1 // object.cc -- support for an object file for linking in gold
2 
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30 
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45 
46 namespace gold
47 {
48 
49 // Struct Read_symbols_data.
50 
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53 
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71 
72 // Class Xindex.
73 
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77 
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84 
85   gold_assert(symtab_shndx != 0);
86 
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 	  && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 	{
96 	  this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 	  return;
98 	}
99     }
100 
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103 
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107 
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 			   const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120 				+ (xindex_shndx
121 				   * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126 
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136 
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139 
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 		    symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153 		    symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158 
159 // Class Object.
160 
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164 
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177 
178 // Return a view of the contents of a section.
179 
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 			 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184 
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187 
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 			  Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194 
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 					       true, true);
200 
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205 
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208 		static_cast<unsigned int>(shdrnames.get_sh_type()));
209 
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 					     sd->section_names_size, false,
214 					     false);
215 }
216 
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220 
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 				   Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237 							     false);
238       if (len == 0)
239 	{
240 	  const char* warning = name + warn_prefix_len;
241 	  contents = reinterpret_cast<const unsigned char*>(warning);
242 	  len = strlen(warning);
243 	}
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250 
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253 
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269 
270 // Class Relobj
271 
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 	  typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 	  Unordered_map<section_offset_type,
277 	  typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280 					    output_addresses);
281 }
282 
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291 
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294                             section_offset_type *poutput) const {
295   Object_merge_map* object_merge_map = this->object_merge_map_;
296   if (object_merge_map == NULL)
297     return false;
298   return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300 
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303   Object_merge_map* object_merge_map = this->object_merge_map_;
304   if (object_merge_map == NULL)
305     return NULL;
306   return object_merge_map->find_merge_section(shndx);
307 }
308 
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312 
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 			  unsigned int section_header_size)
316 {
317   gc_sd->section_headers_data =
318 	 new unsigned char[(section_header_size)];
319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 	 section_header_size);
321   gc_sd->section_names_data =
322 	 new unsigned char[sd->section_names_size];
323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 	 sd->section_names_size);
325   gc_sd->section_names_size = sd->section_names_size;
326   if (sd->symbols != NULL)
327     {
328       gc_sd->symbols_data =
329 	     new unsigned char[sd->symbols_size];
330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 	    sd->symbols_size);
332     }
333   else
334     {
335       gc_sd->symbols_data = NULL;
336     }
337   gc_sd->symbols_size = sd->symbols_size;
338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
339   if (sd->symbol_names != NULL)
340     {
341       gc_sd->symbol_names_data =
342 	     new unsigned char[sd->symbol_names_size];
343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 	    sd->symbol_names_size);
345     }
346   else
347     {
348       gc_sd->symbol_names_data = NULL;
349     }
350   gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352 
353 // This function determines if a particular section name must be included
354 // in the link.  This is used during garbage collection to determine the
355 // roots of the worklist.
356 
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360   if (is_prefix_of(".ctors", name)
361       || is_prefix_of(".dtors", name)
362       || is_prefix_of(".note", name)
363       || is_prefix_of(".init", name)
364       || is_prefix_of(".fini", name)
365       || is_prefix_of(".gcc_except_table", name)
366       || is_prefix_of(".jcr", name)
367       || is_prefix_of(".preinit_array", name)
368       || (is_prefix_of(".text", name)
369 	  && strstr(name, "personality"))
370       || (is_prefix_of(".data", name)
371 	  && strstr(name, "personality"))
372       || (is_prefix_of(".sdata", name)
373 	  && strstr(name, "personality"))
374       || (is_prefix_of(".gnu.linkonce.d", name)
375 	  && strstr(name, "personality"))
376       || (is_prefix_of(".rodata", name)
377 	  && strstr(name, "nptl_version")))
378     {
379       return true;
380     }
381   return false;
382 }
383 
384 // Finalize the incremental relocation information.  Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block.  If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388 
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392   unsigned int nsyms = this->get_global_symbols()->size();
393   this->reloc_bases_ = new unsigned int[nsyms];
394 
395   gold_assert(this->reloc_bases_ != NULL);
396   gold_assert(layout->incremental_inputs() != NULL);
397 
398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399   for (unsigned int i = 0; i < nsyms; ++i)
400     {
401       this->reloc_bases_[i] = rindex;
402       rindex += this->reloc_counts_[i];
403       if (clear_counts)
404 	this->reloc_counts_[i] = 0;
405     }
406   layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408 
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412   if (!this->object_merge_map_)
413     this->object_merge_map_ = new Object_merge_map();
414   return this->object_merge_map_;
415 }
416 
417 // Class Sized_relobj.
418 
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421 
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425     Got_offset_list::Visitor* v) const
426 {
427   unsigned int nsyms = this->local_symbol_count();
428   for (unsigned int i = 0; i < nsyms; i++)
429     {
430       Local_got_entry_key key(i, 0);
431       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432       if (p != this->local_got_offsets_.end())
433 	{
434 	  const Got_offset_list* got_offsets = p->second;
435 	  got_offsets->for_all_got_offsets(v);
436 	}
437     }
438 }
439 
440 // Get the address of an output section.
441 
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445     unsigned int shndx)
446 {
447   // If the input file is linked as --just-symbols, the output
448   // section address is the input section address.
449   if (this->just_symbols())
450     return this->section_address(shndx);
451 
452   const Output_section* os = this->do_output_section(shndx);
453   gold_assert(os != NULL);
454   return os->address();
455 }
456 
457 // Class Sized_relobj_file.
458 
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461     const std::string& name,
462     Input_file* input_file,
463     off_t offset,
464     const elfcpp::Ehdr<size, big_endian>& ehdr)
465   : Sized_relobj<size, big_endian>(name, input_file, offset),
466     elf_file_(this, ehdr),
467     symtab_shndx_(-1U),
468     local_symbol_count_(0),
469     output_local_symbol_count_(0),
470     output_local_dynsym_count_(0),
471     symbols_(),
472     defined_count_(0),
473     local_symbol_offset_(0),
474     local_dynsym_offset_(0),
475     local_values_(),
476     local_plt_offsets_(),
477     kept_comdat_sections_(),
478     has_eh_frame_(false),
479     discarded_eh_frame_shndx_(-1U),
480     is_deferred_layout_(false),
481     deferred_layout_(),
482     deferred_layout_relocs_(),
483     output_views_(NULL)
484 {
485   this->e_type_ = ehdr.get_e_type();
486 }
487 
488 template<int size, bool big_endian>
489 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
490 {
491 }
492 
493 // Set up an object file based on the file header.  This sets up the
494 // section information.
495 
496 template<int size, bool big_endian>
497 void
498 Sized_relobj_file<size, big_endian>::do_setup()
499 {
500   const unsigned int shnum = this->elf_file_.shnum();
501   this->set_shnum(shnum);
502 }
503 
504 // Find the SHT_SYMTAB section, given the section headers.  The ELF
505 // standard says that maybe in the future there can be more than one
506 // SHT_SYMTAB section.  Until somebody figures out how that could
507 // work, we assume there is only one.
508 
509 template<int size, bool big_endian>
510 void
511 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
512 {
513   const unsigned int shnum = this->shnum();
514   this->symtab_shndx_ = 0;
515   if (shnum > 0)
516     {
517       // Look through the sections in reverse order, since gas tends
518       // to put the symbol table at the end.
519       const unsigned char* p = pshdrs + shnum * This::shdr_size;
520       unsigned int i = shnum;
521       unsigned int xindex_shndx = 0;
522       unsigned int xindex_link = 0;
523       while (i > 0)
524 	{
525 	  --i;
526 	  p -= This::shdr_size;
527 	  typename This::Shdr shdr(p);
528 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
529 	    {
530 	      this->symtab_shndx_ = i;
531 	      if (xindex_shndx > 0 && xindex_link == i)
532 		{
533 		  Xindex* xindex =
534 		    new Xindex(this->elf_file_.large_shndx_offset());
535 		  xindex->read_symtab_xindex<size, big_endian>(this,
536 							       xindex_shndx,
537 							       pshdrs);
538 		  this->set_xindex(xindex);
539 		}
540 	      break;
541 	    }
542 
543 	  // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
544 	  // one.  This will work if it follows the SHT_SYMTAB
545 	  // section.
546 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
547 	    {
548 	      xindex_shndx = i;
549 	      xindex_link = this->adjust_shndx(shdr.get_sh_link());
550 	    }
551 	}
552     }
553 }
554 
555 // Return the Xindex structure to use for object with lots of
556 // sections.
557 
558 template<int size, bool big_endian>
559 Xindex*
560 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
561 {
562   gold_assert(this->symtab_shndx_ != -1U);
563   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
564   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
565   return xindex;
566 }
567 
568 // Return whether SHDR has the right type and flags to be a GNU
569 // .eh_frame section.
570 
571 template<int size, bool big_endian>
572 bool
573 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
574     const elfcpp::Shdr<size, big_endian>* shdr) const
575 {
576   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
577   return ((sh_type == elfcpp::SHT_PROGBITS
578 	   || sh_type == elfcpp::SHT_X86_64_UNWIND)
579 	  && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
580 }
581 
582 // Find the section header with the given name.
583 
584 template<int size, bool big_endian>
585 const unsigned char*
586 Object::find_shdr(
587     const unsigned char* pshdrs,
588     const char* name,
589     const char* names,
590     section_size_type names_size,
591     const unsigned char* hdr) const
592 {
593   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
594   const unsigned int shnum = this->shnum();
595   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
596   size_t sh_name = 0;
597 
598   while (1)
599     {
600       if (hdr)
601 	{
602 	  // We found HDR last time we were called, continue looking.
603 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
604 	  sh_name = shdr.get_sh_name();
605 	}
606       else
607 	{
608 	  // Look for the next occurrence of NAME in NAMES.
609 	  // The fact that .shstrtab produced by current GNU tools is
610 	  // string merged means we shouldn't have both .not.foo and
611 	  // .foo in .shstrtab, and multiple .foo sections should all
612 	  // have the same sh_name.  However, this is not guaranteed
613 	  // by the ELF spec and not all ELF object file producers may
614 	  // be so clever.
615 	  size_t len = strlen(name) + 1;
616 	  const char *p = sh_name ? names + sh_name + len : names;
617 	  p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
618 						   name, len));
619 	  if (p == NULL)
620 	    return NULL;
621 	  sh_name = p - names;
622 	  hdr = pshdrs;
623 	  if (sh_name == 0)
624 	    return hdr;
625 	}
626 
627       hdr += shdr_size;
628       while (hdr < hdr_end)
629 	{
630 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
631 	  if (shdr.get_sh_name() == sh_name)
632 	    return hdr;
633 	  hdr += shdr_size;
634 	}
635       hdr = NULL;
636       if (sh_name == 0)
637 	return hdr;
638     }
639 }
640 
641 // Return whether there is a GNU .eh_frame section, given the section
642 // headers and the section names.
643 
644 template<int size, bool big_endian>
645 bool
646 Sized_relobj_file<size, big_endian>::find_eh_frame(
647     const unsigned char* pshdrs,
648     const char* names,
649     section_size_type names_size) const
650 {
651   const unsigned char* s = NULL;
652 
653   while (1)
654     {
655       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
656 						     names, names_size, s);
657       if (s == NULL)
658 	return false;
659 
660       typename This::Shdr shdr(s);
661       if (this->check_eh_frame_flags(&shdr))
662 	return true;
663     }
664 }
665 
666 // Return TRUE if this is a section whose contents will be needed in the
667 // Add_symbols task.  This function is only called for sections that have
668 // already passed the test in is_compressed_debug_section() and the debug
669 // section name prefix, ".debug"/".zdebug", has been skipped.
670 
671 static bool
672 need_decompressed_section(const char* name)
673 {
674   if (*name++ != '_')
675     return false;
676 
677 #ifdef ENABLE_THREADS
678   // Decompressing these sections now will help only if we're
679   // multithreaded.
680   if (parameters->options().threads())
681     {
682       // We will need .zdebug_str if this is not an incremental link
683       // (i.e., we are processing string merge sections) or if we need
684       // to build a gdb index.
685       if ((!parameters->incremental() || parameters->options().gdb_index())
686 	  && strcmp(name, "str") == 0)
687 	return true;
688 
689       // We will need these other sections when building a gdb index.
690       if (parameters->options().gdb_index()
691 	  && (strcmp(name, "info") == 0
692 	      || strcmp(name, "types") == 0
693 	      || strcmp(name, "pubnames") == 0
694 	      || strcmp(name, "pubtypes") == 0
695 	      || strcmp(name, "ranges") == 0
696 	      || strcmp(name, "abbrev") == 0))
697 	return true;
698     }
699 #endif
700 
701   // Even when single-threaded, we will need .zdebug_str if this is
702   // not an incremental link and we are building a gdb index.
703   // Otherwise, we would decompress the section twice: once for
704   // string merge processing, and once for building the gdb index.
