1 /* atof_generic.c - turn a string of digits into a Flonum
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 #include "as.h"
22 #include "safe-ctype.h"
23 
24 #ifndef FALSE
25 #define FALSE (0)
26 #endif
27 #ifndef TRUE
28 #define TRUE  (1)
29 #endif
30 
31 #ifdef TRACE
32 static void flonum_print (const FLONUM_TYPE *);
33 #endif
34 
35 #define ASSUME_DECIMAL_MARK_IS_DOT
36 
37 /***********************************************************************\
38  *									*
39  *	Given a string of decimal digits , with optional decimal	*
40  *	mark and optional decimal exponent (place value) of the		*
41  *	lowest_order decimal digit: produce a floating point		*
42  *	number. The number is 'generic' floating point: our		*
43  *	caller will encode it for a specific machine architecture.	*
44  *									*
45  *	Assumptions							*
46  *		uses base (radix) 2					*
47  *		this machine uses 2's complement binary integers	*
48  *		target flonums use "      "         "       "		*
49  *		target flonums exponents fit in a long			*
50  *									*
51  \***********************************************************************/
52 
53 /*
54 
55   Syntax:
56 
57   <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
58   <optional-sign> ::= '+' | '-' | {empty}
59   <decimal-number> ::= <integer>
60   | <integer> <radix-character>
61   | <integer> <radix-character> <integer>
62   | <radix-character> <integer>
63 
64   <optional-exponent> ::= {empty}
65   | <exponent-character> <optional-sign> <integer>
66 
67   <integer> ::= <digit> | <digit> <integer>
68   <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
69   <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
70   <radix-character> ::= {one character from "string_of_decimal_marks"}
71 
72   */
73 
74 int
75 atof_generic (/* return pointer to just AFTER number we read.  */
76 	      char **address_of_string_pointer,
77 	      /* At most one per number.  */
78 	      const char *string_of_decimal_marks,
79 	      const char *string_of_decimal_exponent_marks,
80 	      FLONUM_TYPE *address_of_generic_floating_point_number)
81 {
82   int return_value;		/* 0 means OK.  */
83   char *first_digit;
84   unsigned int number_of_digits_before_decimal;
85   unsigned int number_of_digits_after_decimal;
86   long decimal_exponent;
87   unsigned int number_of_digits_available;
88   char digits_sign_char;
89 
90   /*
91    * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
92    * It would be simpler to modify the string, but we don't; just to be nice
93    * to caller.
94    * We need to know how many digits we have, so we can allocate space for
95    * the digits' value.
96    */
97 
98   char *p;
99   char c;
100   int seen_significant_digit;
101 
102 #ifdef ASSUME_DECIMAL_MARK_IS_DOT
103   gas_assert (string_of_decimal_marks[0] == '.'
104 	  && string_of_decimal_marks[1] == 0);
105 #define IS_DECIMAL_MARK(c)	((c) == '.')
106 #else
107 #define IS_DECIMAL_MARK(c)	(0 != strchr (string_of_decimal_marks, (c)))
108 #endif
109 
110   first_digit = *address_of_string_pointer;
111   c = *first_digit;
112 
113   if (c == '-' || c == '+')
114     {
115       digits_sign_char = c;
116       first_digit++;
117     }
118   else
119     digits_sign_char = '+';
120 
121   switch (first_digit[0])
122     {
123     case 'n':
124     case 'N':
125       if (!strncasecmp ("nan", first_digit, 3))
126 	{
127 	  address_of_generic_floating_point_number->sign = 0;
128 	  address_of_generic_floating_point_number->exponent = 0;
129 	  address_of_generic_floating_point_number->leader =
130 	    address_of_generic_floating_point_number->low;
131 	  *address_of_string_pointer = first_digit + 3;
132 	  return 0;
133 	}
134       break;
135 
136     case 'i':
137     case 'I':
138       if (!strncasecmp ("inf", first_digit, 3))
139 	{
140 	  address_of_generic_floating_point_number->sign =
141 	    digits_sign_char == '+' ? 'P' : 'N';
142 	  address_of_generic_floating_point_number->exponent = 0;
