1 // script.cc -- handle linker scripts for gold.
2 
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32 
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
47 
48 namespace gold
49 {
50 
51 // A token read from a script file.  We don't implement keywords here;
52 // all keywords are simply represented as a string.
53 
54 class Token
55 {
56  public:
57   // Token classification.
58   enum Classification
59   {
60     // Token is invalid.
61     TOKEN_INVALID,
62     // Token indicates end of input.
63     TOKEN_EOF,
64     // Token is a string of characters.
65     TOKEN_STRING,
66     // Token is a quoted string of characters.
67     TOKEN_QUOTED_STRING,
68     // Token is an operator.
69     TOKEN_OPERATOR,
70     // Token is a number (an integer).
71     TOKEN_INTEGER
72   };
73 
74   // We need an empty constructor so that we can put this STL objects.
75   Token()
76     : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77       opcode_(0), lineno_(0), charpos_(0)
78   { }
79 
80   // A general token with no value.
81   Token(Classification classification, int lineno, int charpos)
82     : classification_(classification), value_(NULL), value_length_(0),
83       opcode_(0), lineno_(lineno), charpos_(charpos)
84   {
85     gold_assert(classification == TOKEN_INVALID
86 		|| classification == TOKEN_EOF);
87   }
88 
89   // A general token with a value.
90   Token(Classification classification, const char* value, size_t length,
91 	int lineno, int charpos)
92     : classification_(classification), value_(value), value_length_(length),
93       opcode_(0), lineno_(lineno), charpos_(charpos)
94   {
95     gold_assert(classification != TOKEN_INVALID
96 		&& classification != TOKEN_EOF);
97   }
98 
99   // A token representing an operator.
100   Token(int opcode, int lineno, int charpos)
101     : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102       opcode_(opcode), lineno_(lineno), charpos_(charpos)
103   { }
104 
105   // Return whether the token is invalid.
106   bool
107   is_invalid() const
108   { return this->classification_ == TOKEN_INVALID; }
109 
110   // Return whether this is an EOF token.
111   bool
112   is_eof() const
113   { return this->classification_ == TOKEN_EOF; }
114 
115   // Return the token classification.
116   Classification
117   classification() const
118   { return this->classification_; }
119 
120   // Return the line number at which the token starts.
121   int
122   lineno() const
123   { return this->lineno_; }
124 
125   // Return the character position at this the token starts.
126   int
127   charpos() const
128   { return this->charpos_; }
129 
130   // Get the value of a token.
131 
132   const char*
133   string_value(size_t* length) const
134   {
135     gold_assert(this->classification_ == TOKEN_STRING
136 		|| this->classification_ == TOKEN_QUOTED_STRING);
137     *length = this->value_length_;
138     return this->value_;
139   }
140 
141   int
142   operator_value() const
143   {
144     gold_assert(this->classification_ == TOKEN_OPERATOR);
145     return this->opcode_;
146   }
147 
148   uint64_t
149   integer_value() const;
150 
151  private:
152   // The token classification.
153   Classification classification_;
154   // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
155   // TOKEN_INTEGER.
156   const char* value_;
157   // The length of the token value.
158   size_t value_length_;
159   // The token value, for TOKEN_OPERATOR.
160   int opcode_;
161   // The line number where this token started (one based).
162   int lineno_;
163   // The character position within the line where this token started
164   // (one based).
165   int charpos_;
166 };
167 
168 // Return the value of a TOKEN_INTEGER.
169 
170 uint64_t
171 Token::integer_value() const
172 {
173   gold_assert(this->classification_ == TOKEN_INTEGER);
174 
175   size_t len = this->value_length_;
176 
177   uint64_t multiplier = 1;
178   char last = this->value_[len - 1];
179   if (last == 'm' || last == 'M')
180     {
181       multiplier = 1024 * 1024;
182       --len;
183     }
184   else if (last == 'k' || last == 'K')
185     {
186       multiplier = 1024;
187       --len;
188     }
189 
190   char *end;
191   uint64_t ret = strtoull(this->value_, &end, 0);
192   gold_assert(static_cast<size_t>(end - this->value_) == len);
193 
194   return ret * multiplier;
195 }
196 
197 // This class handles lexing a file into a sequence of tokens.
198 
199 class Lex
200 {
201  public:
202   // We unfortunately have to support different lexing modes, because
203   // when reading different parts of a linker script we need to parse
204   // things differently.
205   enum Mode
206   {
207     // Reading an ordinary linker script.
208     LINKER_SCRIPT,
209     // Reading an expression in a linker script.
210     EXPRESSION,
211     // Reading a version script.
212     VERSION_SCRIPT,
213     // Reading a --dynamic-list file.
214     DYNAMIC_LIST
215   };
216 
217   Lex(const char* input_string, size_t input_length, int parsing_token)
218     : input_string_(input_string), input_length_(input_length),
219       current_(input_string), mode_(LINKER_SCRIPT),
220       first_token_(parsing_token), token_(),
221       lineno_(1), linestart_(input_string)
222   { }
223 
224   // Read a file into a string.
225   static void
226   read_file(Input_file*, std::string*);
227 
228   // Return the next token.
229   const Token*
230   next_token();
231 
232   // Return the current lexing mode.
233   Lex::Mode
234   mode() const
235   { return this->mode_; }
236 
237   // Set the lexing mode.
238   void
239   set_mode(Mode mode)
240   { this->mode_ = mode; }
241 
242  private:
243   Lex(const Lex&);
244   Lex& operator=(const Lex&);
245 
246   // Make a general token with no value at the current location.
247   Token
248   make_token(Token::Classification c, const char* start) const
249   { return Token(c, this->lineno_, start - this->linestart_ + 1); }
250 
251   // Make a general token with a value at the current location.
252   Token
253   make_token(Token::Classification c, const char* v, size_t len,
254 	     const char* start)
255     const
256   { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
257 
258   // Make an operator token at the current location.
259   Token
260   make_token(int opcode, const char* start) const
261   { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
262 
263   // Make an invalid token at the current location.
264   Token
265   make_invalid_token(const char* start)
266   { return this->make_token(Token::TOKEN_INVALID, start); }
267 
268   // Make an EOF token at the current location.
269   Token
270   make_eof_token(const char* start)
271   { return this->make_token(Token::TOKEN_EOF, start); }
272 
273   // Return whether C can be the first character in a name.  C2 is the
274   // next character, since we sometimes need that.
275   inline bool
276   can_start_name(char c, char c2);
277 
278   // If C can appear in a name which has already started, return a
279   // pointer to a character later in the token or just past
280   // it. Otherwise, return NULL.
281   inline const char*
282   can_continue_name(const char* c);
283 
284   // Return whether C, C2, C3 can start a hex number.
285   inline bool
286   can_start_hex(char c, char c2, char c3);
287 
288   // If C can appear in a hex number which has already started, return
289   // a pointer to a character later in the token or just past
290   // it. Otherwise, return NULL.
291   inline const char*
292   can_continue_hex(const char* c);
293 
294   // Return whether C can start a non-hex number.
295   static inline bool
296   can_start_number(char c);
297 
298   // If C can appear in a decimal number which has already started,
299   // return a pointer to a character later in the token or just past
300   // it. Otherwise, return NULL.
301   inline const char*
302   can_continue_number(const char* c)
303   { return Lex::can_start_number(*c) ? c + 1 : NULL; }
304 
305   // If C1 C2 C3 form a valid three character operator, return the
306   // opcode.  Otherwise return 0.
307   static inline int
308   three_char_operator(char c1, char c2, char c3);
309 
310   // If C1 C2 form a valid two character operator, return the opcode.
311   // Otherwise return 0.
312   static inline int
313   two_char_operator(char c1, char c2);
314 
315   // If C1 is a valid one character operator, return the opcode.
316   // Otherwise return 0.
317   static inline int
318   one_char_operator(char c1);
319 
320   // Read the next token.
321   Token
322   get_token(const char**);
323 
324   // Skip a C style /* */ comment.  Return false if the comment did
325   // not end.
326   bool
327   skip_c_comment(const char**);
328 
329   // Skip a line # comment.  Return false if there was no newline.
330   bool
331   skip_line_comment(const char**);
332 
333   // Build a token CLASSIFICATION from all characters that match
334   // CAN_CONTINUE_FN.  The token starts at START.  Start matching from
335   // MATCH.  Set *PP to the character following the token.
336   inline Token
337   gather_token(Token::Classification,
338 	       const char* (Lex::*can_continue_fn)(const char*),
339 	       const char* start, const char* match, const char** pp);
340 
341   // Build a token from a quoted string.
342   Token
343   gather_quoted_string(const char** pp);
344 
345   // The string we are tokenizing.
346   const char* input_string_;
347   // The length of the string.
348   size_t input_length_;
349   // The current offset into the string.
350   const char* current_;
351   // The current lexing mode.
352   Mode mode_;
353   // The code to use for the first token.  This is set to 0 after it
354   // is used.
355   int first_token_;
356   // The current token.
357   Token token_;
358   // The current line number.
359   int lineno_;
360   // The start of the current line in the string.
361   const char* linestart_;
362 };
363 
364 // Read the whole file into memory.  We don't expect linker scripts to
365 // be large, so we just use a std::string as a buffer.  We ignore the
366 // data we've already read, so that we read aligned buffers.
367 
368 void
369 Lex::read_file(Input_file* input_file, std::string* contents)
370 {
371   off_t filesize = input_file->file().filesize();
372   contents->clear();
373   contents->reserve(filesize);
374 
375   off_t off = 0;
376   unsigned char buf[BUFSIZ];
377   while (off < filesize)
378     {
379       off_t get = BUFSIZ;
380       if (get > filesize - off)
381 	get = filesize - off;
382       input_file->file().read(off, get, buf);
383       contents->append(reinterpret_cast<char*>(&buf[0]), get);
384       off += get;
385     }
386 }
387 
388 // Return whether C can be the start of a name, if the next character
389 // is C2.  A name can being with a letter, underscore, period, or
390 // dollar sign.  Because a name can be a file name, we also permit
391 // forward slash, backslash, and tilde.  Tilde is the tricky case
392 // here; GNU ld also uses it as a bitwise not operator.  It is only
393 // recognized as the operator if it is not immediately followed by
394 // some character which can appear in a symbol.  That is, when we
395 // don't know that we are looking at an expression, "~0" is a file
396 // name, and "~ 0" is an expression using bitwise not.  We are
397 // compatible.
398 
399 inline bool
400 Lex::can_start_name(char c, char c2)
401 {
402   switch (c)
403     {
404     case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
405     case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
406     case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
407     case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
408     case 'Y': case 'Z':
409     case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
410     case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
411     case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
412     case 's': case 't': case 'u': case 'v': case 'w': case 'x':
413     case 'y': case 'z':
414     case '_': case '.': case '$':
415       return true;
416 
417     case '/': case '\\':
418       return this->mode_ == LINKER_SCRIPT;
419 
420     case '~':
421       return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
422 
423     case '*': case '[':
424       return (this->mode_ == VERSION_SCRIPT
425               || this->mode_ == DYNAMIC_LIST
426 	      || (this->mode_ == LINKER_SCRIPT
427 		  && can_continue_name(&c2)));
428 
429     default:
430       return false;
431     }
432 }
433 
434 // Return whether C can continue a name which has already started.
435 // Subsequent characters in a name are the same as the leading
436 // characters, plus digits and "=+-:[],?*".  So in general the linker
437 // script language requires spaces around operators, unless we know
438 // that we are parsing an expression.
439 
440 inline const char*
441 Lex::can_continue_name(const char* c)
442 {
443   switch (*c)
444     {
445     case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
446     case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
447     case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
448     case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
449     case 'Y': case 'Z':
450     case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
451     case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
452     case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
453     case 's': case 't': case 'u': case 'v': case 'w': case 'x':
454     case 'y': case 'z':
455     case '_': case '.': case '$':
456     case '0': case '1': case '2': case '3': case '4':
457     case '5': case '6': case '7': case '8': case '9':
458       return c + 1;
459 
460     // TODO(csilvers): why not allow ~ in names for version-scripts?
461     case '/': case '\\': case '~':
462     case '=': case '+':
463     case ',':
464       if (this->mode_ == LINKER_SCRIPT)
465         return c + 1;
466       return NULL;
467 
468     case '[': case ']': case '*': case '?': case '-':
469       if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
470           || this->mode_ == DYNAMIC_LIST)
471         return c + 1;
472       return NULL;
473 
474     // TODO(csilvers): why allow this?  ^ is meaningless in version scripts.
475     case '^':
476       if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
477         return c + 1;
478       return NULL;
479 
480     case ':':
481       if (this->mode_ == LINKER_SCRIPT)
482         return c + 1;
483       else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
484                && (c[1] == ':'))
485         {
486           // A name can have '::' in it, as that's a c++ namespace
487           // separator. But a single colon is not part of a name.
488           return c + 2;
489         }
490       return NULL;
491 
492     default:
493       return NULL;
494     }
495 }
496 
497 // For a number we accept 0x followed by hex digits, or any sequence
498 // of digits.  The old linker accepts leading '$' for hex, and
499 // trailing HXBOD.  Those are for MRI compatibility and we don't
500 // accept them.
