xref: /dragonfly/contrib/binutils-2.34/bfd/hash.c (revision 52a88097)
1 /* hash.c -- hash table routines for BFD
2    Copyright (C) 1993-2020 Free Software Foundation, Inc.
3    Written by Steve Chamberlain <sac@cygnus.com>
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "objalloc.h"
26 #include "libiberty.h"
27 
28 /*
29 SECTION
30 	Hash Tables
31 
32 @cindex Hash tables
33 	BFD provides a simple set of hash table functions.  Routines
34 	are provided to initialize a hash table, to free a hash table,
35 	to look up a string in a hash table and optionally create an
36 	entry for it, and to traverse a hash table.  There is
37 	currently no routine to delete an string from a hash table.
38 
39 	The basic hash table does not permit any data to be stored
40 	with a string.  However, a hash table is designed to present a
41 	base class from which other types of hash tables may be
42 	derived.  These derived types may store additional information
43 	with the string.  Hash tables were implemented in this way,
44 	rather than simply providing a data pointer in a hash table
45 	entry, because they were designed for use by the linker back
46 	ends.  The linker may create thousands of hash table entries,
47 	and the overhead of allocating private data and storing and
48 	following pointers becomes noticeable.
49 
50 	The basic hash table code is in <<hash.c>>.
51 
52 @menu
53 @* Creating and Freeing a Hash Table::
54 @* Looking Up or Entering a String::
55 @* Traversing a Hash Table::
56 @* Deriving a New Hash Table Type::
57 @end menu
58 
59 INODE
60 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
61 SUBSECTION
62 	Creating and freeing a hash table
63 
64 @findex bfd_hash_table_init
65 @findex bfd_hash_table_init_n
66 	To create a hash table, create an instance of a <<struct
67 	bfd_hash_table>> (defined in <<bfd.h>>) and call
68 	<<bfd_hash_table_init>> (if you know approximately how many
69 	entries you will need, the function <<bfd_hash_table_init_n>>,
70 	which takes a @var{size} argument, may be used).
71 	<<bfd_hash_table_init>> returns <<FALSE>> if some sort of
72 	error occurs.
73 
74 @findex bfd_hash_newfunc
75 	The function <<bfd_hash_table_init>> take as an argument a
76 	function to use to create new entries.  For a basic hash
77 	table, use the function <<bfd_hash_newfunc>>.  @xref{Deriving
78 	a New Hash Table Type}, for why you would want to use a
79 	different value for this argument.
80 
81 @findex bfd_hash_allocate
82 	<<bfd_hash_table_init>> will create an objalloc which will be
83 	used to allocate new entries.  You may allocate memory on this
84 	objalloc using <<bfd_hash_allocate>>.
85 
86 @findex bfd_hash_table_free
87 	Use <<bfd_hash_table_free>> to free up all the memory that has
88 	been allocated for a hash table.  This will not free up the
89 	<<struct bfd_hash_table>> itself, which you must provide.
90 
91 @findex bfd_hash_set_default_size
92 	Use <<bfd_hash_set_default_size>> to set the default size of
93 	hash table to use.
94 
95 INODE
96 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
97 SUBSECTION
98 	Looking up or entering a string
99 
100 @findex bfd_hash_lookup
101 	The function <<bfd_hash_lookup>> is used both to look up a
102 	string in the hash table and to create a new entry.
103 
104 	If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
105 	will look up a string.  If the string is found, it will
106 	returns a pointer to a <<struct bfd_hash_entry>>.  If the
107 	string is not found in the table <<bfd_hash_lookup>> will
108 	return <<NULL>>.  You should not modify any of the fields in
109 	the returns <<struct bfd_hash_entry>>.
110 
111 	If the @var{create} argument is <<TRUE>>, the string will be
112 	entered into the hash table if it is not already there.
113 	Either way a pointer to a <<struct bfd_hash_entry>> will be
114 	returned, either to the existing structure or to a newly
115 	created one.  In this case, a <<NULL>> return means that an
116 	error occurred.
