch64_reloc_funcs::template rela_general<32>(
7876 		 view, got_entry_address, addend, reloc_property);
7877       }
7878       break;
7879 
7880     default:
7881       gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7882 		 r_type);
7883       gold_unreachable();
7884     }
7885   return aarch64_reloc_funcs::STATUS_OKAY;
7886 }  // End of tls_desc_gd_to_ie
7887 
7888 // Relocate section data.
7889 
7890 template<int size, bool big_endian>
7891 void
7892 Target_aarch64<size, big_endian>::relocate_section(
7893     const Relocate_info<size, big_endian>* relinfo,
7894     unsigned int sh_type,
7895     const unsigned char* prelocs,
7896     size_t reloc_count,
7897     Output_section* output_section,
7898     bool needs_special_offset_handling,
7899     unsigned char* view,
7900     typename elfcpp::Elf_types<size>::Elf_Addr address,
7901     section_size_type view_size,
7902     const Reloc_symbol_changes* reloc_symbol_changes)
7903 {
7904   typedef Target_aarch64<size, big_endian> Aarch64;
7905   typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
7906   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7907       Classify_reloc;
7908 
7909   gold_assert(sh_type == elfcpp::SHT_RELA);
7910 
7911   gold::relocate_section<size, big_endian, Aarch64, AArch64_relocate,
7912 			 gold::Default_comdat_behavior, Classify_reloc>(
7913     relinfo,
7914     this,
7915     prelocs,
7916     reloc_count,
7917     output_section,
7918     needs_special_offset_handling,
7919     view,
7920     address,
7921     view_size,
7922     reloc_symbol_changes);
7923 }
7924 
7925 // Scan the relocs during a relocatable link.
7926 
7927 template<int size, bool big_endian>
7928 void
7929 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
7930     Symbol_table* symtab,
7931     Layout* layout,
7932     Sized_relobj_file<size, big_endian>* object,
7933     unsigned int data_shndx,
7934     unsigned int sh_type,
7935     const unsigned char* prelocs,
7936     size_t reloc_count,
7937     Output_section* output_section,
7938     bool needs_special_offset_handling,
7939     size_t local_symbol_count,
7940     const unsigned char* plocal_symbols,
7941     Relocatable_relocs* rr)
7942 {
7943   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7944       Classify_reloc;
7945   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
7946       Scan_relocatable_relocs;
7947 
7948   gold_assert(sh_type == elfcpp::SHT_RELA);
7949 
7950   gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
7951     symtab,
7952     layout,
7953     object,
7954     data_shndx,
7955     prelocs,
7956     reloc_count,
7957     output_section,
7958     needs_special_offset_handling,
7959     local_symbol_count,
7960     plocal_symbols,
7961     rr);
7962 }
7963 
7964 // Scan the relocs for --emit-relocs.
7965 
7966 template<int size, bool big_endian>
7967 void
7968 Target_aarch64<size, big_endian>::emit_relocs_scan(
7969     Symbol_table* symtab,
7970     Layout* layout,
7971     Sized_relobj_file<size, big_endian>* object,
7972     unsigned int data_shndx,
7973     unsigned int sh_type,
7974     const unsigned char* prelocs,
7975     size_t reloc_count,
7976     Output_section* output_section,
7977     bool needs_special_offset_handling,
7978     size_t local_symbol_count,
7979     const unsigned char* plocal_syms,
7980     Relocatable_relocs* rr)
7981 {
7982   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7983       Classify_reloc;
7984   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
7985       Emit_relocs_strategy;
7986 
7987   gold_assert(sh_type == elfcpp::SHT_RELA);
7988 
7989   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
7990     symtab,
7991     layout,
7992     object,
7993     data_shndx,
7994     prelocs,
7995     reloc_count,
7996     output_section,
7997     needs_special_offset_handling,
7998     local_symbol_count,
7999     plocal_syms,
8000     rr);
8001 }
8002 
8003 // Relocate a section during a relocatable link.