501 
502 // Return whether C1 C2 C3 can start a hex number.
503 
504 inline bool
505 Lex::can_start_hex(char c1, char c2, char c3)
506 {
507   if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
508     return this->can_continue_hex(&c3);
509   return false;
510 }
511 
512 // Return whether C can appear in a hex number.
513 
514 inline const char*
515 Lex::can_continue_hex(const char* c)
516 {
517   switch (*c)
518     {
519     case '0': case '1': case '2': case '3': case '4':
520     case '5': case '6': case '7': case '8': case '9':
521     case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
522     case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
523       return c + 1;
524 
525     default:
526       return NULL;
527     }
528 }
529 
530 // Return whether C can start a non-hex number.
531 
532 inline bool
533 Lex::can_start_number(char c)
534 {
535   switch (c)
536     {
537     case '0': case '1': case '2': case '3': case '4':
538     case '5': case '6': case '7': case '8': case '9':
539       return true;
540 
541     default:
542       return false;
543     }
544 }
545 
546 // If C1 C2 C3 form a valid three character operator, return the
547 // opcode (defined in the yyscript.h file generated from yyscript.y).
548 // Otherwise return 0.
549 
550 inline int
551 Lex::three_char_operator(char c1, char c2, char c3)
552 {
553   switch (c1)
554     {
555     case '<':
556       if (c2 == '<' && c3 == '=')
557 	return LSHIFTEQ;
558       break;
559     case '>':
560       if (c2 == '>' && c3 == '=')
561 	return RSHIFTEQ;
562       break;
563     default:
564       break;
565     }
566   return 0;
567 }
568 
569 // If C1 C2 form a valid two character operator, return the opcode
570 // (defined in the yyscript.h file generated from yyscript.y).
571 // Otherwise return 0.
572 
573 inline int
574 Lex::two_char_operator(char c1, char c2)
575 {
576   switch (c1)
577     {
578     case '=':
579       if (c2 == '=')
580 	return EQ;
581       break;
582     case '!':
583       if (c2 == '=')
584 	return NE;
585       break;
586     case '+':
587       if (c2 == '=')
588 	return PLUSEQ;
589       break;
590     case '-':
591       if (c2 == '=')
592 	return MINUSEQ;
593       break;
594     case '*':
595       if (c2 == '=')
596 	return MULTEQ;
597       break;
598     case '/':
599       if (c2 == '=')
600 	return DIVEQ;
601       break;
602     case '|':
603       if (c2 == '=')
604 	return OREQ;
605       if (c2 == '|')
606 	return OROR;
607       break;
608     case '&':
609       if (c2 == '=')
610 	return ANDEQ;
611       if (c2 == '&')
612 	return ANDAND;
613       break;
614     case '>':
615       if (c2 == '=')
616 	return GE;
617       if (c2 == '>')
618 	return RSHIFT;
619       break;
620     case '<':
621       if (c2 == '=')
622 	return LE;
623       if (c2 == '<')
624 	return LSHIFT;
625       break;
626     default:
627       break;
628     }
629   return 0;
630 }
631 
632 // If C1 is a valid operator, return the opcode.  Otherwise return 0.
633 
634 inline int
635 Lex::one_char_operator(char c1)
636 {
637   switch (c1)
638     {
639     case '+':
640     case '-':
641     case '*':
642     case '/':
643     case '%':
644     case '!':
645     case '&':
646     case '|':
647     case '^':
648     case '~':
649     case '<':
650     case '>':
651     case '=':
652     case '?':
653     case ',':
654     case '(':
655     case ')':
656     case '{':
657     case '}':
658     case '[':
659     case ']':
660     case ':':
661     case ';':
662       return c1;
663     default:
664       return 0;
665     }
666 }
667 
668 // Skip a C style comment.  *PP points to just after the "/*".  Return
669 // false if the comment did not end.
670 
671 bool
672 Lex::skip_c_comment(const char** pp)
673 {
674   const char* p = *pp;
675   while (p[0] != '*' || p[1] != '/')
676     {
677       if (*p == '\0')
678 	{
679 	  *pp = p;
680 	  return false;
681 	}
682 
683       if (*p == '\n')
684 	{
685 	  ++this->lineno_;
686 	  this->linestart_ = p + 1;
687 	}
688       ++p;
689     }
690 
691   *pp = p + 2;
692   return true;
693 }
694 
695 // Skip a line # comment.  Return false if there was no newline.
696 
697 bool
698 Lex::skip_line_comment(const char** pp)
699 {
700   const char* p = *pp;
701   size_t skip = strcspn(p, "\n");
702   if (p[skip] == '\0')
703     {
704       *pp = p + skip;
705       return false;
706     }
707 
708   p += skip + 1;
709   ++this->lineno_;
710   this->linestart_ = p;
711   *pp = p;
712 
713   return true;
714 }
715 
716 // Build a token CLASSIFICATION from all characters that match
717 // CAN_CONTINUE_FN.  Update *PP.
718 
719 inline Token
720 Lex::gather_token(Token::Classification classification,
721 		  const char* (Lex::*can_continue_fn)(const char*),
722 		  const char* start,
723 		  const char* match,
724 		  const char** pp)
725 {
726   const char* new_match = NULL;
727   while ((new_match = (this->*can_continue_fn)(match)) != NULL)
728     match = new_match;
729 
730   // A special case: integers may be followed by a single M or K,
731   // case-insensitive.
732   if (classification == Token::TOKEN_INTEGER
733       && (*match == 'm' || *match == 'M' || *match == 'k' || *match == 'K'))
734     ++match;
735 
736   *pp = match;
737   return this->make_token(classification, start, match - start, start);
738 }
739 
740 // Build a token from a quoted string.
741 
742 Token
743 Lex::gather_quoted_string(const char** pp)
744 {
745   const char* start = *pp;
746   const char* p = start;
747   ++p;
748   size_t skip = strcspn(p, "\"\n");
749   if (p[skip] != '"')
750     return this->make_invalid_token(start);
751   *pp = p + skip + 1;
752   return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
753 }
754 
755 // Return the next token at *PP.  Update *PP.  General guideline: we
756 // require linker scripts to be simple ASCII.  No unicode linker
757 // scripts.  In particular we can assume that any '\0' is the end of
758 // the input.
759 
760 Token
761 Lex::get_token(const char** pp)
762 {
763   const char* p = *pp;
764 
765   while (true)
766     {
767       if (*p == '\0')
768 	{
769 	  *pp = p;
770 	  return this->make_eof_token(p);
771 	}
772 
773       // Skip whitespace quickly.
774       while (*p == ' ' || *p == '\t' || *p == '\r')
775 	++p;
776 
777       if (*p == '\n')
778 	{
779 	  ++p;
780 	  ++this->lineno_;
781 	  this->linestart_ = p;
782 	  continue;
783 	}
784 
785       // Skip C style comments.
786       if (p[0] == '/' && p[1] == '*')
787 	{
788 	  int lineno = this->lineno_;
789 	  int charpos = p - this->linestart_ + 1;
790 
791 	  *pp = p + 2;
792 	  if (!this->skip_c_comment(pp))
793 	    return Token(Token::TOKEN_INVALID, lineno, charpos);
794 	  p = *pp;
795 
796 	  continue;
797 	}
798 
799       // Skip line comments.
800       if (*p == '#')
801 	{
802 	  *pp = p + 1;
803 	  if (!this->skip_line_comment(pp))
804 	    return this->make_eof_token(p);
805 	  p = *pp;
806 	  continue;
807 	}
808 
809       // Check for a name.
810       if (this->can_start_name(p[0], p[1]))
811 	return this->gather_token(Token::TOKEN_STRING,
812 				  &Lex::can_continue_name,
813 				  p, p + 1, pp);
814 
815       // We accept any arbitrary name in double quotes, as long as it
816       // does not cross a line boundary.
817       if (*p == '"')
818 	{
819 	  *pp = p;
820 	  return this->gather_quoted_string(pp);
821 	}
822 
823       // Check for a number.
824 
825       if (this->can_start_hex(p[0], p[1], p[2]))
826 	return this->gather_token(Token::TOKEN_INTEGER,
827 				  &Lex::can_continue_hex,
828 				  p, p + 3, pp);
829 
830       if (Lex::can_start_number(p[0]))
831 	return this->gather_token(Token::TOKEN_INTEGER,
832 				  &Lex::can_continue_number,
833 				  p, p + 1, pp);
834 
835       // Check for operators.
836 
837       int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
838       if (opcode != 0)
839 	{
840 	  *pp = p + 3;
841 	  return this->make_token(opcode, p);
842 	}
843 
844       opcode = Lex::two_char_operator(p[0], p[1]);
845       if (opcode != 0)
846 	{
847 	  *pp = p + 2;
848 	  return this->make_token(opcode, p);
849 	}
850 
851       opcode = Lex::one_char_operator(p[0]);
852       if (opcode != 0)
853 	{
854 	  *pp = p + 1;
855 	  return this->make_token(opcode, p);
856 	}
857 
858       return this->make_token(Token::TOKEN_INVALID, p);
859     }
860 }
861 
862 // Return the next token.
863 
864 const Token*
865 Lex::next_token()
866 {
867   // The first token is special.
868   if (this->first_token_ != 0)
869     {
870       this->token_ = Token(this->first_token_, 0, 0);
871       this->first_token_ = 0;
872       return &this->token_;
873     }
874 
875   this->token_ = this->get_token(&this->current_);
876 
877   // Don't let an early null byte fool us into thinking that we've
878   // reached the end of the file.
879   if (this->token_.is_eof()
880       && (static_cast<size_t>(this->current_ - this->input_string_)
881 	  < this->input_length_))
882     this->token_ = this->make_invalid_token(this->current_);
883 
884   return &this->token_;
885 }
886 
887 // class Symbol_assignment.
888 
889 // Add the symbol to the symbol table.  This makes sure the symbol is
890 // there and defined.  The actual value is stored later.  We can't
891 // determine the actual value at this point, because we can't
892 // necessarily evaluate the expression until all ordinary symbols have
893 // been finalized.
894 
895 // The GNU linker lets symbol assignments in the linker script
896 // silently override defined symbols in object files.  We are
897 // compatible.  FIXME: Should we issue a warning?
898 
899 void
900 Symbol_assignment::add_to_table(Symbol_table* symtab)
901 {
902   elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
903   this->sym_ = symtab->define_as_constant(this->name_.c_str(),
904 					  NULL, // version
905 					  (this->is_defsym_
906 					   ? Symbol_table::DEFSYM
907 					   : Symbol_table::SCRIPT),
908 					  0, // value
909 					  0, // size
910 					  elfcpp::STT_NOTYPE,
911 					  elfcpp::STB_GLOBAL,
912 					  vis,
913 					  0, // nonvis
914 					  this->provide_,
915                                           true); // force_override
916 }
917 
918 // Finalize a symbol value.
919 
920 void
921 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
922 {
923   this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
924 }
925 
926 // Finalize a symbol value which can refer to the dot symbol.
927 
928 void
929 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
930 				     const Layout* layout,
931 				     uint64_t dot_value,
932 				     Output_section* dot_section)
933 {
934   this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
935 }
936 
937 // Finalize a symbol value, internal version.
938 
939 void
940 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
941 				      const Layout* layout,
942 				      bool is_dot_available,
943 				      uint64_t dot_value,
944 				      Output_section* dot_section)
945 {
946   // If we were only supposed to provide this symbol, the sym_ field
947   // will be NULL if the symbol was not referenced.
948   if (this->sym_ == NULL)
949     {
950       gold_assert(this->provide_);
951       return;
952     }
953 
954   if (parameters->target().get_size() == 32)
955     {
956 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
957       this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
958 			       dot_section);
959 #else
960       gold_unreachable();
961 #endif
962     }
963   else if (parameters->target().get_size() == 64)
964     {
965 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
966       this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
967 			       dot_section);
968 #else
969       gold_unreachable();
970 #endif
971     }
972   else
973     gold_unreachable();
974 }
975 
976 template<int size>
977 void
978 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
979 				  bool is_dot_available, uint64_t dot_value,
980 				  Output_section* dot_section)
981 {
982   Output_section* section;
983   elfcpp::STT type = elfcpp::STT_NOTYPE;
984   elfcpp::STV vis = elfcpp::STV_DEFAULT;
985   unsigned char nonvis = 0;
986   uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
987 						  is_dot_available,
988 						  dot_value, dot_section,
989 						  &section, NULL, &type,
990 						  &vis, &nonvis, false, NULL);
991   Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
992   ssym->set_value(final_val);
993   ssym->set_type(type);
994   ssym->set_visibility(vis);
995   ssym->set_nonvis(nonvis);
996   if (section != NULL)
997     ssym->set_output_section(section);
998 }
999 
1000 // Set the symbol value if the expression yields an absolute value or
1001 // a value relative to DOT_SECTION.