705   if (!parameters->incremental()
706       && parameters->options().gdb_index()
707       && strcmp(name, "str") == 0)
708     return true;
709 
710   return false;
711 }
712 
713 // Build a table for any compressed debug sections, mapping each section index
714 // to the uncompressed size and (if needed) the decompressed contents.
715 
716 template<int size, bool big_endian>
717 Compressed_section_map*
718 build_compressed_section_map(
719     const unsigned char* pshdrs,
720     unsigned int shnum,
721     const char* names,
722     section_size_type names_size,
723     Object* obj,
724     bool decompress_if_needed)
725 {
726   Compressed_section_map* uncompressed_map = new Compressed_section_map();
727   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
728   const unsigned char* p = pshdrs + shdr_size;
729 
730   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
731     {
732       typename elfcpp::Shdr<size, big_endian> shdr(p);
733       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
734 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
735 	{
736 	  if (shdr.get_sh_name() >= names_size)
737 	    {
738 	      obj->error(_("bad section name offset for section %u: %lu"),
739 			 i, static_cast<unsigned long>(shdr.get_sh_name()));
740 	      continue;
741 	    }
742 
743 	  const char* name = names + shdr.get_sh_name();
744 	  bool is_compressed = ((shdr.get_sh_flags()
745 				 & elfcpp::SHF_COMPRESSED) != 0);
746 	  bool is_zcompressed = (!is_compressed
747 				 && is_compressed_debug_section(name));
748 
749 	  if (is_zcompressed || is_compressed)
750 	    {
751 	      section_size_type len;
752 	      const unsigned char* contents =
753 		  obj->section_contents(i, &len, false);
754 	      uint64_t uncompressed_size;
755 	      if (is_zcompressed)
756 		{
757 		  // Skip over the ".zdebug" prefix.
758 		  name += 7;
759 		  uncompressed_size = get_uncompressed_size(contents, len);
760 		}
761 	      else
762 		{
763 		  // Skip over the ".debug" prefix.
764 		  name += 6;
765 		  elfcpp::Chdr<size, big_endian> chdr(contents);
766 		  uncompressed_size = chdr.get_ch_size();
767 		}
768 	      Compressed_section_info info;
769 	      info.size = convert_to_section_size_type(uncompressed_size);
770 	      info.flag = shdr.get_sh_flags();
771 	      info.contents = NULL;
772 	      if (uncompressed_size != -1ULL)
773 		{
774 		  unsigned char* uncompressed_data = NULL;
775 		  if (decompress_if_needed && need_decompressed_section(name))
776 		    {
777 		      uncompressed_data = new unsigned char[uncompressed_size];
778 		      if (decompress_input_section(contents, len,
779 						   uncompressed_data,
780 						   uncompressed_size,
781 						   size, big_endian,
782 						   shdr.get_sh_flags()))
783 			info.contents = uncompressed_data;
784 		      else
785 			delete[] uncompressed_data;
786 		    }
787 		  (*uncompressed_map)[i] = info;
788 		}
789 	    }
790 	}
791     }
792   return uncompressed_map;
793 }
794 
795 // Stash away info for a number of special sections.
796 // Return true if any of the sections found require local symbols to be read.
797 
798 template<int size, bool big_endian>
799 bool
800 Sized_relobj_file<size, big_endian>::do_find_special_sections(
801     Read_symbols_data* sd)
802 {
803   const unsigned char* const pshdrs = sd->section_headers->data();
804   const unsigned char* namesu = sd->section_names->data();
805   const char* names = reinterpret_cast<const char*>(namesu);
806 
807   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
808     this->has_eh_frame_ = true;
809 
810   Compressed_section_map* compressed_sections =
811     build_compressed_section_map<size, big_endian>(
812       pshdrs, this->shnum(), names, sd->section_names_size, this, true);
813   if (compressed_sections != NULL)
814     this->set_compressed_sections(compressed_sections);
815 
816   return (this->has_eh_frame_
817 	  || (!parameters->options().relocatable()
818 	      && parameters->options().gdb_index()
819 	      && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
820 		  || memmem(names, sd->section_names_size, "debug_types",
821 			    13) == 0)));
822 }
823 
824 // Read the sections and symbols from an object file.
825 
826 template<int size, bool big_endian>
827 void
828 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
829 {
830   this->base_read_symbols(sd);
831 }
832 
833 // Read the sections and symbols from an object file.  This is common
834 // code for all target-specific overrides of do_read_symbols().
835 
836 template<int size, bool big_endian>
837 void
838 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
839 {
840   this->read_section_data(&this->elf_file_, sd);
841 
842   const unsigned char* const pshdrs = sd->section_headers->data();
843 
844   this->find_symtab(pshdrs);
845 
846   bool need_local_symbols = this->do_find_special_sections(sd);
847 
848   sd->symbols = NULL;
849   sd->symbols_size = 0;
850   sd->external_symbols_offset = 0;
851   sd->symbol_names = NULL;
852   sd->symbol_names_size = 0;
853 
854   if (this->symtab_shndx_ == 0)
855     {
856       // No symbol table.  Weird but legal.
857       return;
858     }
859 
860   // Get the symbol table section header.
861   typename This::Shdr symtabshdr(pshdrs
862 				 + this->symtab_shndx_ * This::shdr_size);
863   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
864 
865   // If this object has a .eh_frame section, or if building a .gdb_index
866   // section and there is debug info, we need all the symbols.
867   // Otherwise we only need the external symbols.  While it would be
868   // simpler to just always read all the symbols, I've seen object
869   // files with well over 2000 local symbols, which for a 64-bit
870   // object file format is over 5 pages that we don't need to read
871   // now.
872 
873   const int sym_size = This::sym_size;
874   const unsigned int loccount = symtabshdr.get_sh_info();
875   this->local_symbol_count_ = loccount;
876   this->local_values_.resize(loccount);
877   section_offset_type locsize = loccount * sym_size;
878   off_t dataoff = symtabshdr.get_sh_offset();
879   section_size_type datasize =
880     convert_to_section_size_type(symtabshdr.get_sh_size());
881   off_t extoff = dataoff + locsize;
882   section_size_type extsize = datasize - locsize;
883 
884   off_t readoff = need_local_symbols ? dataoff : extoff;
885   section_size_type readsize = need_local_symbols ? datasize : extsize;
886 
887   if (readsize == 0)
888     {
889       // No external symbols.  Also weird but also legal.
890       return;
891     }
892 
893   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
894 
895   // Read the section header for the symbol names.
896   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
897   if (strtab_shndx >= this->shnum())
898     {
899       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
900       return;
901     }
902   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
903   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
904     {
905       this->error(_("symbol table name section has wrong type: %u"),
906 		  static_cast<unsigned int>(strtabshdr.get_sh_type()));
907       return;
908     }
909 
910   // Read the symbol names.
911   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
912 					       strtabshdr.get_sh_size(),
913 					       false, true);
914 
915   sd->symbols = fvsymtab;
916   sd->symbols_size = readsize;
917   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
918   sd->symbol_names = fvstrtab;
919   sd->symbol_names_size =
920     convert_to_section_size_type(strtabshdr.get_sh_size());
921 }
922 
923 // Return the section index of symbol SYM.  Set *VALUE to its value in
924 // the object file.  Set *IS_ORDINARY if this is an ordinary section
925 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
926 // Note that for a symbol which is not defined in this object file,
927 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
928 // the final value of the symbol in the link.
929 
930 template<int size, bool big_endian>
931 unsigned int
932 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
933 							      Address* value,
934 							      bool* is_ordinary)
935 {
936   section_size_type symbols_size;
937   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
938 							&symbols_size,
939 							false);
940 
941   const size_t count = symbols_size / This::sym_size;
942   gold_assert(sym < count);
943 
944   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
945   *value = elfsym.get_st_value();
946 
947   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
948 }
949 
950 // Return whether to include a section group in the link.  LAYOUT is
951 // used to keep track of which section groups we have already seen.
952 // INDEX is the index of the section group and SHDR is the section
953 // header.  If we do not want to include this group, we set bits in
954 // OMIT for each section which should be discarded.
955 
956 template<int size, bool big_endian>
957 bool
958 Sized_relobj_file<size, big_endian>::include_section_group(
959     Symbol_table* symtab,
960     Layout* layout,
961     unsigned int index,
962     const char* name,
963     const unsigned char* shdrs,
964     const char* section_names,
965     section_size_type section_names_size,
966     std::vector<bool>* omit)
967 {
968   // Read the section contents.
969   typename This::Shdr shdr(shdrs + index * This::shdr_size);
970   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
971 					     shdr.get_sh_size(), true, false);
972   const elfcpp::Elf_Word* pword =
973     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
974 
975   // The first word contains flags.  We only care about COMDAT section
976   // groups.  Other section groups are always included in the link
977   // just like ordinary sections.
978   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
979 
980   // Look up the group signature, which is the name of a symbol.  ELF
981   // uses a symbol name because some group signatures are long, and
982   // the name is generally already in the symbol table, so it makes
983   // sense to put the long string just once in .strtab rather than in
984   // both .strtab and .shstrtab.
985 
986   // Get the appropriate symbol table header (this will normally be
987   // the single SHT_SYMTAB section, but in principle it need not be).
988   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
989   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
990 
991   // Read the symbol table entry.
992   unsigned int symndx = shdr.get_sh_info();
993   if (symndx >= symshdr.get_sh_size() / This::sym_size)
994     {
995       this->error(_("section group %u info %u out of range"),
996 		  index, symndx);
997       return false;
998     }
999   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
1000   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1001 					     false);
1002   elfcpp::Sym<size, big_endian> sym(psym);
1003 
1004   // Read the symbol table names.
1005   section_size_type symnamelen;
1006   const unsigned char* psymnamesu;
1007   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1008 				      &symnamelen, true);
1009   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1010 
1011   // Get the section group signature.
1012   if (sym.get_st_name() >= symnamelen)
1013     {
1014       this->error(_("symbol %u name offset %u out of range"),
1015 		  symndx, sym.get_st_name());
1016       return false;
1017     }
1018 
1019   std::string signature(psymnames + sym.get_st_name());
1020 
1021   // It seems that some versions of gas will create a section group
1022   // associated with a section symbol, and then fail to give a name to
1023   // the section symbol.  In such a case, use the name of the section.
1024   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1025     {
1026       bool is_ordinary;
1027       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1028 						      sym.get_st_shndx(),
1029 						      &is_ordinary);
1030       if (!is_ordinary || sym_shndx >= this->shnum())
1031 	{
1032 	  this->error(_("symbol %u invalid section index %u"),
1033 		      symndx, sym_shndx);
1034 	  return false;
1035 	}
1036       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1037       if (member_shdr.get_sh_name() < section_names_size)
1038 	signature = section_names + member_shdr.get_sh_name();
1039     }
1040 
1041   // Record this section group in the layout, and see whether we've already
1042   // seen one with the same signature.
1043   bool include_group;
1044   bool is_comdat;
1045   Kept_section* kept_section = NULL;
1046 
1047   if ((flags & elfcpp::GRP_COMDAT) == 0)
1048     {
1049       include_group = true;
1050       is_comdat = false;
1051     }
1052   else
1053     {
1054       include_group = layout->find_or_add_kept_section(signature,
1055 						       this, index, true,
1056 						       true, &kept_section);
1057       is_comdat = true;
1058     }
1059 
1060   if (is_comdat && include_group)
1061     {
1062       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1063       if (incremental_inputs != NULL)
1064 	incremental_inputs->report_comdat_group(this, signature.c_str());
1065     }
1066 
1067   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1068 
1069   std::vector<unsigned int> shndxes;
1070   bool relocate_group = include_group && parameters->options().relocatable();
1071   if (relocate_group)
1072     shndxes.reserve(count - 1);
1073 
1074   for (size_t i = 1; i < count; ++i)
1075     {
1076       elfcpp::Elf_Word shndx =
1077 	this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1078 
1079       if (relocate_group)
1080 	shndxes.push_back(shndx);
1081 
1082       if (shndx >= this->shnum())
1083 	{
1084 	  this->error(_("section %u in section group %u out of range"),
1085 		      shndx, index);
1086 	  continue;
1087 	}
1088 
1089       // Check for an earlier section number, since we're going to get
1090       // it wrong--we may have already decided to include the section.
1091       if (shndx < index)
1092 	this->error(_("invalid section group %u refers to earlier section %u"),
1093 		    index, shndx);
1094 
1095       // Get the name of the member section.
1096       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1097       if (member_shdr.get_sh_name() >= section_names_size)
1098 	{
1099 	  // This is an error, but it will be diagnosed eventually
1100 	  // in do_layout, so we don't need to do anything here but
1101 	  // ignore it.
1102 	  continue;
1103 	}
1104       std::string mname(section_names + member_shdr.get_sh_name());
1105 
1106       if (include_group)
1107 	{
1108 	  if (is_comdat)
1109 	    kept_section->add_comdat_section(mname, shndx,
1110 					     member_shdr.get_sh_size());
1111 	}
1112       else
1113 	{
1114 	  (*omit)[shndx] = true;
1115 
1116 	  if (is_comdat)
1117 	    {
1118 	      Relobj* kept_object = kept_section->object();
1119 	      if (kept_section->is_comdat())
1120 		{
1121 		  // Find the corresponding kept section, and store
1122 		  // that info in the discarded section table.