8004 
8005 template<int size, bool big_endian>
8006 void
8007 Target_aarch64<size, big_endian>::relocate_relocs(
8008     const Relocate_info<size, big_endian>* relinfo,
8009     unsigned int sh_type,
8010     const unsigned char* prelocs,
8011     size_t reloc_count,
8012     Output_section* output_section,
8013     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8014     unsigned char* view,
8015     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
8016     section_size_type view_size,
8017     unsigned char* reloc_view,
8018     section_size_type reloc_view_size)
8019 {
8020   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8021       Classify_reloc;
8022 
8023   gold_assert(sh_type == elfcpp::SHT_RELA);
8024 
8025   gold::relocate_relocs<size, big_endian, Classify_reloc>(
8026     relinfo,
8027     prelocs,
8028     reloc_count,
8029     output_section,
8030     offset_in_output_section,
8031     view,
8032     view_address,
8033     view_size,
8034     reloc_view,
8035     reloc_view_size);
8036 }
8037 
8038 
8039 // Return whether this is a 3-insn erratum sequence.
8040 
8041 template<int size, bool big_endian>
8042 bool
8043 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
8044     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8045     typename elfcpp::Swap<32,big_endian>::Valtype insn2,
8046     typename elfcpp::Swap<32,big_endian>::Valtype insn3)
8047 {
8048   unsigned rt1, rt2;
8049   bool load, pair;
8050 
8051   // The 2nd insn is a single register load or store; or register pair
8052   // store.
8053   if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
8054       && (!pair || (pair && !load)))
8055     {
8056       // The 3rd insn is a load or store instruction from the "Load/store
8057       // register (unsigned immediate)" encoding class, using Rn as the
8058       // base address register.
8059       if (Insn_utilities::aarch64_ldst_uimm(insn3)
8060 	  && (Insn_utilities::aarch64_rn(insn3)
8061 	      == Insn_utilities::aarch64_rd(insn1)))
8062 	return true;
8063     }
8064   return false;
8065 }
8066 
8067 
8068 // Return whether this is a 835769 sequence.
8069 // (Similarly implemented as in elfnn-aarch64.c.)
8070 
8071 template<int size, bool big_endian>
8072 bool
8073 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8074     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8075     typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8076 {
8077   uint32_t rt;
8078   uint32_t rt2;
8079   uint32_t rn;
8080   uint32_t rm;
8081   uint32_t ra;
8082   bool pair;
8083   bool load;
8084 
8085   if (Insn_utilities::aarch64_mlxl(insn2)
8086       && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8087     {
8088       /* Any SIMD memory op is independent of the subsequent MLA
8089 	 by definition of the erratum.  */
8090       if (Insn_utilities::aarch64_bit(insn1, 26))
8091 	return true;
8092 
8093       /* If not SIMD, check for integer memory ops and MLA relationship.  */
8094       rn = Insn_utilities::aarch64_rn(insn2);
8095       ra = Insn_utilities::aarch64_ra(insn2);
8096       rm = Insn_utilities::aarch64_rm(insn2);
8097 
8098       /* If this is a load and there's a true(RAW) dependency, we are safe
8099 	 and this is not an erratum sequence.  */
8100       if (load &&
8101 	  (rt == rn || rt == rm || rt == ra
8102 	   || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8103 	return false;
8104 
8105       /* We conservatively put out stubs for all other cases (including
8106 	 writebacks).  */
8107       return true;
8108     }
8109 
8110   return false;
8111 }
8112 
8113 
8114 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8115 
8116 template<int size, bool big_endian>
8117 void
8118 Target_aarch64<size, big_endian>::create_erratum_stub(
8119     AArch64_relobj<size, big_endian>* relobj,
8120     unsigned int shndx,
8121     section_size_type erratum_insn_offset,
8122     Address erratum_address,
8123     typename Insn_utilities::Insntype erratum_insn,
8124     int erratum_type,
8125     unsigned int e843419_adrp_offset)
8126 {
8127   gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8128   The_stub_table* stub_table = relobj->stub_table(shndx);
8129   gold_assert(stub_table != NULL);
8130   if (stub_table->find_erratum_stub(relobj,
8131 				    shndx,
8132 				    erratum_insn_offset) == NULL)
8133     {
8134       const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8135       The_erratum_stub* stub;
8136       if (erratum_type == ST_E_835769)
8137 	stub = new The_erratum_stub(relobj, erratum_type, shndx,
8138 				    erratum_insn_offset);
8139       else if (erratum_type == ST_E_843419)
8140 	stub = new E843419_stub<size, big_endian>(
8141 	    relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8142       else
8143 	gold_unreachable();
8144       stub->set_erratum_insn(erratum_insn);
8145       stub->set_erratum_address(erratum_address);
8146       // For erratum ST_E_843419 and ST_E_835769, the destination address is
8147       // always the next insn after erratum insn.
