xref: /dragonfly/contrib/binutils-2.27/gold/icf.cc (revision 1975d09e)
1 // icf.cc -- Identical Code Folding.
2 //
3 // Copyright (C) 2009-2016 Free Software Foundation, Inc.
4 // Written by Sriraman Tallam <tmsriram@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 // Identical Code Folding Algorithm
24 // ----------------------------------
25 // Detecting identical functions is done here and the basic algorithm
26 // is as follows.  A checksum is computed on each foldable section using
27 // its contents and relocations.  If the symbol name corresponding to
28 // a relocation is known it is used to compute the checksum.  If the
29 // symbol name is not known the stringified name of the object and the
30 // section number pointed to by the relocation is used.  The checksums
31 // are stored as keys in a hash map and a section is identical to some
32 // other section if its checksum is already present in the hash map.
33 // Checksum collisions are handled by using a multimap and explicitly
34 // checking the contents when two sections have the same checksum.
35 //
36 // However, two functions A and B with identical text but with
37 // relocations pointing to different foldable sections can be identical if
38 // the corresponding foldable sections to which their relocations point to
39 // turn out to be identical.  Hence, this checksumming process must be
40 // done repeatedly until convergence is obtained.  Here is an example for
41 // the following case :
42 //
43 // int funcA ()               int funcB ()
44 // {                          {
45 //   return foo();              return goo();
46 // }                          }
47 //
48 // The functions funcA and funcB are identical if functions foo() and
49 // goo() are identical.
50 //
51 // Hence, as described above, we repeatedly do the checksumming,
52 // assigning identical functions to the same group, until convergence is
53 // obtained.  Now, we have two different ways to do this depending on how
54 // we initialize.
55 //
56 // Algorithm I :
57 // -----------
58 // We can start with marking all functions as different and repeatedly do
59 // the checksumming.  This has the advantage that we do not need to wait
60 // for convergence. We can stop at any point and correctness will be
61 // guaranteed although not all cases would have been found.  However, this
62 // has a problem that some cases can never be found even if it is run until
63 // convergence.  Here is an example with mutually recursive functions :
64 //
65 // int funcA (int a)            int funcB (int a)
66 // {                            {
67 //   if (a == 1)                  if (a == 1)
68 //     return 1;                    return 1;
69 //   return 1 + funcB(a - 1);     return 1 + funcA(a - 1);
70 // }                            }
71 //
72 // In this example funcA and funcB are identical and one of them could be
73 // folded into the other.  However, if we start with assuming that funcA
74 // and funcB are not identical, the algorithm, even after it is run to
75 // convergence, cannot detect that they are identical.  It should be noted
76 // that even if the functions were self-recursive, Algorithm I cannot catch
77 // that they are identical, at least as is.
78 //
79 // Algorithm II :
80 // ------------
81 // Here we start with marking all functions as identical and then repeat
82 // the checksumming until convergence.  This can detect the above case
83 // mentioned above.  It can detect all cases that Algorithm I can and more.
84 // However, the caveat is that it has to be run to convergence.  It cannot
85 // be stopped arbitrarily like Algorithm I as correctness cannot be
86 // guaranteed.  Algorithm II is not implemented.
87 //
88 // Algorithm I is used because experiments show that about three
89 // iterations are more than enough to achieve convergence. Algorithm I can
90 // handle recursive calls if it is changed to use a special common symbol
91 // for recursive relocs.  This seems to be the most common case that
92 // Algorithm I could not catch as is.  Mutually recursive calls are not
93 // frequent and Algorithm I wins because of its ability to be stopped
94 // arbitrarily.
95 //
96 // Caveat with using function pointers :
97 // ------------------------------------
98 //
99 // Programs using function pointer comparisons/checks should use function
100 // folding with caution as the result of such comparisons could be different
101 // when folding takes place.  This could lead to unexpected run-time
102 // behaviour.
103 //
104 // Safe Folding :
105 // ------------
106 //
107 // ICF in safe mode folds only ctors and dtors if their function pointers can
108 // never be taken.  Also, for X86-64, safe folding uses the relocation
109 // type to determine if a function's pointer is taken or not and only folds
110 // functions whose pointers are definitely not taken.
111 //
112 // Caveat with safe folding :
113 // ------------------------
114 //
115 // This applies only to x86_64.
