xref: /dragonfly/contrib/binutils-2.27/gold/gc.h (revision 799ba435)
1 // gc.h -- garbage collection of unused sections
2 
3 // Copyright (C) 2009-2016 Free Software Foundation, Inc.
4 // Written by Sriraman Tallam <tmsriram@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #ifndef GOLD_GC_H
24 #define GOLD_GC_H
25 
26 #include <vector>
27 
28 #include "elfcpp.h"
29 #include "symtab.h"
30 #include "object.h"
31 #include "icf.h"
32 
33 namespace gold
34 {
35 
36 class Object;
37 
38 template<int size, bool big_endian>
39 class Sized_relobj_file;
40 
41 class Output_section;
42 class General_options;
43 class Layout;
44 
45 class Garbage_collection
46 {
47  public:
48 
49   typedef Unordered_set<Section_id, Section_id_hash> Sections_reachable;
50   typedef std::map<Section_id, Sections_reachable> Section_ref;
51   typedef std::vector<Section_id> Worklist_type;
52   // This maps the name of the section which can be represented as a C
53   // identifier (cident) to the list of sections that have that name.
54   // Different object files can have cident sections with the same name.
55   typedef std::map<std::string, Sections_reachable> Cident_section_map;
56 
57   Garbage_collection()
58   : is_worklist_ready_(false)
59   { }
60 
61   // Accessor methods for the private members.
62 
63   Sections_reachable&
64   referenced_list()
65   { return referenced_list_; }
66 
67   Section_ref&
68   section_reloc_map()
69   { return this->section_reloc_map_; }
70 
71   Worklist_type&
72   worklist()
73   { return this->work_list_; }
74 
75   bool
76   is_worklist_ready()
77   { return this->is_worklist_ready_; }
78 
79   void
80   worklist_ready()
81   { this->is_worklist_ready_ = true; }
82 
83   void
84   do_transitive_closure();
85 
86   bool
87   is_section_garbage(Relobj* obj, unsigned int shndx)
88   { return (this->referenced_list().find(Section_id(obj, shndx))
89             == this->referenced_list().end()); }
90 
91   Cident_section_map*
92   cident_sections()
93   { return &cident_sections_; }
94 
95   void
96   add_cident_section(std::string section_name,
97 		     Section_id secn)
98   { this->cident_sections_[section_name].insert(secn); }
99 
100   // Add a reference from the SRC_SHNDX-th section of SRC_OBJECT to
101   // DST_SHNDX-th section of DST_OBJECT.
102   void
103   add_reference(Relobj* src_object, unsigned int src_shndx,
104 		Relobj* dst_object, unsigned int dst_shndx)
105   {
106     Section_id src_id(src_object, src_shndx);
107     Section_id dst_id(dst_object, dst_shndx);
108     Sections_reachable& reachable = this->section_reloc_map_[src_id];
109     reachable.insert(dst_id);
110   }
111 
112  private:
113 
114   Worklist_type work_list_;
115   bool is_worklist_ready_;
116   Section_ref section_reloc_map_;
117   Sections_reachable referenced_list_;
118   Cident_section_map cident_sections_;
119 };
120 
121 // Data to pass between successive invocations of do_layout
122 // in object.cc while garbage collecting.  This data structure
123 // is filled by using the data from Read_symbols_data.
124 
125 struct Symbols_data
126 {
127   // Section headers.
128   unsigned char* section_headers_data;
129   // Section names.
130   unsigned char* section_names_data;
131   // Size of section name data in bytes.
132   section_size_type section_names_size;
133   // Symbol data.
134   unsigned char* symbols_data;
135   // Size of symbol data in bytes.
136   section_size_type symbols_size;
137   // Offset of external symbols within symbol data.  This structure
138   // sometimes contains only external symbols, in which case this will
139   // be zero.  Sometimes it contains all symbols.
140   section_offset_type external_symbols_offset;
141   // Symbol names.
142   unsigned char* symbol_names_data;
143   // Size of symbol name data in bytes.
144   section_size_type symbol_names_size;
145 };
146 
147 // Relocations of type SHT_REL store the addend value in their bytes.
148 // This function returns the size of the embedded addend which is
149 // nothing but the size of the relocation.