1002 
1003 void
1004 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
1005 				   bool is_dot_available, uint64_t dot_value,
1006 				   Output_section* dot_section)
1007 {
1008   if (this->sym_ == NULL)
1009     return;
1010 
1011   Output_section* val_section;
1012   bool is_valid;
1013   uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
1014 					    is_dot_available, dot_value,
1015 					    dot_section, &val_section, NULL,
1016 					    NULL, NULL, NULL, false, &is_valid);
1017   if (!is_valid || (val_section != NULL && val_section != dot_section))
1018     return;
1019 
1020   if (parameters->target().get_size() == 32)
1021     {
1022 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1023       Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1024       ssym->set_value(val);
1025 #else
1026       gold_unreachable();
1027 #endif
1028     }
1029   else if (parameters->target().get_size() == 64)
1030     {
1031 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1032       Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1033       ssym->set_value(val);
1034 #else
1035       gold_unreachable();
1036 #endif
1037     }
1038   else
1039     gold_unreachable();
1040   if (val_section != NULL)
1041     this->sym_->set_output_section(val_section);
1042 }
1043 
1044 // Print for debugging.
1045 
1046 void
1047 Symbol_assignment::print(FILE* f) const
1048 {
1049   if (this->provide_ && this->hidden_)
1050     fprintf(f, "PROVIDE_HIDDEN(");
1051   else if (this->provide_)
1052     fprintf(f, "PROVIDE(");
1053   else if (this->hidden_)
1054     gold_unreachable();
1055 
1056   fprintf(f, "%s = ", this->name_.c_str());
1057   this->val_->print(f);
1058 
1059   if (this->provide_ || this->hidden_)
1060     fprintf(f, ")");
1061 
1062   fprintf(f, "\n");
1063 }
1064 
1065 // Class Script_assertion.
1066 
1067 // Check the assertion.
1068 
1069 void
1070 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1071 {
1072   if (!this->check_->eval(symtab, layout, true))
1073     gold_error("%s", this->message_.c_str());
1074 }
1075 
1076 // Print for debugging.
1077 
1078 void
1079 Script_assertion::print(FILE* f) const
1080 {
1081   fprintf(f, "ASSERT(");
1082   this->check_->print(f);
1083   fprintf(f, ", \"%s\")\n", this->message_.c_str());
1084 }
1085 
1086 // Class Script_options.
1087 
1088 Script_options::Script_options()
1089   : entry_(), symbol_assignments_(), symbol_definitions_(),
1090     symbol_references_(), version_script_info_(), script_sections_()
1091 {
1092 }
1093 
1094 // Returns true if NAME is on the list of symbol assignments waiting
1095 // to be processed.
1096 
1097 bool
1098 Script_options::is_pending_assignment(const char* name)
1099 {
1100   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1101        p != this->symbol_assignments_.end();
1102        ++p)
1103     if ((*p)->name() == name)
1104       return true;
1105   return false;
1106 }
1107 
1108 // Add a symbol to be defined.
1109 
1110 void
1111 Script_options::add_symbol_assignment(const char* name, size_t length,
1112 				      bool is_defsym, Expression* value,
1113 				      bool provide, bool hidden)
1114 {
1115   if (length != 1 || name[0] != '.')
1116     {
1117       if (this->script_sections_.in_sections_clause())
1118 	{
1119 	  gold_assert(!is_defsym);
1120 	  this->script_sections_.add_symbol_assignment(name, length, value,
1121 						       provide, hidden);
1122 	}
1123       else
1124 	{
1125 	  Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1126 						       value, provide, hidden);
1127 	  this->symbol_assignments_.push_back(p);
1128 	}
1129 
1130       if (!provide)
1131 	{
1132 	  std::string n(name, length);
1133 	  this->symbol_definitions_.insert(n);
1134 	  this->symbol_references_.erase(n);
1135 	}
1136     }
1137   else
1138     {
1139       if (provide || hidden)
1140 	gold_error(_("invalid use of PROVIDE for dot symbol"));
1141 
1142       // The GNU linker permits assignments to dot outside of SECTIONS
1143       // clauses and treats them as occurring inside, so we don't
1144       // check in_sections_clause here.
1145       this->script_sections_.add_dot_assignment(value);
1146     }
1147 }
1148 
1149 // Add a reference to a symbol.
1150 
1151 void
1152 Script_options::add_symbol_reference(const char* name, size_t length)
1153 {
1154   if (length != 1 || name[0] != '.')
1155     {
1156       std::string n(name, length);
1157       if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1158 	this->symbol_references_.insert(n);
1159     }
1160 }
1161 
1162 // Add an assertion.
1163 
1164 void
1165 Script_options::add_assertion(Expression* check, const char* message,
1166 			      size_t messagelen)
1167 {
1168   if (this->script_sections_.in_sections_clause())
1169     this->script_sections_.add_assertion(check, message, messagelen);
1170   else
1171     {
1172       Script_assertion* p = new Script_assertion(check, message, messagelen);
1173       this->assertions_.push_back(p);
1174     }
1175 }
1176 
1177 // Create sections required by any linker scripts.
1178 
1179 void
1180 Script_options::create_script_sections(Layout* layout)
1181 {
1182   if (this->saw_sections_clause())
1183     this->script_sections_.create_sections(layout);
1184 }
1185 
1186 // Add any symbols we are defining to the symbol table.
1187 
1188 void
1189 Script_options::add_symbols_to_table(Symbol_table* symtab)
1190 {
1191   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1192        p != this->symbol_assignments_.end();
1193        ++p)
1194     (*p)->add_to_table(symtab);
1195   this->script_sections_.add_symbols_to_table(symtab);
1196 }
1197 
1198 // Finalize symbol values.  Also check assertions.
1199 
1200 void
1201 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1202 {
1203   // We finalize the symbols defined in SECTIONS first, because they
1204   // are the ones which may have changed.  This way if symbol outside
1205   // SECTIONS are defined in terms of symbols inside SECTIONS, they
1206   // will get the right value.
1207   this->script_sections_.finalize_symbols(symtab, layout);
1208 
1209   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1210        p != this->symbol_assignments_.end();
1211        ++p)
1212     (*p)->finalize(symtab, layout);
1213 
1214   for (Assertions::iterator p = this->assertions_.begin();
1215        p != this->assertions_.end();
1216        ++p)
1217     (*p)->check(symtab, layout);
1218 }
1219 
1220 // Set section addresses.  We set all the symbols which have absolute
1221 // values.  Then we let the SECTIONS clause do its thing.  This
1222 // returns the segment which holds the file header and segment
1223 // headers, if any.
1224 
1225 Output_segment*
1226 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1227 {
1228   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1229        p != this->symbol_assignments_.end();
1230        ++p)
1231     (*p)->set_if_absolute(symtab, layout, false, 0, NULL);
1232 
1233   return this->script_sections_.set_section_addresses(symtab, layout);
1234 }
1235 
1236 // This class holds data passed through the parser to the lexer and to
1237 // the parser support functions.  This avoids global variables.  We
1238 // can't use global variables because we need not be called by a
1239 // singleton thread.
1240 
1241 class Parser_closure
1242 {
1243  public:
1244   Parser_closure(const char* filename,
1245 		 const Position_dependent_options& posdep_options,
1246 		 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1247                  Command_line* command_line,
1248 		 Script_options* script_options,
1249 		 Lex* lex,
1250 		 bool skip_on_incompatible_target,
1251 		 Script_info* script_info)
1252     : filename_(filename), posdep_options_(posdep_options),
1253       parsing_defsym_(parsing_defsym), in_group_(in_group),
1254       is_in_sysroot_(is_in_sysroot),
1255       skip_on_incompatible_target_(skip_on_incompatible_target),
1256       found_incompatible_target_(false),
1257       command_line_(command_line), script_options_(script_options),
1258       version_script_info_(script_options->version_script_info()),
1259       lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL),
1260       script_info_(script_info)
1261   {
1262     // We start out processing C symbols in the default lex mode.
1263     this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1264     this->lex_mode_stack_.push_back(lex->mode());
1265   }
1266 
1267   // Return the file name.
1268   const char*
1269   filename() const
1270   { return this->filename_; }
1271 
1272   // Return the position dependent options.  The caller may modify
1273   // this.
1274   Position_dependent_options&
1275   position_dependent_options()
1276   { return this->posdep_options_; }
1277 
1278   // Whether we are parsing a --defsym.
1279   bool
1280   parsing_defsym() const
1281   { return this->parsing_defsym_; }
1282 
1283   // Return whether this script is being run in a group.
1284   bool
1285   in_group() const
1286   { return this->in_group_; }
1287 
1288   // Return whether this script was found using a directory in the
1289   // sysroot.
1290   bool
1291   is_in_sysroot() const
1292   { return this->is_in_sysroot_; }
1293 
1294   // Whether to skip to the next file with the same name if we find an
1295   // incompatible target in an OUTPUT_FORMAT statement.
1296   bool
1297   skip_on_incompatible_target() const
1298   { return this->skip_on_incompatible_target_; }
1299 
1300   // Stop skipping to the next file on an incompatible target.  This
1301   // is called when we make some unrevocable change to the data
1302   // structures.
1303   void
1304   clear_skip_on_incompatible_target()
1305   { this->skip_on_incompatible_target_ = false; }
1306 
1307   // Whether we found an incompatible target in an OUTPUT_FORMAT
1308   // statement.
1309   bool
1310   found_incompatible_target() const
1311   { return this->found_incompatible_target_; }
1312 
1313   // Note that we found an incompatible target.
1314   void
1315   set_found_incompatible_target()
1316   { this->found_incompatible_target_ = true; }
1317 
1318   // Returns the Command_line structure passed in at constructor time.
1319   // This value may be NULL.  The caller may modify this, which modifies
1320   // the passed-in Command_line object (not a copy).
1321   Command_line*
1322   command_line()
1323   { return this->command_line_; }
1324 
1325   // Return the options which may be set by a script.
1326   Script_options*
1327   script_options()
1328   { return this->script_options_; }
1329 
1330   // Return the object in which version script information should be stored.
1331   Version_script_info*
1332   version_script()
1333   { return this->version_script_info_; }
1334 
1335   // Return the next token, and advance.
1336   const Token*
1337   next_token()
1338   {
1339     const Token* token = this->lex_->next_token();
1340     this->lineno_ = token->lineno();
1341     this->charpos_ = token->charpos();
1342     return token;
1343   }
1344 
1345   // Set a new lexer mode, pushing the current one.
1346   void
1347   push_lex_mode(Lex::Mode mode)
1348   {
1349     this->lex_mode_stack_.push_back(this->lex_->mode());
1350     this->lex_->set_mode(mode);
1351   }
1352 
1353   // Pop the lexer mode.
1354   void
1355   pop_lex_mode()
1356   {
1357     gold_assert(!this->lex_mode_stack_.empty());
1358     this->lex_->set_mode(this->lex_mode_stack_.back());
1359     this->lex_mode_stack_.pop_back();
1360   }
1361 
1362   // Return the current lexer mode.
1363   Lex::Mode
1364   lex_mode() const
1365   { return this->lex_mode_stack_.back(); }
1366 
1367   // Return the line number of the last token.
1368   int
1369   lineno() const
1370   { return this->lineno_; }
1371 
1372   // Return the character position in the line of the last token.
1373   int
1374   charpos() const
1375   { return this->charpos_; }
1376 
1377   // Return the list of input files, creating it if necessary.  This
1378   // is a space leak--we never free the INPUTS_ pointer.
1379   Input_arguments*
1380   inputs()
1381   {
1382     if (this->inputs_ == NULL)
1383       this->inputs_ = new Input_arguments();
1384     return this->inputs_;
1385   }
1386 
1387   // Return whether we saw any input files.
1388   bool
1389   saw_inputs() const
1390   { return this->inputs_ != NULL && !this->inputs_->empty(); }
1391 
1392   // Return the current language being processed in a version script
1393   // (eg, "C++").  The empty string represents unmangled C names.
1394   Version_script_info::Language
1395   get_current_language() const
1396   { return this->language_stack_.back(); }
1397 
1398   // Push a language onto the stack when entering an extern block.
1399   void
1400   push_language(Version_script_info::Language lang)
1401   { this->language_stack_.push_back(lang); }
1402 
1403   // Pop a language off of the stack when exiting an extern block.
1404   void
1405   pop_language()
1406   {
1407     gold_assert(!this->language_stack_.empty());
1408     this->language_stack_.pop_back();
1409   }
1410 
1411   // Return a pointer to the incremental info.
1412   Script_info*
1413   script_info()
1414   { return this->script_info_; }
1415 
1416  private:
1417   // The name of the file we are reading.
1418   const char* filename_;
1419   // The position dependent options.
1420   Position_dependent_options posdep_options_;
1421   // True if we are parsing a --defsym.
1422   bool parsing_defsym_;
1423   // Whether we are currently in a --start-group/--end-group.
1424   bool in_group_;
1425   // Whether the script was found in a sysrooted directory.
1426   bool is_in_sysroot_;
1427   // If this is true, then if we find an OUTPUT_FORMAT with an
1428   // incompatible target, then we tell the parser to abort so that we
1429   // can search for the next file with the same name.
1430   bool skip_on_incompatible_target_;
1431   // True if we found an OUTPUT_FORMAT with an incompatible target.
1432   bool found_incompatible_target_;
1433   // May be NULL if the user chooses not to pass one in.
1434   Command_line* command_line_;
1435   // Options which may be set from any linker script.
1436   Script_options* script_options_;
1437   // Information parsed from a version script.