1123 		  unsigned int kept_shndx;
1124 		  uint64_t kept_size;
1125 		  if (kept_section->find_comdat_section(mname, &kept_shndx,
1126 							&kept_size))
1127 		    {
1128 		      // We don't keep a mapping for this section if
1129 		      // it has a different size.  The mapping is only
1130 		      // used for relocation processing, and we don't
1131 		      // want to treat the sections as similar if the
1132 		      // sizes are different.  Checking the section
1133 		      // size is the approach used by the GNU linker.
1134 		      if (kept_size == member_shdr.get_sh_size())
1135 			this->set_kept_comdat_section(shndx, kept_object,
1136 						      kept_shndx);
1137 		    }
1138 		}
1139 	      else
1140 		{
1141 		  // The existing section is a linkonce section.  Add
1142 		  // a mapping if there is exactly one section in the
1143 		  // group (which is true when COUNT == 2) and if it
1144 		  // is the same size.
1145 		  if (count == 2
1146 		      && (kept_section->linkonce_size()
1147 			  == member_shdr.get_sh_size()))
1148 		    this->set_kept_comdat_section(shndx, kept_object,
1149 						  kept_section->shndx());
1150 		}
1151 	    }
1152 	}
1153     }
1154 
1155   if (relocate_group)
1156     layout->layout_group(symtab, this, index, name, signature.c_str(),
1157 			 shdr, flags, &shndxes);
1158 
1159   return include_group;
1160 }
1161 
1162 // Whether to include a linkonce section in the link.  NAME is the
1163 // name of the section and SHDR is the section header.
1164 
1165 // Linkonce sections are a GNU extension implemented in the original
1166 // GNU linker before section groups were defined.  The semantics are
1167 // that we only include one linkonce section with a given name.  The
1168 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1169 // where T is the type of section and SYMNAME is the name of a symbol.
1170 // In an attempt to make linkonce sections interact well with section
1171 // groups, we try to identify SYMNAME and use it like a section group
1172 // signature.  We want to block section groups with that signature,
1173 // but not other linkonce sections with that signature.  We also use
1174 // the full name of the linkonce section as a normal section group
1175 // signature.
1176 
1177 template<int size, bool big_endian>
1178 bool
1179 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1180     Layout* layout,
1181     unsigned int index,
1182     const char* name,
1183     const elfcpp::Shdr<size, big_endian>& shdr)
1184 {
1185   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1186   // In general the symbol name we want will be the string following
1187   // the last '.'.  However, we have to handle the case of
1188   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1189   // some versions of gcc.  So we use a heuristic: if the name starts
1190   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1191   // we look for the last '.'.  We can't always simply skip
1192   // ".gnu.linkonce.X", because we have to deal with cases like
1193   // ".gnu.linkonce.d.rel.ro.local".
1194   const char* const linkonce_t = ".gnu.linkonce.t.";
1195   const char* symname;
1196   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1197     symname = name + strlen(linkonce_t);
1198   else
1199     symname = strrchr(name, '.') + 1;
1200   std::string sig1(symname);
1201   std::string sig2(name);
1202   Kept_section* kept1;
1203   Kept_section* kept2;
1204   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1205 						   false, &kept1);
1206   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1207 						   true, &kept2);
1208 
1209   if (!include2)
1210     {
1211       // We are not including this section because we already saw the
1212       // name of the section as a signature.  This normally implies
1213       // that the kept section is another linkonce section.  If it is
1214       // the same size, record it as the section which corresponds to
1215       // this one.
1216       if (kept2->object() != NULL
1217 	  && !kept2->is_comdat()
1218 	  && kept2->linkonce_size() == sh_size)
1219 	this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1220     }
1221   else if (!include1)
1222     {
1223       // The section is being discarded on the basis of its symbol
1224       // name.  This means that the corresponding kept section was
1225       // part of a comdat group, and it will be difficult to identify
1226       // the specific section within that group that corresponds to
1227       // this linkonce section.  We'll handle the simple case where
1228       // the group has only one member section.  Otherwise, it's not
1229       // worth the effort.
1230       unsigned int kept_shndx;
1231       uint64_t kept_size;
1232       if (kept1->object() != NULL
1233 	  && kept1->is_comdat()
1234 	  && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1235 	  && kept_size == sh_size)
1236 	this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1237     }
1238   else
1239     {
1240       kept1->set_linkonce_size(sh_size);
1241       kept2->set_linkonce_size(sh_size);
1242     }
1243 
1244   return include1 && include2;
1245 }
1246 
1247 // Layout an input section.
1248 
1249 template<int size, bool big_endian>
1250 inline void
1251 Sized_relobj_file<size, big_endian>::layout_section(
1252     Layout* layout,
1253     unsigned int shndx,
1254     const char* name,
1255     const typename This::Shdr& shdr,
1256     unsigned int reloc_shndx,
1257     unsigned int reloc_type)
1258 {
1259   off_t offset;
1260   Output_section* os = layout->layout(this, shndx, name, shdr,
1261 					  reloc_shndx, reloc_type, &offset);
1262 
1263   this->output_sections()[shndx] = os;
1264   if (offset == -1)
1265     this->section_offsets()[shndx] = invalid_address;
1266   else
1267     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1268 
1269   // If this section requires special handling, and if there are
1270   // relocs that apply to it, then we must do the special handling
1271   // before we apply the relocs.
1272   if (offset == -1 && reloc_shndx != 0)
1273     this->set_relocs_must_follow_section_writes();
1274 }
1275 
1276 // Layout an input .eh_frame section.
1277 
1278 template<int size, bool big_endian>
1279 void
1280 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1281     Layout* layout,
1282     const unsigned char* symbols_data,
1283     section_size_type symbols_size,
1284     const unsigned char* symbol_names_data,
1285     section_size_type symbol_names_size,
1286     unsigned int shndx,
1287     const typename This::Shdr& shdr,
1288     unsigned int reloc_shndx,
1289     unsigned int reloc_type)
1290 {
1291   gold_assert(this->has_eh_frame_);
1292 
1293   off_t offset;
1294   Output_section* os = layout->layout_eh_frame(this,
1295 					       symbols_data,
1296 					       symbols_size,
1297 					       symbol_names_data,
1298 					       symbol_names_size,
1299 					       shndx,
1300 					       shdr,
1301 					       reloc_shndx,
1302 					       reloc_type,
1303 					       &offset);
1304   this->output_sections()[shndx] = os;
1305   if (os == NULL || offset == -1)
1306     {
1307       // An object can contain at most one section holding exception
1308       // frame information.
1309       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1310       this->discarded_eh_frame_shndx_ = shndx;
1311       this->section_offsets()[shndx] = invalid_address;
1312     }
1313   else
1314     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1315 
1316   // If this section requires special handling, and if there are
1317   // relocs that aply to it, then we must do the special handling
1318   // before we apply the relocs.
1319   if (os != NULL && offset == -1 && reloc_shndx != 0)
1320     this->set_relocs_must_follow_section_writes();
1321 }
1322 
1323 // Lay out the input sections.  We walk through the sections and check
1324 // whether they should be included in the link.  If they should, we
1325 // pass them to the Layout object, which will return an output section
1326 // and an offset.
1327 // This function is called twice sometimes, two passes, when mapping
1328 // of input sections to output sections must be delayed.
1329 // This is true for the following :
1330 // * Garbage collection (--gc-sections): Some input sections will be
1331 // discarded and hence the assignment must wait until the second pass.
1332 // In the first pass,  it is for setting up some sections as roots to
1333 // a work-list for --gc-sections and to do comdat processing.
1334 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1335 // will be folded and hence the assignment must wait.
1336 // * Using plugins to map some sections to unique segments: Mapping
1337 // some sections to unique segments requires mapping them to unique
1338 // output sections too.  This can be done via plugins now and this
1339 // information is not available in the first pass.
1340 
1341 template<int size, bool big_endian>
1342 void
1343 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1344 					       Layout* layout,
1345 					       Read_symbols_data* sd)
1346 {
1347   const unsigned int shnum = this->shnum();
1348 
1349   /* Should this function be called twice?  */
1350   bool is_two_pass = (parameters->options().gc_sections()
1351 		      || parameters->options().icf_enabled()
1352 		      || layout->is_unique_segment_for_sections_specified());
1353 
1354   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1355      a two-pass approach is not needed.  */
1356   bool is_pass_one = false;
1357   bool is_pass_two = false;
1358 
1359   Symbols_data* gc_sd = NULL;
1360 
1361   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1362      should happen.  In the first pass, the data in sd is saved to be used
1363      later in the second pass.  */
1364   if (is_two_pass)
1365     {
1366       gc_sd = this->get_symbols_data();
1367       if (gc_sd == NULL)
1368 	{
1369 	  gold_assert(sd != NULL);
1370 	  is_pass_one = true;
1371 	}
1372       else
1373 	{
1374 	  if (parameters->options().gc_sections())
1375 	    gold_assert(symtab->gc()->is_worklist_ready());
1376 	  if (parameters->options().icf_enabled())
1377 	    gold_assert(symtab->icf()->is_icf_ready());
1378 	  is_pass_two = true;
1379 	}
1380     }
1381 
1382   if (shnum == 0)
1383     return;
1384 
1385   if (is_pass_one)
1386     {
1387       // During garbage collection save the symbols data to use it when
1388       // re-entering this function.
1389       gc_sd = new Symbols_data;
1390       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1391       this->set_symbols_data(gc_sd);
1392     }
1393 
1394   const unsigned char* section_headers_data = NULL;
1395   section_size_type section_names_size;
1396   const unsigned char* symbols_data = NULL;
1397   section_size_type symbols_size;
1398   const unsigned char* symbol_names_data = NULL;
1399   section_size_type symbol_names_size;
1400 
1401   if (is_two_pass)
1402     {
1403       section_headers_data = gc_sd->section_headers_data;
1404       section_names_size = gc_sd->section_names_size;
1405       symbols_data = gc_sd->symbols_data;
1406       symbols_size = gc_sd->symbols_size;
1407       symbol_names_data = gc_sd->symbol_names_data;
1408       symbol_names_size = gc_sd->symbol_names_size;
1409     }
1410   else
1411     {
1412       section_headers_data = sd->section_headers->data();
1413       section_names_size = sd->section_names_size;
1414       if (sd->symbols != NULL)
1415 	symbols_data = sd->symbols->data();
1416       symbols_size = sd->symbols_size;
1417       if (sd->symbol_names != NULL)
1418 	symbol_names_data = sd->symbol_names->data();
1419       symbol_names_size = sd->symbol_names_size;
1420     }
1421 
1422   // Get the section headers.
1423   const unsigned char* shdrs = section_headers_data;
1424   const unsigned char* pshdrs;
1425 
1426   // Get the section names.
1427   const unsigned char* pnamesu = (is_two_pass
1428 				  ? gc_sd->section_names_data
1429 				  : sd->section_names->data());
1430 
1431   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1432 
1433   // If any input files have been claimed by plugins, we need to defer
1434   // actual layout until the replacement files have arrived.
1435   const bool should_defer_layout =
1436       (parameters->options().has_plugins()
1437        && parameters->options().plugins()->should_defer_layout());
1438   unsigned int num_sections_to_defer = 0;
1439 
1440   // For each section, record the index of the reloc section if any.
1441   // Use 0 to mean that there is no reloc section, -1U to mean that
1442   // there is more than one.
1443   std::vector<unsigned int> reloc_shndx(shnum, 0);
1444   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1445   // Skip the first, dummy, section.
1446   pshdrs = shdrs + This::shdr_size;
1447   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1448     {
1449       typename This::Shdr shdr(pshdrs);
1450 
1451       // Count the number of sections whose layout will be deferred.
1452       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1453 	++num_sections_to_defer;
1454 
1455       unsigned int sh_type = shdr.get_sh_type();
1456       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1457 	{
1458 	  unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1459 	  if (target_shndx == 0 || target_shndx >= shnum)
1460 	    {
1461 	      this->error(_("relocation section %u has bad info %u"),
1462 			  i, target_shndx);
1463 	      continue;
1464 	    }
1465 
1466 	  if (reloc_shndx[target_shndx] != 0)
1467 	    reloc_shndx[target_shndx] = -1U;
1468 	  else
1469 	    {
1470 	      reloc_shndx[target_shndx] = i;
1471 	      reloc_type[target_shndx] = sh_type;
1472 	    }
1473 	}
1474     }
1475 
1476   Output_sections& out_sections(this->output_sections());
1477   std::vector<Address>& out_section_offsets(this->section_offsets());
1478 
1479   if (!is_pass_two)
1480     {
1481       out_sections.resize(shnum);
1482       out_section_offsets.resize(shnum);
1483     }
1484 
1485   // If we are only linking for symbols, then there is nothing else to
1486   // do here.