116 //
117 // Position independent executables are created from PIC objects (compiled
118 // with -fPIC) and/or PIE objects (compiled with -fPIE).  For PIE objects, the
119 // relocation types for function pointer taken and a call are the same.
120 // Now, it is not always possible to tell if an object used in the link of
121 // a pie executable is a PIC object or a PIE object.  Hence, for pie
122 // executables, using relocation types to disambiguate function pointers is
123 // currently disabled.
124 //
125 // Further, it is not correct to use safe folding to build non-pie
126 // executables using PIC/PIE objects.  PIC/PIE objects have different
127 // relocation types for function pointers than non-PIC objects, and the
128 // current implementation of safe folding does not handle those relocation
129 // types.  Hence, if used, functions whose pointers are taken could still be
130 // folded causing unpredictable run-time behaviour if the pointers were used
131 // in comparisons.
132 //
133 //
134 //
135 // How to run  : --icf=[safe|all|none]
136 // Optional parameters : --icf-iterations <num> --print-icf-sections
137 //
138 // Performance : Less than 20 % link-time overhead on industry strength
139 // applications.  Up to 6 %  text size reductions.
140 
141 #include "gold.h"
142 #include "object.h"
143 #include "gc.h"
144 #include "icf.h"
145 #include "symtab.h"
146 #include "libiberty.h"
147 #include "demangle.h"
148 #include "elfcpp.h"
149 #include "int_encoding.h"
150 
151 namespace gold
152 {
153 
154 // This function determines if a section or a group of identical
155 // sections has unique contents.  Such unique sections or groups can be
156 // declared final and need not be processed any further.
157 // Parameters :
158 // ID_SECTION : Vector mapping a section index to a Section_id pair.
159 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
160 //                            sections is already known to be unique.
161 // SECTION_CONTENTS : Contains the section's text and relocs to sections
162 //                    that cannot be folded.   SECTION_CONTENTS are NULL
163 //                    implies that this function is being called for the
164 //                    first time before the first iteration of icf.
165 
166 static void
167 preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
168                                std::vector<bool>* is_secn_or_group_unique,
169                                std::vector<std::string>* section_contents)
170 {
171   Unordered_map<uint32_t, unsigned int> uniq_map;
172   std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
173     uniq_map_insert;
174 
175   for (unsigned int i = 0; i < id_section.size(); i++)
176     {
177       if ((*is_secn_or_group_unique)[i])
178         continue;
179 
180       uint32_t cksum;
181       Section_id secn = id_section[i];
182       section_size_type plen;
183       if (section_contents == NULL)
184         {
185           // Lock the object so we can read from it.  This is only called
186           // single-threaded from queue_middle_tasks, so it is OK to lock.
187           // Unfortunately we have no way to pass in a Task token.
188           const Task* dummy_task = reinterpret_cast<const Task*>(-1);
189           Task_lock_obj<Object> tl(dummy_task, secn.first);
190           const unsigned char* contents;
191           contents = secn.first->section_contents(secn.second,
192                                                   &plen,
193                                                   false);
194           cksum = xcrc32(contents, plen, 0xffffffff);
195         }
196       else
197         {
198           const unsigned char* contents_array = reinterpret_cast
199             <const unsigned char*>((*section_contents)[i].c_str());
200           cksum = xcrc32(contents_array, (*section_contents)[i].length(),
201                          0xffffffff);
202         }
203       uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
204       if (uniq_map_insert.second)
205         {
206           (*is_secn_or_group_unique)[i] = true;
207         }
208       else
209         {
210           (*is_secn_or_group_unique)[i] = false;
211           (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
212         }
213     }
214 }
215 
216 // For SHF_MERGE sections that use REL relocations, the addend is stored in
217 // the text section at the relocation offset.  Read  the addend value given
218 // the pointer to the addend in the text section and the addend size.
219 // Update the addend value if a valid addend is found.
220 // Parameters:
221 // RELOC_ADDEND_PTR   : Pointer to the addend in the text section.
222 // ADDEND_SIZE        : The size of the addend.
223 // RELOC_ADDEND_VALUE : Pointer to the addend that is updated.