143 	  address_of_generic_floating_point_number->leader =
144 	    address_of_generic_floating_point_number->low;
145 
146 	  first_digit += 3;
147 	  if (!strncasecmp ("inity", first_digit, 5))
148 	    first_digit += 5;
149 
150 	  *address_of_string_pointer = first_digit;
151 
152 	  return 0;
153 	}
154       break;
155     }
156 
157   number_of_digits_before_decimal = 0;
158   number_of_digits_after_decimal = 0;
159   decimal_exponent = 0;
160   seen_significant_digit = 0;
161   for (p = first_digit;
162        (((c = *p) != '\0')
163 	&& (!c || !IS_DECIMAL_MARK (c))
164 	&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
165        p++)
166     {
167       if (ISDIGIT (c))
168 	{
169 	  if (seen_significant_digit || c > '0')
170 	    {
171 	      ++number_of_digits_before_decimal;
172 	      seen_significant_digit = 1;
173 	    }
174 	  else
175 	    {
176 	      first_digit++;
177 	    }
178 	}
179       else
180 	{
181 	  break;		/* p -> char after pre-decimal digits.  */
182 	}
183     }				/* For each digit before decimal mark.  */
184 
185 #ifndef OLD_FLOAT_READS
186   /* Ignore trailing 0's after the decimal point.  The original code here
187      (ifdef'd out) does not do this, and numbers like
188     	4.29496729600000000000e+09	(2**31)
189      come out inexact for some reason related to length of the digit
190      string.  */
191 
192   /* The case number_of_digits_before_decimal = 0 is handled for
193      deleting zeros after decimal.  In this case the decimal mark and
194      the first zero digits after decimal mark are skipped.  */
195   seen_significant_digit = 0;
196   signed long subtract_decimal_exponent = 0;
197 
198   if (c && IS_DECIMAL_MARK (c))
199     {
200       unsigned int zeros = 0;	/* Length of current string of zeros.  */
201 
202       if (number_of_digits_before_decimal == 0)
203 	/* Skip decimal mark.  */
204 	first_digit++;
205 
206       for (p++; (c = *p) && ISDIGIT (c); p++)
207 	{
208 	  if (c == '0')
209 	    {
210 	      if (number_of_digits_before_decimal == 0
211 		  && !seen_significant_digit)
212 		{
213 		  /* Skip '0' and the decimal mark.  */
214 		  first_digit++;
215 		  subtract_decimal_exponent--;
216 		}
217 	      else
218 		zeros++;
219 	    }
220 	  else
221 	    {
222 	      seen_significant_digit = 1;
223 	      number_of_digits_after_decimal += 1 + zeros;
224 	      zeros = 0;
225 	    }
226 	}
227     }
228 #else
229   if (c && IS_DECIMAL_MARK (c))
230     {
231       for (p++;
232 	   (((c = *p) != '\0')
233 	    && (!c || !strchr (string_of_decimal_exponent_marks, c)));
234 	   p++)
235 	{
236 	  if (ISDIGIT (c))
237 	    {
238 	      /* This may be retracted below.  */
239 	      number_of_digits_after_decimal++;
240 
241 	      if ( /* seen_significant_digit || */ c > '0')
242 		{
243 		  seen_significant_digit = TRUE;
244 		}
245 	    }
246 	  else
247 	    {
248 	      if (!seen_significant_digit)
249 		{
250 		  number_of_digits_after_decimal = 0;
251 		}
252 	      break;
253 	    }
254 	}			/* For each digit after decimal mark.  */
255     }
256 
257   while (number_of_digits_after_decimal
258 	 && first_digit[number_of_digits_before_decimal
259 			+ number_of_digits_after_decimal] == '0')
260     --number_of_digits_after_decimal;
261 #endif
262 
263   if (flag_m68k_mri)
264     {
265       while (c == '_')
266 	c = *++p;
267     }
268   if (c && strchr (string_of_decimal_exponent_marks, c))
269     {
270       char digits_exponent_sign_char;
271 
272       c = *++p;
273       if (flag_m68k_mri)
274 	{
275 	  while (c == '_')
276 	    c = *++p;
277 	}
278       if (c && strchr ("+-", c))
279 	{
280 	  digits_exponent_sign_char = c;
281 	  c = *++p;
282 	}
283       else
284 	{
285 	  digits_exponent_sign_char = '+';
286 	}
287 
288       for (; (c); c = *++p)
289 	{
290 	  if (ISDIGIT (c))
291 	    {
292 	      decimal_exponent = decimal_exponent * 10 + c - '0';
293 	      /*
294 	       * BUG! If we overflow here, we lose!