1487   if (this->input_file()->just_symbols())
1488     {
1489       if (!is_pass_two)
1490 	{
1491 	  delete sd->section_headers;
1492 	  sd->section_headers = NULL;
1493 	  delete sd->section_names;
1494 	  sd->section_names = NULL;
1495 	}
1496       return;
1497     }
1498 
1499   if (num_sections_to_defer > 0)
1500     {
1501       parameters->options().plugins()->add_deferred_layout_object(this);
1502       this->deferred_layout_.reserve(num_sections_to_defer);
1503       this->is_deferred_layout_ = true;
1504     }
1505 
1506   // Whether we've seen a .note.GNU-stack section.
1507   bool seen_gnu_stack = false;
1508   // The flags of a .note.GNU-stack section.
1509   uint64_t gnu_stack_flags = 0;
1510 
1511   // Keep track of which sections to omit.
1512   std::vector<bool> omit(shnum, false);
1513 
1514   // Keep track of reloc sections when emitting relocations.
1515   const bool relocatable = parameters->options().relocatable();
1516   const bool emit_relocs = (relocatable
1517 			    || parameters->options().emit_relocs());
1518   std::vector<unsigned int> reloc_sections;
1519 
1520   // Keep track of .eh_frame sections.
1521   std::vector<unsigned int> eh_frame_sections;
1522 
1523   // Keep track of .debug_info and .debug_types sections.
1524   std::vector<unsigned int> debug_info_sections;
1525   std::vector<unsigned int> debug_types_sections;
1526 
1527   // Skip the first, dummy, section.
1528   pshdrs = shdrs + This::shdr_size;
1529   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1530     {
1531       typename This::Shdr shdr(pshdrs);
1532 
1533       if (shdr.get_sh_name() >= section_names_size)
1534 	{
1535 	  this->error(_("bad section name offset for section %u: %lu"),
1536 		      i, static_cast<unsigned long>(shdr.get_sh_name()));
1537 	  return;
1538 	}
1539 
1540       const char* name = pnames + shdr.get_sh_name();
1541 
1542       if (!is_pass_two)
1543 	{
1544 	  if (this->handle_gnu_warning_section(name, i, symtab))
1545 	    {
1546 	      if (!relocatable && !parameters->options().shared())
1547 		omit[i] = true;
1548 	    }
1549 
1550 	  // The .note.GNU-stack section is special.  It gives the
1551 	  // protection flags that this object file requires for the stack
1552 	  // in memory.
1553 	  if (strcmp(name, ".note.GNU-stack") == 0)
1554 	    {
1555 	      seen_gnu_stack = true;
1556 	      gnu_stack_flags |= shdr.get_sh_flags();
1557 	      omit[i] = true;
1558 	    }
1559 
1560 	  // The .note.GNU-split-stack section is also special.  It
1561 	  // indicates that the object was compiled with
1562 	  // -fsplit-stack.
1563 	  if (this->handle_split_stack_section(name))
1564 	    {
1565 	      if (!relocatable && !parameters->options().shared())
1566 		omit[i] = true;
1567 	    }
1568 
1569 	  // Skip attributes section.
1570 	  if (parameters->target().is_attributes_section(name))
1571 	    {
1572 	      omit[i] = true;
1573 	    }
1574 
1575 	  bool discard = omit[i];
1576 	  if (!discard)
1577 	    {
1578 	      if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1579 		{
1580 		  if (!this->include_section_group(symtab, layout, i, name,
1581 						   shdrs, pnames,
1582 						   section_names_size,
1583 						   &omit))
1584 		    discard = true;
1585 		}
1586 	      else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1587 		       && Layout::is_linkonce(name))
1588 		{
1589 		  if (!this->include_linkonce_section(layout, i, name, shdr))
1590 		    discard = true;
1591 		}
1592 	    }
1593 
1594 	  // Add the section to the incremental inputs layout.
1595 	  Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1596 	  if (incremental_inputs != NULL
1597 	      && !discard
1598 	      && can_incremental_update(shdr.get_sh_type()))
1599 	    {
1600 	      off_t sh_size = shdr.get_sh_size();
1601 	      section_size_type uncompressed_size;
1602 	      if (this->section_is_compressed(i, &uncompressed_size))
1603 		sh_size = uncompressed_size;
1604 	      incremental_inputs->report_input_section(this, i, name, sh_size);
1605 	    }
1606 
1607 	  if (discard)
1608 	    {
1609 	      // Do not include this section in the link.
1610 	      out_sections[i] = NULL;
1611 	      out_section_offsets[i] = invalid_address;
1612 	      continue;
1613 	    }
1614 	}
1615 
1616       if (is_pass_one && parameters->options().gc_sections())
1617 	{
1618 	  if (this->is_section_name_included(name)
1619 	      || layout->keep_input_section (this, name)
1620 	      || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1621 	      || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1622 	    {
1623 	      symtab->gc()->worklist().push_back(Section_id(this, i));
1624 	    }
1625 	  // If the section name XXX can be represented as a C identifier
1626 	  // it cannot be discarded if there are references to
1627 	  // __start_XXX and __stop_XXX symbols.  These need to be
1628 	  // specially handled.
1629 	  if (is_cident(name))
1630 	    {
1631 	      symtab->gc()->add_cident_section(name, Section_id(this, i));
1632 	    }
1633 	}
1634 
1635       // When doing a relocatable link we are going to copy input
1636       // reloc sections into the output.  We only want to copy the
1637       // ones associated with sections which are not being discarded.
1638       // However, we don't know that yet for all sections.  So save
1639       // reloc sections and process them later. Garbage collection is
1640       // not triggered when relocatable code is desired.
1641       if (emit_relocs
1642 	  && (shdr.get_sh_type() == elfcpp::SHT_REL
1643 	      || shdr.get_sh_type() == elfcpp::SHT_RELA))
1644 	{
1645 	  reloc_sections.push_back(i);
1646 	  continue;
1647 	}
1648 
1649       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1650 	continue;
1651 
1652       // The .eh_frame section is special.  It holds exception frame
1653       // information that we need to read in order to generate the
1654       // exception frame header.  We process these after all the other
1655       // sections so that the exception frame reader can reliably
1656       // determine which sections are being discarded, and discard the
1657       // corresponding information.
1658       if (!relocatable
1659 	  && strcmp(name, ".eh_frame") == 0
1660 	  && this->check_eh_frame_flags(&shdr))
1661 	{
1662 	  if (is_pass_one)
1663 	    {
1664 	      if (this->is_deferred_layout())
1665 		out_sections[i] = reinterpret_cast<Output_section*>(2);
1666 	      else
1667 		out_sections[i] = reinterpret_cast<Output_section*>(1);
1668 	      out_section_offsets[i] = invalid_address;
1669 	    }
1670 	  else if (this->is_deferred_layout())
1671 	    this->deferred_layout_.push_back(Deferred_layout(i, name,
1672 							     pshdrs,
1673 							     reloc_shndx[i],
1674 							     reloc_type[i]));
1675 	  else
1676 	    eh_frame_sections.push_back(i);
1677 	  continue;
1678 	}
1679 
1680       if (is_pass_two && parameters->options().gc_sections())
1681 	{
1682 	  // This is executed during the second pass of garbage
1683 	  // collection. do_layout has been called before and some
1684 	  // sections have been already discarded. Simply ignore
1685 	  // such sections this time around.
1686 	  if (out_sections[i] == NULL)
1687 	    {
1688 	      gold_assert(out_section_offsets[i] == invalid_address);
1689 	      continue;
1690 	    }
1691 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1692 	      && symtab->gc()->is_section_garbage(this, i))
1693 	      {
1694 		if (parameters->options().print_gc_sections())
1695 		  gold_info(_("%s: removing unused section from '%s'"
1696 			      " in file '%s'"),
1697 			    program_name, this->section_name(i).c_str(),
1698 			    this->name().c_str());
1699 		out_sections[i] = NULL;
1700 		out_section_offsets[i] = invalid_address;
1701 		continue;
1702 	      }
1703 	}
1704 
1705       if (is_pass_two && parameters->options().icf_enabled())
1706 	{
1707 	  if (out_sections[i] == NULL)
1708 	    {
1709 	      gold_assert(out_section_offsets[i] == invalid_address);
1710 	      continue;
1711 	    }
1712 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1713 	      && symtab->icf()->is_section_folded(this, i))
1714 	      {
1715 		if (parameters->options().print_icf_sections())
1716 		  {
1717 		    Section_id folded =
1718 				symtab->icf()->get_folded_section(this, i);
1719 		    Relobj* folded_obj =
1720 				reinterpret_cast<Relobj*>(folded.first);
1721 		    gold_info(_("%s: ICF folding section '%s' in file '%s' "
1722 				"into '%s' in file '%s'"),
1723 			      program_name, this->section_name(i).c_str(),
1724 			      this->name().c_str(),
1725 			      folded_obj->section_name(folded.second).c_str(),
1726 			      folded_obj->name().c_str());
1727 		  }
1728 		out_sections[i] = NULL;
1729 		out_section_offsets[i] = invalid_address;
1730 		continue;
1731 	      }
1732 	}
1733 
1734       // Defer layout here if input files are claimed by plugins.  When gc
1735       // is turned on this function is called twice; we only want to do this
1736       // on the first pass.
1737       if (!is_pass_two
1738           && this->is_deferred_layout()
1739           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1740 	{
1741 	  this->deferred_layout_.push_back(Deferred_layout(i, name,
1742 							   pshdrs,
1743 							   reloc_shndx[i],
1744 							   reloc_type[i]));
1745 	  // Put dummy values here; real values will be supplied by
1746 	  // do_layout_deferred_sections.
1747 	  out_sections[i] = reinterpret_cast<Output_section*>(2);
1748 	  out_section_offsets[i] = invalid_address;
1749 	  continue;
1750 	}
1751 
1752       // During gc_pass_two if a section that was previously deferred is
1753       // found, do not layout the section as layout_deferred_sections will
1754       // do it later from gold.cc.
1755       if (is_pass_two
1756 	  && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1757 	continue;
1758 
1759       if (is_pass_one)
1760 	{
1761 	  // This is during garbage collection. The out_sections are
1762 	  // assigned in the second call to this function.
1763 	  out_sections[i] = reinterpret_cast<Output_section*>(1);
1764 	  out_section_offsets[i] = invalid_address;
1765 	}
1766       else
1767 	{
1768 	  // When garbage collection is switched on the actual layout
1769 	  // only happens in the second call.
1770 	  this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1771 			       reloc_type[i]);
1772 
1773 	  // When generating a .gdb_index section, we do additional
1774 	  // processing of .debug_info and .debug_types sections after all
1775 	  // the other sections for the same reason as above.
1776 	  if (!relocatable
1777 	      && parameters->options().gdb_index()
1778 	      && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1779 	    {
1780 	      if (strcmp(name, ".debug_info") == 0
1781 		  || strcmp(name, ".zdebug_info") == 0)
1782 		debug_info_sections.push_back(i);
1783 	      else if (strcmp(name, ".debug_types") == 0
1784 		       || strcmp(name, ".zdebug_types") == 0)
1785 		debug_types_sections.push_back(i);
1786 	    }
1787 	}
1788     }
1789 
1790   if (!is_pass_two)
1791     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1792 
1793   // Handle the .eh_frame sections after the other sections.
1794   gold_assert(!is_pass_one || eh_frame_sections.empty());
1795   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1796        p != eh_frame_sections.end();
1797        ++p)
1798     {
1799       unsigned int i = *p;
1800       const unsigned char* pshdr;
1801       pshdr = section_headers_data + i * This::shdr_size;
1802       typename This::Shdr shdr(pshdr);
1803 
1804       this->layout_eh_frame_section(layout,
1805 				    symbols_data,
1806 				    symbols_size,
1807 				    symbol_names_data,
1808 				    symbol_names_size,
1809 				    i,
1810 				    shdr,
1811 				    reloc_shndx[i],
1812 				    reloc_type[i]);
1813     }
1814 
1815   // When doing a relocatable link handle the reloc sections at the
1816   // end.  Garbage collection  and Identical Code Folding is not
1817   // turned on for relocatable code.
1818   if (emit_relocs)
1819     this->size_relocatable_relocs();
1820 
1821   gold_assert(!is_two_pass || reloc_sections.empty());
1822 
1823   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1824        p != reloc_sections.end();
1825        ++p)
1826     {
1827       unsigned int i = *p;
1828       const unsigned char* pshdr;
1829       pshdr = section_headers_data + i * This::shdr_size;
1830       typename This::Shdr shdr(pshdr);
1831 
1832       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1833       if (data_shndx >= shnum)
1834 	{
1835 	  // We already warned about this above.
1836 	  continue;
1837 	}
1838 
1839       Output_section* data_section = out_sections[data_shndx];
1840       if (data_section == reinterpret_cast<Output_section*>(2))
1841 	{
1842 	  if (is_pass_two)
1843 	    continue;
1844 	  // The layout for the data section was deferred, so we need
1845 	  // to defer the relocation section, too.