117 
118 	If the @var{create} argument is <<TRUE>>, and a new entry is
119 	created, the @var{copy} argument is used to decide whether to
120 	copy the string onto the hash table objalloc or not.  If
121 	@var{copy} is passed as <<FALSE>>, you must be careful not to
122 	deallocate or modify the string as long as the hash table
123 	exists.
124 
125 INODE
126 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
127 SUBSECTION
128 	Traversing a hash table
129 
130 @findex bfd_hash_traverse
131 	The function <<bfd_hash_traverse>> may be used to traverse a
132 	hash table, calling a function on each element.  The traversal
133 	is done in a random order.
134 
135 	<<bfd_hash_traverse>> takes as arguments a function and a
136 	generic <<void *>> pointer.  The function is called with a
137 	hash table entry (a <<struct bfd_hash_entry *>>) and the
138 	generic pointer passed to <<bfd_hash_traverse>>.  The function
139 	must return a <<boolean>> value, which indicates whether to
140 	continue traversing the hash table.  If the function returns
141 	<<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
142 	return immediately.
143 
144 INODE
145 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
146 SUBSECTION
147 	Deriving a new hash table type
148 
149 	Many uses of hash tables want to store additional information
150 	which each entry in the hash table.  Some also find it
151 	convenient to store additional information with the hash table
152 	itself.  This may be done using a derived hash table.
153 
154 	Since C is not an object oriented language, creating a derived
155 	hash table requires sticking together some boilerplate
156 	routines with a few differences specific to the type of hash
157 	table you want to create.
158 
159 	An example of a derived hash table is the linker hash table.
160 	The structures for this are defined in <<bfdlink.h>>.  The
161 	functions are in <<linker.c>>.
162 
163 	You may also derive a hash table from an already derived hash
164 	table.  For example, the a.out linker backend code uses a hash
165 	table derived from the linker hash table.
166 
167 @menu
168 @* Define the Derived Structures::
169 @* Write the Derived Creation Routine::
170 @* Write Other Derived Routines::
171 @end menu
172 
173 INODE
174 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
175 SUBSUBSECTION
176 	Define the derived structures
177 
178 	You must define a structure for an entry in the hash table,
179 	and a structure for the hash table itself.
180 
181 	The first field in the structure for an entry in the hash
182 	table must be of the type used for an entry in the hash table
183 	you are deriving from.  If you are deriving from a basic hash
184 	table this is <<struct bfd_hash_entry>>, which is defined in
185 	<<bfd.h>>.  The first field in the structure for the hash
186 	table itself must be of the type of the hash table you are
187 	deriving from itself.  If you are deriving from a basic hash
188 	table, this is <<struct bfd_hash_table>>.
189 
190 	For example, the linker hash table defines <<struct
191 	bfd_link_hash_entry>> (in <<bfdlink.h>>).  The first field,
192 	<<root>>, is of type <<struct bfd_hash_entry>>.  Similarly,
193 	the first field in <<struct bfd_link_hash_table>>, <<table>>,
194 	is of type <<struct bfd_hash_table>>.
195 
196 INODE
197 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
198 SUBSUBSECTION
199 	Write the derived creation routine
200 
201 	You must write a routine which will create and initialize an
202 	entry in the hash table.  This routine is passed as the
203 	function argument to <<bfd_hash_table_init>>.
204 
205 	In order to permit other hash tables to be derived from the
206 	hash table you are creating, this routine must be written in a
207 	standard way.
208 
209 	The first argument to the creation routine is a pointer to a
210 	hash table entry.  This may be <<NULL>>, in which case the
211 	routine should allocate the right amount of space.  Otherwise
212 	the space has already been allocated by a hash table type
213 	derived from this one.
214 
215 	After allocating space, the creation routine must call the
216 	creation routine of the hash table type it is derived from,
217 	passing in a pointer to the space it just allocated.  This
218 	will initialize any fields used by the base hash table.
219 
220 	Finally the creation routine must initialize any local fields
221 	for the new hash table type.
222 
223 	Here is a boilerplate example of a creation routine.
224 	@var{function_name} is the name of the routine.
225 	@var{entry_type} is the type of an entry in the hash table you
226 	are creating.  @var{base_newfunc} is the name of the creation
227 	routine of the hash table type your hash table is derived
228 	from.