224 
225 inline void
226 get_rel_addend(const unsigned char* reloc_addend_ptr,
227 	       const unsigned int addend_size,
228 	       uint64_t* reloc_addend_value)
229 {
230   switch (addend_size)
231     {
232     case 0:
233       break;
234     case 1:
235       *reloc_addend_value =
236         read_from_pointer<8>(reloc_addend_ptr);
237       break;
238     case 2:
239       *reloc_addend_value =
240           read_from_pointer<16>(reloc_addend_ptr);
241       break;
242     case 4:
243       *reloc_addend_value =
244         read_from_pointer<32>(reloc_addend_ptr);
245       break;
246     case 8:
247       *reloc_addend_value =
248         read_from_pointer<64>(reloc_addend_ptr);
249       break;
250     default:
251       gold_unreachable();
252     }
253 }
254 
255 // This returns the buffer containing the section's contents, both
256 // text and relocs.  Relocs are differentiated as those pointing to
257 // sections that could be folded and those that cannot.  Only relocs
258 // pointing to sections that could be folded are recomputed on
259 // subsequent invocations of this function.
260 // Parameters  :
261 // FIRST_ITERATION    : true if it is the first invocation.
262 // SECN               : Section for which contents are desired.
263 // SECTION_NUM        : Unique section number of this section.
264 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
265 //                      to ICF sections.
266 // KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
267 // SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
268 //                      sections.
269 
270 static std::string
271 get_section_contents(bool first_iteration,
272                      const Section_id& secn,
273                      unsigned int section_num,
274                      unsigned int* num_tracked_relocs,
275                      Symbol_table* symtab,
276                      const std::vector<unsigned int>& kept_section_id,
277                      std::vector<std::string>* section_contents)
278 {
279   // Lock the object so we can read from it.  This is only called
280   // single-threaded from queue_middle_tasks, so it is OK to lock.
281   // Unfortunately we have no way to pass in a Task token.
282   const Task* dummy_task = reinterpret_cast<const Task*>(-1);
283   Task_lock_obj<Object> tl(dummy_task, secn.first);
284 
285   section_size_type plen;
286   const unsigned char* contents = NULL;
287   if (first_iteration)
288     contents = secn.first->section_contents(secn.second, &plen, false);
289 
290   // The buffer to hold all the contents including relocs.  A checksum
291   // is then computed on this buffer.
292   std::string buffer;
293   std::string icf_reloc_buffer;
294 
295   if (num_tracked_relocs)
296     *num_tracked_relocs = 0;
297 
298   Icf::Reloc_info_list& reloc_info_list =
299     symtab->icf()->reloc_info_list();
300 
301   Icf::Reloc_info_list::iterator it_reloc_info_list =
302     reloc_info_list.find(secn);
303 
304   buffer.clear();
305   icf_reloc_buffer.clear();
306 
307   // Process relocs and put them into the buffer.
308 
309   if (it_reloc_info_list != reloc_info_list.end())
310     {
311       Icf::Sections_reachable_info &v =
312         (it_reloc_info_list->second).section_info;
313       // Stores the information of the symbol pointed to by the reloc.
314       const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info;
315       // Stores the addend and the symbol value.
316       Icf::Addend_info &a = (it_reloc_info_list->second).addend_info;
317       // Stores the offset of the reloc.
318       const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info;
319       const Icf::Reloc_addend_size_info &reloc_addend_size_info =
320         (it_reloc_info_list->second).reloc_addend_size_info;
321       Icf::Sections_reachable_info::iterator it_v = v.begin();
322       Icf::Symbol_info::const_iterator it_s = s.begin();
323       Icf::Addend_info::iterator it_a = a.begin();
324       Icf::Offset_info::const_iterator it_o = o.begin();
325       Icf::Reloc_addend_size_info::const_iterator it_addend_size =
326         reloc_addend_size_info.begin();
327 
328       for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
329         {
330 	  if (first_iteration
331 	      && it_v->first != NULL)
332 	    {
333 	      Symbol_location loc;
334 	      loc.object = it_v->first;
335 	      loc.shndx = it_v->second;
336 	      loc.offset = convert_types<off_t, long long>(it_a->first
337 							   + it_a->second);
338 	      // Look through function descriptors
339 	      parameters->target().function_location(&loc);
340 	      if (loc.shndx != it_v->second)
341 		{
342 		  it_v->second = loc.shndx;
343 		  // Modify symvalue/addend to the code entry.
344 		  it_a->first = loc.offset;
345 		  it_a->second = 0;
346 		}
347 	    }
348 
349           // ADDEND_STR stores the symbol value and addend and offset,
350           // each at most 16 hex digits long.  it_a points to a pair
351           // where first is the symbol value and second is the
352           // addend.