1846 	  const char* name = pnames + shdr.get_sh_name();
1847 	  this->deferred_layout_relocs_.push_back(
1848 	      Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1849 	  out_sections[i] = reinterpret_cast<Output_section*>(2);
1850 	  out_section_offsets[i] = invalid_address;
1851 	  continue;
1852 	}
1853       if (data_section == NULL)
1854 	{
1855 	  out_sections[i] = NULL;
1856 	  out_section_offsets[i] = invalid_address;
1857 	  continue;
1858 	}
1859 
1860       Relocatable_relocs* rr = new Relocatable_relocs();
1861       this->set_relocatable_relocs(i, rr);
1862 
1863       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1864 						rr);
1865       out_sections[i] = os;
1866       out_section_offsets[i] = invalid_address;
1867     }
1868 
1869   // When building a .gdb_index section, scan the .debug_info and
1870   // .debug_types sections.
1871   gold_assert(!is_pass_one
1872 	      || (debug_info_sections.empty() && debug_types_sections.empty()));
1873   for (std::vector<unsigned int>::const_iterator p
1874 	   = debug_info_sections.begin();
1875        p != debug_info_sections.end();
1876        ++p)
1877     {
1878       unsigned int i = *p;
1879       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1880 			       i, reloc_shndx[i], reloc_type[i]);
1881     }
1882   for (std::vector<unsigned int>::const_iterator p
1883 	   = debug_types_sections.begin();
1884        p != debug_types_sections.end();
1885        ++p)
1886     {
1887       unsigned int i = *p;
1888       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1889 			       i, reloc_shndx[i], reloc_type[i]);
1890     }
1891 
1892   if (is_pass_two)
1893     {
1894       delete[] gc_sd->section_headers_data;
1895       delete[] gc_sd->section_names_data;
1896       delete[] gc_sd->symbols_data;
1897       delete[] gc_sd->symbol_names_data;
1898       this->set_symbols_data(NULL);
1899     }
1900   else
1901     {
1902       delete sd->section_headers;
1903       sd->section_headers = NULL;
1904       delete sd->section_names;
1905       sd->section_names = NULL;
1906     }
1907 }
1908 
1909 // Layout sections whose layout was deferred while waiting for
1910 // input files from a plugin.
1911 
1912 template<int size, bool big_endian>
1913 void
1914 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1915 {
1916   typename std::vector<Deferred_layout>::iterator deferred;
1917 
1918   for (deferred = this->deferred_layout_.begin();
1919        deferred != this->deferred_layout_.end();
1920        ++deferred)
1921     {
1922       typename This::Shdr shdr(deferred->shdr_data_);
1923 
1924       if (!parameters->options().relocatable()
1925 	  && deferred->name_ == ".eh_frame"
1926 	  && this->check_eh_frame_flags(&shdr))
1927 	{
1928 	  // Checking is_section_included is not reliable for
1929 	  // .eh_frame sections, because they do not have an output
1930 	  // section.  This is not a problem normally because we call
1931 	  // layout_eh_frame_section unconditionally, but when
1932 	  // deferring sections that is not true.  We don't want to
1933 	  // keep all .eh_frame sections because that will cause us to
1934 	  // keep all sections that they refer to, which is the wrong
1935 	  // way around.  Instead, the eh_frame code will discard
1936 	  // .eh_frame sections that refer to discarded sections.
1937 
1938 	  // Reading the symbols again here may be slow.
1939 	  Read_symbols_data sd;
1940 	  this->base_read_symbols(&sd);
1941 	  this->layout_eh_frame_section(layout,
1942 					sd.symbols->data(),
1943 					sd.symbols_size,
1944 					sd.symbol_names->data(),
1945 					sd.symbol_names_size,
1946 					deferred->shndx_,
1947 					shdr,
1948 					deferred->reloc_shndx_,
1949 					deferred->reloc_type_);
1950 	  continue;
1951 	}
1952 
1953       // If the section is not included, it is because the garbage collector
1954       // decided it is not needed.  Avoid reverting that decision.
1955       if (!this->is_section_included(deferred->shndx_))
1956 	continue;
1957 
1958       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1959 			   shdr, deferred->reloc_shndx_,
1960 			   deferred->reloc_type_);
1961     }
1962 
1963   this->deferred_layout_.clear();
1964 
1965   // Now handle the deferred relocation sections.
1966 
1967   Output_sections& out_sections(this->output_sections());
1968   std::vector<Address>& out_section_offsets(this->section_offsets());
1969 
1970   for (deferred = this->deferred_layout_relocs_.begin();
1971        deferred != this->deferred_layout_relocs_.end();
1972        ++deferred)
1973     {
1974       unsigned int shndx = deferred->shndx_;
1975       typename This::Shdr shdr(deferred->shdr_data_);
1976       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1977 
1978       Output_section* data_section = out_sections[data_shndx];
1979       if (data_section == NULL)
1980 	{
1981 	  out_sections[shndx] = NULL;
1982 	  out_section_offsets[shndx] = invalid_address;
1983 	  continue;
1984 	}
1985 
1986       Relocatable_relocs* rr = new Relocatable_relocs();
1987       this->set_relocatable_relocs(shndx, rr);
1988 
1989       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1990 						data_section, rr);
1991       out_sections[shndx] = os;
1992       out_section_offsets[shndx] = invalid_address;
1993     }
1994 }
1995 
1996 // Add the symbols to the symbol table.
1997 
1998 template<int size, bool big_endian>
1999 void
2000 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2001 						    Read_symbols_data* sd,
2002 						    Layout*)
2003 {
2004   if (sd->symbols == NULL)
2005     {
2006       gold_assert(sd->symbol_names == NULL);
2007       return;
2008     }
2009 
2010   const int sym_size = This::sym_size;
2011   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2012 		     / sym_size);
2013   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2014     {
2015       this->error(_("size of symbols is not multiple of symbol size"));
2016       return;
2017     }
2018 
2019   this->symbols_.resize(symcount);
2020 
2021   const char* sym_names =
2022     reinterpret_cast<const char*>(sd->symbol_names->data());
2023   symtab->add_from_relobj(this,
2024 			  sd->symbols->data() + sd->external_symbols_offset,
2025 			  symcount, this->local_symbol_count_,
2026 			  sym_names, sd->symbol_names_size,
2027 			  &this->symbols_,
2028 			  &this->defined_count_);
2029 
2030   delete sd->symbols;
2031   sd->symbols = NULL;
2032   delete sd->symbol_names;
2033   sd->symbol_names = NULL;
2034 }
2035 
2036 // Find out if this object, that is a member of a lib group, should be included
2037 // in the link. We check every symbol defined by this object. If the symbol
2038 // table has a strong undefined reference to that symbol, we have to include
2039 // the object.
2040 
2041 template<int size, bool big_endian>
2042 Archive::Should_include
2043 Sized_relobj_file<size, big_endian>::do_should_include_member(
2044     Symbol_table* symtab,
2045     Layout* layout,
2046     Read_symbols_data* sd,
2047     std::string* why)
2048 {
2049   char* tmpbuf = NULL;
2050   size_t tmpbuflen = 0;
2051   const char* sym_names =
2052       reinterpret_cast<const char*>(sd->symbol_names->data());
2053   const unsigned char* syms =
2054       sd->symbols->data() + sd->external_symbols_offset;
2055   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2056   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2057 			 / sym_size);
2058 
2059   const unsigned char* p = syms;
2060 
2061   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2062     {
2063       elfcpp::Sym<size, big_endian> sym(p);
2064       unsigned int st_shndx = sym.get_st_shndx();
2065       if (st_shndx == elfcpp::SHN_UNDEF)
2066 	continue;
2067 
2068       unsigned int st_name = sym.get_st_name();
2069       const char* name = sym_names + st_name;
2070       Symbol* symbol;
2071       Archive::Should_include t = Archive::should_include_member(symtab,
2072 								 layout,
2073 								 name,
2074 								 &symbol, why,
2075 								 &tmpbuf,
2076 								 &tmpbuflen);
2077       if (t == Archive::SHOULD_INCLUDE_YES)
2078 	{
2079 	  if (tmpbuf != NULL)
2080 	    free(tmpbuf);
2081 	  return t;
2082 	}
2083     }
2084   if (tmpbuf != NULL)
2085     free(tmpbuf);
2086   return Archive::SHOULD_INCLUDE_UNKNOWN;
2087 }
2088 
2089 // Iterate over global defined symbols, calling a visitor class V for each.
2090 
2091 template<int size, bool big_endian>
2092 void
2093 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2094     Read_symbols_data* sd,
2095     Library_base::Symbol_visitor_base* v)
2096 {
2097   const char* sym_names =
2098       reinterpret_cast<const char*>(sd->symbol_names->data());
2099   const unsigned char* syms =
2100       sd->symbols->data() + sd->external_symbols_offset;
2101   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2102   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2103 		     / sym_size);
2104   const unsigned char* p = syms;
2105 
2106   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2107     {
2108       elfcpp::Sym<size, big_endian> sym(p);
2109       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2110 	v->visit(sym_names + sym.get_st_name());
2111     }
2112 }
2113 
2114 // Return whether the local symbol SYMNDX has a PLT offset.
2115 
2116 template<int size, bool big_endian>
2117 bool
2118 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2119     unsigned int symndx) const
2120 {
2121   typename Local_plt_offsets::const_iterator p =
2122     this->local_plt_offsets_.find(symndx);
2123   return p != this->local_plt_offsets_.end();
2124 }
2125 
2126 // Get the PLT offset of a local symbol.
2127 
2128 template<int size, bool big_endian>
2129 unsigned int
2130 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2131     unsigned int symndx) const
2132 {
2133   typename Local_plt_offsets::const_iterator p =
2134     this->local_plt_offsets_.find(symndx);
2135   gold_assert(p != this->local_plt_offsets_.end());
2136   return p->second;
2137 }
2138 
2139 // Set the PLT offset of a local symbol.
2140 
2141 template<int size, bool big_endian>
2142 void
2143 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2144     unsigned int symndx, unsigned int plt_offset)
2145 {
2146   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2147     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2148   gold_assert(ins.second);
2149 }
2150 
2151 // First pass over the local symbols.  Here we add their names to
2152 // *POOL and *DYNPOOL, and we store the symbol value in
2153 // THIS->LOCAL_VALUES_.  This function is always called from a
2154 // singleton thread.  This is followed by a call to
2155 // finalize_local_symbols.
2156 
2157 template<int size, bool big_endian>
2158 void
2159 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2160 							    Stringpool* dynpool)
2161 {
2162   gold_assert(this->symtab_shndx_ != -1U);
2163   if (this->symtab_shndx_ == 0)
2164     {
2165       // This object has no symbols.  Weird but legal.
2166       return;
2167     }
2168 
2169   // Read the symbol table section header.
2170   const unsigned int symtab_shndx = this->symtab_shndx_;
2171   typename This::Shdr symtabshdr(this,
2172 				 this->elf_file_.section_header(symtab_shndx));
2173   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2174 
2175   // Read the local symbols.
2176   const int sym_size = This::sym_size;
2177   const unsigned int loccount = this->local_symbol_count_;
2178   gold_assert(loccount == symtabshdr.get_sh_info());
2179   off_t locsize = loccount * sym_size;
2180   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2181 					      locsize, true, true);
2182 
2183   // Read the symbol names.
2184   const unsigned int strtab_shndx =
2185     this->adjust_shndx(symtabshdr.get_sh_link());
2186   section_size_type strtab_size;
2187   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2188 							&strtab_size,
2189 							true);
2190   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2191 
2192   // Loop over the local symbols.
2193 
2194   const Output_sections& out_sections(this->output_sections());
2195   std::vector<Address>& out_section_offsets(this->section_offsets());
2196   unsigned int shnum = this->shnum();
2197   unsigned int count = 0;
2198   unsigned int dyncount = 0;
2199   // Skip the first, dummy, symbol.
2200   psyms += sym_size;
2201   bool strip_all = parameters->options().strip_all();
2202   bool discard_all = parameters->options().discard_all();
2203   bool discard_locals = parameters->options().discard_locals();
2204   bool discard_sec_merge = parameters->options().discard_sec_merge();
2205   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2206     {
2207       elfcpp::Sym<size, big_endian> sym(psyms);
2208 
2209       Symbol_value<size>& lv(this->local_values_[i]);
2210 
2211       bool is_ordinary;
2212       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2213 						  &is_ordinary);
2214       lv.set_input_shndx(shndx, is_ordinary);
2215 
2216       if (sym.get_st_type() == elfcpp::STT_SECTION)
2217 	lv.set_is_section_symbol();
2218       else if (sym.get_st_type() == elfcpp::STT_TLS)
2219 	lv.set_is_tls_symbol();
2220       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2221 	lv.set_is_ifunc_symbol();
2222 
2223       // Save the input symbol value for use in do_finalize_local_symbols().