1438   Version_script_info* version_script_info_;
1439   // The lexer.
1440   Lex* lex_;
1441   // The line number of the last token returned by next_token.
1442   int lineno_;
1443   // The column number of the last token returned by next_token.
1444   int charpos_;
1445   // A stack of lexer modes.
1446   std::vector<Lex::Mode> lex_mode_stack_;
1447   // A stack of which extern/language block we're inside. Can be C++,
1448   // java, or empty for C.
1449   std::vector<Version_script_info::Language> language_stack_;
1450   // New input files found to add to the link.
1451   Input_arguments* inputs_;
1452   // Pointer to incremental linking info.
1453   Script_info* script_info_;
1454 };
1455 
1456 // FILE was found as an argument on the command line.  Try to read it
1457 // as a script.  Return true if the file was handled.
1458 
1459 bool
1460 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1461 		  Dirsearch* dirsearch, int dirindex,
1462 		  Input_objects* input_objects, Mapfile* mapfile,
1463 		  Input_group* input_group,
1464 		  const Input_argument* input_argument,
1465 		  Input_file* input_file, Task_token* next_blocker,
1466 		  bool* used_next_blocker)
1467 {
1468   *used_next_blocker = false;
1469 
1470   std::string input_string;
1471   Lex::read_file(input_file, &input_string);
1472 
1473   Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1474 
1475   Script_info* script_info = NULL;
1476   if (layout->incremental_inputs() != NULL)
1477     {
1478       const std::string& filename = input_file->filename();
1479       Timespec mtime = input_file->file().get_mtime();
1480       unsigned int arg_serial = input_argument->file().arg_serial();
1481       script_info = new Script_info(filename);
1482       layout->incremental_inputs()->report_script(script_info, arg_serial,
1483 						  mtime);
1484     }
1485 
1486   Parser_closure closure(input_file->filename().c_str(),
1487 			 input_argument->file().options(),
1488 			 false,
1489 			 input_group != NULL,
1490 			 input_file->is_in_sysroot(),
1491                          NULL,
1492 			 layout->script_options(),
1493 			 &lex,
1494 			 input_file->will_search_for(),
1495 			 script_info);
1496 
1497   bool old_saw_sections_clause =
1498     layout->script_options()->saw_sections_clause();
1499 
1500   if (yyparse(&closure) != 0)
1501     {
1502       if (closure.found_incompatible_target())
1503 	{
1504 	  Read_symbols::incompatible_warning(input_argument, input_file);
1505 	  Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1506 				dirsearch, dirindex, mapfile, input_argument,
1507 				input_group, next_blocker);
1508 	  return true;
1509 	}
1510       return false;
1511     }
1512 
1513   if (!old_saw_sections_clause
1514       && layout->script_options()->saw_sections_clause()
1515       && layout->have_added_input_section())
1516     gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1517 	       input_file->filename().c_str());
1518 
1519   if (!closure.saw_inputs())
1520     return true;
1521 
1522   Task_token* this_blocker = NULL;
1523   for (Input_arguments::const_iterator p = closure.inputs()->begin();
1524        p != closure.inputs()->end();
1525        ++p)
1526     {
1527       Task_token* nb;
1528       if (p + 1 == closure.inputs()->end())
1529 	nb = next_blocker;
1530       else
1531 	{
1532 	  nb = new Task_token(true);
1533 	  nb->add_blocker();
1534 	}
1535       workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1536 					     layout, dirsearch, 0, mapfile, &*p,
1537 					     input_group, NULL, this_blocker, nb));
1538       this_blocker = nb;
1539     }
1540 
1541   *used_next_blocker = true;
1542 
1543   return true;
1544 }
1545 
1546 // Helper function for read_version_script(), read_commandline_script() and
1547 // script_include_directive().  Processes the given file in the mode indicated
1548 // by first_token and lex_mode.
1549 
1550 static bool
1551 read_script_file(const char* filename, Command_line* cmdline,
1552                  Script_options* script_options,
1553                  int first_token, Lex::Mode lex_mode)
1554 {
1555   Dirsearch dirsearch;
1556   std::string name = filename;
1557 
1558   // If filename is a relative filename, search for it manually using "." +
1559   // cmdline->options()->library_path() -- not dirsearch.
1560   if (!IS_ABSOLUTE_PATH(filename))
1561     {
1562       const General_options::Dir_list& search_path =
1563           cmdline->options().library_path();
1564       name = Dirsearch::find_file_in_dir_list(name, search_path, ".");
1565     }
1566 
1567   // The file locking code wants to record a Task, but we haven't
1568   // started the workqueue yet.  This is only for debugging purposes,
1569   // so we invent a fake value.
1570   const Task* task = reinterpret_cast<const Task*>(-1);
1571 
1572   // We don't want this file to be opened in binary mode.
1573   Position_dependent_options posdep = cmdline->position_dependent_options();
1574   if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1575     posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1576   Input_file_argument input_argument(name.c_str(),
1577 				     Input_file_argument::INPUT_FILE_TYPE_FILE,
1578 				     "", false, posdep);
1579   Input_file input_file(&input_argument);
1580   int dummy = 0;
1581   if (!input_file.open(dirsearch, task, &dummy))
1582     return false;
1583 
1584   std::string input_string;
1585   Lex::read_file(&input_file, &input_string);
1586 
1587   Lex lex(input_string.c_str(), input_string.length(), first_token);
1588   lex.set_mode(lex_mode);
1589 
1590   Parser_closure closure(filename,
1591 			 cmdline->position_dependent_options(),
1592 			 first_token == Lex::DYNAMIC_LIST,
1593 			 false,
1594 			 input_file.is_in_sysroot(),
1595                          cmdline,
1596 			 script_options,
1597 			 &lex,
1598 			 false,
1599 			 NULL);
1600   if (yyparse(&closure) != 0)
1601     {
1602       input_file.file().unlock(task);
1603       return false;
1604     }
1605 
1606   input_file.file().unlock(task);
1607 
1608   gold_assert(!closure.saw_inputs());
1609 
1610   return true;
1611 }
1612 
1613 // FILENAME was found as an argument to --script (-T).
1614 // Read it as a script, and execute its contents immediately.
1615 
1616 bool
1617 read_commandline_script(const char* filename, Command_line* cmdline)
1618 {
1619   return read_script_file(filename, cmdline, &cmdline->script_options(),
1620                           PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1621 }
1622 
1623 // FILENAME was found as an argument to --version-script.  Read it as
1624 // a version script, and store its contents in
1625 // cmdline->script_options()->version_script_info().
1626 
1627 bool
1628 read_version_script(const char* filename, Command_line* cmdline)
1629 {
1630   return read_script_file(filename, cmdline, &cmdline->script_options(),
1631                           PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1632 }
1633 
1634 // FILENAME was found as an argument to --dynamic-list.  Read it as a
1635 // list of symbols, and store its contents in DYNAMIC_LIST.
1636 
1637 bool
1638 read_dynamic_list(const char* filename, Command_line* cmdline,
1639                   Script_options* dynamic_list)
1640 {
1641   return read_script_file(filename, cmdline, dynamic_list,
1642                           PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1643 }
1644 
1645 // Implement the --defsym option on the command line.  Return true if
1646 // all is well.
1647 
1648 bool
1649 Script_options::define_symbol(const char* definition)
1650 {
1651   Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1652   lex.set_mode(Lex::EXPRESSION);
1653 
1654   // Dummy value.
1655   Position_dependent_options posdep_options;
1656 
1657   Parser_closure closure("command line", posdep_options, true,
1658 			 false, false, NULL, this, &lex, false, NULL);
1659 
1660   if (yyparse(&closure) != 0)
1661     return false;
1662 
1663   gold_assert(!closure.saw_inputs());
1664 
1665   return true;
1666 }
1667 
1668 // Print the script to F for debugging.
1669 
1670 void
1671 Script_options::print(FILE* f) const
1672 {
1673   fprintf(f, "%s: Dumping linker script\n", program_name);
1674 
1675   if (!this->entry_.empty())
1676     fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1677 
1678   for (Symbol_assignments::const_iterator p =
1679 	 this->symbol_assignments_.begin();
1680        p != this->symbol_assignments_.end();
1681        ++p)
1682     (*p)->print(f);
1683 
1684   for (Assertions::const_iterator p = this->assertions_.begin();
1685        p != this->assertions_.end();
1686        ++p)
1687     (*p)->print(f);
1688 
1689   this->script_sections_.print(f);
1690 
1691   this->version_script_info_.print(f);
1692 }
1693 
1694 // Manage mapping from keywords to the codes expected by the bison
1695 // parser.  We construct one global object for each lex mode with
1696 // keywords.
1697 
1698 class Keyword_to_parsecode
1699 {
1700  public:
1701   // The structure which maps keywords to parsecodes.
1702   struct Keyword_parsecode
1703   {
1704     // Keyword.
1705     const char* keyword;
1706     // Corresponding parsecode.
1707     int parsecode;
1708   };
1709 
1710   Keyword_to_parsecode(const Keyword_parsecode* keywords,
1711                        int keyword_count)
1712       : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1713   { }
1714 
1715   // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1716   // keyword.
1717   int
1718   keyword_to_parsecode(const char* keyword, size_t len) const;
1719 
1720  private:
1721   const Keyword_parsecode* keyword_parsecodes_;
1722   const int keyword_count_;
1723 };
1724 
1725 // Mapping from keyword string to keyword parsecode.  This array must
1726 // be kept in sorted order.  Parsecodes are looked up using bsearch.
1727 // This array must correspond to the list of parsecodes in yyscript.y.
1728 
1729 static const Keyword_to_parsecode::Keyword_parsecode
1730 script_keyword_parsecodes[] =
1731 {
1732   { "ABSOLUTE", ABSOLUTE },
1733   { "ADDR", ADDR },
1734   { "ALIGN", ALIGN_K },
1735   { "ALIGNOF", ALIGNOF },
1736   { "ASSERT", ASSERT_K },
1737   { "AS_NEEDED", AS_NEEDED },
1738   { "AT", AT },
1739   { "BIND", BIND },
1740   { "BLOCK", BLOCK },
1741   { "BYTE", BYTE },
1742   { "CONSTANT", CONSTANT },
1743   { "CONSTRUCTORS", CONSTRUCTORS },
1744   { "COPY", COPY },
1745   { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1746   { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1747   { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1748   { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1749   { "DEFINED", DEFINED },
1750   { "DSECT", DSECT },
1751   { "ENTRY", ENTRY },
1752   { "EXCLUDE_FILE", EXCLUDE_FILE },
1753   { "EXTERN", EXTERN },
1754   { "FILL", FILL },
1755   { "FLOAT", FLOAT },
1756   { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1757   { "GROUP", GROUP },
1758   { "HLL", HLL },
1759   { "INCLUDE", INCLUDE },
1760   { "INFO", INFO },
1761   { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1762   { "INPUT", INPUT },
1763   { "KEEP", KEEP },
1764   { "LENGTH", LENGTH },
1765   { "LOADADDR", LOADADDR },
1766   { "LONG", LONG },
1767   { "MAP", MAP },
1768   { "MAX", MAX_K },
1769   { "MEMORY", MEMORY },
1770   { "MIN", MIN_K },
1771   { "NEXT", NEXT },
1772   { "NOCROSSREFS", NOCROSSREFS },
1773   { "NOFLOAT", NOFLOAT },
1774   { "NOLOAD", NOLOAD },
1775   { "ONLY_IF_RO", ONLY_IF_RO },
1776   { "ONLY_IF_RW", ONLY_IF_RW },
1777   { "OPTION", OPTION },
1778   { "ORIGIN", ORIGIN },
1779   { "OUTPUT", OUTPUT },
1780   { "OUTPUT_ARCH", OUTPUT_ARCH },
1781   { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1782   { "OVERLAY", OVERLAY },
1783   { "PHDRS", PHDRS },
1784   { "PROVIDE", PROVIDE },
1785   { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1786   { "QUAD", QUAD },
1787   { "SEARCH_DIR", SEARCH_DIR },
1788   { "SECTIONS", SECTIONS },
1789   { "SEGMENT_START", SEGMENT_START },
1790   { "SHORT", SHORT },
1791   { "SIZEOF", SIZEOF },
1792   { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1793   { "SORT", SORT_BY_NAME },
1794   { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1795   { "SORT_BY_INIT_PRIORITY", SORT_BY_INIT_PRIORITY },
1796   { "SORT_BY_NAME", SORT_BY_NAME },
1797   { "SPECIAL", SPECIAL },
1798   { "SQUAD", SQUAD },
1799   { "STARTUP", STARTUP },
1800   { "SUBALIGN", SUBALIGN },
1801   { "SYSLIB", SYSLIB },
1802   { "TARGET", TARGET_K },
1803   { "TRUNCATE", TRUNCATE },
1804   { "VERSION", VERSIONK },
1805   { "global", GLOBAL },
1806   { "l", LENGTH },
1807   { "len", LENGTH },
1808   { "local", LOCAL },
1809   { "o", ORIGIN },
1810   { "org", ORIGIN },
1811   { "sizeof_headers", SIZEOF_HEADERS },
1812 };
1813 
1814 static const Keyword_to_parsecode
1815 script_keywords(&script_keyword_parsecodes[0],
1816                 (sizeof(script_keyword_parsecodes)
1817                  / sizeof(script_keyword_parsecodes[0])));
1818 
1819 static const Keyword_to_parsecode::Keyword_parsecode
1820 version_script_keyword_parsecodes[] =
1821 {
1822   { "extern", EXTERN },
1823   { "global", GLOBAL },
1824   { "local", LOCAL },
1825 };
1826 
1827 static const Keyword_to_parsecode
1828 version_script_keywords(&version_script_keyword_parsecodes[0],
1829                         (sizeof(version_script_keyword_parsecodes)
1830                          / sizeof(version_script_keyword_parsecodes[0])));
1831 
1832 static const Keyword_to_parsecode::Keyword_parsecode
1833 dynamic_list_keyword_parsecodes[] =
1834 {
1835   { "extern", EXTERN },
1836 };
1837 
1838 static const Keyword_to_parsecode
1839 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1840                       (sizeof(dynamic_list_keyword_parsecodes)
1841                        / sizeof(dynamic_list_keyword_parsecodes[0])));
1842 
1843 
1844 
1845 // Comparison function passed to bsearch.
