xref: /dragonfly/contrib/binutils-2.34/bfd/syms.c (revision 029e6489)
1 /* Generic symbol-table support for the BFD library.
2    Copyright (C) 1990-2020 Free Software Foundation, Inc.
3    Written by Cygnus Support.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 /*
23 SECTION
24 	Symbols
25 
26 	BFD tries to maintain as much symbol information as it can when
27 	it moves information from file to file. BFD passes information
28 	to applications though the <<asymbol>> structure. When the
29 	application requests the symbol table, BFD reads the table in
30 	the native form and translates parts of it into the internal
31 	format. To maintain more than the information passed to
32 	applications, some targets keep some information ``behind the
33 	scenes'' in a structure only the particular back end knows
34 	about. For example, the coff back end keeps the original
35 	symbol table structure as well as the canonical structure when
36 	a BFD is read in. On output, the coff back end can reconstruct
37 	the output symbol table so that no information is lost, even
38 	information unique to coff which BFD doesn't know or
39 	understand. If a coff symbol table were read, but were written
40 	through an a.out back end, all the coff specific information
41 	would be lost. The symbol table of a BFD
42 	is not necessarily read in until a canonicalize request is
43 	made. Then the BFD back end fills in a table provided by the
44 	application with pointers to the canonical information.  To
45 	output symbols, the application provides BFD with a table of
46 	pointers to pointers to <<asymbol>>s. This allows applications
47 	like the linker to output a symbol as it was read, since the ``behind
48 	the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56 
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 	Reading symbols
61 
62 	There are two stages to reading a symbol table from a BFD:
63 	allocating storage, and the actual reading process. This is an
64 	excerpt from an application which reads the symbol table:
65 
66 |         long storage_needed;
67 |         asymbol **symbol_table;
68 |         long number_of_symbols;
69 |         long i;
70 |
71 |         storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 |         if (storage_needed < 0)
74 |           FAIL
75 |
76 |         if (storage_needed == 0)
77 |           return;
78 |
79 |         symbol_table = xmalloc (storage_needed);
80 |           ...
81 |         number_of_symbols =
82 |            bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 |         if (number_of_symbols < 0)
85 |           FAIL
86 |
87 |         for (i = 0; i < number_of_symbols; i++)
88 |           process_symbol (symbol_table[i]);
89 
90 	All storage for the symbols themselves is in an objalloc
91 	connected to the BFD; it is freed when the BFD is closed.
92 
93 INODE
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95 SUBSECTION
96 	Writing symbols
97 
98 	Writing of a symbol table is automatic when a BFD open for
99 	writing is closed. The application attaches a vector of
100 	pointers to pointers to symbols to the BFD being written, and
101 	fills in the symbol count. The close and cleanup code reads
102 	through the table provided and performs all the necessary
103 	operations. The BFD output code must always be provided with an
104 	``owned'' symbol: one which has come from another BFD, or one
105 	which has been created using <<bfd_make_empty_symbol>>.  Here is an
106 	example showing the creation of a symbol table with only one element:
107 
108 |       #include "sysdep.h"
109 |       #include "bfd.h"
110 |       int main (void)
111 |       {
112 |         bfd *abfd;
113 |         asymbol *ptrs[2];
114 |         asymbol *new;
115 |
116 |         abfd = bfd_openw ("foo","a.out-sunos-big");
117 |         bfd_set_format (abfd, bfd_object);
118 |         new = bfd_make_empty_symbol (abfd);
119 |         new->name = "dummy_symbol";
120 |         new->section = bfd_make_section_old_way (abfd, ".text");
121 |         new->flags = BSF_GLOBAL;
122 |         new->value = 0x12345;
123 |
124 |         ptrs[0] = new;
125 |         ptrs[1] = 0;
126 |
127 |         bfd_set_symtab (abfd, ptrs, 1);
128 |         bfd_close (abfd);
129 |         return 0;
130 |       }
131 |
132 |       ./makesym
133 |       nm foo
134 |       00012345 A dummy_symbol
135 
136 	Many formats cannot represent arbitrary symbol information; for
137 	instance, the <<a.out>> object format does not allow an
138 	arbitrary number of sections. A symbol pointing to a section
139 	which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
140 	be described.
141 
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 	Mini Symbols
146 
147 	Mini symbols provide read-only access to the symbol table.
148 	They use less memory space, but require more time to access.
149 	They can be useful for tools like nm or objdump, which may
150 	have to handle symbol tables of extremely large executables.
151 
152 	The <<bfd_read_minisymbols>> function will read the symbols
153 	into memory in an internal form.  It will return a <<void *>>
154 	pointer to a block of memory, a symbol count, and the size of
155 	each symbol.  The pointer is allocated using <<malloc>>, and
156 	should be freed by the caller when it is no longer needed.
157 
158 	The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 	to a minisymbol, and a pointer to a structure returned by
160 	<<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 	The return value may or may not be the same as the value from
162 	<<bfd_make_empty_symbol>> which was passed in.
163 
164 */
165 
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170 
171 */
172 /*
173 SUBSECTION
174 	typedef asymbol
175 
176 	An <<asymbol>> has the form:
177 
178 */
179 
180 /*
181 CODE_FRAGMENT
182 
183 .
184 .typedef struct bfd_symbol
185 .{
186 .  {* A pointer to the BFD which owns the symbol. This information
187 .     is necessary so that a back end can work out what additional
188 .     information (invisible to the application writer) is carried
189 .     with the symbol.
190 .
191 .     This field is *almost* redundant, since you can use section->owner
192 .     instead, except that some symbols point to the global sections
193 .     bfd_{abs,com,und}_section.  This could be fixed by making
194 .     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
195 .  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
196 .
197 .  {* The text of the symbol. The name is left alone, and not copied; the
198 .     application may not alter it.  *}
199 .  const char *name;
200 .
201 .  {* The value of the symbol.  This really should be a union of a
202 .     numeric value with a pointer, since some flags indicate that
203 .     a pointer to another symbol is stored here.  *}
204 .  symvalue value;
205 .
206 .  {* Attributes of a symbol.  *}
207 .#define BSF_NO_FLAGS            0
208 .
209 .  {* The symbol has local scope; <<static>> in <<C>>. The value
210 .     is the offset into the section of the data.  *}
211 .#define BSF_LOCAL               (1 << 0)
212 .
213 .  {* The symbol has global scope; initialized data in <<C>>. The
214 .     value is the offset into the section of the data.  *}
215 .#define BSF_GLOBAL              (1 << 1)
216 .