2224       lv.set_input_value(sym.get_st_value());
2225 
2226       // Decide whether this symbol should go into the output file.
2227 
2228       if ((shndx < shnum && out_sections[shndx] == NULL)
2229 	  || shndx == this->discarded_eh_frame_shndx_)
2230 	{
2231 	  lv.set_no_output_symtab_entry();
2232 	  gold_assert(!lv.needs_output_dynsym_entry());
2233 	  continue;
2234 	}
2235 
2236       if (sym.get_st_type() == elfcpp::STT_SECTION
2237 	  || !this->adjust_local_symbol(&lv))
2238 	{
2239 	  lv.set_no_output_symtab_entry();
2240 	  gold_assert(!lv.needs_output_dynsym_entry());
2241 	  continue;
2242 	}
2243 
2244       if (sym.get_st_name() >= strtab_size)
2245 	{
2246 	  this->error(_("local symbol %u section name out of range: %u >= %u"),
2247 		      i, sym.get_st_name(),
2248 		      static_cast<unsigned int>(strtab_size));
2249 	  lv.set_no_output_symtab_entry();
2250 	  continue;
2251 	}
2252 
2253       const char* name = pnames + sym.get_st_name();
2254 
2255       // If needed, add the symbol to the dynamic symbol table string pool.
2256       if (lv.needs_output_dynsym_entry())
2257 	{
2258 	  dynpool->add(name, true, NULL);
2259 	  ++dyncount;
2260 	}
2261 
2262       if (strip_all
2263 	  || (discard_all && lv.may_be_discarded_from_output_symtab()))
2264 	{
2265 	  lv.set_no_output_symtab_entry();
2266 	  continue;
2267 	}
2268 
2269       // By default, discard temporary local symbols in merge sections.
2270       // If --discard-locals option is used, discard all temporary local
2271       // symbols.  These symbols start with system-specific local label
2272       // prefixes, typically .L for ELF system.  We want to be compatible
2273       // with GNU ld so here we essentially use the same check in
2274       // bfd_is_local_label().  The code is different because we already
2275       // know that:
2276       //
2277       //   - the symbol is local and thus cannot have global or weak binding.
2278       //   - the symbol is not a section symbol.
2279       //   - the symbol has a name.
2280       //
2281       // We do not discard a symbol if it needs a dynamic symbol entry.
2282       if ((discard_locals
2283 	   || (discard_sec_merge
2284 	       && is_ordinary
2285 	       && out_section_offsets[shndx] == invalid_address))
2286 	  && sym.get_st_type() != elfcpp::STT_FILE
2287 	  && !lv.needs_output_dynsym_entry()
2288 	  && lv.may_be_discarded_from_output_symtab()
2289 	  && parameters->target().is_local_label_name(name))
2290 	{
2291 	  lv.set_no_output_symtab_entry();
2292 	  continue;
2293 	}
2294 
2295       // Discard the local symbol if -retain_symbols_file is specified
2296       // and the local symbol is not in that file.
2297       if (!parameters->options().should_retain_symbol(name))
2298 	{
2299 	  lv.set_no_output_symtab_entry();
2300 	  continue;
2301 	}
2302 
2303       // Add the symbol to the symbol table string pool.
2304       pool->add(name, true, NULL);
2305       ++count;
2306     }
2307 
2308   this->output_local_symbol_count_ = count;
2309   this->output_local_dynsym_count_ = dyncount;
2310 }
2311 
2312 // Compute the final value of a local symbol.
2313 
2314 template<int size, bool big_endian>
2315 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2316 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2317     unsigned int r_sym,
2318     const Symbol_value<size>* lv_in,
2319     Symbol_value<size>* lv_out,
2320     bool relocatable,
2321     const Output_sections& out_sections,
2322     const std::vector<Address>& out_offsets,
2323     const Symbol_table* symtab)
2324 {
2325   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2326   // we may have a memory leak.
2327   gold_assert(lv_out->has_output_value());
2328 
2329   bool is_ordinary;
2330   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2331 
2332   // Set the output symbol value.
2333 
2334   if (!is_ordinary)
2335     {
2336       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2337 	lv_out->set_output_value(lv_in->input_value());
2338       else
2339 	{
2340 	  this->error(_("unknown section index %u for local symbol %u"),
2341 		      shndx, r_sym);
2342 	  lv_out->set_output_value(0);
2343 	  return This::CFLV_ERROR;
2344 	}
2345     }
2346   else
2347     {
2348       if (shndx >= this->shnum())
2349 	{
2350 	  this->error(_("local symbol %u section index %u out of range"),
2351 		      r_sym, shndx);
2352 	  lv_out->set_output_value(0);
2353 	  return This::CFLV_ERROR;
2354 	}
2355 
2356       Output_section* os = out_sections[shndx];
2357       Address secoffset = out_offsets[shndx];
2358       if (symtab->is_section_folded(this, shndx))
2359 	{
2360 	  gold_assert(os == NULL && secoffset == invalid_address);
2361 	  // Get the os of the section it is folded onto.
2362 	  Section_id folded = symtab->icf()->get_folded_section(this,
2363 								shndx);
2364 	  gold_assert(folded.first != NULL);
2365 	  Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2366 	    <Sized_relobj_file<size, big_endian>*>(folded.first);
2367 	  os = folded_obj->output_section(folded.second);
2368 	  gold_assert(os != NULL);
2369 	  secoffset = folded_obj->get_output_section_offset(folded.second);
2370 
2371 	  // This could be a relaxed input section.
2372 	  if (secoffset == invalid_address)
2373 	    {
2374 	      const Output_relaxed_input_section* relaxed_section =
2375 		os->find_relaxed_input_section(folded_obj, folded.second);
2376 	      gold_assert(relaxed_section != NULL);
2377 	      secoffset = relaxed_section->address() - os->address();
2378 	    }
2379 	}
2380 
2381       if (os == NULL)
2382 	{
2383 	  // This local symbol belongs to a section we are discarding.
2384 	  // In some cases when applying relocations later, we will
2385 	  // attempt to match it to the corresponding kept section,
2386 	  // so we leave the input value unchanged here.
2387 	  return This::CFLV_DISCARDED;
2388 	}
2389       else if (secoffset == invalid_address)
2390 	{
2391 	  uint64_t start;
2392 
2393 	  // This is a SHF_MERGE section or one which otherwise
2394 	  // requires special handling.
2395 	  if (shndx == this->discarded_eh_frame_shndx_)
2396 	    {
2397 	      // This local symbol belongs to a discarded .eh_frame
2398 	      // section.  Just treat it like the case in which
2399 	      // os == NULL above.
2400 	      gold_assert(this->has_eh_frame_);
2401 	      return This::CFLV_DISCARDED;
2402 	    }
2403 	  else if (!lv_in->is_section_symbol())
2404 	    {
2405 	      // This is not a section symbol.  We can determine
2406 	      // the final value now.
2407 	      uint64_t value =
2408 		os->output_address(this, shndx, lv_in->input_value());
2409 	      if (relocatable)
2410 		value -= os->address();
2411 	      lv_out->set_output_value(value);
2412 	    }
2413 	  else if (!os->find_starting_output_address(this, shndx, &start))
2414 	    {
2415 	      // This is a section symbol, but apparently not one in a
2416 	      // merged section.  First check to see if this is a relaxed
2417 	      // input section.  If so, use its address.  Otherwise just
2418 	      // use the start of the output section.  This happens with
2419 	      // relocatable links when the input object has section
2420 	      // symbols for arbitrary non-merge sections.
2421 	      const Output_section_data* posd =
2422 		os->find_relaxed_input_section(this, shndx);
2423 	      if (posd != NULL)
2424 		{
2425 		  uint64_t value = posd->address();
2426 		  if (relocatable)
2427 		    value -= os->address();
2428 		  lv_out->set_output_value(value);
2429 		}
2430 	      else
2431 		lv_out->set_output_value(os->address());
2432 	    }
2433 	  else
2434 	    {
2435 	      // We have to consider the addend to determine the
2436 	      // value to use in a relocation.  START is the start
2437 	      // of this input section.  If we are doing a relocatable
2438 	      // link, use offset from start output section instead of
2439 	      // address.
2440 	      Address adjusted_start =
2441 		relocatable ? start - os->address() : start;
2442 	      Merged_symbol_value<size>* msv =
2443 		new Merged_symbol_value<size>(lv_in->input_value(),
2444 					      adjusted_start);
2445 	      lv_out->set_merged_symbol_value(msv);
2446 	    }
2447 	}
2448       else if (lv_in->is_tls_symbol()
2449                || (lv_in->is_section_symbol()
2450                    && (os->flags() & elfcpp::SHF_TLS)))
2451 	lv_out->set_output_value(os->tls_offset()
2452 				 + secoffset
2453 				 + lv_in->input_value());
2454       else
2455 	lv_out->set_output_value((relocatable ? 0 : os->address())
2456 				 + secoffset
2457 				 + lv_in->input_value());
2458     }
2459   return This::CFLV_OK;
2460 }
2461 
2462 // Compute final local symbol value.  R_SYM is the index of a local
2463 // symbol in symbol table.  LV points to a symbol value, which is
2464 // expected to hold the input value and to be over-written by the
2465 // final value.  SYMTAB points to a symbol table.  Some targets may want
2466 // to know would-be-finalized local symbol values in relaxation.
2467 // Hence we provide this method.  Since this method updates *LV, a
2468 // callee should make a copy of the original local symbol value and
2469 // use the copy instead of modifying an object's local symbols before
2470 // everything is finalized.  The caller should also free up any allocated
2471 // memory in the return value in *LV.
2472 template<int size, bool big_endian>
2473 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2474 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2475     unsigned int r_sym,
2476     const Symbol_value<size>* lv_in,
2477     Symbol_value<size>* lv_out,
2478     const Symbol_table* symtab)
2479 {
2480   // This is just a wrapper of compute_final_local_value_internal.
2481   const bool relocatable = parameters->options().relocatable();
2482   const Output_sections& out_sections(this->output_sections());
2483   const std::vector<Address>& out_offsets(this->section_offsets());
2484   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2485 						  relocatable, out_sections,
2486 						  out_offsets, symtab);
2487 }
2488 
2489 // Finalize the local symbols.  Here we set the final value in
2490 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2491 // This function is always called from a singleton thread.  The actual
2492 // output of the local symbols will occur in a separate task.
2493 
2494 template<int size, bool big_endian>
2495 unsigned int
2496 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2497     unsigned int index,
2498     off_t off,
2499     Symbol_table* symtab)
2500 {
2501   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2502 
2503   const unsigned int loccount = this->local_symbol_count_;
2504   this->local_symbol_offset_ = off;
2505 
2506   const bool relocatable = parameters->options().relocatable();
2507   const Output_sections& out_sections(this->output_sections());
2508   const std::vector<Address>& out_offsets(this->section_offsets());
2509 
2510   for (unsigned int i = 1; i < loccount; ++i)
2511     {
2512       Symbol_value<size>* lv = &this->local_values_[i];
2513 
2514       Compute_final_local_value_status cflv_status =
2515 	this->compute_final_local_value_internal(i, lv, lv, relocatable,
2516 						 out_sections, out_offsets,
2517 						 symtab);
2518       switch (cflv_status)
2519 	{
2520 	case CFLV_OK:
2521 	  if (!lv->is_output_symtab_index_set())
2522 	    {
2523 	      lv->set_output_symtab_index(index);
2524 	      ++index;
2525 	    }
2526 	  break;
2527 	case CFLV_DISCARDED:
2528 	case CFLV_ERROR:
2529 	  // Do nothing.
2530 	  break;
2531 	default:
2532 	  gold_unreachable();
2533 	}
2534     }
2535   return index;
2536 }
2537 
2538 // Set the output dynamic symbol table indexes for the local variables.
2539 
2540 template<int size, bool big_endian>
2541 unsigned int
2542 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2543     unsigned int index)
2544 {
2545   const unsigned int loccount = this->local_symbol_count_;
2546   for (unsigned int i = 1; i < loccount; ++i)
2547     {
2548       Symbol_value<size>& lv(this->local_values_[i]);
2549       if (lv.needs_output_dynsym_entry())
2550 	{
2551 	  lv.set_output_dynsym_index(index);
2552 	  ++index;
2553 	}
2554     }
2555   return index;
2556 }
2557 
2558 // Set the offset where local dynamic symbol information will be stored.
2559 // Returns the count of local symbols contributed to the symbol table by
2560 // this object.
2561 
2562 template<int size, bool big_endian>
2563 unsigned int
2564 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2565 {
2566   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2567   this->local_dynsym_offset_ = off;
2568   return this->output_local_dynsym_count_;
2569 }
2570 
2571 // If Symbols_data is not NULL get the section flags from here otherwise
2572 // get it from the file.