1846 
1847 extern "C"
1848 {
1849 
1850 struct Ktt_key
1851 {
1852   const char* str;
1853   size_t len;
1854 };
1855 
1856 static int
1857 ktt_compare(const void* keyv, const void* kttv)
1858 {
1859   const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1860   const Keyword_to_parsecode::Keyword_parsecode* ktt =
1861     static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1862   int i = strncmp(key->str, ktt->keyword, key->len);
1863   if (i != 0)
1864     return i;
1865   if (ktt->keyword[key->len] != '\0')
1866     return -1;
1867   return 0;
1868 }
1869 
1870 } // End extern "C".
1871 
1872 int
1873 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1874                                            size_t len) const
1875 {
1876   Ktt_key key;
1877   key.str = keyword;
1878   key.len = len;
1879   void* kttv = bsearch(&key,
1880                        this->keyword_parsecodes_,
1881                        this->keyword_count_,
1882                        sizeof(this->keyword_parsecodes_[0]),
1883                        ktt_compare);
1884   if (kttv == NULL)
1885     return 0;
1886   Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1887   return ktt->parsecode;
1888 }
1889 
1890 // The following structs are used within the VersionInfo class as well
1891 // as in the bison helper functions.  They store the information
1892 // parsed from the version script.
1893 
1894 // A single version expression.
1895 // For example, pattern="std::map*" and language="C++".
1896 struct Version_expression
1897 {
1898   Version_expression(const std::string& a_pattern,
1899 		     Version_script_info::Language a_language,
1900                      bool a_exact_match)
1901     : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1902       was_matched_by_symbol(false)
1903   { }
1904 
1905   std::string pattern;
1906   Version_script_info::Language language;
1907   // If false, we use glob() to match pattern.  If true, we use strcmp().
1908   bool exact_match;
1909   // True if --no-undefined-version is in effect and we found this
1910   // version in get_symbol_version.  We use mutable because this
1911   // struct is generally not modifiable after it has been created.
1912   mutable bool was_matched_by_symbol;
1913 };
1914 
1915 // A list of expressions.
1916 struct Version_expression_list
1917 {
1918   std::vector<struct Version_expression> expressions;
1919 };
1920 
1921 // A list of which versions upon which another version depends.
1922 // Strings should be from the Stringpool.
1923 struct Version_dependency_list
1924 {
1925   std::vector<std::string> dependencies;
1926 };
1927 
1928 // The total definition of a version.  It includes the tag for the
1929 // version, its global and local expressions, and any dependencies.
1930 struct Version_tree
1931 {
1932   Version_tree()
1933       : tag(), global(NULL), local(NULL), dependencies(NULL)
1934   { }
1935 
1936   std::string tag;
1937   const struct Version_expression_list* global;
1938   const struct Version_expression_list* local;
1939   const struct Version_dependency_list* dependencies;
1940 };
1941 
1942 // Helper class that calls cplus_demangle when needed and takes care of freeing
1943 // the result.
1944 
1945 class Lazy_demangler
1946 {
1947  public:
1948   Lazy_demangler(const char* symbol, int options)
1949     : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1950   { }
1951 
1952   ~Lazy_demangler()
1953   { free(this->demangled_); }
1954 
1955   // Return the demangled name. The actual demangling happens on the first call,
1956   // and the result is later cached.
1957   inline char*
1958   get();
1959 
1960  private:
1961   // The symbol to demangle.
1962   const char* symbol_;
1963   // Option flags to pass to cplus_demagle.
1964   const int options_;
1965   // The cached demangled value, or NULL if demangling didn't happen yet or
1966   // failed.
1967   char* demangled_;
1968   // Whether we already called cplus_demangle
1969   bool did_demangle_;
1970 };
1971 
1972 // Return the demangled name. The actual demangling happens on the first call,
1973 // and the result is later cached. Returns NULL if the symbol cannot be
1974 // demangled.
1975 
1976 inline char*
1977 Lazy_demangler::get()
1978 {
1979   if (!this->did_demangle_)
1980     {
1981       this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1982       this->did_demangle_ = true;
1983     }
1984   return this->demangled_;
1985 }
1986 
1987 // Class Version_script_info.
1988 
1989 Version_script_info::Version_script_info()
1990   : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1991     default_version_(NULL), default_is_global_(false), is_finalized_(false)
1992 {
1993   for (int i = 0; i < LANGUAGE_COUNT; ++i)
1994     this->exact_[i] = NULL;
1995 }
1996 
1997 Version_script_info::~Version_script_info()
1998 {
1999 }
2000 
2001 // Forget all the known version script information.
2002 
2003 void
2004 Version_script_info::clear()
2005 {
2006   for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
2007     delete this->dependency_lists_[k];
2008   this->dependency_lists_.clear();
2009   for (size_t k = 0; k < this->version_trees_.size(); ++k)
2010     delete this->version_trees_[k];
2011   this->version_trees_.clear();
2012   for (size_t k = 0; k < this->expression_lists_.size(); ++k)
2013     delete this->expression_lists_[k];
2014   this->expression_lists_.clear();
2015 }
2016 
2017 // Finalize the version script information.
2018 
2019 void
2020 Version_script_info::finalize()
2021 {
2022   if (!this->is_finalized_)
2023     {
2024       this->build_lookup_tables();
2025       this->is_finalized_ = true;
2026     }
2027 }
2028 
2029 // Return all the versions.
2030 
2031 std::vector<std::string>
2032 Version_script_info::get_versions() const
2033 {
2034   std::vector<std::string> ret;
2035   for (size_t j = 0; j < this->version_trees_.size(); ++j)
2036     if (!this->version_trees_[j]->tag.empty())
2037       ret.push_back(this->version_trees_[j]->tag);
2038   return ret;
2039 }
2040 
2041 // Return the dependencies of VERSION.
2042 
2043 std::vector<std::string>
2044 Version_script_info::get_dependencies(const char* version) const
2045 {
2046   std::vector<std::string> ret;
2047   for (size_t j = 0; j < this->version_trees_.size(); ++j)
2048     if (this->version_trees_[j]->tag == version)
2049       {
2050         const struct Version_dependency_list* deps =
2051           this->version_trees_[j]->dependencies;
2052         if (deps != NULL)
2053           for (size_t k = 0; k < deps->dependencies.size(); ++k)
2054             ret.push_back(deps->dependencies[k]);
2055         return ret;
2056       }
2057   return ret;
2058 }
2059 
2060 // A version script essentially maps a symbol name to a version tag
2061 // and an indication of whether symbol is global or local within that
2062 // version tag.  Each symbol maps to at most one version tag.
2063 // Unfortunately, in practice, version scripts are ambiguous, and list
2064 // symbols multiple times.  Thus, we have to document the matching
2065 // process.
2066 
2067 // This is a description of what the GNU linker does as of 2010-01-11.
2068 // It walks through the version tags in the order in which they appear
2069 // in the version script.  For each tag, it first walks through the
2070 // global patterns for that tag, then the local patterns.  When
2071 // looking at a single pattern, it first applies any language specific
2072 // demangling as specified for the pattern, and then matches the
2073 // resulting symbol name to the pattern.  If it finds an exact match
2074 // for a literal pattern (a pattern enclosed in quotes or with no
2075 // wildcard characters), then that is the match that it uses.  If
2076 // finds a match with a wildcard pattern, then it saves it and
2077 // continues searching.  Wildcard patterns that are exactly "*" are
2078 // saved separately.
2079 
2080 // If no exact match with a literal pattern is ever found, then if a
2081 // wildcard match with a global pattern was found it is used,
2082 // otherwise if a wildcard match with a local pattern was found it is
2083 // used.
2084 
2085 // This is the result:
2086 //   * If there is an exact match, then we use the first tag in the
2087 //     version script where it matches.
2088 //     + If the exact match in that tag is global, it is used.
2089 //     + Otherwise the exact match in that tag is local, and is used.
2090 //   * Otherwise, if there is any match with a global wildcard pattern:
2091 //     + If there is any match with a wildcard pattern which is not
2092 //       "*", then we use the tag in which the *last* such pattern
2093 //       appears.
2094 //     + Otherwise, we matched "*".  If there is no match with a local
2095 //       wildcard pattern which is not "*", then we use the *last*
2096 //       match with a global "*".  Otherwise, continue.
2097 //   * Otherwise, if there is any match with a local wildcard pattern:
2098 //     + If there is any match with a wildcard pattern which is not
2099 //       "*", then we use the tag in which the *last* such pattern
2100 //       appears.
2101 //     + Otherwise, we matched "*", and we use the tag in which the
2102 //       *last* such match occurred.
2103 
2104 // There is an additional wrinkle.  When the GNU linker finds a symbol
2105 // with a version defined in an object file due to a .symver
2106 // directive, it looks up that symbol name in that version tag.  If it
2107 // finds it, it matches the symbol name against the patterns for that
2108 // version.  If there is no match with a global pattern, but there is
2109 // a match with a local pattern, then the GNU linker marks the symbol
2110 // as local.
2111 
2112 // We want gold to be generally compatible, but we also want gold to
2113 // be fast.  These are the rules that gold implements:
2114 //   * If there is an exact match for the mangled name, we use it.
2115 //     + If there is more than one exact match, we give a warning, and
2116 //       we use the first tag in the script which matches.
2117 //     + If a symbol has an exact match as both global and local for
2118 //       the same version tag, we give an error.
2119 //   * Otherwise, we look for an extern C++ or an extern Java exact
2120 //     match.  If we find an exact match, we use it.
2121 //     + If there is more than one exact match, we give a warning, and
2122 //       we use the first tag in the script which matches.
2123 //     + If a symbol has an exact match as both global and local for
2124 //       the same version tag, we give an error.
2125 //   * Otherwise, we look through the wildcard patterns, ignoring "*"
2126 //     patterns.  We look through the version tags in reverse order.
2127 //     For each version tag, we look through the global patterns and
2128 //     then the local patterns.  We use the first match we find (i.e.,
2129 //     the last matching version tag in the file).
2130 //   * Otherwise, we use the "*" pattern if there is one.  We give an
2131 //     error if there are multiple "*" patterns.
2132 
2133 // At least for now, gold does not look up the version tag for a
2134 // symbol version found in an object file to see if it should be
2135 // forced local.  There are other ways to force a symbol to be local,
2136 // and I don't understand why this one is useful.
2137 
2138 // Build a set of fast lookup tables for a version script.
2139 
2140 void
2141 Version_script_info::build_lookup_tables()
2142 {
2143   size_t size = this->version_trees_.size();
2144   for (size_t j = 0; j < size; ++j)
2145     {
2146       const Version_tree* v = this->version_trees_[j];
2147       this->build_expression_list_lookup(v->local, v, false);
2148       this->build_expression_list_lookup(v->global, v, true);
2149     }
2150 }
2151 
2152 // If a pattern has backlashes but no unquoted wildcard characters,
2153 // then we apply backslash unquoting and look for an exact match.
2154 // Otherwise we treat it as a wildcard pattern.  This function returns
2155 // true for a wildcard pattern.  Otherwise, it does backslash
2156 // unquoting on *PATTERN and returns false.  If this returns true,
2157 // *PATTERN may have been partially unquoted.
2158 
2159 bool
2160 Version_script_info::unquote(std::string* pattern) const
2161 {
2162   bool saw_backslash = false;
2163   size_t len = pattern->length();
2164   size_t j = 0;
2165   for (size_t i = 0; i < len; ++i)
2166     {
2167       if (saw_backslash)
2168 	saw_backslash = false;
2169       else
2170 	{
2171 	  switch ((*pattern)[i])
2172 	    {
2173 	    case '?': case '[': case '*':
2174 	      return true;
2175 	    case '\\':
2176 	      saw_backslash = true;
2177 	      continue;
2178 	    default:
2179 	      break;
2180 	    }
2181 	}
2182 
2183       if (i != j)
2184 	(*pattern)[j] = (*pattern)[i];
2185       ++j;
2186     }
2187   return false;
2188 }
2189 
2190 // Add an exact match for MATCH to *PE.  The result of the match is
2191 // V/IS_GLOBAL.