353           char addend_str[50];
354 
355 	  // It would be nice if we could use format macros in inttypes.h
356 	  // here but there are not in ISO/IEC C++ 1998.
357           snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
358                    static_cast<long long>((*it_a).first),
359 		   static_cast<long long>((*it_a).second),
360 		   static_cast<unsigned long long>(*it_o));
361 
362 	  // If the symbol pointed to by the reloc is not in an ordinary
363 	  // section or if the symbol type is not FROM_OBJECT, then the
364 	  // object is NULL.
365 	  if (it_v->first == NULL)
366             {
367 	      if (first_iteration)
368                 {
369 		  // If the symbol name is available, use it.
370                   if ((*it_s) != NULL)
371                       buffer.append((*it_s)->name());
372                   // Append the addend.
373                   buffer.append(addend_str);
374                   buffer.append("@");
375 		}
376 	      continue;
377 	    }
378 
379           Section_id reloc_secn(it_v->first, it_v->second);
380 
381           // If this reloc turns back and points to the same section,
382           // like a recursive call, use a special symbol to mark this.
383           if (reloc_secn.first == secn.first
384               && reloc_secn.second == secn.second)
385             {
386               if (first_iteration)
387                 {
388                   buffer.append("R");
389                   buffer.append(addend_str);
390                   buffer.append("@");
391                 }
392               continue;
393             }
394           Icf::Uniq_secn_id_map& section_id_map =
395             symtab->icf()->section_to_int_map();
396           Icf::Uniq_secn_id_map::iterator section_id_map_it =
397             section_id_map.find(reloc_secn);
398           bool is_sym_preemptible = (*it_s != NULL
399 				     && !(*it_s)->is_from_dynobj()
400 				     && !(*it_s)->is_undefined()
401 				     && (*it_s)->is_preemptible());
402           if (!is_sym_preemptible
403               && section_id_map_it != section_id_map.end())
404             {
405               // This is a reloc to a section that might be folded.
406               if (num_tracked_relocs)
407                 (*num_tracked_relocs)++;
408 
409               char kept_section_str[10];
410               unsigned int secn_id = section_id_map_it->second;
411               snprintf(kept_section_str, sizeof(kept_section_str), "%u",
412                        kept_section_id[secn_id]);
413               if (first_iteration)
414                 {
415                   buffer.append("ICF_R");
416                   buffer.append(addend_str);
417                 }
418               icf_reloc_buffer.append(kept_section_str);
419               // Append the addend.
420               icf_reloc_buffer.append(addend_str);
421               icf_reloc_buffer.append("@");
422             }
423           else
424             {
425               // This is a reloc to a section that cannot be folded.
426               // Process it only in the first iteration.
427               if (!first_iteration)
428                 continue;
429 
430               uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
431               // This reloc points to a merge section.  Hash the
432               // contents of this section.
433               if ((secn_flags & elfcpp::SHF_MERGE) != 0
434 		  && parameters->target().can_icf_inline_merge_sections())
435                 {
436                   uint64_t entsize =
437                     (it_v->first)->section_entsize(it_v->second);
438 		  long long offset = it_a->first;
439 		  // Handle SHT_RELA and SHT_REL addends, only one of these
440 		  // addends exists.
441 		  // Get the SHT_RELA addend.  For RELA relocations, we have
442 		  // the addend from the relocation.
443 		  uint64_t reloc_addend_value = it_a->second;
444 
445 		  // Handle SHT_REL addends.
446 		  // For REL relocations, we need to fetch the addend from the
447 		  // section contents.
448                   const unsigned char* reloc_addend_ptr =
449 		    contents + static_cast<unsigned long long>(*it_o);
450 
451 		  // Update the addend value with the SHT_REL addend if
452 		  // available.
453 		  get_rel_addend(reloc_addend_ptr, *it_addend_size,
454 				 &reloc_addend_value);
455 
456 		  // Ignore the addend when it is a negative value.  See the
457 		  // comments in Merged_symbol_value::value in object.h.
458 		  if (reloc_addend_value < 0xffffff00)
459 		    offset = offset + reloc_addend_value;
460 
461                   section_size_type secn_len;
462 
463                   const unsigned char* str_contents =
464                   (it_v->first)->section_contents(it_v->second,
465                                                   &secn_len,
466                                                   false) + offset;
467 		  gold_assert (offset < (long long) secn_len);
468 
469                   if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
470                     {
471                       // String merge section.