217 .  {* The symbol has global scope and is exported. The value is
218 .     the offset into the section of the data.  *}
219 .#define BSF_EXPORT              BSF_GLOBAL {* No real difference.  *}
220 .
221 .  {* A normal C symbol would be one of:
222 .     <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>.  *}
223 .
224 .  {* The symbol is a debugging record. The value has an arbitrary
225 .     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
226 .#define BSF_DEBUGGING           (1 << 2)
227 .
228 .  {* The symbol denotes a function entry point.  Used in ELF,
229 .     perhaps others someday.  *}
230 .#define BSF_FUNCTION            (1 << 3)
231 .
232 .  {* Used by the linker.  *}
233 .#define BSF_KEEP                (1 << 5)
234 .
235 .  {* An ELF common symbol.  *}
236 .#define BSF_ELF_COMMON          (1 << 6)
237 .
238 .  {* A weak global symbol, overridable without warnings by
239 .     a regular global symbol of the same name.  *}
240 .#define BSF_WEAK                (1 << 7)
241 .
242 .  {* This symbol was created to point to a section, e.g. ELF's
243 .     STT_SECTION symbols.  *}
244 .#define BSF_SECTION_SYM         (1 << 8)
245 .
246 .  {* The symbol used to be a common symbol, but now it is
247 .     allocated.  *}
248 .#define BSF_OLD_COMMON          (1 << 9)
249 .
250 .  {* In some files the type of a symbol sometimes alters its
251 .     location in an output file - ie in coff a <<ISFCN>> symbol
252 .     which is also <<C_EXT>> symbol appears where it was
253 .     declared and not at the end of a section.  This bit is set
254 .     by the target BFD part to convey this information.  *}
255 .#define BSF_NOT_AT_END          (1 << 10)
256 .
257 .  {* Signal that the symbol is the label of constructor section.  *}
258 .#define BSF_CONSTRUCTOR         (1 << 11)
259 .
260 .  {* Signal that the symbol is a warning symbol.  The name is a
261 .     warning.  The name of the next symbol is the one to warn about;
262 .     if a reference is made to a symbol with the same name as the next
263 .     symbol, a warning is issued by the linker.  *}
264 .#define BSF_WARNING             (1 << 12)
265 .
266 .  {* Signal that the symbol is indirect.  This symbol is an indirect
267 .     pointer to the symbol with the same name as the next symbol.  *}
268 .#define BSF_INDIRECT            (1 << 13)
269 .
270 .  {* BSF_FILE marks symbols that contain a file name.  This is used
271 .     for ELF STT_FILE symbols.  *}
272 .#define BSF_FILE                (1 << 14)
273 .
274 .  {* Symbol is from dynamic linking information.  *}
275 .#define BSF_DYNAMIC             (1 << 15)
276 .
277 .  {* The symbol denotes a data object.  Used in ELF, and perhaps
278 .     others someday.  *}
279 .#define BSF_OBJECT              (1 << 16)
280 .
281 .  {* This symbol is a debugging symbol.  The value is the offset
282 .     into the section of the data.  BSF_DEBUGGING should be set
283 .     as well.  *}
284 .#define BSF_DEBUGGING_RELOC     (1 << 17)
285 .
286 .  {* This symbol is thread local.  Used in ELF.  *}
287 .#define BSF_THREAD_LOCAL        (1 << 18)
288 .
289 .  {* This symbol represents a complex relocation expression,
290 .     with the expression tree serialized in the symbol name.  *}
291 .#define BSF_RELC                (1 << 19)
292 .
293 .  {* This symbol represents a signed complex relocation expression,
294 .     with the expression tree serialized in the symbol name.  *}
295 .#define BSF_SRELC               (1 << 20)
296 .
297 .  {* This symbol was created by bfd_get_synthetic_symtab.  *}
298 .#define BSF_SYNTHETIC           (1 << 21)
299 .
300 .  {* This symbol is an indirect code object.  Unrelated to BSF_INDIRECT.
301 .     The dynamic linker will compute the value of this symbol by
302 .     calling the function that it points to.  BSF_FUNCTION must
303 .     also be also set.  *}
304 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305 .  {* This symbol is a globally unique data object.  The dynamic linker
306 .     will make sure that in the entire process there is just one symbol
307 .     with this name and type in use.  BSF_OBJECT must also be set.  *}
308 .#define BSF_GNU_UNIQUE          (1 << 23)
309 .
310 .  flagword flags;
311 .
312 .  {* A pointer to the section to which this symbol is
313 .     relative.  This will always be non NULL, there are special
314 .     sections for undefined and absolute symbols.  *}
315 .  struct bfd_section *section;
316 .
317 .  {* Back end special data.  *}
318 .  union
319 .    {
320 .      void *p;
321 .      bfd_vma i;
322 .    }
323 .  udata;
324 .}
325 .asymbol;
326 .
327 */
328 
329 #include "sysdep.h"
330 #include "bfd.h"
331 #include "libbfd.h"
332 #include "safe-ctype.h"
333 #include "bfdlink.h"
334 #include "aout/stab_gnu.h"
335 
336 /*
337 DOCDD
338 INODE
339 symbol handling functions,  , typedef asymbol, Symbols
340 SUBSECTION
341 	Symbol handling functions
342 */
343 
344 /*
345 FUNCTION
346 	bfd_get_symtab_upper_bound
347 
348 DESCRIPTION
349 	Return the number of bytes required to store a vector of pointers
350 	to <<asymbols>> for all the symbols in the BFD @var{abfd},
351 	including a terminal NULL pointer. If there are no symbols in
352 	the BFD, then return 0.  If an error occurs, return -1.
353 
354 .#define bfd_get_symtab_upper_bound(abfd) \
355 .	BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
356 .
357 */
358 
359 /*
360 FUNCTION
361 	bfd_is_local_label
362 
363 SYNOPSIS
364 	bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365 
366 DESCRIPTION
367 	Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368 	a compiler generated local label, else return FALSE.
369 */
370 
371 bfd_boolean
372 bfd_is_local_label (bfd *abfd, asymbol *sym)
373 {
374   /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375      starts with '.' is local.  This would accidentally catch section names
376      if we didn't reject them here.  */
377   if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
378     return FALSE;
379   if (sym->name == NULL)
380     return FALSE;
381   return bfd_is_local_label_name (abfd, sym->name);
382 }
383 
384 /*
385 FUNCTION
386 	bfd_is_local_label_name
387 
388 SYNOPSIS
389 	bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390 
391 DESCRIPTION
392 	Return TRUE if a symbol with the name @var{name} in the BFD
393 	@var{abfd} is a compiler generated local label, else return
394 	FALSE.  This just checks whether the name has the form of a
395 	local label.