8148       stub->set_destination_address(erratum_address + BPI);
8149       stub_table->add_erratum_stub(stub);
8150     }
8151 }
8152 
8153 
8154 // Scan erratum for section SHNDX range [output_address + span_start,
8155 // output_address + span_end). Note here we do not share the code with
8156 // scan_erratum_843419_span function, because for 843419 we optimize by only
8157 // scanning the last few insns of a page, whereas for 835769, we need to scan
8158 // every insn.
8159 
8160 template<int size, bool big_endian>
8161 void
8162 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8163     AArch64_relobj<size, big_endian>*  relobj,
8164     unsigned int shndx,
8165     const section_size_type span_start,
8166     const section_size_type span_end,
8167     unsigned char* input_view,
8168     Address output_address)
8169 {
8170   typedef typename Insn_utilities::Insntype Insntype;
8171 
8172   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8173 
8174   // Adjust output_address and view to the start of span.
8175   output_address += span_start;
8176   input_view += span_start;
8177 
8178   section_size_type span_length = span_end - span_start;
8179   section_size_type offset = 0;
8180   for (offset = 0; offset + BPI < span_length; offset += BPI)
8181     {
8182       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8183       Insntype insn1 = ip[0];
8184       Insntype insn2 = ip[1];
8185       if (is_erratum_835769_sequence(insn1, insn2))
8186 	{
8187 	  Insntype erratum_insn = insn2;
8188 	  // "span_start + offset" is the offset for insn1. So for insn2, it is
8189 	  // "span_start + offset + BPI".
8190 	  section_size_type erratum_insn_offset = span_start + offset + BPI;
8191 	  Address erratum_address = output_address + offset + BPI;
8192 	  gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8193 			 "section %d, offset 0x%08x."),
8194 		       relobj->name().c_str(), shndx,
8195 		       (unsigned int)(span_start + offset));
8196 
8197 	  this->create_erratum_stub(relobj, shndx,
8198 				    erratum_insn_offset, erratum_address,
8199 				    erratum_insn, ST_E_835769);
8200 	  offset += BPI;  // Skip mac insn.
8201 	}
8202     }
8203 }  // End of "Target_aarch64::scan_erratum_835769_span".
8204 
8205 
8206 // Scan erratum for section SHNDX range
8207 // [output_address + span_start, output_address + span_end).
8208 
8209 template<int size, bool big_endian>
8210 void
8211 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8212     AArch64_relobj<size, big_endian>*  relobj,
8213     unsigned int shndx,
8214     const section_size_type span_start,
8215     const section_size_type span_end,
8216     unsigned char* input_view,
8217     Address output_address)
8218 {
8219   typedef typename Insn_utilities::Insntype Insntype;
8220 
8221   // Adjust output_address and view to the start of span.
8222   output_address += span_start;
8223   input_view += span_start;
8224 
8225   if ((output_address & 0x03) != 0)
8226     return;
8227 
8228   section_size_type offset = 0;
8229   section_size_type span_length = span_end - span_start;
8230   // The first instruction must be ending at 0xFF8 or 0xFFC.
8231   unsigned int page_offset = output_address & 0xFFF;
8232   // Make sure starting position, that is "output_address+offset",
8233   // starts at page position 0xff8 or 0xffc.