472                       const char* str_char =
473                         reinterpret_cast<const char*>(str_contents);
474                       switch(entsize)
475                         {
476                         case 1:
477                           {
478                             buffer.append(str_char);
479                             break;
480                           }
481                         case 2:
482                           {
483                             const uint16_t* ptr_16 =
484                               reinterpret_cast<const uint16_t*>(str_char);
485                             unsigned int strlen_16 = 0;
486                             // Find the NULL character.
487                             while(*(ptr_16 + strlen_16) != 0)
488                                 strlen_16++;
489                             buffer.append(str_char, strlen_16 * 2);
490                           }
491                           break;
492                         case 4:
493                           {
494                             const uint32_t* ptr_32 =
495                               reinterpret_cast<const uint32_t*>(str_char);
496                             unsigned int strlen_32 = 0;
497                             // Find the NULL character.
498                             while(*(ptr_32 + strlen_32) != 0)
499                                 strlen_32++;
500                             buffer.append(str_char, strlen_32 * 4);
501                           }
502                           break;
503                         default:
504                           gold_unreachable();
505                         }
506                     }
507                   else
508                     {
509                       // Use the entsize to determine the length to copy.
510 		      uint64_t bufsize = entsize;
511 		      // If entsize is too big, copy all the remaining bytes.
512 		      if ((offset + entsize) > secn_len)
513 			bufsize = secn_len - offset;
514                       buffer.append(reinterpret_cast<const
515                                                      char*>(str_contents),
516                                     bufsize);
517                     }
518 		  buffer.append("@");
519                 }
520               else if ((*it_s) != NULL)
521                 {
522                   // If symbol name is available use that.
523                   buffer.append((*it_s)->name());
524                   // Append the addend.
525                   buffer.append(addend_str);
526                   buffer.append("@");
527                 }
528               else
529                 {
530                   // Symbol name is not available, like for a local symbol,
531                   // use object and section id.
532                   buffer.append(it_v->first->name());
533                   char secn_id[10];
534                   snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
535                   buffer.append(secn_id);
536                   // Append the addend.
537                   buffer.append(addend_str);
538                   buffer.append("@");
539                 }
540             }
541         }
542     }
543 
544   if (first_iteration)
545     {
546       buffer.append("Contents = ");
547       buffer.append(reinterpret_cast<const char*>(contents), plen);
548       // Store the section contents that dont change to avoid recomputing
549       // during the next call to this function.
550       (*section_contents)[section_num] = buffer;
551     }
552   else
553     {
554       gold_assert(buffer.empty());
555       // Reuse the contents computed in the previous iteration.
556       buffer.append((*section_contents)[section_num]);
557     }
558 
559   buffer.append(icf_reloc_buffer);
560   return buffer;
561 }
562 
563 // This function computes a checksum on each section to detect and form
564 // groups of identical sections.  The first iteration does this for all
565 // sections.
566 // Further iterations do this only for the kept sections from each group to
567 // determine if larger groups of identical sections could be formed.  The
568 // first section in each group is the kept section for that group.
569 //
570 // CRC32 is the checksumming algorithm and can have collisions.  That is,
571 // two sections with different contents can have the same checksum. Hence,
572 // a multimap is used to maintain more than one group of checksum
573 // identical sections.  A section is added to a group only after its
574 // contents are explicitly compared with the kept section of the group.
575 //
576 // Parameters  :
577 // ITERATION_NUM           : Invocation instance of this function.
578 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
579 //                      to ICF sections.
580 // KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
581 // ID_SECTION         : Vector mapping a section to an unique integer.
582 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
583 //                            sections is already known to be unique.
584 // SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
585 //                      sections.