295 	       */
296 	    }
297 	  else
298 	    {
299 	      break;
300 	    }
301 	}
302 
303       if (digits_exponent_sign_char == '-')
304 	{
305 	  decimal_exponent = -decimal_exponent;
306 	}
307     }
308 
309 #ifndef OLD_FLOAT_READS
310   /* Subtract_decimal_exponent != 0 when number_of_digits_before_decimal = 0
311      and first digit after decimal is '0'.  */
312   decimal_exponent += subtract_decimal_exponent;
313 #endif
314 
315   *address_of_string_pointer = p;
316 
317   number_of_digits_available =
318     number_of_digits_before_decimal + number_of_digits_after_decimal;
319   return_value = 0;
320   if (number_of_digits_available == 0)
321     {
322       address_of_generic_floating_point_number->exponent = 0;	/* Not strictly necessary */
323       address_of_generic_floating_point_number->leader
324 	= -1 + address_of_generic_floating_point_number->low;
325       address_of_generic_floating_point_number->sign = digits_sign_char;
326       /* We have just concocted (+/-)0.0E0 */
327 
328     }
329   else
330     {
331       int count;		/* Number of useful digits left to scan.  */
332 
333       LITTLENUM_TYPE *temporary_binary_low = NULL;
334       LITTLENUM_TYPE *power_binary_low = NULL;
335       LITTLENUM_TYPE *digits_binary_low;
336       unsigned int precision;
337       unsigned int maximum_useful_digits;
338       unsigned int number_of_digits_to_use;
339       unsigned int more_than_enough_bits_for_digits;
340       unsigned int more_than_enough_littlenums_for_digits;
341       unsigned int size_of_digits_in_littlenums;
342       unsigned int size_of_digits_in_chars;
343       FLONUM_TYPE power_of_10_flonum;
344       FLONUM_TYPE digits_flonum;
345 
346       precision = (address_of_generic_floating_point_number->high
347 		   - address_of_generic_floating_point_number->low
348 		   + 1);	/* Number of destination littlenums.  */
349 
350       /* precision includes two littlenums worth of guard bits,
351 	 so this gives us 10 decimal guard digits here.  */
352       maximum_useful_digits = (precision
353 			       * LITTLENUM_NUMBER_OF_BITS
354 			       * 1000000 / 3321928
355 			       + 1);	/* round up.  */
356 
357       if (number_of_digits_available > maximum_useful_digits)
358 	{
359 	  number_of_digits_to_use = maximum_useful_digits;
360 	}
361       else
362 	{
363 	  number_of_digits_to_use = number_of_digits_available;
364 	}
365 
366       /* Cast these to SIGNED LONG first, otherwise, on systems with
367 	 LONG wider than INT (such as Alpha OSF/1), unsignedness may
368 	 cause unexpected results.  */
369       decimal_exponent += ((long) number_of_digits_before_decimal
370 			   - (long) number_of_digits_to_use);
371 
372       more_than_enough_bits_for_digits
373 	= (number_of_digits_to_use * 3321928 / 1000000 + 1);
374 
375       more_than_enough_littlenums_for_digits
376 	= (more_than_enough_bits_for_digits
377 	   / LITTLENUM_NUMBER_OF_BITS)
378 	+ 2;
379 
380       /* Compute (digits) part. In "12.34E56" this is the "1234" part.
381 	 Arithmetic is exact here. If no digits are supplied then this
382 	 part is a 0 valued binary integer.  Allocate room to build up
383 	 the binary number as littlenums.  We want this memory to
384 	 disappear when we leave this function.  Assume no alignment
385 	 problems => (room for n objects) == n * (room for 1
386 	 object).  */
387 
388       size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
389       size_of_digits_in_chars = size_of_digits_in_littlenums
390 	* sizeof (LITTLENUM_TYPE);
391 
392       digits_binary_low = (LITTLENUM_TYPE *)
393 	xmalloc (size_of_digits_in_chars);
394 
395       memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
396 
397       /* Digits_binary_low[] is allocated and zeroed.  */
398 
399       /*
400        * Parse the decimal digits as if * digits_low was in the units position.