150 
151 template<typename Classify_reloc>
152 inline unsigned int
153 get_embedded_addend_size(int r_type, Relobj* obj)
154 {
155   if (Classify_reloc::sh_type == elfcpp::SHT_REL)
156     return Classify_reloc::get_size_for_reloc(r_type, obj);
157   return 0;
158 }
159 
160 // This function implements the generic part of reloc
161 // processing to map a section to all the sections it
162 // references through relocs.  It is called only during
163 // garbage collection (--gc-sections) and identical code
164 // folding (--icf).
165 
166 template<int size, bool big_endian, typename Target_type,
167 	 typename Scan, typename Classify_reloc>
168 inline void
169 gc_process_relocs(
170     Symbol_table* symtab,
171     Layout*,
172     Target_type* target,
173     Sized_relobj_file<size, big_endian>* src_obj,
174     unsigned int src_indx,
175     const unsigned char* prelocs,
176     size_t reloc_count,
177     Output_section*,
178     bool,
179     size_t local_count,
180     const unsigned char* plocal_syms)
181 {
182   Scan scan;
183 
184   typedef typename Classify_reloc::Reltype Reltype;
185   const int reloc_size = Classify_reloc::reloc_size;
186   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
187 
188   Icf::Sections_reachable_info* secvec = NULL;
189   Icf::Symbol_info* symvec = NULL;
190   Icf::Addend_info* addendvec = NULL;
191   Icf::Offset_info* offsetvec = NULL;
192   Icf::Reloc_addend_size_info* reloc_addend_size_vec = NULL;
193   bool is_icf_tracked = false;
194   const char* cident_section_name = NULL;
195 
196   std::string src_section_name = (parameters->options().icf_enabled()
197                                   ? src_obj->section_name(src_indx)
198                                   : "");
199 
200   bool check_section_for_function_pointers = false;
201 
202   if (parameters->options().icf_enabled()
203       && is_section_foldable_candidate(src_section_name.c_str()))
204     {
205       is_icf_tracked = true;
206       Section_id src_id(src_obj, src_indx);
207       Icf::Reloc_info* reloc_info =
208         &symtab->icf()->reloc_info_list()[src_id];
209       secvec = &reloc_info->section_info;
210       symvec = &reloc_info->symbol_info;
211       addendvec = &reloc_info->addend_info;
212       offsetvec = &reloc_info->offset_info;
213       reloc_addend_size_vec = &reloc_info->reloc_addend_size_info;
214     }
215 
216   check_section_for_function_pointers =
217     symtab->icf()->check_section_for_function_pointers(src_section_name,
218                                                        target);
219 
220   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
221     {
222       Reltype reloc(prelocs);
223       unsigned int r_sym = Classify_reloc::get_r_sym(&reloc);
224       unsigned int r_type = Classify_reloc::get_r_type(&reloc);
225       typename elfcpp::Elf_types<size>::Elf_Swxword addend =
226 	  Classify_reloc::get_r_addend(&reloc);
227       Relobj* dst_obj;
228       unsigned int dst_indx;
229       typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
230       Address dst_off;
231 
232       if (r_sym < local_count)
233         {
234           gold_assert(plocal_syms != NULL);
235           typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
236                                                       + r_sym * sym_size);
237 	  dst_indx = lsym.get_st_shndx();
238           bool is_ordinary;
239 	  dst_indx = src_obj->adjust_sym_shndx(r_sym, dst_indx, &is_ordinary);
240           dst_obj = src_obj;
241 	  dst_off = lsym.get_st_value() + addend;
242 
243           if (is_icf_tracked)
244             {
245 	      Address symvalue = dst_off - addend;
246 	      if (is_ordinary)
247 		(*secvec).push_back(Section_id(src_obj, dst_indx));
248 	      else
249                 (*secvec).push_back(Section_id(NULL, 0));
250               (*symvec).push_back(NULL);
251 	      (*addendvec).push_back(std::make_pair(
252 					static_cast<long long>(symvalue),
253 					static_cast<long long>(addend)));
254               uint64_t reloc_offset =
255                 convert_to_section_size_type(reloc.get_r_offset());
256 	      (*offsetvec).push_back(reloc_offset);
257               (*reloc_addend_size_vec).push_back(
258                 get_embedded_addend_size<Classify_reloc>(r_type, src_obj));
259             }
260 
261 	  // When doing safe folding, check to see if this relocation is that
262 	  // of a function pointer being taken.