2192 
2193 void
2194 Version_script_info::add_exact_match(const std::string& match,
2195 				     const Version_tree* v, bool is_global,
2196 				     const Version_expression* ve,
2197 				     Exact* pe)
2198 {
2199   std::pair<Exact::iterator, bool> ins =
2200     pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2201   if (ins.second)
2202     {
2203       // This is the first time we have seen this match.
2204       return;
2205     }
2206 
2207   Version_tree_match& vtm(ins.first->second);
2208   if (vtm.real->tag != v->tag)
2209     {
2210       // This is an ambiguous match.  We still return the
2211       // first version that we found in the script, but we
2212       // record the new version to issue a warning if we
2213       // wind up looking up this symbol.
2214       if (vtm.ambiguous == NULL)
2215 	vtm.ambiguous = v;
2216     }
2217   else if (is_global != vtm.is_global)
2218     {
2219       // We have a match for both the global and local entries for a
2220       // version tag.  That's got to be wrong.
2221       gold_error(_("'%s' appears as both a global and a local symbol "
2222 		   "for version '%s' in script"),
2223 		 match.c_str(), v->tag.c_str());
2224     }
2225 }
2226 
2227 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2228 // All matches go to V, and IS_GLOBAL is true if they are global
2229 // matches.
2230 
2231 void
2232 Version_script_info::build_expression_list_lookup(
2233     const Version_expression_list* explist,
2234     const Version_tree* v,
2235     bool is_global)
2236 {
2237   if (explist == NULL)
2238     return;
2239   size_t size = explist->expressions.size();
2240   for (size_t i = 0; i < size; ++i)
2241     {
2242       const Version_expression& exp(explist->expressions[i]);
2243 
2244       if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2245 	{
2246 	  if (this->default_version_ != NULL
2247 	      && this->default_version_->tag != v->tag)
2248 	    gold_warning(_("wildcard match appears in both version '%s' "
2249 			   "and '%s' in script"),
2250 			 this->default_version_->tag.c_str(), v->tag.c_str());
2251 	  else if (this->default_version_ != NULL
2252 		   && this->default_is_global_ != is_global)
2253 	    gold_error(_("wildcard match appears as both global and local "
2254 			 "in version '%s' in script"),
2255 		       v->tag.c_str());
2256 	  this->default_version_ = v;
2257 	  this->default_is_global_ = is_global;
2258 	  continue;
2259 	}
2260 
2261       std::string pattern = exp.pattern;
2262       if (!exp.exact_match)
2263 	{
2264 	  if (this->unquote(&pattern))
2265 	    {
2266 	      this->globs_.push_back(Glob(&exp, v, is_global));
2267 	      continue;
2268 	    }
2269 	}
2270 
2271       if (this->exact_[exp.language] == NULL)
2272 	this->exact_[exp.language] = new Exact();
2273       this->add_exact_match(pattern, v, is_global, &exp,
2274 			    this->exact_[exp.language]);
2275     }
2276 }
2277 
2278 // Return the name to match given a name, a language code, and two
2279 // lazy demanglers.
2280 
2281 const char*
2282 Version_script_info::get_name_to_match(const char* name,
2283 				       int language,
2284 				       Lazy_demangler* cpp_demangler,
2285 				       Lazy_demangler* java_demangler) const
2286 {
2287   switch (language)
2288     {
2289     case LANGUAGE_C:
2290       return name;
2291     case LANGUAGE_CXX:
2292       return cpp_demangler->get();
2293     case LANGUAGE_JAVA:
2294       return java_demangler->get();
2295     default:
2296       gold_unreachable();
2297     }
2298 }
2299 
2300 // Look up SYMBOL_NAME in the list of versions.  Return true if the
2301 // symbol is found, false if not.  If the symbol is found, then if
2302 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2303 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2304 // symbol is global or not.
2305 
2306 bool
2307 Version_script_info::get_symbol_version(const char* symbol_name,
2308 					std::string* pversion,
2309 					bool* p_is_global) const
2310 {
2311   Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2312   Lazy_demangler java_demangled_name(symbol_name,
2313 				     DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2314 
2315   gold_assert(this->is_finalized_);
2316   for (int i = 0; i < LANGUAGE_COUNT; ++i)
2317     {
2318       Exact* exact = this->exact_[i];
2319       if (exact == NULL)
2320 	continue;
2321 
2322       const char* name_to_match = this->get_name_to_match(symbol_name, i,
2323 							  &cpp_demangled_name,
2324 							  &java_demangled_name);
2325       if (name_to_match == NULL)
2326 	{
2327 	  // If the name can not be demangled, the GNU linker goes
2328 	  // ahead and tries to match it anyhow.  That does not
2329 	  // make sense to me and I have not implemented it.
2330 	  continue;
2331 	}
2332 
2333       Exact::const_iterator pe = exact->find(name_to_match);
2334       if (pe != exact->end())
2335 	{
2336 	  const Version_tree_match& vtm(pe->second);
2337 	  if (vtm.ambiguous != NULL)
2338 	    gold_warning(_("using '%s' as version for '%s' which is also "
2339 			   "named in version '%s' in script"),
2340 			 vtm.real->tag.c_str(), name_to_match,
2341 			 vtm.ambiguous->tag.c_str());
2342 
2343 	  if (pversion != NULL)
2344 	    *pversion = vtm.real->tag;
2345 	  if (p_is_global != NULL)
2346 	    *p_is_global = vtm.is_global;
2347 
2348 	  // If we are using --no-undefined-version, and this is a
2349 	  // global symbol, we have to record that we have found this
2350 	  // symbol, so that we don't warn about it.  We have to do
2351 	  // this now, because otherwise we have no way to get from a
2352 	  // non-C language back to the demangled name that we
2353 	  // matched.
2354 	  if (p_is_global != NULL && vtm.is_global)
2355 	    vtm.expression->was_matched_by_symbol = true;
2356 
2357 	  return true;
2358 	}
2359     }
2360 
2361   // Look through the glob patterns in reverse order.
2362 
2363   for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2364        p != this->globs_.rend();
2365        ++p)
2366     {
2367       int language = p->expression->language;
2368       const char* name_to_match = this->get_name_to_match(symbol_name,
2369 							  language,
2370 							  &cpp_demangled_name,
2371 							  &java_demangled_name);
2372       if (name_to_match == NULL)
2373 	continue;
2374 
2375       if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2376 		  FNM_NOESCAPE) == 0)
2377 	{
2378 	  if (pversion != NULL)
2379 	    *pversion = p->version->tag;
2380 	  if (p_is_global != NULL)
2381 	    *p_is_global = p->is_global;
2382 	  return true;
2383 	}
2384     }
2385 
2386   // Finally, there may be a wildcard.
2387   if (this->default_version_ != NULL)
2388     {
2389       if (pversion != NULL)
2390 	*pversion = this->default_version_->tag;
2391       if (p_is_global != NULL)
2392 	*p_is_global = this->default_is_global_;
2393       return true;
2394     }
2395 
2396   return false;
2397 }
2398 
2399 // Give an error if any exact symbol names (not wildcards) appear in a
2400 // version script, but there is no such symbol.
2401 
2402 void
2403 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2404 {
2405   for (size_t i = 0; i < this->version_trees_.size(); ++i)
2406     {
2407       const Version_tree* vt = this->version_trees_[i];
2408       if (vt->global == NULL)
2409 	continue;
2410       for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2411 	{
2412 	  const Version_expression& expression(vt->global->expressions[j]);
2413 
2414 	  // Ignore cases where we used the version because we saw a
2415 	  // symbol that we looked up.  Note that
2416 	  // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2417 	  // not a definition.  That's OK as in that case we most
2418 	  // likely gave an undefined symbol error anyhow.
2419 	  if (expression.was_matched_by_symbol)
2420 	    continue;
2421 
2422 	  // Just ignore names which are in languages other than C.
2423 	  // We have no way to look them up in the symbol table.
2424 	  if (expression.language != LANGUAGE_C)
2425 	    continue;
2426 
2427 	  // Remove backslash quoting, and ignore wildcard patterns.
2428 	  std::string pattern = expression.pattern;
2429 	  if (!expression.exact_match)
2430 	    {
2431 	      if (this->unquote(&pattern))
2432 		continue;
2433 	    }
2434 
2435 	  if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2436 	    gold_error(_("version script assignment of %s to symbol %s "
2437 			 "failed: symbol not defined"),
2438 		       vt->tag.c_str(), pattern.c_str());
2439 	}
2440     }
2441 }
2442 
2443 struct Version_dependency_list*
2444 Version_script_info::allocate_dependency_list()
2445 {
2446   dependency_lists_.push_back(new Version_dependency_list);
2447   return dependency_lists_.back();
2448 }
2449 
2450 struct Version_expression_list*
2451 Version_script_info::allocate_expression_list()
2452 {
2453   expression_lists_.push_back(new Version_expression_list);
2454   return expression_lists_.back();
2455 }
2456 
2457 struct Version_tree*
2458 Version_script_info::allocate_version_tree()
2459 {
2460   version_trees_.push_back(new Version_tree);
2461   return version_trees_.back();
2462 }
2463 
2464 // Print for debugging.
2465 
2466 void
2467 Version_script_info::print(FILE* f) const
2468 {
2469   if (this->empty())
2470     return;
2471 
2472   fprintf(f, "VERSION {");
2473 
2474   for (size_t i = 0; i < this->version_trees_.size(); ++i)
2475     {
2476       const Version_tree* vt = this->version_trees_[i];
2477 
2478       if (vt->tag.empty())
2479 	fprintf(f, "  {\n");
2480       else
2481 	fprintf(f, "  %s {\n", vt->tag.c_str());
2482 
2483       if (vt->global != NULL)
2484 	{
2485 	  fprintf(f, "    global :\n");
2486 	  this->print_expression_list(f, vt->global);
2487 	}
2488 
2489       if (vt->local != NULL)
2490 	{
2491 	  fprintf(f, "    local :\n");
2492 	  this->print_expression_list(f, vt->local);
2493 	}
2494 
2495       fprintf(f, "  }");
2496       if (vt->dependencies != NULL)
2497 	{
2498 	  const Version_dependency_list* deps = vt->dependencies;
2499 	  for (size_t j = 0; j < deps->dependencies.size(); ++j)
2500 	    {
2501 	      if (j < deps->dependencies.size() - 1)
2502 		fprintf(f, "\n");
2503 	      fprintf(f, "    %s", deps->dependencies[j].c_str());
2504 	    }
2505 	}
2506       fprintf(f, ";\n");
2507     }
2508 
2509   fprintf(f, "}\n");
2510 }
2511 
2512 void
2513 Version_script_info::print_expression_list(
2514     FILE* f,
2515     const Version_expression_list* vel) const
2516 {
2517   Version_script_info::Language current_language = LANGUAGE_C;
2518   for (size_t i = 0; i < vel->expressions.size(); ++i)
2519     {
2520       const Version_expression& ve(vel->expressions[i]);
2521 
2522       if (ve.language != current_language)
2523 	{
2524 	  if (current_language != LANGUAGE_C)
2525 	    fprintf(f, "      }\n");
2526 	  switch (ve.language)
2527 	    {
2528 	    case LANGUAGE_C:
2529 	      break;
2530 	    case LANGUAGE_CXX:
2531 	      fprintf(f, "      extern \"C++\" {\n");
2532 	      break;
2533 	    case LANGUAGE_JAVA:
2534 	      fprintf(f, "      extern \"Java\" {\n");
2535 	      break;
2536 	    default:
2537 	      gold_unreachable();
2538 	    }
2539 	  current_language = ve.language;
2540 	}
2541 
2542       fprintf(f, "      ");
2543       if (current_language != LANGUAGE_C)
2544 	fprintf(f, "  ");
2545 
2546       if (ve.exact_match)
2547 	fprintf(f, "\"");
2548       fprintf(f, "%s", ve.pattern.c_str());
2549       if (ve.exact_match)
2550 	fprintf(f, "\"");
2551 
2552       fprintf(f, "\n");
2553     }
2554 
2555   if (current_language != LANGUAGE_C)
2556     fprintf(f, "      }\n");
2557 }
2558 
2559 } // End namespace gold.
2560 
2561 // The remaining functions are extern "C", so it's clearer to not put
2562 // them in namespace gold.
2563 
2564 using namespace gold;
2565 
2566 // This function is called by the bison parser to return the next
2567 // token.
2568 
2569 extern "C" int
2570 yylex(YYSTYPE* lvalp, void* closurev)
2571 {
2572   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2573   const Token* token = closure->next_token();
2574   switch (token->classification())
2575     {
2576     default:
2577       gold_unreachable();
2578 
2579     case Token::TOKEN_INVALID:
2580       yyerror(closurev, "invalid character");
2581       return 0;
2582 
2583     case Token::TOKEN_EOF:
2584       return 0;
2585 
2586     case Token::TOKEN_STRING:
2587       {
2588 	// This is either a keyword or a STRING.