229 
230 EXAMPLE
231 
232 .struct bfd_hash_entry *
233 .@var{function_name} (struct bfd_hash_entry *entry,
234 .		      struct bfd_hash_table *table,
235 .		      const char *string)
236 .{
237 .  struct @var{entry_type} *ret = (@var{entry_type} *) entry;
238 .
239 . {* Allocate the structure if it has not already been allocated by a
240 .    derived class.  *}
241 .  if (ret == NULL)
242 .    {
243 .      ret = bfd_hash_allocate (table, sizeof (* ret));
244 .      if (ret == NULL)
245 .	 return NULL;
246 .    }
247 .
248 . {* Call the allocation method of the base class.  *}
249 .  ret = ((@var{entry_type} *)
250 .	  @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
251 .
252 . {* Initialize the local fields here.  *}
253 .
254 .  return (struct bfd_hash_entry *) ret;
255 .}
256 
257 DESCRIPTION
258 	The creation routine for the linker hash table, which is in
259 	<<linker.c>>, looks just like this example.
260 	@var{function_name} is <<_bfd_link_hash_newfunc>>.
261 	@var{entry_type} is <<struct bfd_link_hash_entry>>.
262 	@var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
263 	routine for a basic hash table.
264 
265 	<<_bfd_link_hash_newfunc>> also initializes the local fields
266 	in a linker hash table entry: <<type>>, <<written>> and
267 	<<next>>.
268 
269 INODE
270 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
271 SUBSUBSECTION
272 	Write other derived routines
273 
274 	You will want to write other routines for your new hash table,
275 	as well.
276 
277 	You will want an initialization routine which calls the
278 	initialization routine of the hash table you are deriving from
279 	and initializes any other local fields.  For the linker hash
280 	table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
281 
282 	You will want a lookup routine which calls the lookup routine
283 	of the hash table you are deriving from and casts the result.
284 	The linker hash table uses <<bfd_link_hash_lookup>> in
285 	<<linker.c>> (this actually takes an additional argument which
286 	it uses to decide how to return the looked up value).
287 
288 	You may want a traversal routine.  This should just call the
289 	traversal routine of the hash table you are deriving from with
290 	appropriate casts.  The linker hash table uses
291 	<<bfd_link_hash_traverse>> in <<linker.c>>.
292 
293 	These routines may simply be defined as macros.  For example,
294 	the a.out backend linker hash table, which is derived from the
295 	linker hash table, uses macros for the lookup and traversal
296 	routines.  These are <<aout_link_hash_lookup>> and
297 	<<aout_link_hash_traverse>> in aoutx.h.
298 */
299 
300 /* The default number of entries to use when creating a hash table.  */
301 #define DEFAULT_SIZE 4051
302 
303 /* The following function returns a nearest prime number which is
304    greater than N, and near a power of two.  Copied from libiberty.
305    Returns zero for ridiculously large N to signify an error.  */
306 
307 static unsigned long
308 higher_prime_number (unsigned long n)
309 {
310   /* These are primes that are near, but slightly smaller than, a
311      power of two.  */
312   static const unsigned long primes[] =
313     {
314       (unsigned long) 31,
315       (unsigned long) 61,
316       (unsigned long) 127,
317       (unsigned long) 251,
318       (unsigned long) 509,
319       (unsigned long) 1021,
320       (unsigned long) 2039,
321       (unsigned long) 4093,
322       (unsigned long) 8191,
323       (unsigned long) 16381,
324       (unsigned long) 32749,
325       (unsigned long) 65521,
326       (unsigned long) 131071,
327       (unsigned long) 262139,
328       (unsigned long) 524287,
329       (unsigned long) 1048573,
330       (unsigned long) 2097143,
331       (unsigned long) 4194301,
332       (unsigned long) 8388593,
333       (unsigned long) 16777213,
334       (unsigned long) 33554393,
335       (unsigned long) 67108859,
336       (unsigned long) 134217689,