263 	  if (is_ordinary
264 	      && check_section_for_function_pointers
265               && lsym.get_st_type() != elfcpp::STT_OBJECT
266  	      && scan.local_reloc_may_be_function_pointer(symtab, NULL, NULL,
267 							  src_obj, src_indx,
268 			                       		  NULL, reloc, r_type,
269 							  lsym))
270             symtab->icf()->set_section_has_function_pointers(
271               src_obj, lsym.get_st_shndx());
272 
273           if (!is_ordinary || dst_indx == src_indx)
274             continue;
275         }
276       else
277         {
278           Symbol* gsym = src_obj->global_symbol(r_sym);
279           gold_assert(gsym != NULL);
280           if (gsym->is_forwarder())
281             gsym = symtab->resolve_forwards(gsym);
282 
283           dst_obj = NULL;
284           dst_indx = 0;
285           bool is_ordinary = false;
286           if (gsym->source() == Symbol::FROM_OBJECT
287 	      && !gsym->object()->is_dynamic())
288             {
289               dst_obj = static_cast<Relobj*>(gsym->object());
290               dst_indx = gsym->shndx(&is_ordinary);
291             }
292 	  dst_off = static_cast<const Sized_symbol<size>*>(gsym)->value();
293 	  dst_off += addend;
294 
295 	  // When doing safe folding, check to see if this relocation is that
296 	  // of a function pointer being taken.
297 	  if (gsym->source() == Symbol::FROM_OBJECT
298               && check_section_for_function_pointers
299               && dst_obj != NULL
300               && (!is_ordinary
301                   || scan.global_reloc_may_be_function_pointer(
302                        symtab, NULL, NULL, src_obj, src_indx, NULL, reloc,
303                        r_type, gsym)))
304             symtab->icf()->set_section_has_function_pointers(dst_obj, dst_indx);
305 
306           // If the symbol name matches '__start_XXX' then the section with
307           // the C identifier like name 'XXX' should not be garbage collected.
308           // A similar treatment to symbols with the name '__stop_XXX'.
309           if (is_prefix_of(cident_section_start_prefix, gsym->name()))
310             {
311               cident_section_name = (gsym->name()
312                                      + strlen(cident_section_start_prefix));
313             }
314           else if (is_prefix_of(cident_section_stop_prefix, gsym->name()))
315             {
316               cident_section_name = (gsym->name()
317                                      + strlen(cident_section_stop_prefix));
318             }
319           if (is_icf_tracked)
320             {
321 	      Address symvalue = dst_off - addend;
322               if (is_ordinary && dst_obj != NULL)
323 		(*secvec).push_back(Section_id(dst_obj, dst_indx));
324 	      else
325                 (*secvec).push_back(Section_id(NULL, 0));
326               (*symvec).push_back(gsym);
327 	      (*addendvec).push_back(std::make_pair(
328 					static_cast<long long>(symvalue),
329 					static_cast<long long>(addend)));
330               uint64_t reloc_offset =
331                 convert_to_section_size_type(reloc.get_r_offset());
332 	      (*offsetvec).push_back(reloc_offset);
333               (*reloc_addend_size_vec).push_back(
334                 get_embedded_addend_size<Classify_reloc>(r_type, src_obj));
335 	    }
336 
337           if (dst_obj == NULL)
338             continue;
339           if (!is_ordinary)
340             continue;
341         }
342       if (parameters->options().gc_sections())
343         {
344 	  symtab->gc()->add_reference(src_obj, src_indx, dst_obj, dst_indx);
345 	  parameters->sized_target<size, big_endian>()
346 	    ->gc_add_reference(symtab, src_obj, src_indx, dst_obj, dst_indx,
347 			       dst_off);
348           if (cident_section_name != NULL)
349             {
350               Garbage_collection::Cident_section_map::iterator ele =
351                 symtab->gc()->cident_sections()->find(std::string(cident_section_name));
352               if (ele == symtab->gc()->cident_sections()->end())
353                 continue;
354 	      Section_id src_id(src_obj, src_indx);
355               Garbage_collection::Sections_reachable&
356                 v(symtab->gc()->section_reloc_map()[src_id]);
357               Garbage_collection::Sections_reachable& cident_secn(ele->second);
358               for (Garbage_collection::Sections_reachable::iterator it_v
359                      = cident_secn.begin();
360                    it_v != cident_secn.end();
361                    ++it_v)
362                 {
363                   v.insert(*it_v);
364                 }
365             }
366         }
367     }
368   return;
369 }
370 
371 } // End of namespace gold.
372 
373 #endif
374