396 
397 .#define bfd_is_local_label_name(abfd, name) \
398 .	BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
399 .
400 */
401 
402 /*
403 FUNCTION
404 	bfd_is_target_special_symbol
405 
406 SYNOPSIS
407 	bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408 
409 DESCRIPTION
410 	Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411 	special to the particular target represented by the BFD.  Such symbols
412 	should normally not be mentioned to the user.
413 
414 .#define bfd_is_target_special_symbol(abfd, sym) \
415 .	BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
416 .
417 */
418 
419 /*
420 FUNCTION
421 	bfd_canonicalize_symtab
422 
423 DESCRIPTION
424 	Read the symbols from the BFD @var{abfd}, and fills in
425 	the vector @var{location} with pointers to the symbols and
426 	a trailing NULL.
427 	Return the actual number of symbol pointers, not
428 	including the NULL.
429 
430 .#define bfd_canonicalize_symtab(abfd, location) \
431 .	BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
432 .
433 */
434 
435 /*
436 FUNCTION
437 	bfd_set_symtab
438 
439 SYNOPSIS
440 	bfd_boolean bfd_set_symtab
441 	  (bfd *abfd, asymbol **location, unsigned int count);
442 
443 DESCRIPTION
444 	Arrange that when the output BFD @var{abfd} is closed,
445 	the table @var{location} of @var{count} pointers to symbols
446 	will be written.
447 */
448 
449 bfd_boolean
450 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
451 {
452   if (abfd->format != bfd_object || bfd_read_p (abfd))
453     {
454       bfd_set_error (bfd_error_invalid_operation);
455       return FALSE;
456     }
457 
458   abfd->outsymbols = location;
459   abfd->symcount = symcount;
460   return TRUE;
461 }
462 
463 /*
464 FUNCTION
465 	bfd_print_symbol_vandf
466 
467 SYNOPSIS
468 	void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469 
470 DESCRIPTION
471 	Print the value and flags of the @var{symbol} supplied to the
472 	stream @var{file}.
473 */
474 void
475 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476 {
477   FILE *file = (FILE *) arg;
478 
479   flagword type = symbol->flags;
480 
481   if (symbol->section != NULL)
482     bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
483   else
484     bfd_fprintf_vma (abfd, file, symbol->value);
485 
486   /* This presumes that a symbol can not be both BSF_DEBUGGING and
487      BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488      BSF_OBJECT.  */
489   fprintf (file, " %c%c%c%c%c%c%c",
490 	   ((type & BSF_LOCAL)
491 	    ? (type & BSF_GLOBAL) ? '!' : 'l'
492 	    : (type & BSF_GLOBAL) ? 'g'
493 	    : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
494 	   (type & BSF_WEAK) ? 'w' : ' ',
495 	   (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
496 	   (type & BSF_WARNING) ? 'W' : ' ',
497 	   (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
498 	   (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
499 	   ((type & BSF_FUNCTION)
500 	    ? 'F'
501 	    : ((type & BSF_FILE)
502 	       ? 'f'
503 	       : ((type & BSF_OBJECT) ? 'O' : ' '))));
504 }
505 
506 /*
507 FUNCTION
508 	bfd_make_empty_symbol
509 
510 DESCRIPTION
511 	Create a new <<asymbol>> structure for the BFD @var{abfd}
512 	and return a pointer to it.
513 
514 	This routine is necessary because each back end has private
515 	information surrounding the <<asymbol>>. Building your own
516 	<<asymbol>> and pointing to it will not create the private
517 	information, and will cause problems later on.
518 
519 .#define bfd_make_empty_symbol(abfd) \
520 .	BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
521 .
522 */
523 
524 /*
525 FUNCTION
526 	_bfd_generic_make_empty_symbol
527 
528 SYNOPSIS
529 	asymbol *_bfd_generic_make_empty_symbol (bfd *);
530 
531 DESCRIPTION
532 	Create a new <<asymbol>> structure for the BFD @var{abfd}
533 	and return a pointer to it.  Used by core file routines,
534 	binary back-end and anywhere else where no private info
535 	is needed.
536 */
537 
538 asymbol *
539 _bfd_generic_make_empty_symbol (bfd *abfd)
540 {
541   bfd_size_type amt = sizeof (asymbol);
542   asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
543   if (new_symbol)
544     new_symbol->the_bfd = abfd;
545   return new_symbol;
546 }
547 
548 /*
549 FUNCTION
550 	bfd_make_debug_symbol
551 
552 DESCRIPTION
553 	Create a new <<asymbol>> structure for the BFD @var{abfd},
554 	to be used as a debugging symbol.  Further details of its use have
555 	yet to be worked out.
556 
557 .#define bfd_make_debug_symbol(abfd,ptr,size) \
558 .	BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
559 .
560 */
561 
562 struct section_to_type
563 {
564   const char *section;
565   char type;
566 };
567 
568 /* Map section names to POSIX/BSD single-character symbol types.
569    This table is probably incomplete.  It is sorted for convenience of
570    adding entries.  Since it is so short, a linear search is used.  */
571 static const struct section_to_type stt[] =
572 {
573   {".bss", 'b'},
574   {"code", 't'},		/* MRI .text */
575   {".data", 'd'},
576   {"*DEBUG*", 'N'},
577   {".debug", 'N'},		/* MSVC's .debug (non-standard debug syms) */
578   {".drectve", 'i'},		/* MSVC's .drective section */
579   {".edata", 'e'},		/* MSVC's .edata (export) section */
580   {".fini", 't'},		/* ELF fini section */
581   {".idata", 'i'},		/* MSVC's .idata (import) section */
582   {".init", 't'},		/* ELF init section */
583   {".pdata", 'p'},		/* MSVC's .pdata (stack unwind) section */
584   {".rdata", 'r'},		/* Read only data.  */
585   {".rodata", 'r'},		/* Read only data.  */
586   {".sbss", 's'},		/* Small BSS (uninitialized data).  */
587   {".scommon", 'c'},		/* Small common.  */
588   {".sdata", 'g'},		/* Small initialized data.  */
589   {".text", 't'},
590   {"vars", 'd'},		/* MRI .data */
591   {"zerovars", 'b'},		/* MRI .bss */
592   {0, 0}
593 };
594 
595 /* Return the single-character symbol type corresponding to
596    section S, or '?' for an unknown COFF section.