337       (unsigned long) 268435399,
338       (unsigned long) 536870909,
339       (unsigned long) 1073741789,
340       (unsigned long) 2147483647,
341 					/* 4294967291L */
342       ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
343   };
344 
345   const unsigned long *low = &primes[0];
346   const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
347 
348   while (low != high)
349     {
350       const unsigned long *mid = low + (high - low) / 2;
351       if (n >= *mid)
352 	low = mid + 1;
353       else
354 	high = mid;
355     }
356 
357   if (n >= *low)
358     return 0;
359 
360   return *low;
361 }
362 
363 static unsigned long bfd_default_hash_table_size = DEFAULT_SIZE;
364 
365 /* Create a new hash table, given a number of entries.  */
366 
367 bfd_boolean
368 bfd_hash_table_init_n (struct bfd_hash_table *table,
369 		       struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
370 							  struct bfd_hash_table *,
371 							  const char *),
372 		       unsigned int entsize,
373 		       unsigned int size)
374 {
375   unsigned long alloc;
376 
377   alloc = size;
378   alloc *= sizeof (struct bfd_hash_entry *);
379   if (alloc / sizeof (struct bfd_hash_entry *) != size)
380     {
381       bfd_set_error (bfd_error_no_memory);
382       return FALSE;
383     }
384 
385   table->memory = (void *) objalloc_create ();
386   if (table->memory == NULL)
387     {
388       bfd_set_error (bfd_error_no_memory);
389       return FALSE;
390     }
391   table->table = (struct bfd_hash_entry **)
392       objalloc_alloc ((struct objalloc *) table->memory, alloc);
393   if (table->table == NULL)
394     {
395       bfd_hash_table_free (table);
396       bfd_set_error (bfd_error_no_memory);
397       return FALSE;
398     }
399   memset ((void *) table->table, 0, alloc);
400   table->size = size;
401   table->entsize = entsize;
402   table->count = 0;
403   table->frozen = 0;
404   table->newfunc = newfunc;
405   return TRUE;
406 }
407 
408 /* Create a new hash table with the default number of entries.  */
409 
410 bfd_boolean
411 bfd_hash_table_init (struct bfd_hash_table *table,
412 		     struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
413 							struct bfd_hash_table *,
414 							const char *),
415 		     unsigned int entsize)
416 {
417   return bfd_hash_table_init_n (table, newfunc, entsize,
418 				bfd_default_hash_table_size);
419 }
420 
421 /* Free a hash table.  */
422 
423 void
424 bfd_hash_table_free (struct bfd_hash_table *table)
425 {
426   objalloc_free ((struct objalloc *) table->memory);
427   table->memory = NULL;
428 }
429 
430 static inline unsigned long
431 bfd_hash_hash (const char *string, unsigned int *lenp)
432 {
433   const unsigned char *s;
434   unsigned long hash;
435   unsigned int len;
436   unsigned int c;
437 
438   BFD_ASSERT (string != NULL);
439   hash = 0;
440   len = 0;
441   s = (const unsigned char *) string;
442   while ((c = *s++) != '\0')
443     {
444       hash += c + (c << 17);
445       hash ^= hash >> 2;
446     }
447   len = (s - (const unsigned char *) string) - 1;
448   hash += len + (len << 17);
449   hash ^= hash >> 2;
450   if (lenp != NULL)
451     *lenp = len;
452   return hash;
453 }
454 
455 /* Look up a string in a hash table.  */
456 
457 struct bfd_hash_entry *
458 bfd_hash_lookup (struct bfd_hash_table *table,
459 		 const char *string,
460 		 bfd_boolean create,
461 		 bfd_boolean copy)
462 {
463   unsigned long hash;
464   struct bfd_hash_entry *hashp;
465   unsigned int len;
466   unsigned int _index;
467 
468   hash = bfd_hash_hash (string, &len);
469   _index = hash % table->size;
470   for (hashp = table->table[_index];
471        hashp != NULL;
472        hashp = hashp->next)
473     {
474       if (hashp->hash == hash
475 	  && strcmp (hashp->string, string) == 0)
476 	return hashp;
477     }
478 
479   if (! create)
480     return NULL;
481 
482   if (copy)
483     {