2573 
2574 template<int size, bool big_endian>
2575 uint64_t
2576 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2577 {
2578   Symbols_data* sd = this->get_symbols_data();
2579   if (sd != NULL)
2580     {
2581       const unsigned char* pshdrs = sd->section_headers_data
2582 				    + This::shdr_size * shndx;
2583       typename This::Shdr shdr(pshdrs);
2584       return shdr.get_sh_flags();
2585     }
2586   // If sd is NULL, read the section header from the file.
2587   return this->elf_file_.section_flags(shndx);
2588 }
2589 
2590 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2591 // in icf.cc
2592 
2593 template<int size, bool big_endian>
2594 uint64_t
2595 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2596 {
2597   Symbols_data* sd = this->get_symbols_data();
2598   gold_assert(sd != NULL);
2599 
2600   const unsigned char* pshdrs = sd->section_headers_data
2601 				+ This::shdr_size * shndx;
2602   typename This::Shdr shdr(pshdrs);
2603   return shdr.get_sh_entsize();
2604 }
2605 
2606 // Write out the local symbols.
2607 
2608 template<int size, bool big_endian>
2609 void
2610 Sized_relobj_file<size, big_endian>::write_local_symbols(
2611     Output_file* of,
2612     const Stringpool* sympool,
2613     const Stringpool* dynpool,
2614     Output_symtab_xindex* symtab_xindex,
2615     Output_symtab_xindex* dynsym_xindex,
2616     off_t symtab_off)
2617 {
2618   const bool strip_all = parameters->options().strip_all();
2619   if (strip_all)
2620     {
2621       if (this->output_local_dynsym_count_ == 0)
2622 	return;
2623       this->output_local_symbol_count_ = 0;
2624     }
2625 
2626   gold_assert(this->symtab_shndx_ != -1U);
2627   if (this->symtab_shndx_ == 0)
2628     {
2629       // This object has no symbols.  Weird but legal.
2630       return;
2631     }
2632 
2633   // Read the symbol table section header.
2634   const unsigned int symtab_shndx = this->symtab_shndx_;
2635   typename This::Shdr symtabshdr(this,
2636 				 this->elf_file_.section_header(symtab_shndx));
2637   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2638   const unsigned int loccount = this->local_symbol_count_;
2639   gold_assert(loccount == symtabshdr.get_sh_info());
2640 
2641   // Read the local symbols.
2642   const int sym_size = This::sym_size;
2643   off_t locsize = loccount * sym_size;
2644   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2645 					      locsize, true, false);
2646 
2647   // Read the symbol names.
2648   const unsigned int strtab_shndx =
2649     this->adjust_shndx(symtabshdr.get_sh_link());
2650   section_size_type strtab_size;
2651   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2652 							&strtab_size,
2653 							false);
2654   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2655 
2656   // Get views into the output file for the portions of the symbol table
2657   // and the dynamic symbol table that we will be writing.
2658   off_t output_size = this->output_local_symbol_count_ * sym_size;
2659   unsigned char* oview = NULL;
2660   if (output_size > 0)
2661     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2662 				output_size);
2663 
2664   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2665   unsigned char* dyn_oview = NULL;
2666   if (dyn_output_size > 0)
2667     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2668 				    dyn_output_size);
2669 
2670   const Output_sections& out_sections(this->output_sections());
2671 
2672   gold_assert(this->local_values_.size() == loccount);
2673 
2674   unsigned char* ov = oview;
2675   unsigned char* dyn_ov = dyn_oview;
2676   psyms += sym_size;
2677   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2678     {
2679       elfcpp::Sym<size, big_endian> isym(psyms);
2680 
2681       Symbol_value<size>& lv(this->local_values_[i]);
2682 
2683       bool is_ordinary;
2684       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2685 						     &is_ordinary);
2686       if (is_ordinary)
2687 	{
2688 	  gold_assert(st_shndx < out_sections.size());
2689 	  if (out_sections[st_shndx] == NULL)
2690 	    continue;
2691 	  st_shndx = out_sections[st_shndx]->out_shndx();
2692 	  if (st_shndx >= elfcpp::SHN_LORESERVE)
2693 	    {
2694 	      if (lv.has_output_symtab_entry())
2695 		symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2696 	      if (lv.has_output_dynsym_entry())
2697 		dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2698 	      st_shndx = elfcpp::SHN_XINDEX;
2699 	    }
2700 	}
2701 
2702       // Write the symbol to the output symbol table.
2703       if (lv.has_output_symtab_entry())
2704 	{
2705 	  elfcpp::Sym_write<size, big_endian> osym(ov);
2706 
2707 	  gold_assert(isym.get_st_name() < strtab_size);
2708 	  const char* name = pnames + isym.get_st_name();
2709 	  osym.put_st_name(sympool->get_offset(name));
2710 	  osym.put_st_value(lv.value(this, 0));
2711 	  osym.put_st_size(isym.get_st_size());
2712 	  osym.put_st_info(isym.get_st_info());
2713 	  osym.put_st_other(isym.get_st_other());
2714 	  osym.put_st_shndx(st_shndx);
2715 
2716 	  ov += sym_size;
2717 	}
2718 
2719       // Write the symbol to the output dynamic symbol table.
2720       if (lv.has_output_dynsym_entry())
2721 	{
2722 	  gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2723 	  elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2724 
2725 	  gold_assert(isym.get_st_name() < strtab_size);
2726 	  const char* name = pnames + isym.get_st_name();
2727 	  osym.put_st_name(dynpool->get_offset(name));
2728 	  osym.put_st_value(lv.value(this, 0));
2729 	  osym.put_st_size(isym.get_st_size());
2730 	  osym.put_st_info(isym.get_st_info());
2731 	  osym.put_st_other(isym.get_st_other());
2732 	  osym.put_st_shndx(st_shndx);
2733 
2734 	  dyn_ov += sym_size;
2735 	}
2736     }
2737 
2738 
2739   if (output_size > 0)
2740     {
2741       gold_assert(ov - oview == output_size);
2742       of->write_output_view(symtab_off + this->local_symbol_offset_,
2743 			    output_size, oview);
2744     }
2745 
2746   if (dyn_output_size > 0)
2747     {
2748       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2749       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2750 			    dyn_oview);
2751     }
2752 }
2753 
2754 // Set *INFO to symbolic information about the offset OFFSET in the
2755 // section SHNDX.  Return true if we found something, false if we
2756 // found nothing.
2757 
2758 template<int size, bool big_endian>
2759 bool
2760 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2761     unsigned int shndx,
2762     off_t offset,
2763     Symbol_location_info* info)
2764 {
2765   if (this->symtab_shndx_ == 0)
2766     return false;
2767 
2768   section_size_type symbols_size;
2769   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2770 							&symbols_size,
2771 							false);
2772 
2773   unsigned int symbol_names_shndx =
2774     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2775   section_size_type names_size;
2776   const unsigned char* symbol_names_u =
2777     this->section_contents(symbol_names_shndx, &names_size, false);
2778   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2779 
2780   const int sym_size = This::sym_size;
2781   const size_t count = symbols_size / sym_size;
2782 
2783   const unsigned char* p = symbols;
2784   for (size_t i = 0; i < count; ++i, p += sym_size)
2785     {
2786       elfcpp::Sym<size, big_endian> sym(p);
2787 
2788       if (sym.get_st_type() == elfcpp::STT_FILE)
2789 	{
2790 	  if (sym.get_st_name() >= names_size)
2791 	    info->source_file = "(invalid)";
2792 	  else
2793 	    info->source_file = symbol_names + sym.get_st_name();
2794 	  continue;
2795 	}
2796 
2797       bool is_ordinary;
2798       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2799 						     &is_ordinary);
2800       if (is_ordinary
2801 	  && st_shndx == shndx
2802 	  && static_cast<off_t>(sym.get_st_value()) <= offset
2803 	  && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2804 	      > offset))
2805 	{
2806 	  info->enclosing_symbol_type = sym.get_st_type();
2807 	  if (sym.get_st_name() > names_size)
2808 	    info->enclosing_symbol_name = "(invalid)";
2809 	  else
2810 	    {
2811 	      info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2812 	      if (parameters->options().do_demangle())
2813 		{
2814 		  char* demangled_name = cplus_demangle(
2815 		      info->enclosing_symbol_name.c_str(),
2816 		      DMGL_ANSI | DMGL_PARAMS);
2817 		  if (demangled_name != NULL)
2818 		    {
2819 		      info->enclosing_symbol_name.assign(demangled_name);
2820 		      free(demangled_name);
2821 		    }
2822 		}
2823 	    }
2824 	  return true;
2825 	}
2826     }
2827 
2828   return false;
2829 }
2830 
2831 // Look for a kept section corresponding to the given discarded section,
2832 // and return its output address.  This is used only for relocations in
2833 // debugging sections.  If we can't find the kept section, return 0.
2834 
2835 template<int size, bool big_endian>
2836 typename Sized_relobj_file<size, big_endian>::Address
2837 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2838     unsigned int shndx,
2839     bool* found) const
2840 {
2841   Relobj* kept_object;
2842   unsigned int kept_shndx;
2843   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2844     {
2845       Sized_relobj_file<size, big_endian>* kept_relobj =
2846 	static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2847       Output_section* os = kept_relobj->output_section(kept_shndx);
2848       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2849       if (os != NULL && offset != invalid_address)
2850 	{
2851 	  *found = true;
2852 	  return os->address() + offset;
2853 	}
2854     }
2855   *found = false;
2856   return 0;
2857 }
2858 
2859 // Get symbol counts.
2860 
2861 template<int size, bool big_endian>
2862 void
2863 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2864     const Symbol_table*,
2865     size_t* defined,
2866     size_t* used) const
2867 {
2868   *defined = this->defined_count_;
2869   size_t count = 0;
2870   for (typename Symbols::const_iterator p = this->symbols_.begin();
2871        p != this->symbols_.end();
2872        ++p)
2873     if (*p != NULL
2874 	&& (*p)->source() == Symbol::FROM_OBJECT
2875 	&& (*p)->object() == this
2876 	&& (*p)->is_defined())
2877       ++count;
2878   *used = count;
2879 }
2880 
2881 // Return a view of the decompressed contents of a section.  Set *PLEN
2882 // to the size.  Set *IS_NEW to true if the contents need to be freed
2883 // by the caller.
2884 
2885 const unsigned char*
2886 Object::decompressed_section_contents(
2887     unsigned int shndx,
2888     section_size_type* plen,
2889     bool* is_new)
2890 {
2891   section_size_type buffer_size;
2892   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2893 							  false);
2894 
2895   if (this->compressed_sections_ == NULL)
2896     {
2897       *plen = buffer_size;
2898       *is_new = false;
2899       return buffer;
2900     }
2901 
2902   Compressed_section_map::const_iterator p =
2903       this->compressed_sections_->find(shndx);
2904   if (p == this->compressed_sections_->end())
2905     {
2906       *plen = buffer_size;
2907       *is_new = false;
2908       return buffer;
2909     }
2910 
2911   section_size_type uncompressed_size = p->second.size;
2912   if (p->second.contents != NULL)
2913     {
2914       *plen = uncompressed_size;
2915       *is_new = false;
2916       return p->second.contents;
2917     }
2918 
2919   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2920   if (!decompress_input_section(buffer,
2921 				buffer_size,
2922 				uncompressed_data,
2923 				uncompressed_size,
2924 				elfsize(),
2925 				is_big_endian(),
2926 				p->second.flag))
2927     this->error(_("could not decompress section %s"),
2928 		this->do_section_name(shndx).c_str());
2929 
2930   // We could cache the results in p->second.contents and store
2931   // false in *IS_NEW, but build_compressed_section_map() would
2932   // have done so if it had expected it to be profitable.  If
2933   // we reach this point, we expect to need the contents only
2934   // once in this pass.
2935   *plen = uncompressed_size;
2936   *is_new = true;
2937   return uncompressed_data;
2938 }
2939 
2940 // Discard any buffers of uncompressed sections.  This is done
2941 // at the end of the Add_symbols task.
2942 
2943 void
2944 Object::discard_decompressed_sections()
2945 {
2946   if (this->compressed_sections_ == NULL)
2947     return;
2948 
2949   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2950        p != this->compressed_sections_->end();
2951        ++p)
2952     {
2953       if (p->second.contents != NULL)
2954 	{
2955 	  delete[] p->second.contents;
2956 	  p->second.contents = NULL;
2957 	}
2958     }
2959 }
2960 
2961 // Input_objects methods.
2962 
2963 // Add a regular relocatable object to the list.  Return false if this
2964 // object should be ignored.
2965 
2966 bool
2967 Input_objects::add_object(Object* obj)
2968 {
2969   // Print the filename if the -t/--trace option is selected.
2970   if (parameters->options().trace())
2971     gold_info("%s", obj->name().c_str());
2972 
2973   if (!obj->is_dynamic())
2974     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2975   else
2976     {
2977       // See if this is a duplicate SONAME.
2978       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2979       const char* soname = dynobj->soname();
2980 
2981       Unordered_map<std::string, Object*>::value_type val(soname, obj);
2982       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
2983 	this->sonames_.insert(val);
2984       if (!ins.second)
2985 	{
2986 	  // We have already seen a dynamic object with this soname.