597 
598    Check for leading strings which match, followed by a number, '.',
599    or '$' so .text5 matches the .text entry, but .init_array doesn't
600    match the .init entry.  */
601 
602 static char
603 coff_section_type (const char *s)
604 {
605   const struct section_to_type *t;
606 
607   for (t = &stt[0]; t->section; t++)
608     {
609       size_t len = strlen (t->section);
610       if (strncmp (s, t->section, len) == 0
611 	  && memchr (".$0123456789", s[len], 13) != 0)
612 	return t->type;
613     }
614 
615   return '?';
616 }
617 
618 /* Return the single-character symbol type corresponding to section
619    SECTION, or '?' for an unknown section.  This uses section flags to
620    identify sections.
621 
622    FIXME These types are unhandled: c, i, e, p.  If we handled these also,
623    we could perhaps obsolete coff_section_type.  */
624 
625 static char
626 decode_section_type (const struct bfd_section *section)
627 {
628   if (section->flags & SEC_CODE)
629     return 't';
630   if (section->flags & SEC_DATA)
631     {
632       if (section->flags & SEC_READONLY)
633 	return 'r';
634       else if (section->flags & SEC_SMALL_DATA)
635 	return 'g';
636       else
637 	return 'd';
638     }
639   if ((section->flags & SEC_HAS_CONTENTS) == 0)
640     {
641       if (section->flags & SEC_SMALL_DATA)
642 	return 's';
643       else
644 	return 'b';
645     }
646   if (section->flags & SEC_DEBUGGING)
647     return 'N';
648   if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
649     return 'n';
650 
651   return '?';
652 }
653 
654 /*
655 FUNCTION
656 	bfd_decode_symclass
657 
658 DESCRIPTION
659 	Return a character corresponding to the symbol
660 	class of @var{symbol}, or '?' for an unknown class.
661 
662 SYNOPSIS
663 	int bfd_decode_symclass (asymbol *symbol);
664 */
665 int
666 bfd_decode_symclass (asymbol *symbol)
667 {
668   char c;
669 
670   if (symbol->section && bfd_is_com_section (symbol->section))
671     return 'C';
672   if (bfd_is_und_section (symbol->section))
673     {
674       if (symbol->flags & BSF_WEAK)
675 	{
676 	  /* If weak, determine if it's specifically an object
677 	     or non-object weak.  */
678 	  if (symbol->flags & BSF_OBJECT)
679 	    return 'v';
680 	  else
681 	    return 'w';
682 	}
683       else
684 	return 'U';
685     }
686   if (bfd_is_ind_section (symbol->section))
687     return 'I';
688   if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
689     return 'i';
690   if (symbol->flags & BSF_WEAK)
691     {
692       /* If weak, determine if it's specifically an object
693 	 or non-object weak.  */
694       if (symbol->flags & BSF_OBJECT)
695 	return 'V';
696       else
697 	return 'W';
698     }
699   if (symbol->flags & BSF_GNU_UNIQUE)
700     return 'u';
701   if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
702     return '?';
703 
704   if (bfd_is_abs_section (symbol->section))
705     c = 'a';
706   else if (symbol->section)
707     {
708       c = decode_section_type (symbol->section);
709       if (c == '?')
710 	c = coff_section_type (symbol->section->name);
711     }
712   else
713     return '?';
714   if (symbol->flags & BSF_GLOBAL)
715     c = TOUPPER (c);
716   return c;
717 
718   /* We don't have to handle these cases just yet, but we will soon:
719      N_SETV: 'v';
720      N_SETA: 'l';
721      N_SETT: 'x';
722      N_SETD: 'z';
723      N_SETB: 's';
724      N_INDR: 'i';
725      */
726 }
727 
728 /*
729 FUNCTION
730 	bfd_is_undefined_symclass
731 
732 DESCRIPTION
733 	Returns non-zero if the class symbol returned by
734 	bfd_decode_symclass represents an undefined symbol.
735 	Returns zero otherwise.
736 
737 SYNOPSIS
738 	bfd_boolean bfd_is_undefined_symclass (int symclass);
739 */
740 
741 bfd_boolean
742 bfd_is_undefined_symclass (int symclass)
743 {
744   return symclass == 'U' || symclass == 'w' || symclass == 'v';
745 }
746 
747 /*
748 FUNCTION
749 	bfd_symbol_info
750 
751 DESCRIPTION
752 	Fill in the basic info about symbol that nm needs.
753 	Additional info may be added by the back-ends after
754 	calling this function.
755 
756 SYNOPSIS
757 	void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
758 */
759 
760 void
761 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
762 {
763   ret->type = bfd_decode_symclass (symbol);
764 
765   if (bfd_is_undefined_symclass (ret->type))
766     ret->value = 0;
767   else
768     ret->value = symbol->value + symbol->section->vma;
769 
770   ret->name = symbol->name;
771 }
772 
773 /*
774 FUNCTION
775 	bfd_copy_private_symbol_data
776 
777 SYNOPSIS
778 	bfd_boolean bfd_copy_private_symbol_data
779 	  (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
780 
781 DESCRIPTION
782 	Copy private symbol information from @var{isym} in the BFD
783 	@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
784 	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
785 	returns are:
786 
787 	o <<bfd_error_no_memory>> -
788 	Not enough memory exists to create private data for @var{osec}.
789 
790 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
791 .	BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
792 .		  (ibfd, isymbol, obfd, osymbol))
793 .
794 */
795 
796 /* The generic version of the function which returns mini symbols.