484       char *new_string;
485 
486       new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
487 					    len + 1);
488       if (!new_string)
489 	{
490 	  bfd_set_error (bfd_error_no_memory);
491 	  return NULL;
492 	}
493       memcpy (new_string, string, len + 1);
494       string = new_string;
495     }
496 
497   return bfd_hash_insert (table, string, hash);
498 }
499 
500 /* Insert an entry in a hash table.  */
501 
502 struct bfd_hash_entry *
503 bfd_hash_insert (struct bfd_hash_table *table,
504 		 const char *string,
505 		 unsigned long hash)
506 {
507   struct bfd_hash_entry *hashp;
508   unsigned int _index;
509 
510   hashp = (*table->newfunc) (NULL, table, string);
511   if (hashp == NULL)
512     return NULL;
513   hashp->string = string;
514   hashp->hash = hash;
515   _index = hash % table->size;
516   hashp->next = table->table[_index];
517   table->table[_index] = hashp;
518   table->count++;
519 
520   if (!table->frozen && table->count > table->size * 3 / 4)
521     {
522       unsigned long newsize = higher_prime_number (table->size);
523       struct bfd_hash_entry **newtable;
524       unsigned int hi;
525       unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
526 
527       /* If we can't find a higher prime, or we can't possibly alloc
528 	 that much memory, don't try to grow the table.  */
529       if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
530 	{
531 	  table->frozen = 1;
532 	  return hashp;
533 	}
534 
535       newtable = ((struct bfd_hash_entry **)
536 		  objalloc_alloc ((struct objalloc *) table->memory, alloc));
537       if (newtable == NULL)
538 	{
539 	  table->frozen = 1;
540 	  return hashp;
541 	}
542       memset (newtable, 0, alloc);
543 
544       for (hi = 0; hi < table->size; hi ++)
545 	while (table->table[hi])
546 	  {
547 	    struct bfd_hash_entry *chain = table->table[hi];
548 	    struct bfd_hash_entry *chain_end = chain;
549 
550 	    while (chain_end->next && chain_end->next->hash == chain->hash)
551 	      chain_end = chain_end->next;
552 
553 	    table->table[hi] = chain_end->next;
554 	    _index = chain->hash % newsize;
555 	    chain_end->next = newtable[_index];
556 	    newtable[_index] = chain;
557 	  }
558       table->table = newtable;
559       table->size = newsize;
560     }
561 
562   return hashp;
563 }
564 
565 /* Rename an entry in a hash table.  */
566 
567 void
568 bfd_hash_rename (struct bfd_hash_table *table,
569 		 const char *string,
570 		 struct bfd_hash_entry *ent)
571 {
572   unsigned int _index;
573   struct bfd_hash_entry **pph;
574 
575   _index = ent->hash % table->size;
576   for (pph = &table->table[_index]; *pph != NULL; pph = &(*pph)->next)
577     if (*pph == ent)
578       break;
579   if (*pph == NULL)
580     abort ();
581 
582   *pph = ent->next;
583   ent->string = string;
584   ent->hash = bfd_hash_hash (string, NULL);
585   _index = ent->hash % table->size;
586   ent->next = table->table[_index];
587   table->table[_index] = ent;
588 }
589 
590 /* Replace an entry in a hash table.  */
591 
592 void
593 bfd_hash_replace (struct bfd_hash_table *table,
594 		  struct bfd_hash_entry *old,
595 		  struct bfd_hash_entry *nw)
596 {
597   unsigned int _index;
598   struct bfd_hash_entry **pph;
599 
600   _index = old->hash % table->size;
601   for (pph = &table->table[_index];
602        (*pph) != NULL;
603        pph = &(*pph)->next)
604     {
605       if (*pph == old)
606 	{
607 	  *pph = nw;
608 	  return;
609 	}
610     }
611 
612   abort ();
613 }
614 
615 /* Allocate space in a hash table.  */
616 
617 void *
618 bfd_hash_allocate (struct bfd_hash_table *table,
619 		   unsigned int size)
620 {
621   void * ret;
622 
623   ret = objalloc_alloc ((struct objalloc *) table->memory, size);
624   if (ret == NULL && size != 0)
625     bfd_set_error (bfd_error_no_memory);
626   return ret;
627 }
628 
629 /* Base method for creating a new hash table entry.  */