2589 	size_t len;
2590 	const char* str = token->string_value(&len);
2591 	int parsecode = 0;
2592         switch (closure->lex_mode())
2593           {
2594           case Lex::LINKER_SCRIPT:
2595             parsecode = script_keywords.keyword_to_parsecode(str, len);
2596             break;
2597           case Lex::VERSION_SCRIPT:
2598             parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2599             break;
2600           case Lex::DYNAMIC_LIST:
2601             parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2602             break;
2603           default:
2604             break;
2605           }
2606 	if (parsecode != 0)
2607 	  return parsecode;
2608 	lvalp->string.value = str;
2609 	lvalp->string.length = len;
2610 	return STRING;
2611       }
2612 
2613     case Token::TOKEN_QUOTED_STRING:
2614       lvalp->string.value = token->string_value(&lvalp->string.length);
2615       return QUOTED_STRING;
2616 
2617     case Token::TOKEN_OPERATOR:
2618       return token->operator_value();
2619 
2620     case Token::TOKEN_INTEGER:
2621       lvalp->integer = token->integer_value();
2622       return INTEGER;
2623     }
2624 }
2625 
2626 // This function is called by the bison parser to report an error.
2627 
2628 extern "C" void
2629 yyerror(void* closurev, const char* message)
2630 {
2631   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2632   gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2633 	     closure->charpos(), message);
2634 }
2635 
2636 // Called by the bison parser to add an external symbol to the link.
2637 
2638 extern "C" void
2639 script_add_extern(void* closurev, const char* name, size_t length)
2640 {
2641   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2642   closure->script_options()->add_symbol_reference(name, length);
2643 }
2644 
2645 // Called by the bison parser to add a file to the link.
2646 
2647 extern "C" void
2648 script_add_file(void* closurev, const char* name, size_t length)
2649 {
2650   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2651 
2652   // If this is an absolute path, and we found the script in the
2653   // sysroot, then we want to prepend the sysroot to the file name.
2654   // For example, this is how we handle a cross link to the x86_64
2655   // libc.so, which refers to /lib/libc.so.6.
2656   std::string name_string(name, length);
2657   const char* extra_search_path = ".";
2658   std::string script_directory;
2659   if (IS_ABSOLUTE_PATH(name_string.c_str()))
2660     {
2661       if (closure->is_in_sysroot())
2662 	{
2663 	  const std::string& sysroot(parameters->options().sysroot());
2664 	  gold_assert(!sysroot.empty());
2665 	  name_string = sysroot + name_string;
2666 	}
2667     }
2668   else
2669     {
2670       // In addition to checking the normal library search path, we
2671       // also want to check in the script-directory.
2672       const char* slash = strrchr(closure->filename(), '/');
2673       if (slash != NULL)
2674 	{
2675 	  script_directory.assign(closure->filename(),
2676 				  slash - closure->filename() + 1);
2677 	  extra_search_path = script_directory.c_str();
2678 	}
2679     }
2680 
2681   Input_file_argument file(name_string.c_str(),
2682 			   Input_file_argument::INPUT_FILE_TYPE_FILE,
2683 			   extra_search_path, false,
2684 			   closure->position_dependent_options());
2685   Input_argument& arg = closure->inputs()->add_file(file);
2686   arg.set_script_info(closure->script_info());
2687 }
2688 
2689 // Called by the bison parser to add a library to the link.
2690 
2691 extern "C" void
2692 script_add_library(void* closurev, const char* name, size_t length)
2693 {
2694   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2695   std::string name_string(name, length);
2696 
2697   if (name_string[0] != 'l')
2698     gold_error(_("library name must be prefixed with -l"));
2699 
2700   Input_file_argument file(name_string.c_str() + 1,
2701 			   Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2702 			   "", false,
2703 			   closure->position_dependent_options());
2704   Input_argument& arg = closure->inputs()->add_file(file);
2705   arg.set_script_info(closure->script_info());
2706 }
2707 
2708 // Called by the bison parser to start a group.  If we are already in
2709 // a group, that means that this script was invoked within a
2710 // --start-group --end-group sequence on the command line, or that
2711 // this script was found in a GROUP of another script.  In that case,
2712 // we simply continue the existing group, rather than starting a new
2713 // one.  It is possible to construct a case in which this will do
2714 // something other than what would happen if we did a recursive group,
2715 // but it's hard to imagine why the different behaviour would be
2716 // useful for a real program.  Avoiding recursive groups is simpler
2717 // and more efficient.
2718 
2719 extern "C" void
2720 script_start_group(void* closurev)
2721 {
2722   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2723   if (!closure->in_group())
2724     closure->inputs()->start_group();
2725 }
2726 
2727 // Called by the bison parser at the end of a group.
2728 
2729 extern "C" void
2730 script_end_group(void* closurev)
2731 {
2732   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2733   if (!closure->in_group())
2734     closure->inputs()->end_group();
2735 }
2736 
2737 // Called by the bison parser to start an AS_NEEDED list.
2738 
2739 extern "C" void
2740 script_start_as_needed(void* closurev)
2741 {
2742   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2743   closure->position_dependent_options().set_as_needed(true);
2744 }
2745 
2746 // Called by the bison parser at the end of an AS_NEEDED list.
2747 
2748 extern "C" void
2749 script_end_as_needed(void* closurev)
2750 {
2751   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2752   closure->position_dependent_options().set_as_needed(false);
2753 }
2754 
2755 // Called by the bison parser to set the entry symbol.
2756 
2757 extern "C" void
2758 script_set_entry(void* closurev, const char* entry, size_t length)
2759 {
2760   // We'll parse this exactly the same as --entry=ENTRY on the commandline
2761   // TODO(csilvers): FIXME -- call set_entry directly.
2762   std::string arg("--entry=");
2763   arg.append(entry, length);
2764   script_parse_option(closurev, arg.c_str(), arg.size());
2765 }
2766 
2767 // Called by the bison parser to set whether to define common symbols.
2768 
2769 extern "C" void
2770 script_set_common_allocation(void* closurev, int set)
2771 {
2772   const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2773   script_parse_option(closurev, arg, strlen(arg));
2774 }
2775 
2776 // Called by the bison parser to refer to a symbol.
2777 
2778 extern "C" Expression*
2779 script_symbol(void* closurev, const char* name, size_t length)
2780 {
2781   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2782   if (length != 1 || name[0] != '.')
2783     closure->script_options()->add_symbol_reference(name, length);
2784   return script_exp_string(name, length);
2785 }
2786 
2787 // Called by the bison parser to define a symbol.
2788 
2789 extern "C" void
2790 script_set_symbol(void* closurev, const char* name, size_t length,
2791 		  Expression* value, int providei, int hiddeni)
2792 {
2793   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2794   const bool provide = providei != 0;
2795   const bool hidden = hiddeni != 0;
2796   closure->script_options()->add_symbol_assignment(name, length,
2797 						   closure->parsing_defsym(),
2798 						   value, provide, hidden);
2799   closure->clear_skip_on_incompatible_target();
2800 }
2801 
2802 // Called by the bison parser to add an assertion.
2803 
2804 extern "C" void
2805 script_add_assertion(void* closurev, Expression* check, const char* message,
2806 		     size_t messagelen)
2807 {
2808   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2809   closure->script_options()->add_assertion(check, message, messagelen);
2810   closure->clear_skip_on_incompatible_target();
2811 }
2812 
2813 // Called by the bison parser to parse an OPTION.
2814 
2815 extern "C" void
2816 script_parse_option(void* closurev, const char* option, size_t length)
2817 {
2818   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2819   // We treat the option as a single command-line option, even if
2820   // it has internal whitespace.
2821   if (closure->command_line() == NULL)
2822     {
2823       // There are some options that we could handle here--e.g.,
2824       // -lLIBRARY.  Should we bother?
2825       gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2826 		     " for scripts specified via -T/--script"),
2827 		   closure->filename(), closure->lineno(), closure->charpos());
2828     }
2829   else
2830     {
2831       bool past_a_double_dash_option = false;
2832       const char* mutable_option = strndup(option, length);
2833       gold_assert(mutable_option != NULL);
2834       closure->command_line()->process_one_option(1, &mutable_option, 0,
2835                                                   &past_a_double_dash_option);
2836       // The General_options class will quite possibly store a pointer
2837       // into mutable_option, so we can't free it.  In cases the class
2838       // does not store such a pointer, this is a memory leak.  Alas. :(
2839     }
2840   closure->clear_skip_on_incompatible_target();
2841 }
2842 
2843 // Called by the bison parser to handle OUTPUT_FORMAT.  OUTPUT_FORMAT
2844 // takes either one or three arguments.  In the three argument case,
2845 // the format depends on the endianness option, which we don't
2846 // currently support (FIXME).  If we see an OUTPUT_FORMAT for the
2847 // wrong format, then we want to search for a new file.  Returning 0
2848 // here will cause the parser to immediately abort.
2849 
2850 extern "C" int
2851 script_check_output_format(void* closurev,
2852 			   const char* default_name, size_t default_length,
2853 			   const char*, size_t, const char*, size_t)
2854 {
2855   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2856   std::string name(default_name, default_length);
2857   Target* target = select_target_by_bfd_name(name.c_str());
2858   if (target == NULL || !parameters->is_compatible_target(target))
2859     {
2860       if (closure->skip_on_incompatible_target())
2861 	{
2862 	  closure->set_found_incompatible_target();
2863 	  return 0;
2864 	}
2865       // FIXME: Should we warn about the unknown target?
2866     }
2867   return 1;
2868 }
2869 
2870 // Called by the bison parser to handle TARGET.
2871 
2872 extern "C" void
2873 script_set_target(void* closurev, const char* target, size_t len)
2874 {
2875   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2876   std::string s(target, len);
2877   General_options::Object_format format_enum;
2878   format_enum = General_options::string_to_object_format(s.c_str());
2879   closure->position_dependent_options().set_format_enum(format_enum);
2880 }
2881 
2882 // Called by the bison parser to handle SEARCH_DIR.  This is handled
2883 // exactly like a -L option.
2884 
2885 extern "C" void
2886 script_add_search_dir(void* closurev, const char* option, size_t length)
2887 {
2888   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2889   if (closure->command_line() == NULL)
2890     gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2891 		   " for scripts specified via -T/--script"),
2892 		 closure->filename(), closure->lineno(), closure->charpos());
2893   else if (!closure->command_line()->options().nostdlib())
2894     {
2895       std::string s = "-L" + std::string(option, length);
2896       script_parse_option(closurev, s.c_str(), s.size());
2897     }
2898 }
2899 
2900 /* Called by the bison parser to push the lexer into expression
2901    mode.  */
2902 
2903 extern "C" void
2904 script_push_lex_into_expression_mode(void* closurev)
2905 {
2906   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2907   closure->push_lex_mode(Lex::EXPRESSION);
2908 }
2909 
2910 /* Called by the bison parser to push the lexer into version
2911    mode.  */
2912 
2913 extern "C" void
2914 script_push_lex_into_version_mode(void* closurev)
2915 {
2916   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2917   if (closure->version_script()->is_finalized())
2918     gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2919 	       closure->filename(), closure->lineno(), closure->charpos());
2920   closure->push_lex_mode(Lex::VERSION_SCRIPT);
2921 }
2922 
2923 /* Called by the bison parser to pop the lexer mode.  */
2924 
2925 extern "C" void
2926 script_pop_lex_mode(void* closurev)
2927 {
2928   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2929   closure->pop_lex_mode();
2930 }
2931 
2932 // Register an entire version node. For example:
2933 //
2934 // GLIBC_2.1 {
2935 //   global: foo;
2936 // } GLIBC_2.0;
2937 //
2938 // - tag is "GLIBC_2.1"
2939 // - tree contains the information "global: foo"
2940 // - deps contains "GLIBC_2.0"
2941 
2942 extern "C" void
2943 script_register_vers_node(void*,
2944 			  const char* tag,
2945 			  int taglen,
2946 			  struct Version_tree* tree,
2947 			  struct Version_dependency_list* deps)
2948 {
2949   gold_assert(tree != NULL);
2950   tree->dependencies = deps;
2951   if (tag != NULL)
2952     tree->tag = std::string(tag, taglen);
2953 }
2954 
2955 // Add a dependencies to the list of existing dependencies, if any,
2956 // and return the expanded list.
2957 
2958 extern "C" struct Version_dependency_list*
2959 script_add_vers_depend(void* closurev,
2960 		       struct Version_dependency_list* all_deps,
2961 		       const char* depend_to_add, int deplen)
2962 {
2963   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2964   if (all_deps == NULL)
2965     all_deps = closure->version_script()->allocate_dependency_list();
2966   all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2967   return all_deps;
2968 }
2969 
2970 // Add a pattern expression to an existing list of expressions, if any.
2971 
2972 extern "C" struct Version_expression_list*
2973 script_new_vers_pattern(void* closurev,
2974 			struct Version_expression_list* expressions,
2975 			const char* pattern, int patlen, int exact_match)
2976 {
2977   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2978   if (expressions == NULL)
2979     expressions = closure->version_script()->allocate_expression_list();
2980   expressions->expressions.push_back(
2981       Version_expression(std::string(pattern, patlen),
2982                          closure->get_current_language(),
2983                          static_cast<bool>(exact_match)));
2984   return expressions;
2985 }
2986 
2987 // Attaches b to the end of a, and clears b.  So a = a + b and b = {}.