401        * Emit a binary number into digits_binary_low[].
402        *
403        * Use a large-precision version of:
404        * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
405        */
406 
407       for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
408 	{
409 	  c = *p;
410 	  if (ISDIGIT (c))
411 	    {
412 	      /*
413 	       * Multiply by 10. Assume can never overflow.
414 	       * Add this digit to digits_binary_low[].
415 	       */
416 
417 	      long carry;
418 	      LITTLENUM_TYPE *littlenum_pointer;
419 	      LITTLENUM_TYPE *littlenum_limit;
420 
421 	      littlenum_limit = digits_binary_low
422 		+ more_than_enough_littlenums_for_digits
423 		- 1;
424 
425 	      carry = c - '0';	/* char -> binary */
426 
427 	      for (littlenum_pointer = digits_binary_low;
428 		   littlenum_pointer <= littlenum_limit;
429 		   littlenum_pointer++)
430 		{
431 		  long work;
432 
433 		  work = carry + 10 * (long) (*littlenum_pointer);
434 		  *littlenum_pointer = work & LITTLENUM_MASK;
435 		  carry = work >> LITTLENUM_NUMBER_OF_BITS;
436 		}
437 
438 	      if (carry != 0)
439 		{
440 		  /*
441 		   * We have a GROSS internal error.
442 		   * This should never happen.
443 		   */
444 		  as_fatal (_("failed sanity check"));
445 		}
446 	    }
447 	  else
448 	    {
449 	      ++count;		/* '.' doesn't alter digits used count.  */
450 	    }
451 	}
452 
453       /*
454        * Digits_binary_low[] properly encodes the value of the digits.
455        * Forget about any high-order littlenums that are 0.
456        */
457       while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
458 	     && size_of_digits_in_littlenums >= 2)
459 	size_of_digits_in_littlenums--;
460 
461       digits_flonum.low = digits_binary_low;
462       digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
463       digits_flonum.leader = digits_flonum.high;
464       digits_flonum.exponent = 0;
465       /*
466        * The value of digits_flonum . sign should not be important.
467        * We have already decided the output's sign.
468        * We trust that the sign won't influence the other parts of the number!
469        * So we give it a value for these reasons:
470        * (1) courtesy to humans reading/debugging
471        *     these numbers so they don't get excited about strange values
472        * (2) in future there may be more meaning attached to sign,
473        *     and what was
474        *     harmless noise may become disruptive, ill-conditioned (or worse)
475        *     input.
476        */
477       digits_flonum.sign = '+';
478 
479       {
480 	/*
481 	 * Compute the mantissa (& exponent) of the power of 10.
482 	 * If successful, then multiply the power of 10 by the digits
483 	 * giving return_binary_mantissa and return_binary_exponent.
484 	 */
485 
486 	int decimal_exponent_is_negative;
487 	/* This refers to the "-56" in "12.34E-56".  */
488 	/* FALSE: decimal_exponent is positive (or 0) */
489 	/* TRUE:  decimal_exponent is negative */
490 	FLONUM_TYPE temporary_flonum;
491 	unsigned int size_of_power_in_littlenums;
492 	unsigned int size_of_power_in_chars;
493 
494 	size_of_power_in_littlenums = precision;
495 	/* Precision has a built-in fudge factor so we get a few guard bits.  */
496 
497 	decimal_exponent_is_negative = decimal_exponent < 0;
498 	if (decimal_exponent_is_negative)
499 	  {
500 	    decimal_exponent = -decimal_exponent;
501 	  }
502 
503 	/* From now on: the decimal exponent is > 0. Its sign is separate.  */
504 
505 	size_of_power_in_chars = size_of_power_in_littlenums
506 	  * sizeof (LITTLENUM_TYPE) + 2;
507 
508 	power_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
509 	temporary_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
510 
511 	memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
512 	*power_binary_low = 1;
513 	power_of_10_flonum.exponent = 0;
514 	power_of_10_flonum.low = power_binary_low;
515 	power_of_10_flonum.leader = power_binary_low;
516 	power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
517 	power_of_10_flonum.sign = '+';
518 	temporary_flonum.low = temporary_binary_low;
519 	temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
520 	/*
521 	 * (power) == 1.