630 
631 struct bfd_hash_entry *
632 bfd_hash_newfunc (struct bfd_hash_entry *entry,
633 		  struct bfd_hash_table *table,
634 		  const char *string ATTRIBUTE_UNUSED)
635 {
636   if (entry == NULL)
637     entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
638 							 sizeof (* entry));
639   return entry;
640 }
641 
642 /* Traverse a hash table.  */
643 
644 void
645 bfd_hash_traverse (struct bfd_hash_table *table,
646 		   bfd_boolean (*func) (struct bfd_hash_entry *, void *),
647 		   void * info)
648 {
649   unsigned int i;
650 
651   table->frozen = 1;
652   for (i = 0; i < table->size; i++)
653     {
654       struct bfd_hash_entry *p;
655 
656       for (p = table->table[i]; p != NULL; p = p->next)
657 	if (! (*func) (p, info))
658 	  goto out;
659     }
660  out:
661   table->frozen = 0;
662 }
663 
664 unsigned long
665 bfd_hash_set_default_size (unsigned long hash_size)
666 {
667   /* Extend this prime list if you want more granularity of hash table size.  */
668   static const unsigned long hash_size_primes[] =
669     {
670       31, 61, 127, 251, 509, 1021, 2039, 4091, 8191, 16381, 32749, 65537
671     };
672   unsigned int _index;
673 
674   /* Work out best prime number near the hash_size.  */
675   for (_index = 0; _index < ARRAY_SIZE (hash_size_primes) - 1; ++_index)
676     if (hash_size <= hash_size_primes[_index])
677       break;
678 
679   bfd_default_hash_table_size = hash_size_primes[_index];
680   return bfd_default_hash_table_size;
681 }
682 
683 /* A few different object file formats (a.out, COFF, ELF) use a string
684    table.  These functions support adding strings to a string table,
685    returning the byte offset, and writing out the table.
686 
687    Possible improvements:
688    + look for strings matching trailing substrings of other strings
689    + better data structures?  balanced trees?
690    + look at reducing memory use elsewhere -- maybe if we didn't have
691      to construct the entire symbol table at once, we could get by
692      with smaller amounts of VM?  (What effect does that have on the
693      string table reductions?)  */
694 
695 /* An entry in the strtab hash table.  */
696 
697 struct strtab_hash_entry
698 {
699   struct bfd_hash_entry root;
700   /* Index in string table.  */
701   bfd_size_type index;
702   /* Next string in strtab.  */
703   struct strtab_hash_entry *next;
704 };
705 
706 /* The strtab hash table.  */
707 
708 struct bfd_strtab_hash
709 {
710   struct bfd_hash_table table;
711   /* Size of strtab--also next available index.  */
712   bfd_size_type size;
713   /* First string in strtab.  */
714   struct strtab_hash_entry *first;
715   /* Last string in strtab.  */
716   struct strtab_hash_entry *last;
717   /* Whether to precede strings with a two byte length, as in the
718      XCOFF .debug section.  */
719   bfd_boolean xcoff;
720 };
721 
722 /* Routine to create an entry in a strtab.  */
723 
724 static struct bfd_hash_entry *
725 strtab_hash_newfunc (struct bfd_hash_entry *entry,
726 		     struct bfd_hash_table *table,
727 		     const char *string)
728 {
729   struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
730 
731   /* Allocate the structure if it has not already been allocated by a
732      subclass.  */
733   if (ret == NULL)
734     ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
735 							  sizeof (* ret));
736   if (ret == NULL)
737     return NULL;
738 
739   /* Call the allocation method of the superclass.  */
740   ret = (struct strtab_hash_entry *)
741 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
742 
743   if (ret)
744     {
745       /* Initialize the local fields.  */
746       ret->index = (bfd_size_type) -1;
747       ret->next = NULL;
748     }
749 
750   return (struct bfd_hash_entry *) ret;
751 }
752 
753 /* Look up an entry in an strtab.  */
754 
755 #define strtab_hash_lookup(t, string, create, copy) \
756   ((struct strtab_hash_entry *) \