2988 
2989 extern "C" struct Version_expression_list*
2990 script_merge_expressions(struct Version_expression_list* a,
2991                          struct Version_expression_list* b)
2992 {
2993   a->expressions.insert(a->expressions.end(),
2994                         b->expressions.begin(), b->expressions.end());
2995   // We could delete b and remove it from expressions_lists_, but
2996   // that's a lot of work.  This works just as well.
2997   b->expressions.clear();
2998   return a;
2999 }
3000 
3001 // Combine the global and local expressions into a a Version_tree.
3002 
3003 extern "C" struct Version_tree*
3004 script_new_vers_node(void* closurev,
3005 		     struct Version_expression_list* global,
3006 		     struct Version_expression_list* local)
3007 {
3008   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3009   Version_tree* tree = closure->version_script()->allocate_version_tree();
3010   tree->global = global;
3011   tree->local = local;
3012   return tree;
3013 }
3014 
3015 // Handle a transition in language, such as at the
3016 // start or end of 'extern "C++"'
3017 
3018 extern "C" void
3019 version_script_push_lang(void* closurev, const char* lang, int langlen)
3020 {
3021   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3022   std::string language(lang, langlen);
3023   Version_script_info::Language code;
3024   if (language.empty() || language == "C")
3025     code = Version_script_info::LANGUAGE_C;
3026   else if (language == "C++")
3027     code = Version_script_info::LANGUAGE_CXX;
3028   else if (language == "Java")
3029     code = Version_script_info::LANGUAGE_JAVA;
3030   else
3031     {
3032       char* buf = new char[langlen + 100];
3033       snprintf(buf, langlen + 100,
3034 	       _("unrecognized version script language '%s'"),
3035 	       language.c_str());
3036       yyerror(closurev, buf);
3037       delete[] buf;
3038       code = Version_script_info::LANGUAGE_C;
3039     }
3040   closure->push_language(code);
3041 }
3042 
3043 extern "C" void
3044 version_script_pop_lang(void* closurev)
3045 {
3046   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3047   closure->pop_language();
3048 }
3049 
3050 // Called by the bison parser to start a SECTIONS clause.
3051 
3052 extern "C" void
3053 script_start_sections(void* closurev)
3054 {
3055   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3056   closure->script_options()->script_sections()->start_sections();
3057   closure->clear_skip_on_incompatible_target();
3058 }
3059 
3060 // Called by the bison parser to finish a SECTIONS clause.
3061 
3062 extern "C" void
3063 script_finish_sections(void* closurev)
3064 {
3065   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3066   closure->script_options()->script_sections()->finish_sections();
3067 }
3068 
3069 // Start processing entries for an output section.
3070 
3071 extern "C" void
3072 script_start_output_section(void* closurev, const char* name, size_t namelen,
3073 			    const struct Parser_output_section_header* header)
3074 {
3075   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3076   closure->script_options()->script_sections()->start_output_section(name,
3077 								     namelen,
3078 								     header);
3079 }
3080 
3081 // Finish processing entries for an output section.
3082 
3083 extern "C" void
3084 script_finish_output_section(void* closurev,
3085 			     const struct Parser_output_section_trailer* trail)
3086 {
3087   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3088   closure->script_options()->script_sections()->finish_output_section(trail);
3089 }
3090 
3091 // Add a data item (e.g., "WORD (0)") to the current output section.
3092 
3093 extern "C" void
3094 script_add_data(void* closurev, int data_token, Expression* val)
3095 {
3096   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3097   int size;
3098   bool is_signed = true;
3099   switch (data_token)
3100     {
3101     case QUAD:
3102       size = 8;
3103       is_signed = false;
3104       break;
3105     case SQUAD:
3106       size = 8;
3107       break;
3108     case LONG:
3109       size = 4;
3110       break;
3111     case SHORT:
3112       size = 2;
3113       break;
3114     case BYTE:
3115       size = 1;
3116       break;
3117     default:
3118       gold_unreachable();
3119     }
3120   closure->script_options()->script_sections()->add_data(size, is_signed, val);
3121 }
3122 
3123 // Add a clause setting the fill value to the current output section.
3124 
3125 extern "C" void
3126 script_add_fill(void* closurev, Expression* val)
3127 {
3128   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3129   closure->script_options()->script_sections()->add_fill(val);
3130 }
3131 
3132 // Add a new input section specification to the current output
3133 // section.
3134 
3135 extern "C" void
3136 script_add_input_section(void* closurev,
3137 			 const struct Input_section_spec* spec,
3138 			 int keepi)
3139 {
3140   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3141   bool keep = keepi != 0;
3142   closure->script_options()->script_sections()->add_input_section(spec, keep);
3143 }
3144 
3145 // When we see DATA_SEGMENT_ALIGN we record that following output
3146 // sections may be relro.
3147 
3148 extern "C" void
3149 script_data_segment_align(void* closurev)
3150 {
3151   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3152   if (!closure->script_options()->saw_sections_clause())
3153     gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3154 	       closure->filename(), closure->lineno(), closure->charpos());
3155   else
3156     closure->script_options()->script_sections()->data_segment_align();
3157 }
3158 
3159 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3160 // since DATA_SEGMENT_ALIGN should be relro.
3161 
3162 extern "C" void
3163 script_data_segment_relro_end(void* closurev)
3164 {
3165   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3166   if (!closure->script_options()->saw_sections_clause())
3167     gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3168 	       closure->filename(), closure->lineno(), closure->charpos());
3169   else
3170     closure->script_options()->script_sections()->data_segment_relro_end();
3171 }
3172 
3173 // Create a new list of string/sort pairs.
3174 
3175 extern "C" String_sort_list_ptr
3176 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3177 {
3178   return new String_sort_list(1, *string_sort);
3179 }
3180 
3181 // Add an entry to a list of string/sort pairs.  The way the parser
3182 // works permits us to simply modify the first parameter, rather than
3183 // copy the vector.
3184 
3185 extern "C" String_sort_list_ptr
3186 script_string_sort_list_add(String_sort_list_ptr pv,
3187 			    const struct Wildcard_section* string_sort)
3188 {
3189   if (pv == NULL)
3190     return script_new_string_sort_list(string_sort);
3191   else
3192     {
3193       pv->push_back(*string_sort);
3194       return pv;
3195     }
3196 }
3197 
3198 // Create a new list of strings.
3199 
3200 extern "C" String_list_ptr
3201 script_new_string_list(const char* str, size_t len)
3202 {
3203   return new String_list(1, std::string(str, len));
3204 }
3205 
3206 // Add an element to a list of strings.  The way the parser works
3207 // permits us to simply modify the first parameter, rather than copy
3208 // the vector.
3209 
3210 extern "C" String_list_ptr
3211 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3212 {
3213   if (pv == NULL)
3214     return script_new_string_list(str, len);
3215   else
3216     {
3217       pv->push_back(std::string(str, len));
3218       return pv;
3219     }
3220 }
3221 
3222 // Concatenate two string lists.  Either or both may be NULL.  The way
3223 // the parser works permits us to modify the parameters, rather than
3224 // copy the vector.
3225 
3226 extern "C" String_list_ptr
3227 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3228 {
3229   if (pv1 == NULL)
3230     return pv2;
3231   if (pv2 == NULL)
3232     return pv1;
3233   pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3234   return pv1;
3235 }
3236 
3237 // Add a new program header.
3238 
3239 extern "C" void
3240 script_add_phdr(void* closurev, const char* name, size_t namelen,
3241 		unsigned int type, const Phdr_info* info)
3242 {
3243   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3244   bool includes_filehdr = info->includes_filehdr != 0;
3245   bool includes_phdrs = info->includes_phdrs != 0;
3246   bool is_flags_valid = info->is_flags_valid != 0;
3247   Script_sections* ss = closure->script_options()->script_sections();
3248   ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3249 	       is_flags_valid, info->flags, info->load_address);
3250   closure->clear_skip_on_incompatible_target();
3251 }
3252 
3253 // Convert a program header string to a type.
3254 
3255 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3256 
3257 static struct
3258 {
3259   const char* name;
3260   size_t namelen;
3261   unsigned int val;
3262 } phdr_type_names[] =
3263 {
3264   PHDR_TYPE(PT_NULL),
3265   PHDR_TYPE(PT_LOAD),
3266   PHDR_TYPE(PT_DYNAMIC),
3267   PHDR_TYPE(PT_INTERP),
3268   PHDR_TYPE(PT_NOTE),
3269   PHDR_TYPE(PT_SHLIB),
3270   PHDR_TYPE(PT_PHDR),
3271   PHDR_TYPE(PT_TLS),
3272   PHDR_TYPE(PT_GNU_EH_FRAME),
3273   PHDR_TYPE(PT_GNU_STACK),
3274   PHDR_TYPE(PT_GNU_RELRO)
3275 };
3276 
3277 extern "C" unsigned int
3278 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3279 {
3280   for (unsigned int i = 0;
3281        i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3282        ++i)
3283     if (namelen == phdr_type_names[i].namelen
3284 	&& strncmp(name, phdr_type_names[i].name, namelen) == 0)
3285       return phdr_type_names[i].val;
3286   yyerror(closurev, _("unknown PHDR type (try integer)"));
3287   return elfcpp::PT_NULL;
3288 }
3289 
3290 extern "C" void
3291 script_saw_segment_start_expression(void* closurev)
3292 {
3293   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3294   Script_sections* ss = closure->script_options()->script_sections();
3295   ss->set_saw_segment_start_expression(true);
3296 }
3297 
3298 extern "C" void
3299 script_set_section_region(void* closurev, const char* name, size_t namelen,
3300 			  int set_vma)
3301 {
3302   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3303   if (!closure->script_options()->saw_sections_clause())
3304     {
3305       gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3306 		   "SECTIONS clause"),
3307 		 closure->filename(), closure->lineno(), closure->charpos(),
3308 		 static_cast<int>(namelen), name);
3309       return;
3310     }
3311 
3312   Script_sections* ss = closure->script_options()->script_sections();
3313   Memory_region* mr = ss->find_memory_region(name, namelen);
3314   if (mr == NULL)
3315     {
3316       gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3317 		 closure->filename(), closure->lineno(), closure->charpos(),
3318 		 static_cast<int>(namelen), name);
3319       return;
3320     }
3321 
3322   ss->set_memory_region(mr, set_vma);
3323 }
3324 
3325 extern "C" void
3326 script_add_memory(void* closurev, const char* name, size_t namelen,
3327 		  unsigned int attrs, Expression* origin, Expression* length)
3328 {
3329   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3330   Script_sections* ss = closure->script_options()->script_sections();
3331   ss->add_memory_region(name, namelen, attrs, origin, length);
3332 }
3333 
3334 extern "C" unsigned int
3335 script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3336 			 int invert)
3337 {
3338   int attributes = 0;
3339 
3340   while (attrlen--)
3341     switch (*attrs++)
3342       {
3343       case 'R':
3344       case 'r':
3345 	attributes |= MEM_READABLE; break;
3346       case 'W':
3347       case 'w':
3348 	attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3349       case 'X':
3350       case 'x':
3351 	attributes |= MEM_EXECUTABLE; break;
3352       case 'A':
3353       case 'a':
3354 	attributes |= MEM_ALLOCATABLE; break;
3355       case 'I':
3356       case 'i':
3357       case 'L':
3358       case 'l':
3359 	attributes |= MEM_INITIALIZED; break;
3360       default:
3361 	yyerror(closurev, _("unknown MEMORY attribute"));
3362       }
3363 
3364   if (invert)
3365     attributes = (~ attributes) & MEM_ATTR_MASK;
3366 
3367   return attributes;
3368 }
3369 
3370 extern "C" void
3371 script_include_directive(int first_token, void* closurev,
3372 			 const char* filename, size_t length)
3373 {
3374   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3375   std::string name(filename, length);
3376   Command_line* cmdline = closure->command_line();
3377   read_script_file(name.c_str(), cmdline, &cmdline->script_options(),
3378                    first_token, Lex::LINKER_SCRIPT);
3379 }
3380 
3381 // Functions for memory regions.
3382 
3383 extern "C" Expression*
3384 script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3385 {
3386   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3387   Script_sections* ss = closure->script_options()->script_sections();
3388   Expression* origin = ss->find_memory_region_origin(name, namelen);
3389 
3390   if (origin == NULL)
3391     {
3392       gold_error(_("undefined memory region '%s' referenced "
3393 		   "in ORIGIN expression"),
3394 		 name);
3395       // Create a dummy expression to prevent crashes later on.
3396       origin = script_exp_integer(0);
3397     }
3398 
3399   return origin;
3400 }
3401 
3402 extern "C" Expression*
3403 script_exp_function_length(void* closurev, const char* name, size_t namelen)
3404 {
3405   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3406   Script_sections* ss = closure->script_options()->script_sections();
3407   Expression* length = ss->find_memory_region_length(name, namelen);
3408 
3409   if (length == NULL)
3410     {
3411       gold_error(_("undefined memory region '%s' referenced "
3412 		   "in LENGTH expression"),
3413 		 name);
3414       // Create a dummy expression to prevent crashes later on.
3415       length = script_exp_integer(0);
3416     }
3417 
3418   return length;
3419 }
3420