797    This is used when the backend does not provide a more efficient
798    version.  It just uses BFD asymbol structures as mini symbols.  */
799 
800 long
801 _bfd_generic_read_minisymbols (bfd *abfd,
802 			       bfd_boolean dynamic,
803 			       void **minisymsp,
804 			       unsigned int *sizep)
805 {
806   long storage;
807   asymbol **syms = NULL;
808   long symcount;
809 
810   if (dynamic)
811     storage = bfd_get_dynamic_symtab_upper_bound (abfd);
812   else
813     storage = bfd_get_symtab_upper_bound (abfd);
814   if (storage < 0)
815     goto error_return;
816   if (storage == 0)
817     return 0;
818 
819   syms = (asymbol **) bfd_malloc (storage);
820   if (syms == NULL)
821     goto error_return;
822 
823   if (dynamic)
824     symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
825   else
826     symcount = bfd_canonicalize_symtab (abfd, syms);
827   if (symcount < 0)
828     goto error_return;
829 
830   if (symcount == 0)
831     /* We return 0 above when storage is 0.  Exit in the same state
832        here, so as to not complicate callers with having to deal with
833        freeing memory for zero symcount.  */
834     free (syms);
835   else
836     {
837       *minisymsp = syms;
838       *sizep = sizeof (asymbol *);
839     }
840   return symcount;
841 
842  error_return:
843   bfd_set_error (bfd_error_no_symbols);
844   if (syms != NULL)
845     free (syms);
846   return -1;
847 }
848 
849 /* The generic version of the function which converts a minisymbol to
850    an asymbol.  We don't worry about the sym argument we are passed;
851    we just return the asymbol the minisymbol points to.  */
852 
853 asymbol *
854 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
855 				   bfd_boolean dynamic ATTRIBUTE_UNUSED,
856 				   const void *minisym,
857 				   asymbol *sym ATTRIBUTE_UNUSED)
858 {
859   return *(asymbol **) minisym;
860 }
861 
862 /* Look through stabs debugging information in .stab and .stabstr
863    sections to find the source file and line closest to a desired
864    location.  This is used by COFF and ELF targets.  It sets *pfound
865    to TRUE if it finds some information.  The *pinfo field is used to
866    pass cached information in and out of this routine; this first time
867    the routine is called for a BFD, *pinfo should be NULL.  The value
868    placed in *pinfo should be saved with the BFD, and passed back each
869    time this function is called.  */
870 
871 /* We use a cache by default.  */
872 
873 #define ENABLE_CACHING
874 
875 /* We keep an array of indexentry structures to record where in the
876    stabs section we should look to find line number information for a
877    particular address.  */
878 
879 struct indexentry
880 {
881   bfd_vma val;
882   bfd_byte *stab;
883   bfd_byte *str;
884   char *directory_name;
885   char *file_name;
886   char *function_name;
887   int idx;
888 };
889 
890 /* Compare two indexentry structures.  This is called via qsort.  */
891 
892 static int
893 cmpindexentry (const void *a, const void *b)
894 {
895   const struct indexentry *contestantA = (const struct indexentry *) a;
896   const struct indexentry *contestantB = (const struct indexentry *) b;
897 
898   if (contestantA->val < contestantB->val)
899     return -1;
900   if (contestantA->val > contestantB->val)
901     return 1;
902   return contestantA->idx - contestantB->idx;
903 }
904 
905 /* A pointer to this structure is stored in *pinfo.  */
906 
907 struct stab_find_info
908 {
909   /* The .stab section.  */
910   asection *stabsec;
911   /* The .stabstr section.  */
912   asection *strsec;
913   /* The contents of the .stab section.  */
914   bfd_byte *stabs;
915   /* The contents of the .stabstr section.  */
916   bfd_byte *strs;
917 
918   /* A table that indexes stabs by memory address.  */
919   struct indexentry *indextable;
920   /* The number of entries in indextable.  */
921   int indextablesize;
922 
923 #ifdef ENABLE_CACHING
924   /* Cached values to restart quickly.  */
925   struct indexentry *cached_indexentry;
926   bfd_vma cached_offset;
927   bfd_byte *cached_stab;
928   char *cached_file_name;
929 #endif
930 
931   /* Saved ptr to malloc'ed filename.  */
932   char *filename;
933 };
934 
935 bfd_boolean
936 _bfd_stab_section_find_nearest_line (bfd *abfd,
937 				     asymbol **symbols,
938 				     asection *section,
939 				     bfd_vma offset,
940 				     bfd_boolean *pfound,
941 				     const char **pfilename,
942 				     const char **pfnname,
943 				     unsigned int *pline,
944 				     void **pinfo)
945 {
946   struct stab_find_info *info;
947   bfd_size_type stabsize, strsize;
948   bfd_byte *stab, *str;
949   bfd_byte *nul_fun, *nul_str;
950   bfd_size_type stroff;
951   struct indexentry *indexentry;
952   char *file_name;
953   char *directory_name;
954   bfd_boolean saw_line, saw_func;
955 
956   *pfound = FALSE;
957   *pfilename = bfd_get_filename (abfd);
958   *pfnname = NULL;
959   *pline = 0;
960 
961   /* Stabs entries use a 12 byte format:
962        4 byte string table index
963        1 byte stab type
964        1 byte stab other field
965        2 byte stab desc field
966        4 byte stab value
967      FIXME: This will have to change for a 64 bit object format.
968 
969      The stabs symbols are divided into compilation units.  For the
970      first entry in each unit, the type of 0, the value is the length
971      of the string table for this unit, and the desc field is the
972      number of stabs symbols for this unit.  */
973 
974 #define STRDXOFF (0)
975 #define TYPEOFF (4)
976 #define OTHEROFF (5)
977 #define DESCOFF (6)
978 #define VALOFF (8)
979 #define STABSIZE (12)
980 
981   info = (struct stab_find_info *) *pinfo;
982   if (info != NULL)
983     {
984       if (info->stabsec == NULL || info->strsec == NULL)
985 	{
986 	  /* No stabs debugging information.  */
987 	  return TRUE;
988 	}
989 
990       stabsize = (info->stabsec->rawsize
991 		  ? info->stabsec->rawsize
992 		  : info->stabsec->size);
993       strsize = (info->strsec->rawsize
994 		 ? info->strsec->rawsize
995 		 : info->strsec->size);
996     }
997   else
998     {
999       long reloc_size, reloc_count;
1000       arelent **reloc_vector;
1001       int i;
1002       char *function_name;
1003       bfd_size_type amt = sizeof *info;
1004 
1005       info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