586 
587 static bool
588 match_sections(unsigned int iteration_num,
589                Symbol_table* symtab,
590                std::vector<unsigned int>* num_tracked_relocs,
591                std::vector<unsigned int>* kept_section_id,
592                const std::vector<Section_id>& id_section,
593                std::vector<bool>* is_secn_or_group_unique,
594                std::vector<std::string>* section_contents)
595 {
596   Unordered_multimap<uint32_t, unsigned int> section_cksum;
597   std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
598             Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
599   bool converged = true;
600 
601   if (iteration_num == 1)
602     preprocess_for_unique_sections(id_section,
603                                    is_secn_or_group_unique,
604                                    NULL);
605   else
606     preprocess_for_unique_sections(id_section,
607                                    is_secn_or_group_unique,
608                                    section_contents);
609 
610   std::vector<std::string> full_section_contents;
611 
612   for (unsigned int i = 0; i < id_section.size(); i++)
613     {
614       full_section_contents.push_back("");
615       if ((*is_secn_or_group_unique)[i])
616         continue;
617 
618       Section_id secn = id_section[i];
619       std::string this_secn_contents;
620       uint32_t cksum;
621       if (iteration_num == 1)
622         {
623           unsigned int num_relocs = 0;
624           this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
625                                                     symtab, (*kept_section_id),
626                                                     section_contents);
627           (*num_tracked_relocs)[i] = num_relocs;
628         }
629       else
630         {
631           if ((*kept_section_id)[i] != i)
632             {
633               // This section is already folded into something.  See
634               // if it should point to a different kept section.
635               unsigned int kept_section = (*kept_section_id)[i];
636               if (kept_section != (*kept_section_id)[kept_section])
637                 {
638                   (*kept_section_id)[i] = (*kept_section_id)[kept_section];
639                 }
640               continue;
641             }
642           this_secn_contents = get_section_contents(false, secn, i, NULL,
643                                                     symtab, (*kept_section_id),
644                                                     section_contents);
645         }
646 
647       const unsigned char* this_secn_contents_array =
648             reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
649       cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
650                      0xffffffff);
651       size_t count = section_cksum.count(cksum);
652 
653       if (count == 0)
654         {
655           // Start a group with this cksum.
656           section_cksum.insert(std::make_pair(cksum, i));
657           full_section_contents[i] = this_secn_contents;
658         }
659       else
660         {
661           key_range = section_cksum.equal_range(cksum);
662           Unordered_multimap<uint32_t, unsigned int>::iterator it;
663           // Search all the groups with this cksum for a match.
664           for (it = key_range.first; it != key_range.second; ++it)
665             {
666               unsigned int kept_section = it->second;
667               if (full_section_contents[kept_section].length()
668                   != this_secn_contents.length())
669                   continue;
670               if (memcmp(full_section_contents[kept_section].c_str(),
671                          this_secn_contents.c_str(),
672                          this_secn_contents.length()) != 0)
673                   continue;
674               (*kept_section_id)[i] = kept_section;
675               converged = false;
676               break;
677             }
678           if (it == key_range.second)
679             {
680               // Create a new group for this cksum.
681               section_cksum.insert(std::make_pair(cksum, i));
682               full_section_contents[i] = this_secn_contents;
683             }
684         }
685       // If there are no relocs to foldable sections do not process
686       // this section any further.
687       if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
688         (*is_secn_or_group_unique)[i] = true;
689     }
690 
691   return converged;
692 }
693 
694 // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
695 // This function returns true if the section name is that of a ctor or a dtor.
696 
697 static bool
698 is_function_ctor_or_dtor(const std::string& section_name)
699 {
700   const char* mangled_func_name = strrchr(section_name.c_str(), '.');
701   gold_assert(mangled_func_name != NULL);
702   if ((is_prefix_of("._ZN", mangled_func_name)
703        || is_prefix_of("._ZZ", mangled_func_name))
704       && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
705           || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
706     {
707       return true;
708     }
709   return false;
710 }
711 
712 // This is the main ICF function called in gold.cc.  This does the
713 // initialization and calls match_sections repeatedly (twice by default)
714 // which computes the crc checksums and detects identical functions.
715 
716 void
717 Icf::find_identical_sections(const Input_objects* input_objects,
718                              Symbol_table* symtab)
719 {
720   unsigned int section_num = 0;
721   std::vector<unsigned int> num_tracked_relocs;
722   std::vector<bool> is_secn_or_group_unique;
723   std::vector<std::string> section_contents;
724   const Target& target = parameters->target();
725 
726   // Decide which sections are possible candidates first.
727 
728   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
729        p != input_objects->relobj_end();
730        ++p)
731     {
732       // Lock the object so we can read from it.  This is only called
733       // single-threaded from queue_middle_tasks, so it is OK to lock.
734       // Unfortunately we have no way to pass in a Task token.