2987 	  // If any instances of this object on the command line have
2988 	  // the --no-as-needed flag, make sure the one we keep is
2989 	  // marked so.
2990 	  if (!obj->as_needed())
2991 	    {
2992 	      gold_assert(ins.first->second != NULL);
2993 	      ins.first->second->clear_as_needed();
2994 	    }
2995 	  return false;
2996 	}
2997 
2998       this->dynobj_list_.push_back(dynobj);
2999     }
3000 
3001   // Add this object to the cross-referencer if requested.
3002   if (parameters->options().user_set_print_symbol_counts()
3003       || parameters->options().cref())
3004     {
3005       if (this->cref_ == NULL)
3006 	this->cref_ = new Cref();
3007       this->cref_->add_object(obj);
3008     }
3009 
3010   return true;
3011 }
3012 
3013 // For each dynamic object, record whether we've seen all of its
3014 // explicit dependencies.
3015 
3016 void
3017 Input_objects::check_dynamic_dependencies() const
3018 {
3019   bool issued_copy_dt_needed_error = false;
3020   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3021        p != this->dynobj_list_.end();
3022        ++p)
3023     {
3024       const Dynobj::Needed& needed((*p)->needed());
3025       bool found_all = true;
3026       Dynobj::Needed::const_iterator pneeded;
3027       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3028 	{
3029 	  if (this->sonames_.find(*pneeded) == this->sonames_.end())
3030 	    {
3031 	      found_all = false;
3032 	      break;
3033 	    }
3034 	}
3035       (*p)->set_has_unknown_needed_entries(!found_all);
3036 
3037       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3038       // that gold does not support.  However, they cause no trouble
3039       // unless there is a DT_NEEDED entry that we don't know about;
3040       // warn only in that case.
3041       if (!found_all
3042 	  && !issued_copy_dt_needed_error
3043 	  && (parameters->options().copy_dt_needed_entries()
3044 	      || parameters->options().add_needed()))
3045 	{
3046 	  const char* optname;
3047 	  if (parameters->options().copy_dt_needed_entries())
3048 	    optname = "--copy-dt-needed-entries";
3049 	  else
3050 	    optname = "--add-needed";
3051 	  gold_error(_("%s is not supported but is required for %s in %s"),
3052 		     optname, (*pneeded).c_str(), (*p)->name().c_str());
3053 	  issued_copy_dt_needed_error = true;
3054 	}
3055     }
3056 }
3057 
3058 // Start processing an archive.
3059 
3060 void
3061 Input_objects::archive_start(Archive* archive)
3062 {
3063   if (parameters->options().user_set_print_symbol_counts()
3064       || parameters->options().cref())
3065     {
3066       if (this->cref_ == NULL)
3067 	this->cref_ = new Cref();
3068       this->cref_->add_archive_start(archive);
3069     }
3070 }
3071 
3072 // Stop processing an archive.
3073 
3074 void
3075 Input_objects::archive_stop(Archive* archive)
3076 {
3077   if (parameters->options().user_set_print_symbol_counts()
3078       || parameters->options().cref())
3079     this->cref_->add_archive_stop(archive);
3080 }
3081 
3082 // Print symbol counts
3083 
3084 void
3085 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3086 {
3087   if (parameters->options().user_set_print_symbol_counts()
3088       && this->cref_ != NULL)
3089     this->cref_->print_symbol_counts(symtab);
3090 }
3091 
3092 // Print a cross reference table.
3093 
3094 void
3095 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3096 {
3097   if (parameters->options().cref() && this->cref_ != NULL)
3098     this->cref_->print_cref(symtab, f);
3099 }
3100 
3101 // Relocate_info methods.
3102 
3103 // Return a string describing the location of a relocation when file
3104 // and lineno information is not available.  This is only used in
3105 // error messages.
3106 
3107 template<int size, bool big_endian>
3108 std::string
3109 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3110 {
3111   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3112   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3113   if (!ret.empty())
3114     return ret;
3115 
3116   ret = this->object->name();
3117 
3118   Symbol_location_info info;
3119   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3120     {
3121       if (!info.source_file.empty())
3122 	{
3123 	  ret += ":";
3124 	  ret += info.source_file;
3125 	}
3126       ret += ":";
3127       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3128 	ret += _("function ");
3129       ret += info.enclosing_symbol_name;
3130       return ret;
3131     }
3132 
3133   ret += "(";
3134   ret += this->object->section_name(this->data_shndx);
3135   char buf[100];
3136   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3137   ret += buf;
3138   return ret;
3139 }
3140 
3141 } // End namespace gold.
3142 
3143 namespace
3144 {
3145 
3146 using namespace gold;
3147 
3148 // Read an ELF file with the header and return the appropriate
3149 // instance of Object.
3150 
3151 template<int size, bool big_endian>
3152 Object*
3153 make_elf_sized_object(const std::string& name, Input_file* input_file,
3154 		      off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3155 		      bool* punconfigured)
3156 {
3157   Target* target = select_target(input_file, offset,
3158 				 ehdr.get_e_machine(), size, big_endian,
3159 				 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3160 				 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3161   if (target == NULL)
3162     gold_fatal(_("%s: unsupported ELF machine number %d"),
3163 	       name.c_str(), ehdr.get_e_machine());
3164 
3165   if (!parameters->target_valid())
3166     set_parameters_target(target);
3167   else if (target != &parameters->target())
3168     {
3169       if (punconfigured != NULL)
3170 	*punconfigured = true;
3171       else
3172 	gold_error(_("%s: incompatible target"), name.c_str());
3173       return NULL;
3174     }
3175 
3176   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3177 						   ehdr);
3178 }
3179 
3180 } // End anonymous namespace.
3181 
3182 namespace gold
3183 {
3184 
3185 // Return whether INPUT_FILE is an ELF object.
3186 
3187 bool
3188 is_elf_object(Input_file* input_file, off_t offset,
3189 	      const unsigned char** start, int* read_size)
3190 {
3191   off_t filesize = input_file->file().filesize();
3192   int want = elfcpp::Elf_recognizer::max_header_size;
3193   if (filesize - offset < want)
3194     want = filesize - offset;
3195 
3196   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3197 						       true, false);
3198   *start = p;
3199   *read_size = want;
3200 
3201   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3202 }
3203 
3204 // Read an ELF file and return the appropriate instance of Object.
3205 
3206 Object*
3207 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3208 		const unsigned char* p, section_offset_type bytes,
3209 		bool* punconfigured)
3210 {
3211   if (punconfigured != NULL)
3212     *punconfigured = false;
3213 
3214   std::string error;
3215   bool big_endian = false;
3216   int size = 0;
3217   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3218 					       &big_endian, &error))
3219     {
3220       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3221       return NULL;
3222     }
3223 
3224   if (size == 32)
3225     {
3226       if (big_endian)
3227 	{
3228 #ifdef HAVE_TARGET_32_BIG
3229 	  elfcpp::Ehdr<32, true> ehdr(p);
3230 	  return make_elf_sized_object<32, true>(name, input_file,
3231 						 offset, ehdr, punconfigured);
3232 #else
3233 	  if (punconfigured != NULL)
3234 	    *punconfigured = true;
3235 	  else
3236 	    gold_error(_("%s: not configured to support "
3237 			 "32-bit big-endian object"),
3238 		       name.c_str());
3239 	  return NULL;
3240 #endif
3241 	}
3242       else
3243 	{
3244 #ifdef HAVE_TARGET_32_LITTLE
3245 	  elfcpp::Ehdr<32, false> ehdr(p);
3246 	  return make_elf_sized_object<32, false>(name, input_file,
3247 						  offset, ehdr, punconfigured);
3248 #else
3249 	  if (punconfigured != NULL)
3250 	    *punconfigured = true;
3251 	  else
3252 	    gold_error(_("%s: not configured to support "
3253 			 "32-bit little-endian object"),
3254 		       name.c_str());
3255 	  return NULL;
3256 #endif
3257 	}
3258     }
3259   else if (size == 64)
3260     {
3261       if (big_endian)
3262 	{
3263 #ifdef HAVE_TARGET_64_BIG
3264 	  elfcpp::Ehdr<64, true> ehdr(p);
3265 	  return make_elf_sized_object<64, true>(name, input_file,
3266 						 offset, ehdr, punconfigured);
3267 #else
3268 	  if (punconfigured != NULL)
3269 	    *punconfigured = true;
3270 	  else
3271 	    gold_error(_("%s: not configured to support "
3272 			 "64-bit big-endian object"),
3273 		       name.c_str());
3274 	  return NULL;
3275 #endif
3276 	}
3277       else
3278 	{
3279 #ifdef HAVE_TARGET_64_LITTLE
3280 	  elfcpp::Ehdr<64, false> ehdr(p);
3281 	  return make_elf_sized_object<64, false>(name, input_file,
3282 						  offset, ehdr, punconfigured);
3283 #else
3284 	  if (punconfigured != NULL)
3285 	    *punconfigured = true;
3286 	  else
3287 	    gold_error(_("%s: not configured to support "
3288 			 "64-bit little-endian object"),
3289 		       name.c_str());
3290 	  return NULL;
3291 #endif
3292 	}
3293     }
3294   else
3295     gold_unreachable();
3296 }
3297 
3298 // Instantiate the templates we need.
3299 
3300 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3301 template
3302 void
3303 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3304       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3305       Unordered_map<section_offset_type,
3306       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3307 #endif
3308 
3309 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3310 template
3311 void
3312 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3313       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3314       Unordered_map<section_offset_type,
3315       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3316 #endif
3317 
3318 #ifdef HAVE_TARGET_32_LITTLE
3319 template
3320 void
3321 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3322 				     Read_symbols_data*);
3323 template
3324 const unsigned char*
3325 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3326 			    section_size_type, const unsigned char*) const;
3327 #endif
3328 
3329 #ifdef HAVE_TARGET_32_BIG
3330 template
3331 void
3332 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3333 				    Read_symbols_data*);
3334 template
3335 const unsigned char*
3336 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3337 			   section_size_type, const unsigned char*) const;
3338 #endif
3339 
3340 #ifdef HAVE_TARGET_64_LITTLE
3341 template
3342 void
3343 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3344 				     Read_symbols_data*);
3345 template
3346 const unsigned char*
3347 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3348 			    section_size_type, const unsigned char*) const;
3349 #endif
3350 
3351 #ifdef HAVE_TARGET_64_BIG
3352 template
3353 void
3354 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3355 				    Read_symbols_data*);
3356 template
3357 const unsigned char*
3358 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3359 			   section_size_type, const unsigned char*) const;
3360 #endif
3361 
3362 #ifdef HAVE_TARGET_32_LITTLE
3363 template
3364 class Sized_relobj<32, false>;
3365 
3366 template
3367 class Sized_relobj_file<32, false>;
3368 #endif
3369 
3370 #ifdef HAVE_TARGET_32_BIG
3371 template
3372 class Sized_relobj<32, true>;
3373 
3374 template
3375 class Sized_relobj_file<32, true>;
3376 #endif
3377 
3378 #ifdef HAVE_TARGET_64_LITTLE
3379 template
3380 class Sized_relobj<64, false>;
3381 
3382 template
3383 class Sized_relobj_file<64, false>;
3384 #endif
3385 
3386 #ifdef HAVE_TARGET_64_BIG
3387 template
3388 class Sized_relobj<64, true>;
3389 
3390 template
3391 class Sized_relobj_file<64, true>;
3392 #endif
3393 
3394 #ifdef HAVE_TARGET_32_LITTLE
3395 template
3396 struct Relocate_info<32, false>;
3397 #endif
3398 
3399 #ifdef HAVE_TARGET_32_BIG
3400 template
3401 struct Relocate_info<32, true>;
3402 #endif
3403 
3404 #ifdef HAVE_TARGET_64_LITTLE
3405 template
3406 struct Relocate_info<64, false>;
3407 #endif
3408 
3409 #ifdef HAVE_TARGET_64_BIG
3410 template
3411 struct Relocate_info<64, true>;
3412 #endif
3413 
3414 #ifdef HAVE_TARGET_32_LITTLE
3415 template
3416 void
3417 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3418 
3419 template
3420 void
3421 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3422 				      const unsigned char*);
3423 #endif
3424 
3425 #ifdef HAVE_TARGET_32_BIG
3426 template
3427 void
3428 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3429 
3430 template
3431 void
3432 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3433 				     const unsigned char*);
3434 #endif
3435 
3436 #ifdef HAVE_TARGET_64_LITTLE
3437 template
3438 void
3439 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3440 
3441 template
3442 void
3443 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3444 				      const unsigned char*);
3445 #endif
3446 
3447 #ifdef HAVE_TARGET_64_BIG
3448 template
3449 void
3450 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3451 
3452 template
3453 void
3454 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3455 				     const unsigned char*);
3456 #endif
3457 
3458 } // End namespace gold.
3459