1006       if (info == NULL)
1007 	return FALSE;
1008 
1009       /* FIXME: When using the linker --split-by-file or
1010 	 --split-by-reloc options, it is possible for the .stab and
1011 	 .stabstr sections to be split.  We should handle that.  */
1012 
1013       info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1014       info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1015 
1016       if (info->stabsec == NULL || info->strsec == NULL)
1017 	{
1018 	  /* Try SOM section names.  */
1019 	  info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1020 	  info->strsec  = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1021 
1022 	  if (info->stabsec == NULL || info->strsec == NULL)
1023 	    {
1024 	      /* No stabs debugging information.  Set *pinfo so that we
1025 		 can return quickly in the info != NULL case above.  */
1026 	      *pinfo = info;
1027 	      return TRUE;
1028 	    }
1029 	}
1030 
1031       stabsize = (info->stabsec->rawsize
1032 		  ? info->stabsec->rawsize
1033 		  : info->stabsec->size);
1034       stabsize = (stabsize / STABSIZE) * STABSIZE;
1035       strsize = (info->strsec->rawsize
1036 		 ? info->strsec->rawsize
1037 		 : info->strsec->size);
1038 
1039       info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1040       info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1041       if (info->stabs == NULL || info->strs == NULL)
1042 	return FALSE;
1043 
1044       if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1045 				      0, stabsize)
1046 	  || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1047 					 0, strsize))
1048 	return FALSE;
1049 
1050       /* Stab strings ought to be nul terminated.  Ensure the last one
1051 	 is, to prevent running off the end of the buffer.  */
1052       info->strs[strsize - 1] = 0;
1053 
1054       /* If this is a relocatable object file, we have to relocate
1055 	 the entries in .stab.  This should always be simple 32 bit
1056 	 relocations against symbols defined in this object file, so
1057 	 this should be no big deal.  */
1058       reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1059       if (reloc_size < 0)
1060 	return FALSE;
1061       reloc_vector = (arelent **) bfd_malloc (reloc_size);
1062       if (reloc_vector == NULL && reloc_size != 0)
1063 	return FALSE;
1064       reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1065 					    symbols);
1066       if (reloc_count < 0)
1067 	{
1068 	  if (reloc_vector != NULL)
1069 	    free (reloc_vector);
1070 	  return FALSE;
1071 	}
1072       if (reloc_count > 0)
1073 	{
1074 	  arelent **pr;
1075 
1076 	  for (pr = reloc_vector; *pr != NULL; pr++)
1077 	    {
1078 	      arelent *r;
1079 	      unsigned long val;
1080 	      asymbol *sym;
1081 	      bfd_size_type octets;
1082 
1083 	      r = *pr;
1084 	      /* Ignore R_*_NONE relocs.  */
1085 	      if (r->howto->dst_mask == 0)
1086 		continue;
1087 
1088 	      octets = r->address * bfd_octets_per_byte (abfd, NULL);
1089 	      if (r->howto->rightshift != 0
1090 		  || r->howto->size != 2
1091 		  || r->howto->bitsize != 32
1092 		  || r->howto->pc_relative
1093 		  || r->howto->bitpos != 0
1094 		  || r->howto->dst_mask != 0xffffffff
1095 		  || octets + 4 > stabsize)
1096 		{
1097 		  _bfd_error_handler
1098 		    (_("unsupported .stab relocation"));
1099 		  bfd_set_error (bfd_error_invalid_operation);
1100 		  if (reloc_vector != NULL)
1101 		    free (reloc_vector);
1102 		  return FALSE;
1103 		}
1104 
1105 	      val = bfd_get_32 (abfd, info->stabs + octets);
1106 	      val &= r->howto->src_mask;
1107 	      sym = *r->sym_ptr_ptr;
1108 	      val += sym->value + sym->section->vma + r->addend;
1109 	      bfd_put_32 (abfd, (bfd_vma) val, info->stabs + octets);
1110 	    }
1111 	}
1112 
1113       if (reloc_vector != NULL)
1114 	free (reloc_vector);
1115 
1116       /* First time through this function, build a table matching
1117 	 function VM addresses to stabs, then sort based on starting
1118 	 VM address.  Do this in two passes: once to count how many
1119 	 table entries we'll need, and a second to actually build the
1120 	 table.  */
1121 
1122       info->indextablesize = 0;
1123       nul_fun = NULL;
1124       for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1125 	{
1126 	  if (stab[TYPEOFF] == (bfd_byte) N_SO)
1127 	    {
1128 	      /* if we did not see a function def, leave space for one.  */
1129 	      if (nul_fun != NULL)
1130 		++info->indextablesize;
1131 
1132 	      /* N_SO with null name indicates EOF */
1133 	      if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1134 		nul_fun = NULL;
1135 	      else
1136 		{
1137 		  nul_fun = stab;
1138 
1139 		  /* two N_SO's in a row is a filename and directory. Skip */
1140 		  if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1141 		      && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1142 		    stab += STABSIZE;
1143 		}
1144 	    }
1145 	  else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1146 		   && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1147 	    {
1148 	      nul_fun = NULL;
1149 	      ++info->indextablesize;
1150 	    }
1151 	}
1152 
1153       if (nul_fun != NULL)
1154 	++info->indextablesize;
1155 
1156       if (info->indextablesize == 0)
1157 	return TRUE;
1158       ++info->indextablesize;
1159 
1160       amt = info->indextablesize;
1161       amt *= sizeof (struct indexentry);
1162       info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1163       if (info->indextable == NULL)
1164 	return FALSE;
1165 
1166       file_name = NULL;
1167       directory_name = NULL;
1168       nul_fun = NULL;
1169       stroff = 0;
1170 
1171       for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1172 	   i < info->indextablesize && stab < info->stabs + stabsize;
1173 	   stab += STABSIZE)
1174 	{
1175 	  switch (stab[TYPEOFF])
1176 	    {
1177 	    case 0:
1178 	      /* This is the first entry in a compilation unit.  */
1179 	      if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1180 		break;
1181 	      str += stroff;
1182 	      stroff = bfd_get_32 (abfd, stab + VALOFF);
1183 	      break;
1184 
1185 	    case N_SO:
1186 	      /* The main file name.  */
1187 
1188 	      /* The following code creates a new indextable entry with
1189 		 a NULL function name if there were no N_FUNs in a file.