735       const Task* dummy_task = reinterpret_cast<const Task*>(-1);
736       Task_lock_obj<Object> tl(dummy_task, *p);
737 
738       for (unsigned int i = 0;i < (*p)->shnum(); ++i)
739         {
740 	  const std::string section_name = (*p)->section_name(i);
741           if (!is_section_foldable_candidate(section_name))
742             continue;
743           if (!(*p)->is_section_included(i))
744             continue;
745           if (parameters->options().gc_sections()
746               && symtab->gc()->is_section_garbage(*p, i))
747               continue;
748 	  // With --icf=safe, check if the mangled function name is a ctor
749 	  // or a dtor.  The mangled function name can be obtained from the
750 	  // section name by stripping the section prefix.
751 	  if (parameters->options().icf_safe_folding()
752               && !is_function_ctor_or_dtor(section_name)
753 	      && (!target.can_check_for_function_pointers()
754                   || section_has_function_pointers(*p, i)))
755             {
756 	      continue;
757             }
758           this->id_section_.push_back(Section_id(*p, i));
759           this->section_id_[Section_id(*p, i)] = section_num;
760           this->kept_section_id_.push_back(section_num);
761           num_tracked_relocs.push_back(0);
762           is_secn_or_group_unique.push_back(false);
763           section_contents.push_back("");
764           section_num++;
765         }
766     }
767 
768   unsigned int num_iterations = 0;
769 
770   // Default number of iterations to run ICF is 2.
771   unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
772                             ? parameters->options().icf_iterations()
773                             : 2;
774 
775   bool converged = false;
776 
777   while (!converged && (num_iterations < max_iterations))
778     {
779       num_iterations++;
780       converged = match_sections(num_iterations, symtab,
781                                  &num_tracked_relocs, &this->kept_section_id_,
782                                  this->id_section_, &is_secn_or_group_unique,
783                                  &section_contents);
784     }
785 
786   if (parameters->options().print_icf_sections())
787     {
788       if (converged)
789         gold_info(_("%s: ICF Converged after %u iteration(s)"),
790                   program_name, num_iterations);
791       else
792         gold_info(_("%s: ICF stopped after %u iteration(s)"),
793                   program_name, num_iterations);
794     }
795 
796   // Unfold --keep-unique symbols.
797   for (options::String_set::const_iterator p =
798 	 parameters->options().keep_unique_begin();
799        p != parameters->options().keep_unique_end();
800        ++p)
801     {
802       const char* name = p->c_str();
803       Symbol* sym = symtab->lookup(name);
804       if (sym == NULL)
805 	{
806 	  gold_warning(_("Could not find symbol %s to unfold\n"), name);
807 	}
808       else if (sym->source() == Symbol::FROM_OBJECT
809                && !sym->object()->is_dynamic())
810         {
811           Relobj* obj = static_cast<Relobj*>(sym->object());
812           bool is_ordinary;
813           unsigned int shndx = sym->shndx(&is_ordinary);
814           if (is_ordinary)
815             {
816 	      this->unfold_section(obj, shndx);
817             }
818         }
819 
820     }
821 
822   this->icf_ready();
823 }
824 
825 // Unfolds the section denoted by OBJ and SHNDX if folded.
826 
827 void
828 Icf::unfold_section(Relobj* obj, unsigned int shndx)
829 {
830   Section_id secn(obj, shndx);
831   Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
832   if (it == this->section_id_.end())
833     return;
834   unsigned int section_num = it->second;
835   unsigned int kept_section_id = this->kept_section_id_[section_num];
836   if (kept_section_id != section_num)
837     this->kept_section_id_[section_num] = section_num;
838 }
839 
840 // This function determines if the section corresponding to the
841 // given object and index is folded based on if the kept section
842 // is different from this section.
843 
844 bool
845 Icf::is_section_folded(Relobj* obj, unsigned int shndx)
846 {
847   Section_id secn(obj, shndx);
848   Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
849   if (it == this->section_id_.end())
850     return false;
851   unsigned int section_num = it->second;
852   unsigned int kept_section_id = this->kept_section_id_[section_num];
853   return kept_section_id != section_num;
854 }
855 
856 // This function returns the folded section for the given section.
857 
858 Section_id
859 Icf::get_folded_section(Relobj* dup_obj, unsigned int dup_shndx)
860 {
861   Section_id dup_secn(dup_obj, dup_shndx);
862   Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
863   gold_assert(it != this->section_id_.end());
864   unsigned int section_num = it->second;
865   unsigned int kept_section_id = this->kept_section_id_[section_num];
866   Section_id folded_section = this->id_section_[kept_section_id];
867   return folded_section;
868 }
869 
870 } // End of namespace gold.
871