522 	 * Space for temporary_flonum allocated.
523 	 */
524 
525 	/*
526 	 * ...
527 	 *
528 	 * WHILE	more bits
529 	 * DO	find next bit (with place value)
530 	 *	multiply into power mantissa
531 	 * OD
532 	 */
533 	{
534 	  int place_number_limit;
535 	  /* Any 10^(2^n) whose "n" exceeds this */
536 	  /* value will fall off the end of */
537 	  /* flonum_XXXX_powers_of_ten[].  */
538 	  int place_number;
539 	  const FLONUM_TYPE *multiplicand;	/* -> 10^(2^n) */
540 
541 	  place_number_limit = table_size_of_flonum_powers_of_ten;
542 
543 	  multiplicand = (decimal_exponent_is_negative
544 			  ? flonum_negative_powers_of_ten
545 			  : flonum_positive_powers_of_ten);
546 
547 	  for (place_number = 1;/* Place value of this bit of exponent.  */
548 	       decimal_exponent;/* Quit when no more 1 bits in exponent.  */
549 	       decimal_exponent >>= 1, place_number++)
550 	    {
551 	      if (decimal_exponent & 1)
552 		{
553 		  if (place_number > place_number_limit)
554 		    {
555 		      /* The decimal exponent has a magnitude so great
556 			 that our tables can't help us fragment it.
557 			 Although this routine is in error because it
558 			 can't imagine a number that big, signal an
559 			 error as if it is the user's fault for
560 			 presenting such a big number.  */
561 		      return_value = ERROR_EXPONENT_OVERFLOW;
562 		      /* quit out of loop gracefully */
563 		      decimal_exponent = 0;
564 		    }
565 		  else
566 		    {
567 #ifdef TRACE
568 		      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
569 			      place_number);
570 
571 		      flonum_print (&power_of_10_flonum);
572 		      (void) putchar ('\n');
573 #endif
574 #ifdef TRACE
575 		      printf ("multiplier:\n");
576 		      flonum_print (multiplicand + place_number);
577 		      (void) putchar ('\n');
578 #endif
579 		      flonum_multip (multiplicand + place_number,
580 				     &power_of_10_flonum, &temporary_flonum);
581 #ifdef TRACE
582 		      printf ("after multiply:\n");
583 		      flonum_print (&temporary_flonum);
584 		      (void) putchar ('\n');
585 #endif
586 		      flonum_copy (&temporary_flonum, &power_of_10_flonum);
587 #ifdef TRACE
588 		      printf ("after copy:\n");
589 		      flonum_print (&power_of_10_flonum);
590 		      (void) putchar ('\n');
591 #endif
592 		    } /* If this bit of decimal_exponent was computable.*/
593 		} /* If this bit of decimal_exponent was set.  */
594 	    } /* For each bit of binary representation of exponent */
595 #ifdef TRACE
596 	  printf ("after computing power_of_10_flonum:\n");
597 	  flonum_print (&power_of_10_flonum);
598 	  (void) putchar ('\n');
599 #endif
600 	}
601       }
602 
603       /*
604        * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
605        * It may be the number 1, in which case we don't NEED to multiply.
606        *
607        * Multiply (decimal digits) by power_of_10_flonum.
608        */
609 
610       flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
611       /* Assert sign of the number we made is '+'.  */
612       address_of_generic_floating_point_number->sign = digits_sign_char;
613 
614       if (temporary_binary_low)
615 	free (temporary_binary_low);
616       if (power_binary_low)
617 	free (power_binary_low);
618       free (digits_binary_low);
619     }
620   return return_value;
621 }
622 
623 #ifdef TRACE
624 static void
625 flonum_print (f)
626      const FLONUM_TYPE *f;
627 {
628   LITTLENUM_TYPE *lp;
629   char littlenum_format[10];
630   sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
631 #define print_littlenum(LP)	(printf (littlenum_format, LP))
632   printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
633   if (f->low < f->high)
634     for (lp = f->high; lp >= f->low; lp--)
635       print_littlenum (*lp);
636   else
637     for (lp = f->low; lp <= f->high; lp++)
638       print_littlenum (*lp);
639   printf ("\n");
640   fflush (stdout);
641 }
642 #endif
643 
644 /* end of atof_generic.c */
645