1190 		 Note that a N_SO without a file name is an EOF and
1191 		 there could be 2 N_SO following it with the new filename
1192 		 and directory.  */
1193 	      if (nul_fun != NULL)
1194 		{
1195 		  info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1196 		  info->indextable[i].stab = nul_fun;
1197 		  info->indextable[i].str = nul_str;
1198 		  info->indextable[i].directory_name = directory_name;
1199 		  info->indextable[i].file_name = file_name;
1200 		  info->indextable[i].function_name = NULL;
1201 		  info->indextable[i].idx = i;
1202 		  ++i;
1203 		}
1204 
1205 	      directory_name = NULL;
1206 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1207 	      if (file_name == (char *) str)
1208 		{
1209 		  file_name = NULL;
1210 		  nul_fun = NULL;
1211 		}
1212 	      else
1213 		{
1214 		  nul_fun = stab;
1215 		  nul_str = str;
1216 		  if (file_name >= (char *) info->strs + strsize
1217 		      || file_name < (char *) str)
1218 		    file_name = NULL;
1219 		  if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1220 		      && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1221 		    {
1222 		      /* Two consecutive N_SOs are a directory and a
1223 			 file name.  */
1224 		      stab += STABSIZE;
1225 		      directory_name = file_name;
1226 		      file_name = ((char *) str
1227 				   + bfd_get_32 (abfd, stab + STRDXOFF));
1228 		      if (file_name >= (char *) info->strs + strsize
1229 			  || file_name < (char *) str)
1230 			file_name = NULL;
1231 		    }
1232 		}
1233 	      break;
1234 
1235 	    case N_SOL:
1236 	      /* The name of an include file.  */
1237 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1238 	      /* PR 17512: file: 0c680a1f.  */
1239 	      /* PR 17512: file: 5da8aec4.  */
1240 	      if (file_name >= (char *) info->strs + strsize
1241 		  || file_name < (char *) str)
1242 		file_name = NULL;
1243 	      break;
1244 
1245 	    case N_FUN:
1246 	      /* A function name.  */
1247 	      function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1248 	      if (function_name == (char *) str)
1249 		continue;
1250 	      if (function_name >= (char *) info->strs + strsize
1251 		  || function_name < (char *) str)
1252 		function_name = NULL;
1253 
1254 	      nul_fun = NULL;
1255 	      info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1256 	      info->indextable[i].stab = stab;
1257 	      info->indextable[i].str = str;
1258 	      info->indextable[i].directory_name = directory_name;
1259 	      info->indextable[i].file_name = file_name;
1260 	      info->indextable[i].function_name = function_name;
1261 	      info->indextable[i].idx = i;
1262 	      ++i;
1263 	      break;
1264 	    }
1265 	}
1266 
1267       if (nul_fun != NULL)
1268 	{
1269 	  info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1270 	  info->indextable[i].stab = nul_fun;
1271 	  info->indextable[i].str = nul_str;
1272 	  info->indextable[i].directory_name = directory_name;
1273 	  info->indextable[i].file_name = file_name;
1274 	  info->indextable[i].function_name = NULL;
1275 	  info->indextable[i].idx = i;
1276 	  ++i;
1277 	}
1278 
1279       info->indextable[i].val = (bfd_vma) -1;
1280       info->indextable[i].stab = info->stabs + stabsize;
1281       info->indextable[i].str = str;
1282       info->indextable[i].directory_name = NULL;
1283       info->indextable[i].file_name = NULL;
1284       info->indextable[i].function_name = NULL;
1285       info->indextable[i].idx = i;
1286       ++i;
1287 
1288       info->indextablesize = i;
1289       qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1290 	     cmpindexentry);
1291 
1292       *pinfo = info;
1293     }
1294 
1295   /* We are passed a section relative offset.  The offsets in the
1296      stabs information are absolute.  */
1297   offset += bfd_section_vma (section);
1298 
1299 #ifdef ENABLE_CACHING
1300   if (info->cached_indexentry != NULL
1301       && offset >= info->cached_offset
1302       && offset < (info->cached_indexentry + 1)->val)
1303     {
1304       stab = info->cached_stab;
1305       indexentry = info->cached_indexentry;
1306       file_name = info->cached_file_name;
1307     }
1308   else
1309 #endif
1310     {
1311       long low, high;
1312       long mid = -1;
1313 
1314       /* Cache non-existent or invalid.  Do binary search on
1315 	 indextable.  */
1316       indexentry = NULL;
1317 
1318       low = 0;
1319       high = info->indextablesize - 1;
1320       while (low != high)
1321 	{
1322 	  mid = (high + low) / 2;
1323 	  if (offset >= info->indextable[mid].val
1324 	      && offset < info->indextable[mid + 1].val)
1325 	    {
1326 	      indexentry = &info->indextable[mid];
1327 	      break;
1328 	    }
1329 
1330 	  if (info->indextable[mid].val > offset)
1331 	    high = mid;
1332 	  else
1333 	    low = mid + 1;
1334 	}
1335 
1336       if (indexentry == NULL)
1337 	return TRUE;
1338 
1339       stab = indexentry->stab + STABSIZE;
1340       file_name = indexentry->file_name;
1341     }
1342 
1343   directory_name = indexentry->directory_name;
1344   str = indexentry->str;
1345 
1346   saw_line = FALSE;
1347   saw_func = FALSE;
1348   for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1349     {
1350       bfd_boolean done;
1351       bfd_vma val;
1352 
1353       done = FALSE;
1354 
1355       switch (stab[TYPEOFF])
1356 	{
1357 	case N_SOL:
1358 	  /* The name of an include file.  */
1359 	  val = bfd_get_32 (abfd, stab + VALOFF);
1360 	  if (val <= offset)
1361 	    {
1362 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1363 	      if (file_name >= (char *) info->strs + strsize
1364 		  || file_name < (char *) str)
1365 		file_name = NULL;
1366 	      *pline = 0;
1367 	    }
1368 	  break;
1369 
1370 	case N_SLINE:
1371 	case N_DSLINE:
1372 	case N_BSLINE:
1373 	  /* A line number.  If the function was specified, then the value
1374 	     is relative to the start of the function.  Otherwise, the