8234   if (page_offset < 0xff8)
8235     offset = 0xff8 - page_offset;
8236   while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8237     {
8238       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8239       Insntype insn1 = ip[0];
8240       if (Insn_utilities::is_adrp(insn1))
8241 	{
8242 	  Insntype insn2 = ip[1];
8243 	  Insntype insn3 = ip[2];
8244 	  Insntype erratum_insn;
8245 	  unsigned insn_offset;
8246 	  bool do_report = false;
8247 	  if (is_erratum_843419_sequence(insn1, insn2, insn3))
8248 	    {
8249 	      do_report = true;
8250 	      erratum_insn = insn3;
8251 	      insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8252 	    }
8253 	  else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8254 	    {
8255 	      // Optionally we can have an insn between ins2 and ins3
8256 	      Insntype insn_opt = ip[2];
8257 	      // And insn_opt must not be a branch.
8258 	      if (!Insn_utilities::aarch64_b(insn_opt)
8259 		  && !Insn_utilities::aarch64_bl(insn_opt)
8260 		  && !Insn_utilities::aarch64_blr(insn_opt)
8261 		  && !Insn_utilities::aarch64_br(insn_opt))
8262 		{
8263 		  // And insn_opt must not write to dest reg in insn1. However
8264 		  // we do a conservative scan, which means we may fix/report
8265 		  // more than necessary, but it doesn't hurt.
8266 
8267 		  Insntype insn4 = ip[3];
8268 		  if (is_erratum_843419_sequence(insn1, insn2, insn4))
8269 		    {
8270 		      do_report = true;
8271 		      erratum_insn = insn4;
8272 		      insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8273 		    }
8274 		}
8275 	    }
8276 	  if (do_report)
8277 	    {
8278 	      unsigned int erratum_insn_offset =
8279 		span_start + offset + insn_offset;
8280 	      Address erratum_address =
8281 		output_address + offset + insn_offset;
8282 	      create_erratum_stub(relobj, shndx,
8283 				  erratum_insn_offset, erratum_address,
8284 				  erratum_insn, ST_E_843419,
8285 				  span_start + offset);
8286 	    }
8287 	}
8288 
8289       // Advance to next candidate instruction. We only consider instruction
8290       // sequences starting at a page offset of 0xff8 or 0xffc.
8291       page_offset = (output_address + offset) & 0xfff;
8292       if (page_offset == 0xff8)
8293 	offset += 4;
8294       else  // (page_offset == 0xffc), we move to next page's 0xff8.
8295 	offset += 0xffc;
8296     }
8297 }  // End of "Target_aarch64::scan_erratum_843419_span".
8298 
8299 
8300 // The selector for aarch64 object files.
8301 
8302 template<int size, bool big_endian>
8303 class Target_selector_aarch64 : public Target_selector
8304 {
8305  public:
8306   Target_selector_aarch64();
8307 
8308   virtual Target*
8309   do_instantiate_target()
8310   { return new Target_aarch64<size, big_endian>(); }
8311 };
8312 
8313 template<>
8314 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8315   : Target_selector(elfcpp::EM_AARCH64, 32, true,
8316 		    "elf32-bigaarch64", "aarch64_elf32_be_vec")
8317 { }
8318 
8319 template<>
8320 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8321   : Target_selector(elfcpp::EM_AARCH64, 32, false,
8322 		    "elf32-littleaarch64", "aarch64_elf32_le_vec")
8323 { }
8324 
8325 template<>
8326 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8327   : Target_selector(elfcpp::EM_AARCH64, 64, true,
8328 		    "elf64-bigaarch64", "aarch64_elf64_be_vec")
8329 { }
8330 
8331 template<>
8332 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8333   : Target_selector(elfcpp::EM_AARCH64, 64, false,
8334 		    "elf64-littleaarch64", "aarch64_elf64_le_vec")
8335 { }
8336 
8337 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8338 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8339 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8340 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8341 
8342 } // End anonymous namespace.
8343