757    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
758 
759 /* Create a new strtab.  */
760 
761 struct bfd_strtab_hash *
762 _bfd_stringtab_init (void)
763 {
764   struct bfd_strtab_hash *table;
765   bfd_size_type amt = sizeof (* table);
766 
767   table = (struct bfd_strtab_hash *) bfd_malloc (amt);
768   if (table == NULL)
769     return NULL;
770 
771   if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
772 			    sizeof (struct strtab_hash_entry)))
773     {
774       free (table);
775       return NULL;
776     }
777 
778   table->size = 0;
779   table->first = NULL;
780   table->last = NULL;
781   table->xcoff = FALSE;
782 
783   return table;
784 }
785 
786 /* Create a new strtab in which the strings are output in the format
787    used in the XCOFF .debug section: a two byte length precedes each
788    string.  */
789 
790 struct bfd_strtab_hash *
791 _bfd_xcoff_stringtab_init (void)
792 {
793   struct bfd_strtab_hash *ret;
794 
795   ret = _bfd_stringtab_init ();
796   if (ret != NULL)
797     ret->xcoff = TRUE;
798   return ret;
799 }
800 
801 /* Free a strtab.  */
802 
803 void
804 _bfd_stringtab_free (struct bfd_strtab_hash *table)
805 {
806   bfd_hash_table_free (&table->table);
807   free (table);
808 }
809 
810 /* Get the index of a string in a strtab, adding it if it is not
811    already present.  If HASH is FALSE, we don't really use the hash
812    table, and we don't eliminate duplicate strings.  If COPY is true
813    then store a copy of STR if creating a new entry.  */
814 
815 bfd_size_type
816 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
817 		    const char *str,
818 		    bfd_boolean hash,
819 		    bfd_boolean copy)
820 {
821   struct strtab_hash_entry *entry;
822 
823   if (hash)
824     {
825       entry = strtab_hash_lookup (tab, str, TRUE, copy);
826       if (entry == NULL)
827 	return (bfd_size_type) -1;
828     }
829   else
830     {
831       entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
832 							      sizeof (* entry));
833       if (entry == NULL)
834 	return (bfd_size_type) -1;
835       if (! copy)
836 	entry->root.string = str;
837       else
838 	{
839 	  size_t len = strlen (str) + 1;
840 	  char *n;
841 
842 	  n = (char *) bfd_hash_allocate (&tab->table, len);
843 	  if (n == NULL)
844 	    return (bfd_size_type) -1;
845 	  memcpy (n, str, len);
846 	  entry->root.string = n;
847 	}
848       entry->index = (bfd_size_type) -1;
849       entry->next = NULL;
850     }
851 
852   if (entry->index == (bfd_size_type) -1)
853     {
854       entry->index = tab->size;
855       tab->size += strlen (str) + 1;
856       if (tab->xcoff)
857 	{
858 	  entry->index += 2;
859 	  tab->size += 2;
860 	}
861       if (tab->first == NULL)
862 	tab->first = entry;
863       else
864 	tab->last->next = entry;
865       tab->last = entry;
866     }
867 
868   return entry->index;
869 }
870 
871 /* Get the number of bytes in a strtab.  */
872 
873 bfd_size_type
874 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
875 {
876   return tab->size;
877 }
878 
879 /* Write out a strtab.  ABFD must already be at the right location in
880    the file.  */
881 
882 bfd_boolean
883 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
884 {
885   bfd_boolean xcoff;
886   struct strtab_hash_entry *entry;
887 
888   xcoff = tab->xcoff;
889 
890   for (entry = tab->first; entry != NULL; entry = entry->next)
891     {
892       const char *str;
893       size_t len;
894 
895       str = entry->root.string;
896       len = strlen (str) + 1;
897 
898       if (xcoff)
899 	{
900 	  bfd_byte buf[2];
901 
902 	  /* The output length includes the null byte.  */
903 	  bfd_put_16 (abfd, (bfd_vma) len, buf);
904 	  if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
905 	    return FALSE;
906 	}
907 
908       if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
909 	return FALSE;
910     }
911 
912   return TRUE;
913 }
914