1375 	     value is an absolute address.  */
1376 	  val = ((indexentry->function_name ? indexentry->val : 0)
1377 		 + bfd_get_32 (abfd, stab + VALOFF));
1378 	  /* If this line starts before our desired offset, or if it's
1379 	     the first line we've been able to find, use it.  The
1380 	     !saw_line check works around a bug in GCC 2.95.3, which emits
1381 	     the first N_SLINE late.  */
1382 	  if (!saw_line || val <= offset)
1383 	    {
1384 	      *pline = bfd_get_16 (abfd, stab + DESCOFF);
1385 
1386 #ifdef ENABLE_CACHING
1387 	      info->cached_stab = stab;
1388 	      info->cached_offset = val;
1389 	      info->cached_file_name = file_name;
1390 	      info->cached_indexentry = indexentry;
1391 #endif
1392 	    }
1393 	  if (val > offset)
1394 	    done = TRUE;
1395 	  saw_line = TRUE;
1396 	  break;
1397 
1398 	case N_FUN:
1399 	case N_SO:
1400 	  if (saw_func || saw_line)
1401 	    done = TRUE;
1402 	  saw_func = TRUE;
1403 	  break;
1404 	}
1405 
1406       if (done)
1407 	break;
1408     }
1409 
1410   *pfound = TRUE;
1411 
1412   if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1413       || directory_name == NULL)
1414     *pfilename = file_name;
1415   else
1416     {
1417       size_t dirlen;
1418 
1419       dirlen = strlen (directory_name);
1420       if (info->filename == NULL
1421 	  || filename_ncmp (info->filename, directory_name, dirlen) != 0
1422 	  || filename_cmp (info->filename + dirlen, file_name) != 0)
1423 	{
1424 	  size_t len;
1425 
1426 	  /* Don't free info->filename here.  objdump and other
1427 	     apps keep a copy of a previously returned file name
1428 	     pointer.  */
1429 	  len = strlen (file_name) + 1;
1430 	  info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1431 	  if (info->filename == NULL)
1432 	    return FALSE;
1433 	  memcpy (info->filename, directory_name, dirlen);
1434 	  memcpy (info->filename + dirlen, file_name, len);
1435 	}
1436 
1437       *pfilename = info->filename;
1438     }
1439 
1440   if (indexentry->function_name != NULL)
1441     {
1442       char *s;
1443 
1444       /* This will typically be something like main:F(0,1), so we want
1445 	 to clobber the colon.  It's OK to change the name, since the
1446 	 string is in our own local storage anyhow.  */
1447       s = strchr (indexentry->function_name, ':');
1448       if (s != NULL)
1449 	*s = '\0';
1450 
1451       *pfnname = indexentry->function_name;
1452     }
1453 
1454   return TRUE;
1455 }
1456 
1457 long
1458 _bfd_nosymbols_canonicalize_symtab (bfd *abfd ATTRIBUTE_UNUSED,
1459 				    asymbol **location ATTRIBUTE_UNUSED)
1460 {
1461   return 0;
1462 }
1463 
1464 void
1465 _bfd_nosymbols_print_symbol (bfd *abfd ATTRIBUTE_UNUSED,
1466 			     void *afile ATTRIBUTE_UNUSED,
1467 			     asymbol *symbol ATTRIBUTE_UNUSED,
1468 			     bfd_print_symbol_type how ATTRIBUTE_UNUSED)
1469 {
1470 }
1471 
1472 void
1473 _bfd_nosymbols_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
1474 				asymbol *sym ATTRIBUTE_UNUSED,
1475 				symbol_info *ret ATTRIBUTE_UNUSED)
1476 {
1477 }
1478 
1479 const char *
1480 _bfd_nosymbols_get_symbol_version_string (bfd *abfd,
1481 					  asymbol *symbol ATTRIBUTE_UNUSED,
1482 					  bfd_boolean *hidden ATTRIBUTE_UNUSED)
1483 {
1484   return (const char *) _bfd_ptr_bfd_null_error (abfd);
1485 }
1486 
1487 bfd_boolean
1488 _bfd_nosymbols_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1489 					const char *name ATTRIBUTE_UNUSED)
1490 {
1491   return FALSE;
1492 }
1493 
1494 alent *
1495 _bfd_nosymbols_get_lineno (bfd *abfd, asymbol *sym ATTRIBUTE_UNUSED)
1496 {
1497   return (alent *) _bfd_ptr_bfd_null_error (abfd);
1498 }
1499 
1500 bfd_boolean
1501 _bfd_nosymbols_find_nearest_line
1502     (bfd *abfd,
1503      asymbol **symbols ATTRIBUTE_UNUSED,
1504      asection *section ATTRIBUTE_UNUSED,
1505      bfd_vma offset ATTRIBUTE_UNUSED,
1506      const char **filename_ptr ATTRIBUTE_UNUSED,
1507      const char **functionname_ptr ATTRIBUTE_UNUSED,
1508      unsigned int *line_ptr ATTRIBUTE_UNUSED,
1509      unsigned int *discriminator_ptr ATTRIBUTE_UNUSED)
1510 {
1511   return _bfd_bool_bfd_false_error (abfd);
1512 }
1513 
1514 bfd_boolean
1515 _bfd_nosymbols_find_line (bfd *abfd,
1516 			  asymbol **symbols ATTRIBUTE_UNUSED,
1517 			  asymbol *symbol ATTRIBUTE_UNUSED,
1518 			  const char **filename_ptr ATTRIBUTE_UNUSED,
1519 			  unsigned int *line_ptr ATTRIBUTE_UNUSED)
1520 {
1521   return _bfd_bool_bfd_false_error (abfd);
1522 }
1523 
1524 bfd_boolean
1525 _bfd_nosymbols_find_inliner_info
1526     (bfd *abfd,
1527      const char **filename_ptr ATTRIBUTE_UNUSED,
1528      const char **functionname_ptr ATTRIBUTE_UNUSED,
1529      unsigned int *line_ptr ATTRIBUTE_UNUSED)
1530 {
1531   return _bfd_bool_bfd_false_error (abfd);
1532 }
1533 
1534 asymbol *
1535 _bfd_nosymbols_bfd_make_debug_symbol (bfd *abfd,
1536 				      void *ptr ATTRIBUTE_UNUSED,
1537 				      unsigned long sz ATTRIBUTE_UNUSED)
1538 {
1539   return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1540 }
1541 
1542 long
1543 _bfd_nosymbols_read_minisymbols (bfd *abfd,
1544 				 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1545 				 void **minisymsp ATTRIBUTE_UNUSED,
1546 				 unsigned int *sizep ATTRIBUTE_UNUSED)
1547 {
1548   return _bfd_long_bfd_n1_error (abfd);
1549 }
1550 
1551 asymbol *
1552 _bfd_nosymbols_minisymbol_to_symbol (bfd *abfd,
1553 				     bfd_boolean dynamic ATTRIBUTE_UNUSED,
1554 				     const void *minisym ATTRIBUTE_UNUSED,
1555 				     asymbol *sym ATTRIBUTE_UNUSED)
1556 {
1557   return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1558 }
1559 
1560 long
1561 _bfd_nodynamic_get_synthetic_symtab (bfd *abfd,
1562 				     long symcount ATTRIBUTE_UNUSED,
1563 				     asymbol **syms ATTRIBUTE_UNUSED,
1564 				     long dynsymcount ATTRIBUTE_UNUSED,
1565 				     asymbol **dynsyms ATTRIBUTE_UNUSED,
1566 				     asymbol **ret ATTRIBUTE_UNUSED)
1567 {
1568   return _bfd_long_bfd_n1_error (abfd);
1569 }
1570